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Abstract—We address the problem of downlink beamforming
for mitigating the co-channel interference in multi-cell OFDMA
networks. Based on the network utility maximization frame-
work, we formulate the problem as a non-convex optimization
problem subject to the per-cell power constraints, in whicha
general utility function of SINR is used to characterize the
network performance. Some classical utility functions, such as
the proportional fairness utility, the weighted sum-rate utility
and the α-fairness utility, are subsumed as special cases of
our formulation. To solve the problem in a distributed fashion,
we devise an algorithm based on the non-cooperative game
with pricing mechanism. We give a sufficient condition for the
convergence of the algorithm to the Nash equilibrium (NE),
and analyze the information exchange overhead among the base
stations. Moreover, to speed up the optimization of the beam-
vectors at each cell, we derive an efficient algorithm to solve for
the KKT conditions at each cell. We provide extensive simulation
results to demonstrate that the proposed distributed multi-cell
beamforming algorithm converges to an NE point in just a few
iterations with low information exchange overhead. Moreover,
it provides significant performance gains, especially under the
strong interference scenario, in comparison with several existing
multi-cell interference mitigation schemes, such as the distributed
interference alignment method.

Index Terms—Multi-cell, downlink beamforming, distributed
algorithm, game theory, pricing mechanism, utility optimization,
dual decomposition.

I. I NTRODUCTION

I N multi-cell wireless networks, besides the intra-cell in-
terference caused by spatial multiplexing within each cell,

another impediment arises from inter-cell interference due to
the ever-shrinking cell sizes. Alleviating the effects of inter-
cell interference requires the base stations (BSs) to adjust their
transmission schemes collectively. In fact, inter-cell interfer-
ence mitigation has been identified as a key issue for future
wireless networks. In particular, for downlink transmissions, if
the inter-cell interference is mitigated via coordinated process-
ing across multiple BSs, significant performance gains can be
possibly obtained, especially for the users at the cell edges.
Therefore, recently, there has been a rapidly growing interest in
shifting the design paradigm from the conventional single-cell
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to the cooperative multi-cell networks [1]. Various methods,
such as [2], [3], [4], have been proposed to provide network-
wide, macroscopic cooperation among different BSs. In these
studies, it is assumed that the BSs in a multi-cell network
are connected via backhaul links to a central processing unit,
which has the global knowledge of the transmitted data from
all the users in the network and the downlink channels from
each BS to all the users. Such a fully coordinated case is
sometimes referred to as networked MIMO. However, for
large and dense networks, networked MIMO obviously in-
curs a substantial infrastructural and computational overhead,
which increases the system costs and hinders the practical
implementations. This motivates the problem of constrained
cooperation, taking into account many practical factors, e.g.,
limited backhaul capacity [5], local cooperation [6], processing
complexity and delay [7], imperfect channel state information
(CSI) [8] [9], and feedback errors [10].

On the other hand, future cellular networks are envisioned to
be distributed systems with autonomous and self-coordinated
cells. Each BS can make independent and rational decisions
in a decentralized manner, with limited information exchange
with the neighboring BSs. This motivates the study of dis-
tributed multi-cell interference mitigation, which requires only
the local and neighboring CSI at each BS, without the need of
a central controller, and is therefore much easier to implement.
Based on a generalization of uplink-downlink duality to the
multi-cell setting, an iterative algorithm is proposed in [11] to
optimally solve the multicell downlink beamforming problem
for minimizing either the total weighted transmit power or
the maximum per-antenna power subject to the SINR con-
straints. An alternative to the transmit power minimization
problem is the rate maximization problem subject to the power
constraints, which is in general non-convex. An approach
based on the concept of virtual SINR is proposed in [12]. In
[13] an iterative algorithm is developed for solving the KKT
conditions of the weighted sum-rate maximization problem
subject to per-cell power constraints. However, the proof of
convergence is still an open problem. Other related works
include [14], which explores the relationship between the
MISO interference channel and the cognitive radio MISO
channel to devise rate-optimal strategies for decentralized
multi-cell cooperative beamforming.

Game theory provides a systematic mathematical framework
for the study of competition and cooperation among intelligent
and rational decision makers.There has been a significant
amount of recent research that applies game theory to resource
allocation problems in wireless networks [15]- [19].In general,
game models can be classified into two main categories: non-
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cooperative and cooperative games. Although non-cooperative
game is a useful tool to devise totally distributed algorithms,
the Nash equilibrium (NE) of the non-cooperative game may
suffer a significant performance degradation compared with
the optimal centralized solution. On the other hand, the coop-
erative game approach offers performance gain over the non-
cooperative game, but it requires extensive message exchanges
among all players, which implies a large communication
overhead and poor scalability when applied to large networks.
The pricing mechanism is another alternative to overcome the
inefficiency of the non-cooperative game approach. In this
paper, we develop a provably convergent distributed multi-
cell beamforming technique based on the pricing-based non-
cooperative game.

In particular, we formulate the problem as a general net-
work utility maximization problem subject to per-cell power
constraints, which is a non-convex problem. Examples of the
utility functions include the weighted sum-rate utility, the
proportional fairness utility, and theα-fairness utility [20], etc.
We treat each cell in the multi-cell network as a player, and
design an efficient distributed pricing mechanism to optimize
the network performance through coordination among the
players. We give a sufficient condition for the convergence
of the proposed distributed multi-cell beamforming algorithm.
Moreover, we derive an efficient algorithm based on the dual
decomposition technique for solving the KKT conditions of
the downlink beamforming problem at each BS. The proposed
technique can converge rapidly to the NE point with a low
information exchange overhead among the BSs. It provides
significant performance gains, especially in the strong interfer-
ence scenario, in comparison with several existing approaches,
including the recently proposed distributed interferencealign-
ment method [21].

The remainder of this paper is organized as follows. In
Section II we introduce the system model and the problem
formulation. In Section III we develop the pricing-based mul-
ticell distributed downlink beamforming technique. In Section
IV, we derive the beamforming optimization algorithm at each
cell based on dual decomposition. Simulation results are given
in Section V. Finally Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMATION

We consider a downlink multi-cellular network where a
set of BSsM = {1, 2, . . . ,M} simultaneously transmit on
the orthogonal sub-channels1 N = {1, 2, . . . , N} during each
scheduling interval. Each BSm ∈ M is equipped withT
transmit antennas and space-division multiple-access (SDMA)
is employed to serve multiple single-antenna mobile users on
each sub-channel. LetB(n)

m be the set of users scheduled by BS
m ∈ M on sub-channeln ∈ N . For simplicity and without
loss of generality, we assume that|B(n)

m | = Q, ∀m, ∀n. We
further assume that each user is served by only one BS.

For data transmission, BSm on sub-channeln transmits
complex symbolsb(n)m,k ∈ C through T transmit antennas

1The sub-channel refers to a logical collection of physical sub-carriers,
which is regarded as the minimum granularity of the radio resource allocation
unit in this paper.

using a beam-vectorw(n)
m,k ∈ CT to user k ∈ B(n)

m . We

assume thatE{|b
(n)

m,k|
2} = 1, andE{b

(n1)
m1,k1

b
(n2)
m2,k2

} = 0, for
(n1,m1, k1) 6= (n2,m2, k2), whereE{·} is the expectation
operator. Then after normalized by the noise standard devia-
tion, the received signal by userk ∈ B(n)

m on sub-channeln
can be written as

y
(n)
m,k = ~h

(n)
m,kw

(n)
m,kb

(n)
m,k︸ ︷︷ ︸

useful signal

+
∑

k′∈B(n)
m \k

~h
(n)
m,kw

(n)
m,k′b

(n)
m,k′

︸ ︷︷ ︸
in−cell co−channel interference

+
∑

j∈M\m

∑

u∈B
(n)
j

~h
(n)
j,kw

(n)
j,u b

(n)
j,u

︸ ︷︷ ︸
out−cell co−channel interference

+ z
(n)
m,k︸︷︷︸

noise

,
(1)

whereh(n)
m,k ∈ CT is the complex channel vector between BS

m and userk ∈ B(n)
m on sub-channeln, z

(n)
m,k ∼ NC(0, 1)

denotes the circularly symmetric complex Gaussian noise
sample, and~· is the Hermitian transpose operator.

The SINR for userk ∈ B(n)
m on sub-channeln can then be

expressed as2

Γ
(n)
m,k =

∣∣∣~h(n)
m,kw

(n)
m,k

∣∣∣
2

1 + I
(n)
m,k

, (2)

whereW(n) = {w
(n)
m,k, k ∈ B

(n)
m ,m ∈M}, n ∈ N , and

I
(n)
m,k =

∑

k′∈B(n)
m \k

∣∣∣~h(n)
m,kw

(n)
m,k′

∣∣∣
2

︸ ︷︷ ︸
I

(n),in
m,k

+
∑

j∈M\m

∑

u∈B
(n)
j

∣∣∣~h(n)
j,kw

(n)
j,u

∣∣∣
2

︸ ︷︷ ︸
I

(n),out,j
m,k︸ ︷︷ ︸

I
(n),out
m,k

,

(3)
where the termsI(n),inm,k and I(n),outm,k account for the in-cell
and out-cell interference, respectively.

Now, we consider the following general linear beamforming
optimization problem where we wish to maximize a network-
wide utility function across all users of all coordinated BSs
and all sub-channels, by choosing the set of beam-vectors
W = {W(n), n ∈ N}, subject to the per-base-station power
constraints:

max
W

Unetwork(W) =
∑

m∈M

∑

n∈N

∑

k∈B
(n)
m

U
(n)
m,k

(
Γ
(n)
m,k

)
,

s.t.
∑

n∈N

∑

k∈B
(n)
m

~w
(n)
m,kw

(n)
m,k ≤ Pm, ∀m ∈M,

(4)

wherePm is the total transmit power at BSm. We assume that
the above optimization problem has a set of feasible solutions,
which can be facilitated through some form of admission
control or/and scheduling strategies.

In the above formulation, each userk ∈ B(n)
m is assigned

a utility function U
(n)
m,k(Γ

(n)
m,k), which is assumed to be a

monotonically nondecreasing, concave and twice differentiable
function of the received SINRΓ(n)

m,k. Typical utility functions
include the following:

2We drop the explicit dependency ofΓ(n)
m,k

andI(n)
m,k

on W(n).
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• Proportional fairness utility [20]:U(Γ) = log(Γ);
• Rate utility:U(Γ) = log(1 + Γ);
• α-fairness utility [20]:U(Γ) = (1−α)−1(Γ)1−α, α 6= 1.

Note that the constraint set in (4) is convex. However,
due to the SINR expression (2), even though the utility
functionU

(n)
m,k(Γ

(n)
m,k) is concave in terms of the SINRΓ(n)

m,k,
it is in general nonconcave in terms of the set of beam-
vectorsW(n). Numerically finding the global optimal solution
to the optimization problem (4) is known to be a difficult
problem.Our objective is to develop a distributed solutionto
(4) where each BS updates its beam-vectors locally; and with
the aid of limited information exchange among the BSs, some
form of optimality can be achieved. To that end, we resort to
the game theoretical tool of pricing mechanism.

III. PRICING MECHANISM AND DISTRIBUTED

ALGORITHM FOR NON-COOPERATIVEBEAMFORMING

GAME

An extreme example of distributed beamforming scheme
is for each BS to independently update its own beam-vectors
without considering the actions of other BSs. However, sucha
pure non-cooperative approach may result in non-convergence
or some undesirable Nash equilibrium (NE) with low individ-
ual as well as system-wise performance [22]. For instance, it
is shown in [23] that for a two-user MISO system, the NE
point achieved through the pure non-cooperative game over
all possible choices of beams is far away from the Pareto
boundary of the achievable rate region.

The pricing mechanism [24]–[26] has been employed as an
effective means to stimulate cooperation among players, and to
guide the players’ behaviors toward a more efficient NE that
improves the system performance, by introducing a certain
degree of coordination in a non-cooperative game. In this sec-
tion, we propose a pricing mechanism for the non-cooperative
multicell beamforming game and the corresponding distributed
beamforming algorithm. We then prove the convergence of
this algorithm. Finally we analyze the information exchange
overhead among the BSs.

A. Pricing Mechanism

We model the pricing-based non-cooperative multicell
beamforming game as

G = {M, {Wm}m∈M, {Ūm}m∈M},

where the elements are
• Player set:M = {1, 2, . . . ,M}, i.e., the set of BSs.
• Strategy set:{W1, . . . ,WM}, where the strategy set of

player (BS)m is the following

Wm =
{
w

(n)
m,k ∈ C

T , k ∈ B(n)
m , n ∈ N :

∑

n∈N

∑

k∈B
(n)
m

~w
(n)
m,kw

(n)
m,k ≤ Pm

}
.

(5)

• Payoff functions set:{Ū1, . . . , ŪM}, with

Ūm(Wm,W−m)

=
∑

n∈N

∑

k∈B
(n)
m

U
(n)
m,k(Γ

(n)
m,k)− C(Wm,W−m), (6)

where Wm = {w
(n)
m,k, k ∈ B

(n)
m , n ∈ N} and

W−m = {W1, ...,Wm−1,Wm+1, ...WM} denote the
set of beam-vectors of BSm, and that of all other BSs,
respectively.C(Wm,W−m) is a cost function associated
with a pricing mechanism.

An efficient pricing mechanism should take into account
the nature of the service requirement of each player and reflect
accurately the cost of resource consumption for fullfillingeach
player’s requirement. Inspired by [24]–[26], we will applythe
usage-based pricing mechanism to solve our problem, where
the price a player pays for using the resource is proportional
to the amount of resource consumed by the player.

First, we introduce a quantity called the interference pricing
rate of userk ∈ B(n)

m , which measures the marginal decrease
in utility due to a marginal increase in interference, givenby

π
(n)
m,k , −

∂U
(n)
m,k

∂I
(n)
m,k

= (U
(n)
m,k)

′
|~h

(n)
m,kw

(n)
m,k|

2

(1 + I
(n)
m,k)

2
, (7)

where(U (n)
m,k)

′ denote the derivative of the utility function with

respect to the SINRΓ(n)
m,k. When BSm transmits signal to

userk ∈ B(n)
m on sub-channeln using the beam-vectorw(n)

m,k,

it induces the interference
∣∣∣~h(n)

m,uw
(n)
m,k

∣∣∣
2

to all other users

u ∈ B
(n)
j , (j, u) 6= (m, k), j ∈ M. Thus, under the pricing

mechanism, when serving userk ∈ B
(n)
m , BS m needs to pay

a total cost:
∑

j∈M

∑

u∈B
(n)
j

π
(n)

j,u

∣∣∣~h(n)

m,uw
(n)

m,k

∣∣∣
2

= ~w
(n)

m,kL
(n)

m,kw
(n)

m,k, (8)

whereL(n)
m,k is defined in (9). We calledL(n)

m,k as the leakage

matrix of userk ∈ B(n)
m on sub-channeln, which accounts for

the amount of interference caused by BSm to other co-channel
users on sub-channeln when serving userk ∈ B(n)

m . Note
that L(n)

m,k is Hermitian symmetric, i.e.,L(n)
m,k = ~L

(n)
m,k, since

h
(n)
m,k

~h
(n)
m,k is Hermitian symmetric. The termsL(n),in

m,k and

L
(n),out
m in (9) account for the in-cell and out-cell leakages,

respectively.
Hence summing across all users served by BSm and across

all sub-channels, BSm needs to pay a total cost of

C(Wm,W−m) =
∑

n∈N

∑

k∈B
(n)
m

~w
(n)
m,kL

(n)
m,kw

(n)
m,k. (10)

Summarizing the discussion above, in the pricing-based
non-cooperative multicell beamforming game, each BSm
solves the following optimization problem

max
Wm

∑

n∈N

∑

k∈B
(n)
m

(
U

(n)
m,k

(
Γ
(n)
m,k

)
− ~w

(n)
m,kL

(n)
m,kw

(n)
m,k

)
,

s.t.
∑

n∈N

∑

k∈B
(n)
m

~w
(n)
m,kw

(n)
m,k ≤ Pm.

(11)

Notice that the objective function is still nonconcave with
respect to the beam-vectorsWm associated with BSm;
thus the globally optimal solution to (11) cannot be found.
In Section IV we drive a dual decomposition algorithm for
obtaining the solution to the KKT conditions of (11).



4

L
(n)
m,k ,

∑

k′∈B(n)
m \k

π
(n)
m,k′h

(n)
m,k′

~h
(n)
m,k′

︸ ︷︷ ︸
L

(n),in
m,k

+
∑

j∈M\m

∑

u∈B
(n)
j

π
(n)
j,uh

(n)
m,u

~h(n)
m,u

︸ ︷︷ ︸
L

(n),out,j
m︸ ︷︷ ︸

L
(n),out
m

. (9)

B. Distributed Multicell Beamforming Algorithm

We propose the following distributed algorithm for imple-
menting the pricing-based non-cooperative multicell beam-
forming game.

Algorithm 1: Distributed multicell beamforming algo-
rithm.

1 Initialization:
2 Each BSm initializesWm satisfying the power

constraint.
3 Repeat
4 For m = 1 : M
5 BS m obtains a solutionW̄m to (11) for given
6 W−m, using Algorithm 2.
7 If Ūm(W̄m,W−m) ≥ Ūm(Wm,W−m)
8 Then
9 {

10 BS m updates its beam-vectors as̄Wm.
11 Based on the new beam-vectors̄Wm, BS m
12 updates

13 {I
(n),out,m
j,u , u ∈ B

(n)
j , j ∈M\m, n ∈ N},

14 and{π(n)
m,k, k ∈ B

(n)
m , n ∈ N}

15 according to (3) and (7) respectively, and
16 passes them to BSsj ∈M\m.
17 }
18 EndIf
19 EndFor
20 Until convergence

We have the following observations on Algorithm 1.

1) Only one BS updates its beam-vectors at a time, based
on the latest out-cell interference powers and interfer-
ence price rates (and thus the latest out-cell leakage
matrices) from every other BS in the multicell network.
Moreover, after a BS updates its beam-vectors, the new
out-cell interference powers and new interference price
rates are announced timely to every other BS.

2) Only if Ūm(W̄m,W−m) ≥ Ūm(Wm,W−m) holds,
BS m updates its beam-vectors as̄Wm. Otherwise, BS
m keeps its old beam-vectors. This method is based on
the better response strategy in game theory, which refers
to an update procedure where the players choose actions
that increase their utilities as opposed to maximizing
their utilities in the best response strategy. Notice that
the best response strategy cannot applied due to the
nonconvexity of (11).

These features ensure the convergence of the algorithm, as
discussed next.

C. Existence and Convergence of NE

The Nash equilibrium (NE) is a well-known concept for an-
alyzing a game. A set of beam-vectorsW∗ = (W∗

1 , . . . ,W
∗
M )

is an NE if, for every BSm ∈ M, Ūm(W∗
m,W∗

−m) ≥
Ūm(Wm,W∗

−m), ∀Wm ∈ Wm. That is, given the other BSs’
beam-vectors, no BS can increase its utility unilaterally by
changing its own beam-vectors. For the multicell beamforming
game under consideration, the existence and convergence of
NE is heavily dependent on the concavity of the utility
function U

(n)
m,k. We first introduce a quantity that measures

the relative concavity of a utility function. Specifically,the
coefficient of relative risk aversion associated with the utility
functionU(Γ) is defined as

κ(Γ) = −
Γ · U(Γ)′′

U(Γ)′
, (12)

whereU(Γ)′ and U(Γ)′′ denote the first- and second-order
derivatives, respectively.

We have the following result on a sufficient condition for
the convergence of Algorithm 1.

Proposition 1: Suppose that the utility functionU (n)
m,k sat-

isfies

0 ≤ κ
(n)

m,k ≤ 2, ∀k ∈ B(n)
m , m ∈M, n ∈ N ,

then Algorithm 1 converges to an NE point.
Proof: See Appendix A. �

Remark: The condition0 ≤ κ
(n)

m,k ≤ 2 can be interpreted as
requiring that the utility function to be sufficiently concave,
but not too concave. If the utility function is too concave (i.e.,
κ

(n)

m,k > 2), the updates may be too aggressive to guarantee
convergence. Fortunately, this condition is satisfied by most
utility functions of interest, as discussed below.

1) For the proportional fairness utility functionU(Γ) =
log2(Γ), its coefficient of relative risk aversion isκ = 1.

2) For theα-fairness utility functionU(Γ) = (Γ)1−α

1−α
with

α 6= 1, we haveκ(n)
m,k = α. Hence, for0 ≤ α ≤ 2 (α 6=

1), we have0 ≤ κ ≤ 2 (κ 6= 1).
3) For the weighted sum-rate utilityU(Γ) = ω log2(1 +

θΓ), with 0 < θ ≤ 1, we have the following.

• θ = 1 corresponds to the Shannon rate with0 <
κ = Γ

1+Γ < 1.
• 0 < θ < 1 corresponds to the achievable

rate for some practical modulations, whereθ =
− φ1

log(φ2BER) , and φ1, φ2 are constants depending
on the modulation and BER is the required bit-error
rate. We have0 < κ = θΓ

1+θΓ < 1.
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Fig. 1. Local computation at each BS and the information exchange among
the BSs.

D. Information Exchange Overhead

In order to compute the SINRΓ(n)
m,k and the leakage matrix

L
(n)
m,k in (11), BSm needs to get certain information from the

neighboring BSs. In Fig. 1, we give a graphic illustration ofthe
local computation at each BS and the information exchange
among the BSs, which is further elaborated as follows.

BS m can computeI(n)m,k in (2)-(3) for each userk ∈ B(n)
m

on each sub-channeln ∈ N through the following.

1) Computing the first term I
(n),in
m,k =

∑
k′∈B(n)

m \k

∣∣∣~h(n)
m,kw

(n)
m,k′

∣∣∣
2

in (3). BSm only needs the

knowledge of the direct downlink channelsh(n)
m,k and of

the local beam-vectors{w(n)
m,k′ , k′ ∈ B

(n)
m \k} computed

at the previous iteration. Thus, no information exchange
is needed.

2) Computing the second term I(n),out,jm,k =
∑

u∈B
(n)
j

∣∣∣~h(n)
j,kw

(n)
j,u

∣∣∣
2

, j ∈ M\m in (3). BS j ∈M\m

needs the local beam-vectors{w(n)
j,u , u ∈ B

(n)
j }

computed at the previous iteration, and the interference
downlink channel h(n)

j,k , which is sent from user

k ∈ B
(n)
m to the serving BSm, and then from BSm to

BS j. BS j calculatesI(n),out,jm,k and then sends it to
BS m.

BS m can computeL(n)
m,k in (9) for each userk ∈ B(n)

m and
each sub-channeln ∈ N through the following.

1) Computing the first term L
(n),in
m,k =∑

k′∈B(n)
m \k

π
(n)
m,k′h

(n)
m,k′

~h
(n)
m,k′ in (9). BS m only needs

the direct downlink channels{h(n)
m,k′ , k′ ∈ B

(n)
m \k} and

the local interference pricing rates{π(n)
m,k′ , k′ ∈ B

(n)
m \k}

computed at the previous iteration. Thus no information
exchange is needed.

2) Computing the second termL
(n),out,j
m =∑

u∈B
(n)
j

π
(n)
j,uh

(n)
m,u

~h
(n)
m,u, j ∈ M\m in (9). BS j needs

the interference downlink channels{h(n)
m,u, u ∈ B

(n)
j },

each of which is sent from useru to the serving
BS j. Notice that these channels have already been
sent when computingI(n),out,mj,u . Thus this incurs
no additional information exchange. On the other
hand, the interference pricing rates{π(n)

j,u , u ∈ B
(n)
j }

can be computed locally according to (7) for which
the quantityI(n)j,u is needed, which in turn has been
computed at the previous iteration. After computing

{π
(n)
j,u , u ∈ B

(n)
j }, BS j sends them to BSm.

Remark: Note that compared with [13], in our scheme, BS
j sends{π(n)

j,u , u ∈ B
(n)
j } instead ofL(n),out,j

m itself to BS

m. SinceL(n),out,j
m is aT × T complex-valued matrix, while

{π
(n)
j,u , u ∈ B

(n)
j } is a Q × 1 real-valued vector, and typically

Q ≤ T , our scheme incurs a much lower information exchange
overhead.

IV. PER-BS BEAM-VECTOR UPDATE

VIA DUAL DECOMPOSITION

In this section, we derive a dual decomposition algorithm
for obtaining the solution to the KKT conditions of Problem
(11) at each BS, which is the key step in Algorithm 1 (line 5
and 6).

A. Dual Decomposition

The dual decomposition technique is an effective method for
decoupling the coupled constraints and performing distributed
optimization.

First, by introducing a set of scalar variablespm ={
p
(n)
m,k, k ∈ B

(n)
m , n ∈ N

}
, we can rewrite the optimization

problem (11) as follows:

max
Wm

∑

n∈N

∑

k∈B
(n)
m

(
U

(n)
m,k(Γ

(n)
m,k)− ~w

(n)
m,kL

(n)
m,kw

(n)
m,k

)
,

s.t.
∑

n∈N

∑

k∈B
(n)
m

p
(n)
m,k ≤ Pm,

~w
(n)
m,kw

(n)
m,k ≤ p

(n)
m,k, k ∈ B(n)

m , n ∈ N .

(13)

Notice that the optimization problem (13) has only one single
coupled constraint

∑
n∈N

∑
k∈B

(n)
m

p
(n)
m,k ≤ Pm. Then, we

form the Lagrangian (14) of the optimization problem (13)
with respect to the coupled constraint. In (14),λm denotes
the Lagrangian dual variable.

Define the dual problem as

min
λm

Dm (λm) , (15)

where the objective functionDm (λm) is

max
Wm,pm

L̃m(Wm,pm, λm)

s.t. ~w
(n)
m,kw

(n)
m,k ≤ p

(n)
m,k, k ∈ B(n)

m , n ∈ N .
(16)

Notice that the dual functionDm (λm) is the pointwise
maximum of a family of affine functions ofλm, hence it is a
convex function ofλm.

B. Decoupled Subproblems

First, we need to computeDm (λm) for a fixed λm. Due
to its separable structure, the dual functionDm can be
decomposed intoNQ subproblemsD(n)

m,k, n ∈ N , k ∈ B
(n)
m

as follows:

max
{

w
(n)
m,k

,p
(n)
m,k

}

U
(n)
m,k(Γ

(n)
m,k)− ~w

(n)
m,kL

(n)
m,kw

(n)
m,k − λmp

(n)
m,k,

s.t. ~w
(n)
m,kw

(n)
m,k ≤ p

(n)
m,k. (17)
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L̃m(Wm,pm, λm) =
∑

n∈N

∑

k∈B
(n)
m

(
U

(n)
m,k(Γ

(n)
m,k)− ~w

(n)
m,kL

(n)
m,kw

(n)
m,k

)
− λm

(∑

n∈N

∑

k∈B
(n)
m

p
(n)
m,k − Pm

)

=
∑

n∈N

∑

k∈B
(n)
m

(
U

(n)
m,k(Γ

(n)
m,k)− ~w

(n)
m,kL

(n)
m,kw

(n)
m,k − λmp

(n)
m,k

)
+ λmPm,

(14)

The Lagrangian of the subproblemD(n)
m,k is given by

L̂
(n)
m,k

(
w

(n)
m,k, p

(n)
m,k, λm, ν

(n)
m,k

)

= U
(n)
m,k

(
Γ
(n)
m,k

)
− ~w

(n)
m,kL

(n)
m,kw

(n)
m,k − λmp

(n)
m,k (18)

−ν
(n)
m,k

(
~w

(n)
m,kw

(n)
m,k − p

(n)
m,k

)
,

whereν(n)m,k is a dual variable associated with the constraint

~w
(n)
m,kw

(n)
m,k ≤ p

(n)
m,k.

We next obtain the KKT conditions, given by

∂L̂
(n)
m,k

∂w
(n)
m,k

= U
(n)
m,k

(
Γ
(n)
m,k

)′
·
2~h

(n)
m,kh

(n)
m,kw

(n)
m,k

1 + I
(n)
m,k

−2L
(n)
m,kw

(n)
m,k − 2ν

(n)
m,kITw

(n)
m,k = 0 (19)

∂L̂
(n)
m,k

∂p
(n)
m,k

= −λm + ν
(n)
m,k = 0 (20)

whereIT indicates theT × T identity matrix.
By combining the above two equations, we obtain

U
(n)
m,k

(∣∣~h(n)
m,k

w
(n)
m,k

∣∣2
1+I

(n)
m,k

)′
h

(n)
m,k

~h
(n)
m,k

w
(n)
m,k

1+I
(n)
m,k

= T
(n)
m,kw

(n)
m,k, (21)

with T
(n)
m,k = L

(n)
m,k + λmIT . (22)

Solving w
(n)
m,k from (21), we obtain the expression for the

beam-vectors associated with userk ∈ B
(n)
m for a fixed λm,

as follows.
Proposition 2: For a fixedλm ≥ 0, the solution to the KKT

conditions of problem (17) is of the following form3:

w
(n)∗
m,k = T

(n)†
m,kh

(n)
m,k

√(
1 + I

(n)
m,k

)
Φ

(n)
m,kΥ

(n)
m,k, (23)

p
(n)∗
m,k = ~w

(n)∗
m,k w

(n)∗
m,k =

(
1 + I

(n)
m,k

)
Φ

(n)
m,kΨ

(n)
m,k, (24)

with Φ
(n)
m,k = Inv

{
U

(n)
m,k

(
1+I

(n)
m,k

~h
(n)
m,k

T
(n)†
m,k

h
(n)
m,k

)′}
, (25)

Υ
(n)
m,k = 1/

(
~h
(n)
m,kT

(n)†
m,kh

(n)
m,k

)2
, (26)

Ψ
(n)
m,k =

∥∥∥T(n)†
m,kh

(n)
m,k

∥∥∥
2

Υ
(n)
m,k. (27)

Furthermore, ifw(n)∗
m,k 6= 0, λm = 0 is feasible only if

h
(n)
m,k ∈ ̺(L

(n)
m,k), where̺(L

(n)
m,k) denotes the column span

of the matrixL(n)
m,k.

Proof: See Appendix B. �

3(·)† denotes the pseudo-inverse;Inv{U ′} is the inverse function ofU ′.

C. Master Problem

We need to solve the master problem (15) on top of theNQ
subproblems. Since the master problem is convex inλm, we
will apply the subgradient method. Notice that whereW∗

m =

{w
(n)∗
m,k , n ∈ N , k ∈ B

(n)
m } is the optimizer for (15) in the

definition ofDm (λm).
Thus, we can set the subgradient ofDm (λm) as Pm −∑
n∈N

∑
k∈B

(n)
m

p
(n)∗
m,k . The subgradient search suggests that

we should increaseλm if Pm <
∑

n∈N

∑
k∈B

(n)
m

p
(n)∗
m,k ; and

decreaseλm otherwise. Notice that the adjustment occurs in
a one-dimensional space, thus a simple bisection method can
be employed.

D. The Beamforming Algorithm at Each BS

Finally we summarize in Algorithm 2 the dual-
decomposition-based beamforming algorithm at each
BS.

Algorithm 2: An algorithm for updating the beam-vectors
at each BSm.

1 Initialize λmin
m andλmax

m ;
2 Repeat
3 Setλm ←

(
λmin
m + λmax

m

)
/2;

4 Repeat throughk = 1, ..., Q; 1, ..., Q; ...

5 Compute{I(n),inm,k }
N
n=1 and thus{I(n)m,k}

N
n=1

6 according to (3);

7 Compute{L(n),in
m,k }

N
n=1 and thus{L(n)

m,k}
N
n=1

8 according to (9);

9 Compute{w(n),∗
m,k , p

(n),∗
m,k }

N
n=1 for (17) according to

10 (23) and (24).
11 Until convergence

12 If
∑

n∈N

∑
k∈B

(n)
m

p
(n)∗
m,k > Pm

13 Then setλmin
m ← λm

14 Else setλmax
m ← λm

15 End If
16 Until |λmax

m − λmin
m | → 0

Note that Algorithm 2 can also be viewed as an iterative
procedure for solving the KKT conditions of problem (11),
which consists of the following.

1) The stationarity condition (21) fork ∈ B(n)
m , n ∈ N .

2) The sum-power constraint
∑

n∈N

∑

k∈B
(n)
m

~w
(n)
m,kw

(n)
m,k ≤ Pm. (29)
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Dm

(
λ̃m

)
= max

Wm,pm

∑

n∈N

∑

k∈B
(n)
m

{
U

(n)
m,k(Γm,k)− ~w

(n)
m,kL

(n)
m,kw

(n)
m,k

}
− λ̃m

(∑

n∈N

∑

k∈B
(n)
m

p
(n)
m,k − Pm

)

≥
∑

n∈N

∑

k∈B
(n)
m

{
U

(n)
m,k − ~w

(n)∗
m,k L

(n)
m,kw

(n)∗
m,k

}
− λ̃m

(∑

n∈N

∑

k∈B
(n)
m

p
(n)∗
m,k − Pm

)

= Dm (λm)−
(∑

n∈N

∑

k∈B
(n)
m

p
(n)∗
m,k − Pm

)(
λ̃m − λm

)
, (28)

3) The complementary slackness conditions:

λm(
∑

n∈N

∑

k∈B
(n)
m

~w
(n)
m,kw

(n)
m,k − Pm) = 0, (30)

with λm ≥ 0.
Starts with a givenλm, Algorithm 2 solves (21) fork ∈ B(n)

m ,
n ∈ N , and then adjustsλm according to the search direction
suggested by the power constraint (29), such as to satisfy the
complementary slackness conditions (30).

Notice that sinceN = {1, 2, ..., N} is a set of orthogonal
sub-channels, forn1, n2 ∈ N , n1 6= n2, and k1, k2 ∈
B
(n)
m , k1 6= k2, we can update{w(n1)

m,k1
, p

(n1)
m,k1
} for the subprob-

lem D
(n1)
m,k1

, and {w(n2)
m,k2

, p
(n2)
m,k2
} for the subproblemD(n2)

m,k2

in parallel. Such a simultaneous update can improve the
convergence speed of the iterative procedure, especially when
N is large.

Moreover, it is easy to derive the following KKT conditions
of the original problem (4):

U
(n)
m,k

(∣∣~h(n)
m,k

w
(n)
m,k

∣∣2
1+I

(n)
m,k

)′ h(n)
m,k

~h
(n)
m,k

w
(n)
m,k

1+I
(n)
m,k

= T
(n)
m,kw

(n)
m,k,

k ∈ B(n)
m , n ∈ N ,m ∈M, (31)

∑
n∈N

∑
k∈B

(n)
m

~w
(n)
m,kw

(n)
m,k ≤ Pm, m ∈M, (32)

λm

(∑
n∈N

∑
k∈B

(n)
m

~w
(n)
m,kw

(n)
m,k − Pm

)
= 0, m ∈M. (33)

LetWKKT
m the beam-vector set satisfying the KKT conditions

of (11) for BSm ∈ M. By comparing (21), (29), (30) with
(31), (32), (33), respectively, it is obvious thatWKKT =
{WKKT

1 , . . . ,WKKT
M } is the beam-vector set satisfying the

KKT conditions of the original problem (4).
In Algorithm 2, each BSm ∈ M can achieve the KKT

solution to (11). From Proposition 1, we know that Algorithm
1 converges to an NE point. Furthermore, line 6 in Algorithm
1 guarantees that the beam-vector update at each BS cannot
decrease the total utility. Thus, the total utility at the NE
point is not smaller than that at the point satisfying the KKT
conditions of the original problem (4).

V. SIMULATION RESULTS

A. Simulation Setup

We consider a network with hexagonal cellsMt =
{1, ..., 27} shown in Fig. 2. The distance between adjacent
BSs isDBS =2000m. LetMco = {1, ...,M} be the set of
coordinated BSs, andMun =Mt\Mco be the set of unco-
ordinated BSs. On each sub-channel,Q users are uniformly
displaced around the serving BS within a circular annulus of
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Fig. 2. The simulated network.

external and internal radii ofD and0.9D, respectively. Since
the proposed method is expected to benefit most the cell-edge
users, by settingD =1000m as the default value all users are
around the cell edges.

The base-band fading channel from them-th BS to thek-th
user on sub-channeln is modeled as

h
(n)
m,k =

(
200

d
(n)
m,k

)3.5

l
(n)
m,kh̄

(n)
m,k, (34)

where d
(n)
m,k is the distance from them-th BS to the k-

th user on sub-channeln; 10 log10 l
(n)
m,k is a real Gaussian

random variable with zero mean and a standard deviation
of 8 accounting for the large scale log-normal shadowing;
finally, h̄(n)

m,k ∼ Nc(0T , IT ) is a circularly symmetric complex
Gaussian random vector accounting for Rayleigh fast fading.

The total noise powerη(n)m,k at each user is modeled as

η
(n)
m,k = σ2 +

∑

m∈Mun

(
200

d
(n)
m,k

)3.5

l
(n)
m,k

P

N
, (35)

where σ2 is the thermal noise power, and the second term
accounts for the uncoordinated inter-cell interference. Note
that η(n)m,k is used to obtain the normalized signal model (1).
We assume equal power (i.e.,Pm = P ) for each BSm in the
following simulation, and consider the system the performance
under different signal-to-noise ratio (SNR), which is defined
asγ , P/σ2.
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B. Convergence Behavior

We first illustrate the convergence behavior of the proposed
distributed beamforming scheme, under three different utility
functions, namely,

1) Proportional fairness utility: U
(n)
m,k(Γ

(n)
m,k) =

1
NM

log2(Γ
(n)
m,k);

2) α-fairness utility:U (n)
m,k(Γ

(n)
m,k) = 1

NM

(Γ
(n)
m,k

)(1−α)

1−α
with

(α = 2);

3) Sum-rate utility:U (n)
m,k(Γ

(n)
m,k) =

1
NM

log2(1 + Γ
(n)
m,k).

The number of coordinated cells isM = 7; the number of
sub-channels isN = 3; the number of transmit antennas at
each BS isT = 6; the number of SDMA users isQ = 3; and
the location parameter of the users isD = 1000m. Algorithm
1 is initialized by the channel-matched (CM) beamformers.
Note that initializing with the more sophisticated beamformers,
such as the in-cell zero-forcing (ICZF) beamformer, may only
slightly increase the convergence speed.
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Fig. 3. Convergence of Algorithms 1 & 2 (proportion fairnessutility).

The convergence behaviors of Algorithm 1 and Algorithm 2
at SNRγ = 30dB are shown in Figs. 3-5 for the above three
utility functions, respectively. In these figures, the squares cor-
respond to the outer iteration, i.e., the iterations of Algorithm
1. In each outer iteration, one BS updates its beam-vectors for
all its users. The solid lines correspond to the inner iterations,
i.e., the iterations of Algorithm 2. In each inner iteration,
the BS updates the beam-vectors of one of its users. It is
seen that the proposed distributed beamforming technique can
significantly improve upon the initial network utility through
optimizing the power allocation across the beams and the beam
directions according to the conditions of the in-cell and out-
cell interference. Moreover, the value of the network utility
monotonically increases at each outer iteration, which confirms
the theoretic result of Proposition 1.

Our extensive simulations reveal that the convergence speed
of Algorithm 1 is affected by the system parameters as follows.

• The number of coordinated BSsM : A larger M corre-
sponds to a slower convergence.
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Fig. 4. Convergence of Algorithms 1 & 2 (α-fairness utility).
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Fig. 5. Convergence of Algorithms 1 & 2 (weighted sum-rate utility).
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• The SNRγ: A larger γ corresponds to a slower conver-
gence.

• The number of antennasT and the number of co-channel
usersQ: They only slightly affect the convergence of the
outer iteration, i.e., Algorithm 1; but significantly affect
the convergence of the inner iteration, i.e., Algorithm
2. Specifically, largerT and Q correspond to slower
convergence of Algorithm 2.

In general it is seen that a relatively small number of outer
iterations are sufficient for Algorithm 1 to converge. Note that
there is no step-size parameter in Algorithm 1 and the overall
utility could change dramatically in a single update, leading
to rapid convergence. This is in contrast to some conventional
distributed optimization algorithms, in which some step-size
parameter controls the speed of convergence.

C. Performance Comparisons

We next compare the performance of the proposed dis-
tributed beamforming method with some existing techniques,
including the simple channel matching (CM) method, the
in-cell zero-forcing (ICZF) method, the iterative coordinated
beam-forming (ICBF) method proposed in [13], and the
more recent maximum SINR interference alignment (MSIA)
method [21], as well as the approach based on the pure non-
cooperative game (i.e., without the pricing mechanism) and
the full-cooperation based method. Furthermore, the sum-rate
performance of the time-sharing scheme is also considered,
where theQ users in each cell access each sub-channel via
TDMA.

In Figs. 6-8, the total utility values versus the SNR for
the above-mentioned methods are plotted for the three utility
functions, respectively. Note that for CM, ICZF and MSIA, the
beamformer solutions are independent of the utility function.
It is seen that the proposed distributed beamforming method
outperform all other techniques in the sense of offering higher
total network utilities. Moreover, we note that the network
utility gain provided by Algorithm 1 is affected by the system
parameters as follows.

• The distance from the BS to the userD: The network
utility gain provided by Algorithm 1 is larger when the
users are closer to the cell edge. Intuitively, the cell-
edge users experience higher path losses and suffer from
higher out-cell interference. Through Algorithm 1, both
the available power across beams and the beam directions
are optimized to mitigate these effects. On the other hand,
when the users are close to the serving BS and away from
the cell-edge, the per-cell optimized solution based on
the non-cooperative game can achieve high performance
without any information exchange among the BSs.

• The number of antennasT and the number of cochannel
usersQ: The network utility gain provided by Algorithm
1 is larger for largerT and Q. Intuitively, when the
number of co-channel usersQ is large, the users suffer
from the high out-cell and in-cell interference. Due to
the large number of antennas, Algorithm 1 has enough
degrees of freedom to ensure the good quality of service
of each user while causing minimum amount of in-cell
and out-cell interference.

• The number of coordinated BSsM : The performance
gain provided by Algorithm 1 becomes larger for larger
M . This is because a largerM corresponds to a larger
number of degrees of freedom to mitigate the interfer-
ence.

• The signal-to-noise ratioγ: Algorithm 1 only provides
marginal gains at low SNR, while the gain is more
prominent at high SNR. This is because at high SNR,
the interference becomes dominant factor for limiting the
system performance, which can be effectively mitigated
by Algorithm 1.

Comparison with non-cooperative game: As expected, the
approach based on the pure non-cooperative game, denoted by
Non-coop in Figs. 6-8, yields inferior performance in termsof
the network utility. The reason is that when each BS optimizes
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only its own utility function, it does not account for the
disutility it causes to the users served by other BSs due to
the interference it generates. In economic terms, a disutility
of one agent due to the action of another is referred to as a
negative externality, which is the root of the inefficiencies of
the non-cooperative game. For largeM , the system becomes
interference limited, and the pricing mechanism in Algorithm
1 can significantly increase the achievable network utilityby
implicitly inducing cooperation and yet maintaining the non-
cooperative nature of the beamforming solution.

Comparison with full-cooperation based algorithm: The full-
cooperation based algorithm has also been simulated. The
results show that its utility performance is always similarto
that of our proposed Algorithm 1. Thus, for clarity we did
not plot its utility performance in Figs. 6-8. Notice that this
performance similarity is reasonable: because the optimization
problem of downlink beamforming in multi-cell OFDMA
networks is non-convex, even full-cooperation based algorithm
only achieves the KKT solution. For our proposed Algorithm
1, the total utility at the NE point is no less than that at the
point satisfying the KKT conditions of the original problem.

Comparison with distributed interference alignment: The max-
imum SINR interference alignment (MSIA) method is an
extension of the interference alignment algorithm proposed
in [21], where the receive filters are chosen to maximize
the SINR, and in the meantime to minimize the leakage
interference at the receivers. For the MISO scenario discussed
in this paper, interference alignment can be accomplished
through symbol extension. In the simulations, the number of
symbol extensionS is set from 2 to 10, and the degree of
freedomd for a user’s message is set from 1 to its upper
boundS. In Fig. (6)-(8), we plot the performance of MSIA
for the case of the best choices of symbol extensionS and the
degree of freedomd.

It is seen that the performance of MSIA is inferior to that of
Algorithm 1, especially at the strong interference scenario. In
fact, the MSIA is even inferior to the per-cell optimized non-
cooperative game solution in some scenarios. The reasons are
as follows.

• The MSIA only optimizes the beam directions. In con-
trast, Algorithm 1 optimizes both the beam directions and
the power distribution across the beams.

• The MSIA is designed to maximize the SINR and in
the meantime to minimize the leakage interference. In
contrast, Algorithm 1 is designed to optimize a general
utility function.

• In MSIA, the iterative algorithm alternates between the
original and reciprocal networks. Within each network,
the receivers update their interference suppression filters.
In contrast, Algorithm 1 is iteratively implemented only at
the transmitters (BSs) and it can converge only in a small
number of iterations. Thus, Algorithm 1 incurs a much
lower information exchange overhead, in comparison
with MSIA.

VI. CONCLUSIONS

We have considered the downlink beamforming problem
for co-channel interference mitigation in multi-cell OFDMA
networks. The problem is formulated as a general utility max-
imization problem subject to the per-cell power constraints,
which is non-convex. We have proposed a distributed solution
based on the non-cooperative game with pricing mechanism.
We have shown that for some popular utility functions, such as
the weighted sum rate utility, the proportional fairness utility,
and theα-fairness utility, the proposed algorithm converges
to a Nash equilibrium point. Moreover, we have developed an
efficient algorithm to solve the KKT condition at each base
station based on the dual decomposition technique. We have
provided extensive simulation results to illustrate that the pro-
posed method can converge to a Nash equilibrium in a small
number of iterations, and it outperforms several state-of-the-art
approaches to multicell interference mitigation, including the
recently developed distributed interference alignment method.

In this paper, we have assumed the perfect instantaneous
channel state information. From the practical point of view,
the following issues remain to be investigated in future: (1) the
impact of the reduced information exchange; (2) the robustness
of the proposed method in the presence of transmission delay,
packet loss and estimation error.

APPENDIX A: PROOF OFPROPOSITION1

After some simple manipulations, we have4

∂2U
(n)

m,k(W
(n))

∂
(
I

(n)

m,k

)2 =
(
U

(n)

m,k

)′
∣∣∣~h(n)

m,kw
(n)

m,k

∣∣∣
2

(
1 + I

(n)

m,k

)3
(
2− κ

(n)

m,k

)
.

(36)
By the assumptions on the utility functionU

(n)

m,k, we have(
U

(n)

m,k

)′
> 0, and0 ≤ κ

(n)

m,k ≤ 2. Thus

∂2U
(n)

m,k(W
(n))

∂
(
I

(n)

m,k

)2 ≥ 0. (37)

HenceU
(n)

m,k is a convex function ofI
(n)

m,k. Then we have

U
(n)
m,k(Ŵ

(n)) ≥ U
(n)
m,k(W

(n)) +
∂U

(n)
m,k

∂I
(n)
m,k

∣∣∣I(n)
m,k

(
Î
(n)
m,k − I

(n)
m,k

)

= U
(n)
m,k(W

(n))− π
(n)
m,k(W

(n))
(
Î
(n)
m,k − I

(n)
m,k

)
,

(38)

whereI
(n)

m,k and Î
(n)

m,k denote the interferences at the current
operating pointW = {W(n), n ∈ N} and at any new
operating point̂W = {Ŵ(n), n ∈ N}, respectively.

Summing up (38) over all users served by BSm and over
all sub-channels, we have (39).

Hereafter we will drop the explicit dependency ofπ
(n)

m,k on
W(n).

4Here, we drop the explicit dependency ofU
(n)
m,k

on Γ
(n)
m,k

, and denote

U
(n)
m,k

(Γ
(n)
m,k

(W(n))) asU (n)
m,k

(W(n)).
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∑

n∈N

∑

k∈B
(n)
m

U
(n)
m,k(Ŵ

(n)) ≥
∑

n∈N

∑

k∈B
(n)
m

[
U

(n)
m,k(W

(n))− π
(n)
m,k(W

(n))
(
Î
(n)
m,k − I

(n)
m,k

)]
. (39)

Assume that BSm applies Algorithm 1 to update its beam-
vectors, given the current beam-vectorsW = {W(n), n ∈
N}. According to the condition of STEP 6 in Algorithm 1,
we have

Ūm(W̄m,W−m) ≥ Ūm(Wm,W−m), (40)

whereW̄ =
{
W1, · · · ,Wm−1,W̄m,Wm+1, · · · ,WM

}
de-

notes the operating point after BSm updates its beam-vectors
W̄m = {w̄

(n)
m,k, k ∈ B

(n)
m , n ∈ N}.

Plugging (6)-(10) into (40), we have (41).
Because of BSm’s beam-vector update, the received inter-

ference by useru ∈ B(n)
j , j ∈M\m is changed fromI

(n)

j,u to

Ī
(n)

j,u , and

Ī
(n)

j,u − I
(n)

j,u =
∑

k∈B
(n)
m

(∣∣∣~h(n)

m,uw̄
(n)

m,k

∣∣∣
2

−
∣∣∣~h(n)

m,uw
(n)

m,k

∣∣∣
2)

. (42)

Thus, we have (43).
Adding the constant terms

∑
j∈M
j 6=m

[ ∑
n∈N

∑
u∈B

(n)
j

U
(n)

j,u (W
(n))
]

to both sides of (41), we have (44).
Subtracting the terms
∑

n∈N

∑
k∈B

(n)
m

∑
j∈M

∑
u∈B

(n)
j

(j,u) 6=(m,k)

π
(n)

j,u

∣∣∣~h(n)

m,uw
(n)

m,k

∣∣∣
2

from both sides

of (44), and using (43), we have (45).
Summing up (39) overj ∈M\m at the updated operating

point W̄, we have
∑

j∈M
j 6=m

∑

n∈N

∑

u∈B
(n)
j

U
(n)

j,u (W̄
(n)).

≥
∑

j∈M
j 6=m

∑

n∈N

∑

u∈B
(n)
j

[
U

(n)

j,u (W
(n))− π

(n)

j,u

(
Ī

(n)

j,u − I
(n)

j,u

)]
(46)

Adding
∑

n∈N

∑
k∈B

(n)
m

U
(n)

m,k(W̄
(n)) to both sides of (55), we

have (47).
Combining (45) and (47) yields
∑

j∈M

∑

n∈N

∑

u∈B
(n)
j

U
(n)

j,u (W̄
(n))

︸ ︷︷ ︸
Unetwork(W̄)

≥
∑

j∈M

∑

n∈N

∑

u∈B
(n)
j

U
(n)

j,u (W
(n))

︸ ︷︷ ︸
Unetwork(W)

.

(48)
Hence, when BSm adjusts its beam-vectors, the total utility

cannot decrease. Since at most one BS updates its beam-
vectors at anytime, the total utility is non-decreasing in each
iteration. As both the number of players and the size of the
strategy sets are finite, the total utility is bounded. Thus,the
total utility will convergence,

Now, we assume that Algorithm 1 converges to a fixed point
W∗ = (W∗

1, . . . ,W
∗
M ). If W∗ is not an NE point, then there

existsW̃ = (W∗
1, . . . ,W̃m, . . . ,W∗

M ), such that

Ūm(W̃m,W∗
−m) ≥ Ūm(W∗

m,W∗
−m). (49)

Applying the similar deduction in (40)-(48), we have

Unetwork(W̃) ≥ Unetwork(W
∗), (50)

which contradicts the assumption thatW∗ is a fixed point.
ThusW∗ is an NE point. �

APPENDIX B: PROOF OFPROPOSITION2

The proof is along the similar line of that for Proposition
1 in [13]. There are two cases for the solution to the KKT
conditions of (17).
Case 1: λm > 0 andw(n)

m,k 6= 0.

Notice thatT(n)
m,k is a positive-definite matrix. Thus, it is easy

to have
T

(n)
m,kw

(n)
m,k 6= 0. (51)

Obviously, (51) and (21) imply that~h(n)
m,kw

(n)
m,k 6= 0 and

h
(n)
m,k ∝ T

(n)
m,kw

(n)
m,k. Hence, a non-zero solutionw(n)∗

m,k to the
KKT conditions of (17) must be of the form

w
(n)∗
m,k ∝ T

(n)†
m,kh

(n)
m,k. (52)

Case 2: λm = 0 andw(n)
m,k 6= 0.

It is easy to see that (21) is satisfied only if one of the following
two conditions holds:

(a) ~h(n)
m,kw

(n)
m,k = 0 andL(n)

m,kw
(n)
m,k = 0;

(b) h(n)
m,k ∈ ̺(L

(n)
m,k).

If (a) holds, ~h(n)
m,kw

(n)
m,k = 0 implies that the non-zero

beam-vectorw(n)
m,k is orthogonal to the channel vector~h(n)

m,k.

In this case, userk ∈ B(n)
m cannot receive any information

from the serving base station. Hence we discard the solutions
~h
(n)
m,kw

(n)
m,k = 0 andL(n)

m,kw
(n)
m,k = 0 for the caseλm 6= 0 and

w
(n)
m,k 6= 0.
If (b) holds andλm = 0, a non-zero beam-vector which

satisfies (21) must be of the form

w
(n)∗
m,k ∝ L

(n)†
m,kh

(n)
m,k. (53)

Notice that (53) is equivalent to (52) withλm = 0. Meanwhile,
notice that multiplyingw

(n)∗
m,k by any unit-norm complex

number does not affect either the objective function or the
power constraint in (17). Hence, for the two cases discussed
above, we can set the unique solution to the KKT conditions
of (17) as

w
(n)∗
m,k = β

(n)
m,kT

(n)†
m,kh

(n)
m,k, (54)

whereβ(n)
m,k is some scalar constant.

To determineβ(n)
m,k, we plug (54) into (21) to obtain

U
(n)
m,k

( ∣

∣

∣

~h
(n)
m,k

β
(n)
m,k

T
(n)†
m,k

h
(n)
m,k

∣

∣

∣

2

1+I
(n)
m,k

)′
h

(n)
m,k

~h
(n)
m,k

β
(n)
m,k

T
(n)†
m,k

h
(n)
m,k

1+I
(n)
m,k

= T
(n)
m,kβ

(n)
m,kT

(n)†
m,kh

(n)
m,k (55)
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∑
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∑

k∈B
(n)
m

(
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(n)

m,k

(
W̄(n)

)
−
∑

j∈M

∑

u∈B
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(j,u) 6=(m,k)

π
(n)

j,u
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m,uw̄
(n)

m,k
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2)

≥
∑
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∑
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(n)
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(n)

m,k
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u∈B
(n)
j
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π
(n)
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∣∣∣~h(n)

m,uw
(n)

m,k

∣∣∣
2)

.
(41)
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j 6=m
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j

π
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. (43)

∑

n∈N
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m
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m,k
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W̄(n)
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j∈M
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j
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π
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2]

+
∑

j∈M
j 6=m
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(47)

ConsideringT(n)
m,kβ

(n)
m,kT

(n)†
m,k = β

(n)
m,kI, andh(n)

m,k 6= 0, we
have

U
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( |~h(n)
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which is equivalent to

∣∣∣~h(n)
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(57)

Thus, we obtain

β
(n)
m,k =

√(
1 + I

(n)
m,k

)
Φ

(n)
m,kΥ

(n)
m,k. (58)
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