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Pricing-based Distributed Downlink Beamforming
In Multi-Cell OFDMA Networks
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Abstract—We address the problem of downlink beamforming
for mitigating the co-channel interference in multi-cell OFDMA
networks. Based on the network utility maximization frame-
work, we formulate the problem as a non-convex optimization
problem subject to the per-cell power constraints, in whicha
general utility function of SINR is used to characterize the
network performance. Some classical utility functions, soh as
the proportional fairness utility, the weighted sum-rate utility
and the o-fairness utility, are subsumed as special cases of
our formulation. To solve the problem in a distributed fashion,
we devise an algorithm based on the non-cooperative game
with pricing mechanism. We give a sufficient condition for the
convergence of the algorithm to the Nash equilibrium (NE),
and analyze the information exchange overhead among the bas
stations. Moreover, to speed up the optimization of the beam
vectors at each cell, we derive an efficient algorithm to soévfor
the KKT conditions at each cell. We provide extensive simul@on
results to demonstrate that the proposed distributed multicell
beamforming algorithm converges to an NE point in just a few
iterations with low information exchange overhead. Moreoer,
it provides significant performance gains, especially undethe
strong interference scenario, in comparison with several>dsting
multi-cell interference mitigation schemes, such as the dtributed
interference alignment method.

Index Terms—Multi-cell, downlink beamforming, distributed
algorithm, game theory, pricing mechanism, utility optimization,
dual decomposition.

I. INTRODUCTION

to the cooperative multi-cell networks![1]. Various methpd
such asl[P],[[3],[[4], have been proposed to provide network-
wide, macroscopic cooperation among different BSs. Inghes
studies, it is assumed that the BSs in a multi-cell network
are connected via backhaul links to a central processing uni
which has the global knowledge of the transmitted data from
all the users in the network and the downlink channels from
each BS to all the users. Such a fully coordinated case is
sometimes referred to as networked MIMO. However, for
large and dense networks, networked MIMO obviously in-
curs a substantial infrastructural and computational loead,
which increases the system costs and hinders the practical
implementations. This motivates the problem of constigiine
cooperation, taking into account many practical factorg,,e
limited backhaul capacity [5], local cooperation [6], pessing
complexity and delay [7], imperfect channel state inforioat
(CSh) [8] [9], and feedback errors [1L0].

On the other hand, future cellular networks are envisioned t
be distributed systems with autonomous and self-cooreéhat
cells. Each BS can make independent and rational decisions
in a decentralized manner, with limited information exajpan
with the neighboring BSs. This motivates the study of dis-
tributed multi-cell interference mitigation, which reges only
the local and neighboring CSI at each BS, without the need of
a central controller, and is therefore much easier to implam
Based on a generalization of uplink-downlink duality to the

N multi-cell wireless networks, besides the intra-cell inmulti-cell setting, an iterative algorithm is proposed(ii] to
terference caused by spatial multiplexing within each, ceyptimally solve the multicell downlink beamforming probie

another impediment arises from inter-cell interference thu
the ever-shrinking cell sizes. Alleviating the effects ofeir-
cell interference requires the base stations (BSs) to tifjas
transmission schemes collectively. In fact, inter-ceteifer-

for minimizing either the total weighted transmit power or
the maximum per-antenna power subject to the SINR con-
straints. An alternative to the transmit power minimizatio
problem is the rate maximization problem subject to the powe

ence mitigation has been identified as a key issue for futuggnstraints, which is in general non-convex. An approach

wireless networks. In particular, for downlink transmisss, if
the inter-cell interference is mitigated via coordinatedgess-
ing across multiple BSs, significant performance gains @n
possibly obtained, especially for the users at the cell dg
Therefore, recently, there has been a rapidly growingéstan
shifting the design paradigm from the conventional sinzgé-
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based on the concept of virtual SINR is proposed_in [12]. In
[13] an iterative algorithm is developed for solving the KKT
Bonditions of the weighted sum-rate maximization problem
Subject to per-cell power constraints. However, the prdof o
convergence is still an open problem. Other related works
include [14], which explores the relationship between the
MISO interference channel and the cognitive radio MISO
channel to devise rate-optimal strategies for decengwliz
multi-cell cooperative beamforming.

Game theory provides a systematic mathematical framework
for the study of competition and cooperation among intehig
and rational decision makers.There has been a significant
amount of recent research that applies game theory to resour
allocation problems in wireless networks [15]- [19].In gea,
game models can be classified into two main categories: non-
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cooperative and cooperative games. Although non-codperatusing a beam-vectow'”, € CT to userk € B{. We

m,k
game is a useful tool to devise totally distributed algarith assume thak{|b,", |2} = 1, and ]E{b(”l)k b(n2)k } =0, for
the Nash equilibrium (NE) of the non-cooperative game may,, 1, k) # (ns,ms, k2), whereE{-} is the expectation
suffer a significant performance degradation compared Wiperator. Then after normalized by the noise standard devia
the optimal centralized solution. On the other hand, thepeootion, the received signal by usérc 37(;;) on sub-channeh

erative game approach offers performance gain over the n@ay, pe written as
cooperative game, but it requires extensive message egekan - .,
am(?ng all glayers, whichq implies a large com?nu?cation yn?)k :h$,)kw$,)kb$,)k+ Z h%W%/b%/
overhead and poor scalability when applied to large netsiork T WeB(\k
-Th?f .p.ricing mfecrr]]anism is anothe_r alternative to overr]colree rt]h 11— coll co—chammel interforonce
inefficiency of the non-cooperative game approach. In this ~(n)  (n),(n n
paper, we develop a provably convergent distributed multi- T Z Z hgk)wgu)bgu) +Zr(n,)k’
cell beamforming technique based on the pricing-based non-
cooperative game.

In particular, we formulate the problem as a general net-
work utility maximization problem subject to per-cell paweWhefehgs,)k € C" is the complex channel vector between BS
constraints, which is a non-convex problem. Examples of the and userk < Br(ﬁ) on sub-channeh, szf)k ~ Nc(0,1)
utility functions include the weighted sum-rate utilityhet denotes the circularly symmetric complex Gaussian noise
proportional fairness utility, and the-fairness utility [20], etc. sample, and’is the Hermitian transpose operator.
We treat each cell in the multi-cell network as a player, and The SINR for userk € 37(,;1) on sub-channet can then be
design an efficient distributed pricing mechanism to openi expressed Bs
the network performance through coordination among the
players. We give a sufficient condition for the convergence r™ _
of the proposed distributed multi-cell beamforming algoni. mok
Moreover, we derive an efficient algorithm based on the dual
decomposition technigue for solving the KKT conditions owhereW (") = {Wg,?,)k,k € B, m e M},n € N, and
the downlink beamforming problem at each BS. The proposed = 9
technique can converge rapidly to the NE point with a Ioﬁ,(,z),C = Z ’h$7)kwxl7)k/ + Z Z
information exchange overhead among the BSs. It provides K eBI\E JEM\m yep(m)
significant performance gains, especially in the strongrfat- _
ence scenario, in comparison with several existing aphesc o A
including the recently proposed distributed interferealign-
ment method[[21].

The remainder of this paper is organized as follows. In (n),in (n),out ; )

. : where the term& """ andZ "~ account for the in-cell
Section Il we introduce the system model and the problem . ™,k mk
. . L and out-cell interference, respectively.

formulation. In Section Il we develop the pricing-basedlmu Now, we consider the following general linear beamforming
ticell distributed downlink beamforming technique. In Sen '

. . L2 . optimization problem where we wish to maximize a network-
IV, we derive the beamforming optimization algorithm atkeac » . .
. wide utility function across all users of all coordinatedsBS

cell based on dual decomposition. Simulation results arengi and all sub-channels, by choosing the set of beam-vectors

in Section V. Finally Section VI concludes the paper. W = {W( n € '}, subject to the per-base-station power
constraints:
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Il. SYSTEM MODEL AND PROBLEM FORMATION (n) fma(m)
We consider a downlink multi-cellular network where a "¢~ Unetwork (W) = Z Z Z Um,k(rm,k)v

set of BSsM = {1,2,..., M} simultaneously transmit on meMneN kep( )
the orthogonal sub-chanrBl8/ = {1,2,..., N} during each  s.t. Z Z W w < P, Yme M,
scheduling interval. Each B8 € M is equipped withT neN eplm

transmit antennas and space-division multiple-accesM@D
is employed to serve multiple single-antenna mobile usarsﬁg
each sub-channel. L& be the set of users scheduled by B
m € M on sub-channeh € N. For simplicity and without
loss of generality, we assume th|ﬁ,(,?)| = Q,Vm,Vn. We
further assume that each user is served by only one BS.
For data transmission, B% on sub-channeh transmits
complex symbolsbff;_)k € C through T' transmit antennas

hereP,, is the total transmit power at B%. We assume that
e above optimization problem has a set of feasible saigfio
which can be facilitated through some form of admission
control or/and scheduling strategies.
In the above formulation, each uskre B,(,?) is assigned
a utility function ka(rg,)k)’ which is assumed to be a
monotonically nondecreasing, concave and twice difféabre
function of the received SINR‘EZ?,C. Typical utility functions
1The sub-channel refers to a logical collection of physiaab-sarriers, include the following:
which is regarded as the minimum granularity of the radiouese allocation
unit in this paper. 2We drop the explicit dependency Bl,("’:_)k and If:’)k on W),



« Proportional fairness utility [20]U (T") = log(T"); where W,, = {w(") ke BWon e N} and

m,k>
o Rate utility: U(T") = log(1+T); W_,, = {Wi,..,. W,,_1,W,,,.1,.. Wy} denote the
« a-fairness utility [201:U(T') = (1—a) 1 ()17, a # 1. set of beam-vectors of B&:, and that of all other BSs,

Note that the constraint set ifi](4) is convex. However, respectivelyC(W,,, W_,,) is a cost function associated
due to the SINR expressiori](2), even though the utility with a pricing mechanism.
function U™ (™)) is concave in terms of the SINR™,, An efficient pricing mechanism should take into account
it is in general nonconcave in terms of the set of bearthe nature of the service requirement of each player ancttefle
vectorsW ("), Numerically finding the global optimal solutionaccurately the cost of resource consumption for fullfilleach
to the optimization problem{4) is known to be a difficuliplayer’s requirement. Inspired by [24]-[26], we will apghe
problem.Our objective is to develop a distributed solution usage-based pricing mechanism to solve our problem, where
(@) where each BS updates its beam-vectors locally; and witte price a player pays for using the resource is proportiona
the aid of limited information exchange among the BSs, sort@ the amount of resource consumed by the player.
form of optimality can be achieved. To that end, we resort to First, we introduce a quantity called the interferenceipgc
the game theoretical tool of pricing mechanism. rate of userk € B, which measures the marginal decrease

in utility due to a marginal increase in interference, gil®n
I1l. PRICING MECHANISM AND DISTRIBUTED
(n) & 2

ALGORITHM FORNON-COOPERATIVE BEAMFORMING () A _8U1(r?,3€ — (™ )/|hm,k m,k
oae e, U

An extreme example of distributed beamforming scheme (n) \s 7 . ) )
is for each BS to independently update its own beam-vectd ere(U,, ;)" denote the derivative of the utility function with
without considering the actions of other BSs. However, sauchHespect to the SlNFTf:_,)k- When BSm transmits signal to
pure non-cooperative approach may result in non-convesgenserk < B on sub-channet using the beam-vectovfg)k,
or some undesirable Nash equilibrium (NE) with low individ- g(n) ) |2 ’

(@)

ual as well as system-wise performancel [22]. For instance,'ti induces the interferencehm uw to all other users

is shown in [23] that for a two-user MISO system, the Nk € B;"),(j,u) # (m,k),j € M. Thus, under the pricing
point achieved through the pure non-cooperative game OYggchanism, when serving userc B{", BS m needs to pay
all possible choices of beams is far away from the Pareioiotal cost:
boundary of the achievable rate region. o
The pricing mechanism [24]-[26] has been employed as an Z Z Tju
effective means to stimulate cooperation among playetst@n JEM yepim
guide the players’ behaviors toward a more efficient NE that ) _ _ (n
improves the system performance, by introducing a certainWhereL, , is defined in[(B). We calledl,,,, as the leakage
degree of coordination in a non-cooperative game. In this senatrix of userk B on sub-channet, which accounts for
tion, we propose a pricing mechanism for the non-cooperatithe amount of interference caused by B30 other co-channel
multicell beamforming game and the corresponding disteéibu users on sub-channel when serving usek < B . Note
beamforming algorithm. We then prove the convergence tfat LEZ),C is Hermitian symmetric, i.e.Lf,f,),C = L™ | since

m,k

2
—(n) (n) S (n) (n) (n)
hm,uwm,k‘ = Wm,k m,kwm,k’ (8)

m,k?

this algorithm. Finally we analyze the information eXChanghxl,)kal,)k is Hermitian symmetric. The termE(”s’i“ and

overhead among the BSs. (m)out . ok
L;,”’°"" in @) account for the in-cell and out-cell leakages,

A. Pricing Mechanism respectively. .
Hence summing across all users served bynB8nd across

We model the pricing-based non-cooperative multicey, sub-channels, B&: needs to pay a total cost of

beamforming game as (n) 3 (n) __ (n)
_ C(W,,,W_,,) = w, L w, (20)
g= {M, {Wm}mefvla {Um}mEM}v Z Z * * *

neN keBE:)
where the elements are _ Summarizing the discussion above, in the pricing-based
« Player setM = {1,2,..., M}, i.e, the set of BSs. non-cooperative multicell beamforming game, each BS
. Sltrateg(y S()?t{l_/vl o 1I/IVM }, where the strategy set ofsolves the following optimization problem
player (BS)m is the following
(n) T max Z Z (Uﬁfi (FEZ,)I@) - V_‘;fvyll,)kLEZ,)ng,)k)v
sz{wmke(c ke BM neN: Won neN pep(m
7 - (11)

> Y whwer) O s S whw < P

REN]CEB»E:) neNkEng)
« Payoff functions set{U, ..., U}, with Notice that the objective function is still nonconcave with

T (W, W) respect to the beam-vectoV,, associated with BSm;
mA T T em thus the globally optimal solution td_(L1) cannot be found.
= Z Z U,(,Zac(Ff:,)k) ~C(W,,, W_,), (6) In Section[IV we drive a dual decomposition algorithm for
neN e obtaining the solution to the KKT conditions df {11).
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B. Distributed Multicell Beamforming Algorithm

C. Existence and Convergence of NE

We propose the following distributed algorithm for imple- The Nash equilibrium (NE) is a well-known concept for an-
menting the pricing-based non-cooperative multicell bearﬁlyzingagame A set of beam- vectcmé* = (W5,...,W3,)

forming game.

Algorithm 1: Distributed multicell beamforming algo-

rithm.

1 Initialization:

2 Each BSm initializes W,,, satisfying the power
constraint.

3 Repeat

4 For m=1:M

5 BS m obtains a solutiorW,,, to (I1) for given
6 W _,,, using Algorithm 2.

7 If Up(Won, W_1)) > Upe (Wi, W_p)

8 Then

o {

10 BS m updates its beam-vectors ¥¥,,

11 Based on the new beam-vectdié,,,, BS m
12 updates

13 {I")’OUtm,ueB( ),jGM\m neN},
14 and{wmk,keBgf,neN}

15 according to[(B) and {7) respectively, and
16 passes them to BSse M\m.

17

18 EndIf

19 EndFor

20 Until convergence

We have the following observations on Algoritfith 1.
1) Only one BS updates its beam-vectors at a time, basr@(&fk

is an NE if, for every BSm € M, U,,(W} ,W* ) >

U (W, W5 ), YW, € W,,,. That is, given the other BSs’
beam-vectors, no BS can increase its utility unilaterally b
changing its own beam-vectors. For the multicell beamfagmi
game under consideration, the existence and convergence of
NE is heavily dependent on the concavity of the utility
function U( ) . We first introduce a quantity that measures
the relat|ve concawty of a utility function. Specificallthe
coefficient of relative risk aversion associated with thiéityt
function U (T") is defined as

r-u(r)”
w(I) = —Wa (12)
where U(T")’ and U(T")"” denote the first- and second-order
derivatives, respectively.

We have the following result on a sufficient condition for
the convergence of Algorithm 1.

Proposition 1: Suppose that the utility functloﬁf("ag sat-

isfies
ngsi:kgz Vke B, me M, neN,

then Algorithm 1 converges to an NE point.
Proof: See Appendix A. O

Remark: The condition0 < Ii x < 2 can be interpreted as
requiring that the utility functlon to be sufficiently conea

but not too concave. If the utility function is too concave (j

> 2), the updates may be too aggressive to guarantee

on the latest out-cell interference powers and interfegonvergence. Fortunately, this condition is satisfied bystmo
ence price rates (and thus the latest out-cell leakag#lity functions of interest, as discussed below.

matrices) from every other BS in the multicell network. 1) For the proportional fairness utility functiofi(I') =

Moreover, after a BS updates its beam-vectors, the new

log,(T"), its coefficient of relative risk aversion ks— 1.

out-cell interference powers and new interference price 2) For thea-fairness utility functiont/(I') = (r) with

rates are announced timely to every other BS.

2) Only if Up(Wop, W_p,) > Up(W,,, W_,,,) holds,
BS m updates its beam-vectors ¥¥,,,. Otherwise, BS
m keeps its old beam-vectors. This method is based on
the better response strategy in game theory, which refers
to an update procedure where the players choose actions

a#1, we haver! )k—a Hence, for0<a<2 (o #
1), we have0<n<2 (k #1).
3) For the weighted sum-rate utility/ (T") = wlog,(1 +
6T), with 0 < 6 < 1, we have the following.

e =1 corresponds to the Shannon rate with<

that increase their utilities as opposed to maximizing K= 1+p < 1. .
their utilities in the best response strategy. Notice that «+ 0 < 6 < 1 corresponds to the achievable

the best response strategy cannot applied due to the

nonconvexity of [(TIL).

These features ensure the convergence of the algorithm, as

discussed next.

rate for some practical modulations, wheffe=

(¢2BER and ¢1, o are constants depending
on ﬁ1e modulation and BER is the required bit-error
rate. We have) < k = 1+9r < 1.
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{7r§’3,u € BJ(.")}, BS j sends them to Bn.
/ mk }

Rre— Remark: Note that compared with [13], in our scheme, BS
) J sends{ﬁgf;),u € Bﬁ”)} instead ofL{"°** itself to BS
“2 . SinceL "™ is aT x T complex-valued matrix, while

{n}

T h;,, {7r§’3,u € B§")} is aQ x 1 real-valued vector, and typically
Q < T, our scheme incurs a much lower information exchange
User k' @ User k @ User u overhead.

Fig. 1. Local computation at each BS and the information argle amon
thg BSs. P 9 9 IV. PER-BS BEAM-VECTOR UPDATE

VIA DUAL DECOMPOSITION

In this section, we derive a dual decomposition algorithm
for obtaining the solution to the KKT conditions of Problem

In order to compute the SINIRSJJC and the leakage matrix (11) at each BS, which is the key step in Algorithin 1 (line 5
LE:;,C in (IT), BSm needs to get certain information from the2d 6)-

neighboring BSs. In Fig]1, we give a graphic illustratioritod
local computation at each BS and the information exchange Dual Decomposition

D. Information Exchange Overhead

among the BSs, which(ris further elaborated as fo”OWS(;l) The dual decomposition technique is an effective method for
BS m can computeZ, ', in (2)-(3) for each usek € B’ decoupling the coupled constraints and performing disteit

on each sub-channel € N through the following. optimization.
1) Computing the first term Z(%™" — First, by introducing a set of scalar variablgs, =

2 in @). BSm only needs the {p;’;}k,k eBY n e/\/}, we can rewrite the optimization

problem [11) as follows:

F(n) . (n)
Zk/eB%‘)\]q ‘hm,kwm,k’

knowledge of the direct downlink channdi{f)k and of
(n) , (n) ’ max Z Z U(n) (F(n) ) _ V_\}(n) L(") W(")
the local beam-vectorsw k' € By’\k} computed G m,k\Lm k mokHm kW k |

m,k’
at the previous iteration. Thus, no information exchange neN pep(m
is needed. st " - p (13)
: n),out,j o pm, — =My
2) Computing the second term Ifn)k - = %kg;n) g
(n n 2 . . ’ .
Sener [BEwi| i€ Mym in @). BS j € M\m WOwW® <p ke B, neN.

(n (n) . N .
needs ttze tl'?hcal beﬁm'YfCtothj,ua?é the _ ?jf } Notice that the optimization probleri(I)ﬂ13) has only one sing|
computed at the previous iteration, and the interferen ; n
downlink channel h'™, which is sent from user EBupled constrainb_ e 2 e Prog < P Then, we

3k form the Lagrangian[{14) of the optimization problem](13)
ke B to the serving BSn, and then from BSn to  with respect to the coupled constraint. [n](14), denotes
BS j. BSj calculateszﬁz)k’ou” and then sends it to the Lagrangian dual variable.

BS m. Define the dual problem as
BS m can computeLf:,)k in @) for each uset: € B and min Dy, (Am) (15)
each sub-channel € A through the following. A

n),in

1) Computing the first term Lfmk = where the objective functio®,,, (\,,) is

Dok eBmk wf:_’)k,hgy)k/hf:_’)k, in (@). BSm only needs max Lo (Wi, Py Am)

the direct downlink channelgh"”,, k' € B5)\k} and WP L)) () . (16)

the local interference pricing ratésﬁz)k,, ke BS\kY St W W S Dk K E B, neN.

computed at the previous iteration. Thus no informatioNotice that the dual functionD,, ()\,,) is the pointwise

exchange is needed. _ maximum of a family of affine functions of,,,, hence it is a
2) Computin% the second termL{Y:°"tJ = convex function of)\,,.

> ueB™ wljﬂl)h%ﬁ)uﬁg,’f,)u,j e M\m in (9). BSj needs

the interference downlink channefdy,,,u € B}, B. Decoupled Subproblems

each of which is sent from usex to the serving  First, we need to comput®,, (\,,) for a fixed \,,. Due
BS j. Notice that these channels have already bee® its separable structure, the dual functidh, can be
sent when CompUtingZJ(-Z)’out’m- Thus this incurs decomposed intaVQ subproblemstg)k,n e N,k e B
no additional information exchang?.) On the( )othe&s follows: ’

hand, the interference pricing ratds."’,u € B." ) ee(n ) () (n n
can be computed locally accordi§9%@ (7) for w}hich max Uv(m;c(rgn,)k) —wfn,)kam)kwfn,)k - /\mpgn,)kv
the quantitylj(.z) is needed, which in turn has been {wiemn

computed at the previous iteration. After computing s.t. vTrf,’;)kw%)k Spﬁ:}k. (17)



L (Wi, P
neN kEB(n)

=2 2

neN keBSJLL)

W=y Y (U::mm—

) = WL W, = A0, ) + A P

V_‘}fff,) Lgs)kw(n)k) (Z 3 p(n) _ )
neN kEB(n)
(14)

The Lagrangian of the subproblemfff)k is given by

el (Wfff) D A, )

a

(n)

= (T50,) = WL w i, = Ay, (18)
n - n) n) n)
_Vr(n,)k( : fnk pgnk)
where " )k

w0 w <n> <™.

We next obtain the KKT conditions, given by

6L5:,)k ) (=) ) 2h£:)kh£:)kw( )k
(n) U, (Fmak) ' ﬁ
me_’k 1+Z,,
—2L{", wi, 2u(n)kITw( =0 (19)
aZ(n)
S = Tmtl=0 (20)
6p n )
m,k
wherelr indicates thel' x T' identity matrix.
By combining the above two equations, we obtain
[ |BG,w ) h(n) B w n) ()
Ur(n,k (| 1f15;’>:| ) 1+I(") T( gn wo (21)
with Tﬁjjk =L+ Anlr. (22)

Solving w

beam-vectors associated with usee Bﬁlf) for a fixed \,,,
as follows.

Proposition 2: For a fixed\,,, > 0, the solution to the KKT

conditions of problem[(17) is of the following fofn

wir =T h \/ (1 +If,’;>k) oYM, (23)
Py = waw = (1) el el @4)
with &) = Inv{UﬁL(%%)/}, (25)
0, =1/ (R, ) (26)
o~ [rinis @)

Furthermore,
hifj)k € g(L(")) whereg(
of the matnxL(

Proof: See Appendlx B. O

3(-)t denotes the pseudo-inverdeiv{U’} is the inverse function of/’.

is a dual variable associated with the constraint _,, D keB™ M

. from (21), we obtain the expression for the

C. Master Problem

We need to solve the master problém](15) on top ofitg
subproblems. Since the master problem is convex,in we
will apply the subgradlent method. Notice that whak&, =
{ka,n e N,k e B 1 is the optimizer for [(I5) in the
definition of D, (Am).

Thus, we can set the subgradient Bf,, (\,,) as P,

The subgradient search suggests that

we should increase,, if P, < > v Zkeg(m pfnk, and
decrease\,, otherwise. Notice that the adjustment occurs in
a one-dimensional space, thus a simple bisection method can

be employed.

m,k "

D. The Beamforming Algorithm at Each BS

Finally we summarize in Algorithm 2 the dual-
decomposition-based beamforming algorithm at each
BS.

Algorithm 2: An algorithm for updating the beam-vectors
at each BSn.

1 Initialize A\m® and Amax;

2 Repeat

Set\, « (Amin 4 \max) /9

4 Repeat throughk =1,....Q;1,...,Q; ...

5 Compute{Z\");"}¥_, and thus{I("k}

w

6 according to[ZB)

7 Compute{L ")’”‘}N , and thus{Lf:)k N

8 according to[ID)

9 Compute{wf:;),; ,pgs),; n, for (I7) according to
10 (23) and [(Z4).

11 Until convergence

12 If ZnENZkeB(”) pfn)k >P

13 Then set AR« ).,

14 Else set A** « A,

15 End If

16 Until [Amax — ymin| _,

Note that Algorithm 2 can also be viewed as an iterative
procedure for solving the KKT conditions of problemn{11),

ifw!” n)* £ 0, /\m — 0 is feasible only if which consists of the following.

) denotes the column span 1) The stationarity conditiori{21) fok € B, neN.
2) The sum-power constraint
SN wihhwi <Py (29)

neN kGBsﬁl)



D (W) = o 3 30 {U ) = L} - A (35 al - P)

m;Pm

neN keB(”) neN peplm
> 3 3 Ul W Wi = A (XD - )
neN peplm neN pep(m
e 5 ) (e, 2
nENkEBSf)

3) The complementary slackness conditions:

A3 ST W W~ Py =0, (30)

neN keBSJLL)

with A, > 0.
Starts with a giver\,,,, Algorithm[Z solves[(21) fok < Bf,?),
n € N, and then adjust,,, according to the search direction
suggested by the power constraintl(29), such as to satisfy th
complementary slackness conditiohs](30).
Notice that sinceV = {1,2, ... N} is a set of orthogonal
sub-channels, fom;,n, € N, ny no, and ki, ks €

B ky # ky, we can updatéwffl“k)1 ,pn’jlk)l} for the subprob-

lem D™ and {wn;”k)z,pﬁz,g } for the subproblemD("Z)

m,k1’

in parallel Such a simultaneous update can improve thig. 2. The simulated network.
convergence speed of the iterative procedure, especiaiinw

N is large.
Moreover, it is easy to derive the following KKT conditionsexternal and internal radii ab and0.9D, respectively. Since
of the original problem[(l4) the proposed method is expected to benefit most the cell-edge
() ( |REw ), [P\ B B, w), () () users, by settingdD =1000m as the default value all users are
m,k( 14207, ) ez Lo kW koo around the cell edges.
ke B(") neN.meM, (31) The base-band fad!ng channel from theth BS to thek-th
() (n) user on sub-channel is modeled as
DonenN Zkeb’(") W kWi < Py m €M, (32)
M e Thes Wi = Pn) = 0. € M. (33) by = < o ) 1R, (34)
“o

Let WX KT the beam-vector set satisfying the KKT conditions
of () for BSm € M. By comparing [(2l1),[{29),[(30) with
@), (32), [3B), respectively, it is obvious th&XXT — where df:,)k is the distance from then-th BS to the k-
{WEKT  WIEKT} is the beam-vector set satisfying theh user on sub-channel; 10log,, ", is a real Gaussian
KKT conditions of the original probleni{4). random variable with zero mean and a standard deviation
In Algorithm 2, each BSm € M can achieve the KKT of 8 accountmg for the large scale log-normal shadowing;
solution to [I1). From Proposition 1, we know that Algorithnfinally, h(" ~ N.(07,17) is a circularly symmetric complex
1 converges to an NE point. Furthermore, line 6 in Algorithrgaussian’ random vector accounting for Rayleigh fast fading
1 guarantees that the beam-vector update at each BS canng,q total noise powen("k at each user is modeled as
decrease the total utility. Thus, the total utility at the NE
point is not smaller than that at the point satisfying the KKT

conditions of the original probleni](4). n 200 ) P
gial problem.(4) =0t Y ( ) W (39)
V. SIMULATION RESULTS mEMun
A. Smulation Setup where o2 is the thermal noise power, and the second term
We consider a network with hexagonal cellst, = accounts for the uncoordinated inter-cell interferenceteN

{1,...,27} shown in Fig.[2. The distance between adjacettat nf:_)k is used to obtain the normalized signal modél (1).
BSs is Dgs =2000m. LetM,, = {1,..., M} be the set of We assume equal power (i.€2,, = P) for each BSm in the
coordinated BSs, andt,,,, = M;\M,, be the set of unco- following simulation, and consider the system the perfaraga
ordinated BSs. On each sub-chanr@lusers are uniformly under different signal-to-noise ratio (SNR), which is dedin
displaced around the serving BS within a circular annulus ey = P/o2.



B. Convergence Behavior

We first illustrate the convergence behavior of the proposed
distributed beamforming scheme, under three differedityuti
functions, namely,

1) Proportional fairness utility: Uﬁfi(l“f:_’)k) =
ﬁlogz( fff)k)' - =
n) y(1-a) =
2) a-fairness utility: U, ’fiﬂ(rf:fk) = ﬁ% with 2
(a =2); 5
3) Sum-rate utility: U(" (F(") ) = g logo (1 + P;’;}k). §

The number of coordmated cells i@ = 7; the number of
sub-channels iV = 3; the number of transmit antennas at
each BS isl" = 6; the number of SDMA users i§ = 3; and
the location parameter of the users/is= 1000m. Algorithm

1 is initialized by the channel-matched (CM) beamformers.
Note that initializing with the more sophisticated beamfers,
such as the in-cell zero-forcing (ICZF) beamformer, mayyonl
slightly increase the convergence speed.

M=7,N=3,T=6, Q=3 D=1000, 7/=3()

o MMW
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Fig. 3. Convergence of Algorithms 1 & 2 (proportion fairnesgsity).

1000 1200

The convergence behaviors of Algorithm 1 and Algorithm 2
at SNR~ = 30dB are shown in Figd.IBl5 for the above three

i
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Fig. 4. Convergence of Algorithms 1 & Zx(fairness utility).
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Fig. 5. Convergence of Algorithms 1 & 2 (weighted sum-ratiétyix

M=7,N=3,T=6,0=3,D=1000

utility functions, respectively. In these figures, the sgseacor- 4i------- —————— X
respond to the outer iteration, i.e., the iterations of Aftion ! |
1. In each outer iteration, one BS updates its beam-veators f 5 L
all its users. The solid lines correspond to the inner itenat :

e., the iterations of Algorithm 2. In each inner iteration > . 7
the BS updates the beam-vectors of one of its users. It is% Of - TR '."‘ o S aE |
seen that the proposed distributed beamforming technigme ¢« ! ! ’ ,ﬁ'/ ! !
significantly improve upon the initial network utility thugh § i I ,,,,,,,, /{"' ,,,,,,,,, 3 ,,,,,,,,, SR N
optimizing the power allocation across the beams and thembea o ! g ! -
directions according to the conditions of the in-cell and-ou < 3 3 3 —D—Algonthm 1
cell interference. Moreover, the value of the network tili A T -=%- Non-coop.
monotonically increases at each outer iteration, whicHioos | —E-MSIA
the theoretic result of Proposition 1. B, H— E— ~—<-CM

Our extensive simulations reveal that the convergencedspee : : : ~v-ICZF
of Algorithm 1 is affected by the system parameters as falow 0 10 20 [%OB] 40 50 60
Y

o The number of coordinated BS¥: A larger M corre-

sponds to a slower convergence. Flg.

Total proportional fairness utility versus SNR.



M=7,N=3,T=6,0=3,D=1000 C. Performance Comparisons

| | " ‘ We next compare the performance of the proposed dis-
tributed beamforming method with some existing technigques
including the simple channel matching (CM) method, the
in-cell zero-forcing (ICZF) method, the iterative coordiad
beam-forming (ICBF) method proposed in [13], and the
more recent maximum SINR interference alignment (MSIA)
method [21], as well as the approach based on the pure non-
cooperative game (i.e., without the pricing mechanism) and
the full-cooperation based method. Furthermore, the satm-r
performance of the time-sharing scheme is also considered,
where the@ users in each cell access each sub-channel via

Network Utility

—p— Algorithm 1
P -=-—- -=%-- Non-coop.

- MSIA TDMA.
| —<-CM In Figs.[BE8, the total utility values versus the SNR for
! ! ! ~v-ICZF the above-mentioned methods are plotted for the threeyutili
0 10 20 30 40 50 60 functions, respectively. Note that for CM, ICZF and MSIAgth
y[dB] beamformer solutions are independent of the utility fuocti
Fig. 7. Totala-fairness utility versus SNR. It is seen that the proposed distributed beamforming method

outperform all other techniques in the sense of offerindnéig
total network utilities. Moreover, we note that the network

M=7,N=3,T=6,0=3,D=1000 utility gain provided by Algorithm 1 is affected by the syste
. : : : parameters as follows.
7| P—Algorithm 1. L. pooooeee N <= CEEES « The distance from the BS to the usBr. The network
~*Non-coop. ! - utility gain provided by Algorithm 1 is larger when the
6| ICBF | ] users are closer to the cell edge. Intuitively, the cell-
- “EEMSIA Yy —ﬁ‘-ﬁ"ﬁ*'} edge users experience higher path losses and suffer from
£ 5-<-CM Pt } higher out-cell interference. Through Algorithm 1, both
5,07 ICZF the available power across beams and the beam directions
= —*Time-sharing | A v‘? Y are optimized to mitigate these effects. On the other hand,
hi_j ] IS S LAV AR DI R when the users are close to the_ serving BS gnd away from
> | 3 . ‘ the cell-edge, the per-cell optimized solution based on
A A~ g A the non-cooperative game can achieve high performance
¥ ' without any information exchange among the BSs.
fffffffff T « The number of antennds and the number of cochannel
' usersQ: The network utility gain provided by Algorithm

1 is larger for largerT” and Q. Intuitively, when the
number of co-channel usef3 is large, the users suffer
v [dB] : . :

Fig. 8. Total weighted sum-rate utility versus SNR. from the high out-cell and in-cell interference. Due to
the large number of antennas, Algorithm 1 has enough
degrees of freedom to ensure the good quality of service
of each user while causing minimum amount of in-cell
and out-cell interference.

o The number of coordinated BS&/: The performance
gain provided by Algorithm 1 becomes larger for larger
M. This is because a largéf corresponds to a larger
number of degrees of freedom to mitigate the interfer-
ence.

« The signal-to-noise ratig;: Algorithm 1 only provides
marginal gains at low SNR, while the gain is more
prominent at high SNR. This is because at high SNR,
the interference becomes dominant factor for limiting the
system performance, which can be effectively mitigated
by Algorithm 1.

o The SNR~: A larger~ corresponds to a slower conver-
gence.

« The number of antennds and the number of co-channel
usersQ: They only slightly affect the convergence of the
outer iteration, i.e., Algorithm 1; but significantly aftec
the convergence of the inner iteration, i.e., Algorithm
2. Specifically, largerl” and @ correspond to slower
convergence of Algorithm 2.

In general it is seen that a relatively small number of outer
iterations are sufficient for Algorithm 1 to converge. Ndtatt
there is no step-size parameter in Algorithm 1 and the oleral
utility could change dramatically in a single update, legdi Comparison with non-cooperative game: As expected, the
to rapid convergence. This is in contrast to some conveatiompproach based on the pure non-cooperative game, denoted by
distributed optimization algorithms, in which some stégges Non-coop in Figs 1648, yields inferior performance in terafis
parameter controls the speed of convergence. the network utility. The reason is that when each BS optisiize
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only its own utility function, it does not account for the VI. CONCLUSIONS

disutility it causes to the users served by other BSs due 10y have considered the downlink beamforming problem
the interference it generates. In economic terms, a digutilgy ¢o_channel interference mitigation in multi-cell OFM

of one agent due to the action of another is referred t0 as,ayorks. The problem is formulated as a general utility max
negative external!ty, which is the root of the inefficiersciaf imization problem subject to the per-cell power constsgint
the non-cooperative game. For largé, the system becomes,ich is non-convex. We have proposed a distributed seiutio

|nterfere_nc_e_llm|ted_, and the pricing _mechamsm in Alg“_"t based on the non-cooperative game with pricing mechanism.
1 can significantly increase the achievable network uthi¥y \ye have shown that for some popular utility functions, sueh a
implicitly inducing cooperation and yet maintaining themRo o \eighted sum rate utility, the proportional faimesitityt
cooperative nature of the beamforming solution. and thea-fairness utility, the proposed algorithm converges
to a Nash equilibrium point. Moreover, we have developed an
Comparison with full-cooperation based algorithm: The full-  efficient algorithm to solve the KKT condition at each base
cooperation based algorithm has also been simulated. Ttation based on the dual decomposition technique. We have
results show that its utility performance is always similar provided extensive simulation results to illustrate tthet pro-
that of our proposed Algorithm 1. Thus, for clarity we didoosed method can converge to a Nash equilibrium in a small
not plot its utility performance in Fig$[B-8. Notice thaisgh number of iterations, and it outperforms several statéiefart
performance similarity is reasonable: because the opditioiz  approaches to multicell interference mitigation, inchgiihe
problem of downlink beamforming in multi-cell OFDMA recently developed distributed interference alignmenthie.
networks is non-convex, even full-cooperation based élgor ~ In this paper, we have assumed the perfect instantaneous
only achieves the KKT solution. For our proposed Algorithrghannel state information. From the practical point of view
1, the total utility at the NE point is no less than that at thée following issues remain to be investigated in futurgtie
point satisfying the KKT conditions of the original problem impact of the reduced information exchange; (2) the rolesstn
of the proposed method in the presence of transmission,delay
packet loss and estimation error.

7 (n) (n)
hm,kwm,k

Comparison with distributed interference alignment: The max-
extension of the interference alignment algorithm propose APPENDIXA: PROOF OFPROPOSITION1
in [21], where the receive filters are chosen to maximize After some simple manipulations, we hd¥e

2
interference at the receivers. For the MISO scenario dssmlis 82U::)k (W(n)) ‘ o
in this paper, interference alignment can be accomplished—— 35— 3 (Q—Hm,k)-
symbol extensionS is set from 2 to 10, and the degree of o (36)
freedomd for a user's message is set from 1 to its uppddy the assumptions on the utility functioti,, ;,, we have
for the case of the best choices of symbol extensiand the mok
degree of freedord. 92U (W("))
Algorithm 1, especially at the strong interference scemdri 0 (I,(,:)k)
fact, the MSIA is even inferior to the per-cell optimized ron

imum SINR interference alignment (MSIA) method is an
the SINR, and in the meantime to minimize the leakage
n !
= (Unh) =55
through symbol extension. In the simulations, the number of 9 (I,f;)k) (1 +I,(ka)
H !/
boundS. In Fig. (8)-(8), we plot the performance of MSIA (U(") ) ~ 0, and0 < K;?k <92. Thus
m,k
It is seen that the performance of MSIA is inferior to that of —— =0 (37)

. . . . (n) . . (n)

cooperative game solution in some scenarios. The reasenstdncelU,, , is a convex function of,, ;. Then we have

as follows. ()
) [ > 17 ey 4 OUmk 2(n) _ 7n)
o The MSIA only optimizes the beam directions. In con-Umk(VV )2 Umvk(w )+ o7™ ‘Iﬁj}k (Im.,k _Im,k)
trast, Algorithm 1 optimizes both the beam directions and ™ok N
the power distribution across the beams. = UM (W) — 7l (W) (If:)k - If:)k) ,
« The MSIA is designed to maximize the SINR and in (38)

the meantime to minimize the leakage interference. In R
contrast, Algorithm 1 is designed to optimize a generwhereIf,ka and If;)k denote the interferences at the current
utility function. operating pointW = {W®) n ¢ N} and at any new

« In MSIA, the iterative algorithm alternates between thgperating poinf\/n\/ - {\/7\7(”>,n € N}, respectively.

original and reciprocal networks. Within each network, Summing up[(38) over all users served by BSand over
the receivers update their interference suppressionsfiltesll sub-channels, we have (39).

In contrast, Algorithm 1 is iteratively implemented only at Hereafter we will drop the explicit dependencym(,ﬁ)k on
the transmitters (BSs) and it can converge only in a smag(n)_ '
number of iterations. Thus, Algorithm 1 incurs a much

lower information exchange overhead, in comparison“Here, we drop the explicit dependency 6"} on T, and denote
with MSIA. Ul @ (wim)y)y asu™ (wn),

m,k
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> Y UV = 3 Y [ W) - W) (20 - 70 >

neN /CEB;?) neN kEBE:)

Assume that BSn applies Algorithm 1 to update its beam-Applying the similar deduction in_(40)-(#8), we have
vectors, given the current beam-vectdlé = {W) n e

N}. According to the condition of STEP 6 in Algorithm 1, Unetwork (W) 2 Unetwork (W), (50)
we have which contradicts the assumption th#* is a fixed point.
Unn(Wi, W_p) > Uyt (W, W), (40) ThusW* is an NE point. O
WhereW: {W17”' 7Wm—lawm7wm+la"' 7W]W} de_
notes the operatmg pomt after BB updates its beam-vectors APPENDIX B: PROOF OFPROPOSITION2
W, ={w "k, ke Bm ,neN}. The proof is along the similar line of that for Proposition
Plugging [@)-[(ID) into[(40), we have_(41). 1 in [13]. There are two cases for the solution to the KKT
Because of BSn’s beam-vector update, the recelved intereonditions of [(1V).
ference by user € B(" ,j € M\m is changed fronZ to Case 1. \,, > 0 and W("k £ 0.
f;n; and Notice thatT,, ") is a positive-definite matrix. Thus, it is easy
(m) Sy _m) |2 | ) |2 to have
keBSy
Thus, we havel(43). Obviously, [51) and[(21) imply thah(" . # 0 and

Adding the constant terms)_ | >= > U;T;) (W("))} h(")k o T(") (")k Hence, a non-zero solutlon("?* to the
ﬂGM neN uepl™ KKT cond|t|ons of [I7) must be of the form

to both sides of[{41), we havﬂ44) (n)= (n)’f (n)
Subtracting the terms Winge O T el . (52)
)OEDIDY 3 w;"; Hz)u N ’ from both sides Case 2: A, —Oandw("k £0.
"N kep) IEMuen™ Itis easy to see thaf(R1) is satisfied only if one of the follmyv
of @3), and usmg[ﬁES) we havE (45). two cond|t|ops) holds: ) (m)
Summing up[(39) ovej € M\m at the updated operating (@) hm)k mp = 0andLy 4w, 5 =0;
point W, we have (b) h(n € Q(L(n) )
Z Z Z U(") If (a) hoIds hm kw( % = 0 implies that the non-zero
JEM nEN e beam-vectorw;_)k is orthogonal to the channel vecthﬁl_)k.
J#m ' ’

In this case, usek € B,(,?) cannot receive any information
>3 3N U (W) 7" ()~ 7)) | (46)  from the serving b H discard the sohiti
> Jou G\ Lju —2Lju g base station. Hence we discard the sohition

7;/% neN yep( hfs)kwf:;)k 0 and Lf,f)k (”) = 0 for the case\,, # 0 and
J7Fm )
w™
. (n) n : Wk 7 0

Adding n;]\f Z(n) Uy, (W) to both sides of[(85), we (b) holds and),, = 0, a non-zero beam-vector which
have [27) keB, satisfies[(2I1) must be of the form

Combining [45) and{47) yields Wfs)k* - Lgs)ghgs)k. (53)

Q) (m) <n> ' ' ’
Z z;[ Z Uju(W Z Z Z Uju * Notice that[(5B) is equivalent tb (62) with,, = 0. Meanwhile,
JEMnEN yen™) JEMnEN yep™ notice that multiplying w'” )1: by any unit-norm complex
Uneowon (W) Unetwn (W) number does not affect either the objective function or the

(48) power constraint in[(17). Hence, for the two cases discussed
Hence, when B$n adjusts its beam-vectors, the total utilityabove, we can set the unique solution to the KKT conditions
cannot decrease. Since at most one BS updates its beaffl?) as
vectors at anytime, the total utility is non-decreasing acte wf:y),: = ﬁ(”) T(")Thig)k, (54)
iteration. As both the number of players and the size of the
strategy sets are finite, the total utility is bounded. Thhs, whereﬂ("k is some scalar constant.

total utility will convergence, To determme@m .» we plug [54) into[(211) to obtain
Now, we assume that Algorithm 1 converges to a fixed point

W* = (Wi,...,Wj,). If W*is not an NE point, then there ) ((h“” B, T R, 12 ) h(") [TSSOE N M) SN

exists W = (W’{,... Wi, ..., W3,), such that m,k 1+z<"> 1+z§:}

U (W, W) > U, (W W* ). (49) = T(")kﬁ n) T(n)f ) (55)

777,7
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™ () | =) _(n) |2
>N (U (W) =X X m B )
neN keBGY JEM uGBJ(.")
(4,u)#(m,k) (41)
n n —(n n 2
2 T (We)-T X i)
nENkeBS;’Ll) JEM uEB;n)
(,u)#(m,k)
_ o 2
DB SIS SIS EHEEED DD DD DI DI (AR I AR RS
JEM neN ueB(™ neN pep(m jeEM ueB{™
7 () (m.k)
(n) (n) |2(n) _ (n) (n)
PBIDDNCAACEIED SEED DI TR ESD DD DD D . 4a)
neN pcpm JEM et JEM neN |, cpm
m J i J
Gy lm ) 7m
T <n) (n) | o) _(n) |2
=X X U (WO)+ X Y YU XX Y X muEea o,
"ENkeBﬁ,?) JEM neN 66(") REN]CEB»E:) JEM ueB(") ( )
zm (o) #(m. k)
U™ (wm ) |om) () |2
=D ID M IR HLLIED DD DD DD DI SR
JEM nENueB(n) neN ]CEBS:) JEM uEB(.n)
J J
(J,u)#(m,k)

() (<= (n) ) (o) _m) |2 |=sm) ) |2
> X U (W)Y Y YU ED DD DD DR (TR S e AT
neN e JEM neN eB(") neEN pep( JEM et

m m J
n (Gaw)#(m. k)
<n> - <n> (n 7 (n)
I LD ED DI WL IDED DD DD D L CHEE
neN ke&(ﬁ) JEM nENueg(") JjEM ”eNueB(")
Jj#Fm Jj#Fm
(n) (n) [ =(n) (n)
=3 YU WO) X Y Y W) (T -T)) 2 Y Y v ow
neN keB(") JEM TIENueB(") JEMneN ueB(_")
" J#m J
(45)
U(n) W(" <n) V_V (n) W(" (n) j(") (n)
> 2 2 2> > U 22 X (GO =L (T =T
JEMMNEN  cpm) neEN el JjEM nGNueB(n)
I " j#m
Considerinngsfkﬂf,Z)ka:))g = ﬂf,f))kl, and hf:))k # 0, we Thus, we obtain
have
0 400 T o Bk = J (1+zih) el (58)
n ’ﬂ n ’ﬂ n
U(n)(| 5 Lok M _ 1+ In (56) .
) TR
S . REFERENCES
which is equivalent to
[1] D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, \@nu,
“Multi-cell MIMO cooperative networks: A new look at intexfence,”
n) (n) T n)T (n) (n) IEEE J. Sdlect. Areas Commun., vol. 28, no. 9, pp. 1-29, 2010.
ﬂ n) 1 +Im7k ! [2] H. Zhang and H. Dai, “Cochannel interference mitigatiand coop-
= InV{Um,k(h(n) T(n)Th(n) ) } erative processing in downlink multicell multiuser mimotwerks,”

(n)
L+7Z,,%

EURASP J. Wireless Commun. Netw., vol. 2004, no. 2, pp. 222-235,
2004.



(3]

(4]

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Ng, J. Evans, S. Hanly, and D. Aktas, “Distributed ddiwk beam-
forming with cooperative base stationdEEE Tran. Inform. Theory,
vol. 54, no. 12, pp. 5491-5499, 2008.

B. Somekh, O.and Zaidel and S. Shamai, “Sum rate charzaten of
joint multiple cell-site processing/EEE Trans. Inform. Theory, vol. 53,
no. 12, pp. 4473-4497, 2007.

S. Shamai, O. S. A. Z. B. M. Somekh, O.and Simeone, and HPOdr,
“Cooperative multi-cell networks: Impact of limited-cagiig backhaul
and inter-users links,” ifProc. Joint Workshop on Coding and Commu-
nications, Durnstein, Austria, pp. 14-16, 2007.

O. Simeone, O. Somekh, H. V. Poor, and S. Shamai, “Locsélstation
cooperation via finite-capacity links for the uplink of lere cellular
networks,” [EEE Trans. Inform. Theory, vol. 55, no. 1, pp. 190-204,
2009.

T. Tamaki, K. Seong, and J. Cioffi, “Downlink MIMO systemsing
cooperation among base stations in a slow fading chanRed¢. 2007
IEEE Int. Conf. Commun. (ICC'07), pp. 4728-4733, 2007.

P. Marsch and G. Fettweis, “On downlink network mimo unde
constrained backhaul and imperfect channel knowledgegc. 2009
|IEEE Global Telecommun. Conf. (Globecom’09), 2009.

M. Awad, V. Mahinthan, M. Mehrjoo, X. Shen, and J.W. Mart4
Dual Decomposition-based Resource Allocation for OFDMAweks
with Imperfect CSI,”IEEE Trans. Veh. Commun., vol. 59, no. 5, pp.
2394-2403, 2010.

A. Papadogiannis, E. Hardouin, and D. Gesbert, “Deetining multi-
cell cooperative processing on the downlink: a novel rolnashework,”
EURASIP J. Wireless Commun. Netw., August 2009.

H. Dahrouj and W. Yu, “Coordinated beamforming for theulticell
multi-antenna wireless systems$EZEE Trans. Wireless Commun., vol. 9,
pp. 1748-1759, 2010.

R. Zakhour and D. Gesbert, “Distributed multicell MIS@recoding
using the layered virtual SINR frameworkJEEE Trans. Wreless
Commun., vol. 9, pp. 2444-2448, 2010.

L. Venturino, N. Prasad, and X. Wang, “Coordinated ¢#in®@eamform-
ing in downlink multi-cell wireless networks,IEEE Trans. Wreless
Commun., vol. 9, pp. 1451-1461, 2010.

R. Zhang and S. Cui, “Cooperative interference managemwith MISO

beamforming,”|EEE Trans. Sg. Proc., vol. 58, no. 10, pp. 5450-5458,

2010.

E. Jorswieck, E. Larsson, M. Luise, and H. Poor, “Gane®ti in signal
processing and communication$EEE Sg. Proc. Mag., vol. 26, no. 5,
pp. 17-132, 2009.

J. Chen, Q. Yu, P. Cheng, Y. Sun, Y. Fan, and X. Shen, “Gamr

Theoretical Approach for Channel Allocation in WirelessnSar and
Actuator Networks,” DOI: 10.1109/TAC.2011.216401#, appear in
|EEE Trans. Autom. Control, 2011.

Q. Yu, J. Chen, Y. Fan, X. Shen and Y. Sun, “Multi-ChanAskignment
in Wireless Sensor Networks: A Game Theoretic Approaéhgceed-
ings of IEEE INFOCOM, San Diego, Ca, USA, March 15-19, 2010.

X. Xiao, Q. Zhang, Y. Shi, and Y. Gao, “How Much to Share:
A Repeated Game Model for Peer-to-Peer Streaming underic8erv

Differentiation Incentives,to appear in IEEE Trans. Parallel Distrib.

Syst., 2011.

Z. Han, D. Niyato, W. Saad, T. Basar, and A. HjorungneGarhe
Theory in Wireless and Communication Networks: Theory, ®Bledand
Applications,” Cambridge University Press, UK, 2011.

J. Mo, J.and Walrand, “Fair end-to-end window-basedgestion con-
trol,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556-567, 2000.

K. Gomadam, V. R. Cadambe, and S. A. Jafar, “Approachirg ca-
pacity of wireless networks through distributed interfere alignment,”
arXiv: 0803.3816, e-print.

E. G. Larsson and E. Jorswieck, “Competition versuspesation on
the miso interference channel EEE J. Sdlect. Areas Commun., vol. 26,

no. 9, pp. 1059-1069, Sep. 2008.

E. A. Jorswieck, E. G. Larsson, and D. Danev, “Compldtaracteriza-
tion of the Pareto boundary for the MISO interference chBhnEEE

Trans. Sg. Proc., vol. 56, no. 10-2, pp. 5292-5296, 2008.

C. Saraydar, N. Mandayam, and D. Goodman, “Efficient groeontrol
via pricing in wireless data networks|EEE Tran. Commun., vol. 50,

no. 2, pp. 291-303, 2002.

J. Huang, R. A. Berry, and M. L. Honig, “Distributed imterence
compensation for wireless networkdEEE J. Select. Areas Commun.,

vol. 24, pp. 1074-1084, May 2006.

D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utsck,

“Distributed resource allocation schemes: Pricing athans for power
control and beamformer design in interference networkEEE Sg.

Proc. Mag., vol. 26, no. 5, pp. 53-63, 2009.

13

Weigiang Xu (M'09) received his M.Sc. degree
in Communications and Information System from
Southwest Jiao-Tong University, China, and his
Ph.D. degree in Control Science and Engineering
from Zhejiang University, China, in 2003 and 2006,
respectively. He also was a postdoctor research fel-
low with the group of Networked Sensing and Con-
trol in the State Key laboratory of Industrial Control
Technology, Zhejiang University, China. From Oct.
2009 to Oct. 2010, he visited Prof. Xiaodong Wang's
research group in Electrical Engineering Department
at Columbia University, New York. He is currently a professeith the
School of Information Science and Technology, ZhejiangT&cih University,
Hangzhou, China. His research interests include multirestivorks, Ad Hoc
networks, wireless sensor networks, wireless optical olsy congestion
control, and networked control system, etc. He has served TC member
for IEEE Globecom 2012, IWCMC 2009, IWCMC 2010, PMSN 2009,
IHMSC 2009, IHMSC 2010, IHMSC 2011, IHMSC 2012. He has alswes

as a peer reviewer for a variety of IEEE journals and confazen

Xiaodong Wang (S'97-M’'98-SM’'04-F'08) received
the Ph.D. degree in electrical engineering from
Princeton University, Princeton, NJ.

He is a Professor in the Department of Electrical
Engineering, Columbia University, New York. His
research interests fall in the general areas of comput-
ing, signal processing, and communications, and he
has published extensively in these areas. Among his
publications is a book entitled Wireless Communica-
tion Systems: Advanced Techniques for Signal Re-
ception (Prentice-Hall, 2003). His current research
interests include wireless communications, statistiégihad processing, and
genomic signal processing. Dr. Wang received the 1999 NSREER Award,
and the 2001 IEEE Communications Society and Informatioecf Society
Joint Paper Award. He has served as an Associate Editor forlHEE
TRANSACTIONS ON COMMUNICATIONS, the IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS, the IEEE TRANSACTIONS ON
SIGNAL PROCESSING, and the IEEE TRANSACTIONS ON INFORMA-
TION THEORY.




	I Introduction
	II System Model and Problem Formation
	III Pricing Mechanism and Distributed Algorithm for Non-Cooperative Beamforming Game
	III-A Pricing Mechanism
	III-B Distributed Multicell Beamforming Algorithm
	III-C Existence and Convergence of NE
	III-D Information Exchange Overhead

	IV Per-BS Beam-vector Update via Dual Decomposition
	IV-A Dual Decomposition
	IV-B Decoupled Subproblems
	IV-C Master Problem
	IV-D The Beamforming Algorithm at Each BS

	V Simulation Results
	V-A Simulation Setup
	V-B Convergence Behavior
	V-C Performance Comparisons

	VI Conclusions
	References
	Biographies
	Weiqiang Xu
	Xiaodong Wang


