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Abstract—By exploiting multipath fading channels as a source
of common randomness, physical layer (PHY) based key gener-
ation protocols allow two terminals with correlated observations
to generate secret keys with information-theoretical security. The
state of the art, however, still suffers from major limitati ons,e.g.,
low key generation rate, lower entropy of key bits and a high
reliance on node mobility. In this paper, a novel cooperative
key generation protocol is developed to facilitate high-rate key
generation in narrowband fading channels, where two keying
nodes extract the phase randomness of the fading channel
with the aid of relay node(s). For the first time, we explicitly
consider the effect of estimation methods on the extractionof
secret key bits from the underlying fading channels and focus
on a popular statistical method–maximum likelihood estimation
(MLE). The performance of the cooperative key generation
scheme is extensively evaluated theoretically. We successfully
establish both a theoretical upper bound on the maximum secret
key rate from mutual information of correlated random sources
and a more practical upper bound from Cramer-Rao bound
(CRB) in estimation theory. Numerical examples and simulation
studies are also presented to demonstrate the performance of
the cooperative key generation system. The results show that the
key rate can be improved by a couple of orders of magnitude
compared to the existing approaches.

Index Terms—Key generation, cooperative networking, multi-
path channel, single-tone estimation, maximum likelihoodesti-
mation, wireless network.

I. I NTRODUCTION

A fundamental problem of all wireless communications
is the secure distribution of secret keys, which must

be generated and shared between authorized parties prior to
the start of communication. In the field of cryptography, the
Diffie-Hellman key exchange protocol is one of the most
basic and widely used cryptographic protocols for secure key
establishment. The essential idea behind the Diffie-Hellman
key exchange is that: two parties that have no prior knowledge
of each other to jointly establish a shared secret key over
an insecure communication channel. However, the protocol
assumes the adversary has bounded computation power and
relies upon computational hardness of certain mathematical
problems to achieve secure key generation. This body of
cryptographic protocols achievecomputational security.

Recently, the notion of physical layer (PHY) based key
generation has been proposed and the resulting approaches
serve as alternative solutions to the key establishment problem
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in wireless networks. Based on the theory of reciprocity
of antennas and electromagnetic propagation, the channel
responses between two transceivers can be used as a source
of common randomness that is not available to adversaries in
other locations. Such source of secrecy, which is provided by
the fading process of wireless channels, can help to achieve
information-theoretical security. This body of work can be
traced back to the original information-theoretical formulation
of secure communication due to [1]. Building on information
theory and following [1], information theorists characterized
the fundamental bounds and showed the feasibility of gen-
erating secrets using auxiliary random sources [2], [3], [4].
However, they are almost all based on theoretical results
and do not present explicit constructions. To the best of our
knowledge, Hersheyet al. proposed the first key generation
scheme based on differential phase detection in [5]. Using
multipath channels as the source of common randomness,
recent researches focus on measuring a popular statistic of
wireless channel,i.e., received signal strength (RSS), for
extracting shared secret bits between node pairs [6], [7], [8].
It has been demonstrated that these RSS based methods are
feasible on customized 802.11 platforms. The state of the art,
however, still suffers from major limitations. First, the key
bit generation rate supported by these approaches is very low.
This is due to the fact that the PHY based key generation relies
on channel variations or node mobility to extract high entropy
bits. In the time intervals where channel changes slowly, only a
limited number of key bits can be extracted. The resulting low
key rate significantly limits their practical application given the
intermittent connectivity in mobile environments. To increase
the key rate, Zenget al. proposed a key generation protocol
by exploiting multi-antenna diversity [9]. But it also leads to
an increase in the complexity of the transceivers. Second, the
generated raw key bit stream has low randomness. This is
because the distribution of the RSS measurements or estimates
is not uniform, which results in unequally likely bits after
quantization. As cryptographic keys need to be as random as
possible so that it is infeasible to reproduce them or predict
them, it is important to ensure high entropy of the generated
keys. However, the problem of how to safely and efficiently
generate random key bits using channel randomness is still
open.

To overcome the above limitations, in this paper, we in-
vestigate the problem of cooperative key generation between
two nodes with the aid of third parties,i.e., relay nodes. The
introduction of the relay nodes is motivated by thediversity
gain provided by the relay nodes, which can potentially help
to increase the key rate by furnishing the two nodes additional
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correlated randomness. To enhance the level of entropy of bit
sequences, we propose to exploit the uniformly distributed
channel phase for key generation. Specifically, we develop
a novel time-slotted cooperative key generation scheme by
exploiting channel phase randomness under narrowband fading
channels. For the first time, we explicitly consider the effect
of estimation methods on the extraction of secret key bits
from the underlying fading channels and focus on a popu-
lar statistical method–maximum likelihood estimation (MLE).
The main features of the proposed scheme are: i) The key
bit generation rate is improved by a couple of orders of
magnitude compared to RSS based approaches. This is due to
the high-accuracy MLE and the fact that the random channels
between the relay and the keying nodes can be effectively
utilized during a singlecoherence time. That also implies
the proposed scheme can even work in a static environment
where channels change very slowly; ii) The generated bit
stream is very close to a truly random sequence due to the
use of uniformly distributed channel phase for bit generation;
iii) It is robust to relay node compromise attacks since each
relay node only contributes a small portion of key bits and a
small number of them can never obtain the complete global
key bit information even collectively. The performance of the
cooperative key generation scheme is extensively evaluated
theoretically. We successfully establish both a theoretical
upper bound on the maximum secret key rate from mutual
information of correlated random sources and a more practical
upper bound from Cramer-Rao bound (CRB) in estimation
theory. We also show that thecooperative gainin the key
generation is similar to the beamforming gain in cooperative
networking, i.e., the resulting gain is linear to the number
of relay nodes. Numerical examples and simulation studies
are also presented to demonstrate the performance of the
cooperative key generation system. The results show that the
key rate can be improved by a couple of orders of magnitude
compared to the existing approaches.

The rest of the paper is organized as follows: Section
II gives problem formulation and introduces wireless fading
channel model considered in this paper. Section III discusses
related work. Section IV provides the detailed descriptionof
our proposed cooperative key generation schemes. Section V
and VI present the theoretical performance analysis and sim-
ulation studies, respectively. Section VII provides a security
discussion of the proposed scheme from both practical and
theoretical aspects. Finally, Section VIII concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first define the PHY based key genera-
tion problem in wireless networks and introduce the general
assumptions made in the existing work [6], [7], [8], [10].
This will explain why wireless channel between a transmitter-
receiver pair can be used as a source of common randomness
for secret generation. Then we discuss two most common
channel models and focus on the narrowband fading chan-
nel, which is closely related to the key generation schemes
developed in this paper.

A. Problem Formulation

In a multipath fading wireless environment, the physical
signals transmitted between a transmitter-receiver pair rapidly
decorrelate in space, time and frequency. That implies thatit is
very hard for a third party to predict the channel state between
the legitimate parties,i.e., an eavesdropper at a third location
(e.g., one half of wavelength away) cannot observe the same
channel response information. This channeluniquenessprop-
erty of the transmitter-receiver pair offers potential security
guarantees. Further, the channelreciprocity indicates the avail-
ability of using common randomness between the transmitter-
receiver pair: the electromagnetic waves traveling in both
directions will undergo the same physical perturbations. That
implies that in a time-division duplex (TDD) system, if the
transmitter-receiver pair operates on the same frequency in
both directions, the channel states/channel impulse responses
observed at two ends will theoretically be the same. Based
on these two observations, we can see that there exists a
natural random source in wireless communications for secrecy
extraction.

Consider two partiesA and B (we term them askeying
nodes in the following discussion) that want to establish a
symmetrical key between them in the presence of an eaves-
dropperE. The keying nodes are assumed to be half-duplex
in the sense that they cannot transmit and receive signals at
the same frequency simultaneously. In the first timeslot,A
transmits a signalxA to B, andE can also hear this signal
over the wireless channel. The signals received byB andE
are:

rB = hABxA + nB

rE = hAExA + nE ,

wherehAB andhAE are the channel gains fromA to B and
A to E, respectively, andnB and nE are noises atB and
E, respectively. In the second timeslot,B transmits a signal
xB to A, andE can also hear this signal over the wireless
channel. The signals received byA andE are:

rA = hBAxB + nA

rE = hBExB + nE ,

wherehBA andhBE are the channel gains fromB to A and
B to E, respectively, andnA andnE are noises atA andE,
respectively. The channel from nodei to nodej is modeled as
a multipath fading model with channel impulsehi,j(t). We as-
sume channel reciprocity in the forward and reverse directions
during thecoherence timesuch thathi,j(t) = hj,i(t) and the
underlying noise in each channel is additive white Gaussian
noise (AWGN). In wireless communications,coherence time
is a statistical measure of the time duration over which the
channel impulse response is essentially invariant, and quanti-
fies the similarity of the channel response at different times.

The keying nodesA andB compute the sufficient statistic
r̂B and r̂A, respectively, and generate the secret key based on
these observations. In our system, we assume there existN
relay nodes, which are honest and will help and cooperate
with the keying nodesA and B to generate secret keys.
On the other side, the eavesdropperE knows the whole key



generation protocol and can eavesdrop all the communications
between legitimate nodes (i.e., A, B and relay nodes). Based
on communication theory [11], the signals transmitted between
A andB and the signals transmitted betweenA (B) andE,
which is at leastλ/2 away from the network nodes, experience
independent fading. As an example, consider a wireless system
with 900MHz carrier frequency. If an eavesdropperE is more
than 16cm away from the communicating nodes, it experiences
independent channel variations such that no useful information
is revealed to it. Following the same assumptions in most
key generation schemes [6], [8], [12], [10], we assume that
the adversaryE aims to derive the secret key generated
between legitimate nodes and further steal the transmitted
private information in the future. Those active attacks where
the attacker tampers the transmissions are orthogonal to our
research and thus not considered in this paper.

The above problem can be considered as a key generation
problem in cooperative wireless networks in the presence of
an eavesdropper. In this paper, we propose to develop an
efficient and secure cooperative key generation protocol and
provide an information-theoretic study on maximum key rate
using techniques from both information theory and estimation
theory. The proposed design should satisfy the following
requirements: i) High key rate. Given the intermittent con-
nectivity in mobile environments, the key generation scheme
should have a high key rate; ii) Sound key randomness. As
cryptographic keys need to be as random as possible so
that it is infeasible to reproduce them or predict them, the
resulting key bits should have a high level of entropy. Note
that the existing schemes usually rely on channel variations
or node mobility to extract high entropy bits. We propose to
remove this constraint and establish random keys even in static
environments.

B. Narrowband and Wideband Fading Channels

An important characteristic of a multipath channel is the
delay spreadν it causes to the signal [11]. Ifν is large,
the multipath components are typically resolvable, leading to
the wideband fading channel, where the resulting probability
distributions for the gains of multipath channel paths are often
modeled as log-normal or Nakagami [12]. Ifν is small, the
multipath components are typically nonresolvable, leading to
the narrowband fading channel, where the amplitude gain is
Rayleigh distributed.

In this paper, we will focus on a narrowband fading system
for secret key generation. Our approach can also apply to
wideband fading channels. But as will be shown, it suits best
for narrowband fading channel model. Let the transmitted
signal be

x(t) = R{ũ(t)ej2πfct},

where ũ(t) is the complex envelope ofx(t) with bandwidth
B and fc is its carrier frequency. Assume the equivalent
lowpass time-varying channel impulse response ish(τ, t) =∑N(t)

n=0 αn(t)e
−jφn(t)δ(τ − τn(t)), the received signal can be

written as

r(t) = x(t) ∗ h(τ, t) (1)

= R








∞∫

−∞

h(τ, t)ũ(t− τ) dx


 ej2πfct





= R








N(t)∑

n=0

αn(t)e
−jφn(t)u(t− τn(t))


 ej2πfct



 ,

whereαn(t) is a function of path loss and shadowing while
φn(t) depends on delay, Doppler, and carrier offset. Typically,
it is assumed that these two random processesαn(t) and
φn(t) are independent. NoteN(t) is the number of resolvable
multipath components. For narrowband fading channels, each
term in the sum of Eq. (1) results from nonresolvable multipath
components.

Under most delay spread characterizations,ν ≪ 1/B
implies that the delay associated with thekth multipath
componentτk ≤ ν ∀k, so u(t − τk) ≈ u(t). If x(t) is
assumed to be an unmodulated carrier (single-tone signal)
x(t) = R{ej2πfct} = cos 2πfct, it is narrowband forany
ν. With these assumptions, the received signal becomes

r(t) = R








N(t)∑

n=0

αn(t)e
−jφn(t)


 ej2πfct



 (2)

= rI(t) cos 2πfct− rQ(t) sin 2πfct,

where the in-phase and quadrature components are given by
rI(t) =

∑N(t)
n=1 αn(t) cosφn(t) and rQ(t) =

∑N(t)
n=1 αn(t)

sinφn(t), respectively. The in-phase and quadrature com-
ponents of Rayleigh fading process are jointly Gaussian
random process. The complex “lowpass” equivalent signal
for r(t) is given by rI(t) + jrQ(t) which has phaseθ =
arctan(rQ(t)/rI(t)), where θ is uniformly distributed,i.e.,
θ ∈ U [0, 2π]. So rI(t) + jrQ(t) can be written asrI(t) +
jrQ(t) = |h|ejθ = |h| cos θ + j|h| sin θ, where |h| =√
rI(t)2 + rQ(t)2. Consider the additive white Gaussian noise

(AWGN) in the channel, Eq. (2) can be written as

r(t) = |h| cos θ cos 2πfct− |h| sin θ sin 2πfct+ n(t)(3)

= |h| cos(2πfct+ θ) + n(t),

wheren(t) is a Gaussian noise process with power spectral
density N0

2 . We will estimate parameters inr(t) and use
the uniformly distributed phase of multipath channel for key
generation. A list of important notation is shown in Table. I.

III. R ELATED WORK

The PHY based key generation can be traced back to the
original information-theoretic formulation of secure commu-
nication due to [1]. Building on information theory, [2], [3],
[4] characterized the fundamental bounds and showed the
feasibility of generating keys using external random source-
channel impulse response. To the best of our knowledge, the
first key generation scheme suitable for wireless network was
proposed in [5]. In [5], the differential phase between two
frequency tones is encoded for key generation. Error control



TABLE I
A SUMMARY OF IMPORTANT NOTATION.

Symbol Definition

pe the bit error probability (BER)
Tc coherence time
ν delay spread
q the number of quantization intervals

To (Ti) observation time or beacon duration time
Ns the number of samples in the observation time
N0 the one-sided power spectra density (PSD)

hI
ji, h

I
ij channel gains

fs sampling rate
N number of relay nodes

RMI
k

key rate from mutual information with no relay
RCRB

k
key rate from CRB with no relay

RMI
co cooperative key rate from mutual information

RCRB
co cooperative key rate from CRB

coding techniques are used for enhancing the reliability of
key generation. Similar to [5], a technique of using random
phase for extracting secret keys in an OFDM system through
channel estimation and quantization was recently proposedin
[13]. This paper characterized the probability of generating the
same bit vector between two nodes as a function of signal-to-
interference-and-noise (SINR) and quantization levels.

A key generation scheme based on extracting secret bits
from correlated deep fades was proposed in [6] and dis-
tinguished from the aforementioned work by using received
signal strength (RSS) as the random source via a TDD link
for the protocol design. Two cryptographic tools– information
reconciliation and privacy amplification are used to eliminate
bit vector discrepancies due to RSS measurement asymmetry.
The final key agreement is achieved by leaking out mini-
mal information for error correcting and sacrificing a certain
amount of entropy for generating nearly perfect random secret
bits. In [7], the authors proposed two key generation schemes
based on channel impulse response (CIR) estimation and
RSS measurements. Different from [6], the two transceivers
alternately send known probe signals to each another and
estimate the magnitude of channel response at successive time
instants. The excursions in the fading channels are used for
generating bits and the timing of excursions are used for key
reconciliation. The resulting sequence are further filtered and
quantized using a 1-bit quantizer, which results in low key
bit rate. Motivated by observations from quantizing jointly
Gaussian process, a more general key generation scheme
was proposed by exploiting empirical measurements to set
quantization boundaries in [10]. Working on the same RSS
based approach, [8] evaluated the effectiveness of RSS based
key extraction in real environments. It has been shown that
due to lack of channel variations static environments are not
suitable for establishing secure keys, and node mobility helps
to generate key bits with high entropy. The most recent work
[14] proposed an efficient and scalable key generation scheme
that supports both pairwise and group key establishments.

Due to noise, interference and other factors in the key gener-
ation process, discrepancies may exist between the generated
bit streams. Variants of this problem have been extensively
explored under the names information reconciliation, privacy

amplification and fuzzy extractors. [15] proposed the first pro-
tocol to solve the information-theoretic key agreement problem
between two parties that initially posses only correlated weak
secrets. The key agreement was shown to be theoretically
feasible when the information that the two bit strings contain
about each other is more than the information that the eaves-
dropper has about them. [16] used error-correcting techniques
to design a protocol that is computationally efficient for
different distance metrics. Based on the previous results,[17]
proposed a protocol that is efficient for both parties and has
both lower round complexity and lower entropy loss. Recently,
[18] proposed a two round key agreement protocol for the
same settings as [17].

IV. T HE PROPOSEDSOLUTIONS

In this section, we present our cooperative key generation
algorithms for extracting secret bits from wireless channels.
The proposed algorithms employ the technique ofsingle-tone
parameter estimationto estimate the uniformly distributed
channel phase. When keying nodesA and B alternately
transmit known single-tone signals to each other, each relay
node also observes the fading signals transmitted through the
pairwise links between him and the keying nodes. Therefore,
with the aid of relay nodes, the keying nodesA andB can
potentially increase the key rate using additional randomness
in the samecoherence timeinterval.

A. Utilizing a Single Relay

We fist consider the single relay case where one relay node
acts as a helper to facilitate the key generation between the
keying nodesA andB. The basic idea is that an unmodulated
carrier (i.e., single-tone signal) is transmitted through the
fading channels back and forth between the keying nodes, and
the keying nodes perform maximum Likelihood Estimation
(MLE) based on their observation. Since each bidirectional
channel between a pair of nodes is a time-division-duplex
(TDD) channel, which is reciprocal in both directions, it will
incur the same total phase shift caused by multipath due to the
channelreciprocity principle. Generally, the protocol consists
of two main phases: i) Single-tone phase estimation and
quantization; ii) Key reconciliation and privacy amplification.

Before we introduce the cooperative key generation proto-
col, we first introduce the fundamental building block– MLE
used in single-tone signal parameter estimations. During the
protocol execution, the keying nodesA, B and relay nodes
use MLE to estimate the parameters of a single-tone signal
with a known signal model. Given certain observation setZ
and parameter setα, the objective of MLE is to estimate the
parameter set that maximizes the pdf ofZ. In our application,
the received signal model can be written as

r(t) = b0 cos(ω0t+ θ0) + n(t), (4)

whereα = {b0, ω0, θ0} are the unknown parameters (ampli-
tude, frequency and phase, respectively) to be estimated. The
received signal is sampled at a constant sampling frequency
ratefs = 1/Ts to produce the discrete-time observation

r[m] = b0 cos(w0(t0 +mTs) + θ0) + n[m] (5)
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Fig. 1. Protocol for cooperative key generation with one relay.

for m = 0, 1, . . . , Ns − 1. Here, t0 denotes the time of the
first sample andn[m]s are Gaussian random samples with zero
mean and varianceσ2. Let Z = (r[0], r[1], . . . , r[Ns−1]), the
pdf of Z is [19]

f(Z;α) =

(
1

σ
√
2π

)Ns

exp

{
− 1

2σ2

Ns−1∑

m=0

(r[m] − µ[m])2

}
,

whereµ[m] = b0 cos(w0(t0 + mTs) + θ0). In the following
discussion, we ignore discussion on the estimation of signal
amplitude b0 since its estimation is independent from the
estimation of frequency and phase.

The Ns samples in Eq. (5) is provided as an input of the
MLE estimator. According to the results in [19], the maximum
of function f(Z, α) is achieved when

θ0 = − tan−1

∑Ns−1
m=0 r[m] sin(ωm)

∑Ns−1
m=0 r[m] cos(ωm)

. (6)

Thus, we can first estimate the frequency of the signal, and
then calculate the ML estimate of the phase using Eq. (6).
Specifically, the MLE is implemented in three steps:

1) Rough frequency search.We calculate the Discrete-time
Fourier Transformation (DFT) ofZ and find thek̂ =
argmaxk |R[ωk]|, whereωk = 2kπ

NTs
andN is the length

of the DFT. Here,N is chosen to be a power of 2 and
greater thanNs. Then we can calculate the roughly esti-
mated frequency asωl =

2k̂π
NT

. Such frequency estimate
has large estimation error due to the limited resolution of
the DFT. Thus, a more accurate estimation is desired;

2) Fine frequency search.Based on the rough estimation in
the last step, we can calculate theω̂ by maximizing func-
tion |R(ω)|, whereR(ω) is the continuous DFT of the

sample sequencer[m] in the interval[ 2(k̂−1)π
NsT

, 2(k̂+1)π
NTs

].
The fine search algorithm locates the value ofω closest
to ωl that maximizes|R(ω)|. The secant methodis used
to compute successive approximations to the frequency
estimateω̂ = argmaxω |R(ω)|.

3) Phase estimation.The phase estimate can be calculated
by substitutingω̂ to Eq. (6).

The performance of MLE is measured by the variance of the
estimation errors. This variance can be lower-bounded by the
Cramer-Rao bound (CRB) [20]. The performance of the ML
estimator, which is closely related to the performance of the
proposed cooperative key generation scheme, will be discussed
and analyzed later. We present the cooperative key generation
protocol as follows (See Fig. 1):
Phase One: Single-tone phase estimation and quantization.
TS1: The protocol begins in timeslot 1 with transmission of a
sinusoidal primary beacon of durationT1 from nodeA:

x1(t) = a1 cos(wc(t− t1)),

wheret ∈ [t1, t1+T1). To simplify the exposition, we assume
t1 = 0 in the following discussion,i.e., the protocol starts at
time zero point.

NodeB (R1) observes the initial transient response of the
multipath channelhA,B(t) (hA,R1(t)) to the beaconx1(t) over
the intervalt ∈ [τAB , τAB + νAB) (t ∈ [τAR1 , τAR1 + νAR1)),
whereτAB (τAR1 ) denotes the delay of the shortest path and
νAB (νAR1) denotes the finitedelay spreadof the channel
hA,B(t) (hA,R1(t)). In order to achieve a steady-state response
at bothB andR1, it is required thatT1 > max{νAB, νAR1}.
The “steady-state” portion of the beacons received atB and
R1 can be written as

At B : rAB(t) = a1αAB cos(wct+ θAB) + nAB(t),

At R1 : rAR1(t) = a1αAR1 cos(wct+ θAR1) + nAR1(t),

where t ∈ [τAB+νAB, τAB+T1) ( t ∈ [τAR1 +νAR1 , τAR1 +
T1)) for B (R1), andnAB(t) (nAR1(t)) denotes the additive
white Gaussian noise (AWGN) in theA → B (A → R1)
channel.αAB (αAR1) and θAB (θAR1) are the steady-state
gain and the phase response of channelhA,B(t) (hA,R1(t)),
respectively. At the end of primary beacon, a final transient
response of the multipath channel is also received byB (R1)
over the intervalt ∈ [τAB+T1, τAB+νAB+T1) (t ∈ [τAR1 +
T1, τAR1 + νAR1 + T1)). B (R1) uses only the steady-state
portion of the noisy observation to compute ML estimates of
the received frequency and phase, which are denoted byŵAB

(ŵAR1) and θ̂AB (θ̂AR1), respectively.



TS2: Upon the conclusion of the primary beaconrAB(t), in
timeslot 2,B begins the transmission of a sinusoidal secondary
beacon att2 = max{τAB + νAB + T1, τAR1 + νAR1 + T1}.
The secondary beacon transmitted byB at t2 can be written
as

x2(t) = a2 cos(wc(t− t2)),

wheret ∈ [t2, t2 + T2). A (R1) observes the initial transient
response of the multipath channelhB,A(t) (hB,R1(t)) to
beaconx2(t) over the intervalt ∈ [t2+ τBA, t2+ τBA+νBA)
(t ∈ [t2 + τBR1 , t2 + τBR1 + νBR1)), where νBA = νAB

(νBR1 = νR1B) due to channel reciprocity. In order to
achieve a steady-state response at bothA and R1, T2 >
max{νBA, νBR1} is required. The steady-state portion of the
beacons received atB andR1 can be written as

At A : rBA(t) = a2αBA cos(wct+ θBA) + nBA(t),

At R1 : rBR1(t) = a2αBR1 cos(wct+ θBR1) + nBR1(t),

wheret ∈ [t2+ τBA+ νBA, t2 + τBA+T2) (t ∈ [t2 + τBR1 +
νBR1 , t2 + τBR1 + T2)) for A (R1), andnBA(t) (nBR1(t))
denotes the additive white Gaussian noise (AWGN) in the
B → A (B → R1) channel.αBA (αBR1 ) and θBA (θBR1 )
are the steady-state gain and the phase response of channel
hB,A(t) (hB,R1(t)), respectively. At the end of this beacon,
a final transient response of the multipath channel is received
by A (R1) over the intervalt ∈ [t2 + τBA + T2, t2 + τBA +
T2 + νBA) (t ∈ [t2 + τBR1 + T2, t2 + τBR1 + T2 + νBR1)).
Similar to TS1, A (R1) uses only the steady-state portion of
the noisy observation to compute ML estimates of the received
frequency and phase, which are denoted byŵBA (ŵBR1 ) and
θ̂BA (θ̂BR1), respectively.

TS3: Upon the conclusion of the primary beaconrBR1(t),
in timeslot 3 R1 begins the transmission of a sinusoidal
secondary beacon att3 = max{t2 + τBA + νBA + T2, t2 +
τBR1 + νBR1 +T2}. The third beacon transmitted byR1 at t3
can be written as

x3(t) = a3 cos(wc(t− t3)),

where t ∈ [t3, t3 + T3). A (B) observes the initial transient
response of the multipath channelhR1,A(t) (hR1,B(t)) to
beaconx3(t) over the intervalt ∈ [t3+τR1A, t3+τR1A+νR1A)
(t ∈ [t3 + τR1B, t2 + τR1B + νR1B)), whereνR1A = νAR1

(νR1B = νBR1 ) due to channel reciprocity. In order to
achieve a steady-state response at bothA and B, T3 >
max{νR1A, νR1B} is required. The steady-state portion of the
beacons received atA andB can be written as

At A : rR1A(t) = a3αR1A cos(wct+ θR1A) + nR1A(t),

At B : rR1B(t) = a3αR1B cos(wct+ θR1B) + nR1B(t),

wheret ∈ [t3+τR1A+νR1A, t3+τR1A+T3) (t ∈ [t3+τR1B+
νR1B , t3 + τR1B + T3)) for A (B), and nR1A(t) (nR1B(t))
denotes the additive white Gaussian noise (AWGN) in the
R1 → A (R1 → B) channel.αR1A (αR1B) andθR1A (θR1B)
are the steady-state gain and the phase response of channel
hR1,A(t) (hR1,B(t)), respectively. At the end of this beacon,
a final transient response of the multipath channel is received

by A (B) over the intervalt ∈ [t3 + τR1A + T3, t3 + τR1A +
T3 + νR1A) (t ∈ [t3 + τR1B + T3, t3 + τR1B + T3 + νR1B)).
Similar to TS2, A (B) uses only the steady-state portion of
the noisy observation to compute ML estimates of the received
frequency and phase, which are denoted byŵR1A (ŵR1B) and
θ̂R1A (θ̂R1B), respectively.

Quantization.To generate high-entropy bits, we assumeA,
B and R1 run the above steps once during eachcoherence
time interval. For ease of exposition, we term the above steps
as round 1. After round 1, each of the three nodes has two
phase estimates for quantization

A : θ̂BA mod 2π , θ̂R1A mod 2π

B : θ̂AB mod 2π , θ̂R1B mod 2π

R1 : θ̂AR1 mod 2π , θ̂BR1 mod 2π

Each node uniformly maps their phase estimates into the
quantization interval/index using the following formula:

Q(x) = k if x ∈ [
2π(k − 1)

q
,
2πk

q
)

for k = 1, 2, . . . , q. Therefore, in the first round, the quan-
tization of each phase value generateslog2(q) secret bits.
Due to channel reciprocity principle,A andB sharelog2(q)
bits generated from̂θBA (θ̂AB); A andR1 sharelog2(q) bits
generated from̂θR1A (θ̂AR1); B and R1 sharelog2(q) bits
generated from̂θR1B (θ̂BR1). Note the quantization indexk is
encoded into bit vectors. In our implementation, we usegray
codesto reduce the bit error probability (BER).

Assume the desired key size is|K|. For round k =

2, 3, . . . , |K|
2 log2(q)

, A, B and R1 repeat the operations as in
TS1, TS2 and TS3 to generate phase estimates and convert
them into bit vectors throughq-level quantization.

After |K|
2 log2(q)

rounds, a key of size|K|
2 is shared between

A andB, which is denoted asK1. Similarly, a key of size|K|
2

is shared betweenA andR1, which is denoted asK2; a key
of size |K|

2 is shared betweenB and R1, which is denoted
asK3. ThenR1 computesK2 ⊕K3 and transmits it over the
public channel.A receives the XOR information and computes
K2 ⊕ (K2 ⊕ K3) = K3. Similarly, B obtainsK2 by K3 ⊕
(K2 ⊕K3) = K2. Now bothA andB have keysK1,K2 and
K3.

Finally, A andB set the final key asK1||K2 or K1||K3,
and a secret key with size|K| is established. Note that we
use eitherK2 or K3 instead of both as the component of the
final key. The reason is that with either one ofK2 andK3 the
eavesdropper can recover the other one by leveragingK2⊕K3.

Phase Two: Key reconciliation and privacy amplification.
Due to reciprocity principle, the generated bit sequence atA
andB should be identical. However, there may exist a small
number of bit discrepancies due to estimation errors, hardware
variations and half-duplex beacon transmission. These error
bits can be corrected using key reconciliation techniques [17],
[21]. AssumeA and B hold K and K ′, respectively. And
the Hamming distancedis(K,K ′) ≤ t. Following Code-offset
construction in [21], we use a[n, k, 2t+ 1]2 error-correcting
codeC to correct errors inK ′ even thoughK ′ may not be
in C. When performing key reconciliation, nodeA randomly



selects a codewordc from C and computessecure sketch
SS(K) = s = K ⊕ c. Then s is sent to nodeB. Upon
receivings, nodeB subtracts the shifts from K ′ and gets
Rec(K ′, s) = c′ = K ′ ⊕ s. Then nodeB decodesc′ to get
c, and computesK by shifting back to getK = c⊕ s. Note
that since the error-correcting informations is public to both
the communicating nodes and the adversary, it can be used
by the adversary to guess portions of the generated key [8].
To cope with this problem,A andB can further run privacy
amplification protocols [17] to recover the entropy loss.

B. Exploiting Multiple Relays

In this subsection, we present the key generation protocol
with multiple relay nodes. As discussed above, when there
exists only one relayR1, he can contributelog2 q bits in each
coherence timeinterval. Since the beacon duration (observa-
tion time) Ti is relatively small compared to thecoherence
time, a large portion of thecoherence timeinterval cannot
be effectively utilized. This motivates us to incorporate more
relays into the key generation process with potential two
advantages: i) the key rate is further increased due to multiple
relays’ contribution during the samecoherence timeinterval.
This also implies that even if the nodes or the environment
remain static, a key with high entropy can be generated quickly
since it employs the randomness of multiple different pairwise
links; ii) the security strength is further enhanced as each
relay only contributes a small portion of secret bits to the
final key. That implies, even if a small number of relays are
compromised, the adversary can never obtain the complete
global key bit information.

With the aid ofN relay nodes, the protocol has a total of
N + 2 timeslots for each round (during onecoherence time
interval Tc). Assume the coherence time are roughly divided
to N+2 portions, each with lengthTc

N+2 . The activities in each
timeslot of round 1 are as follows (for ease of exposition, we
ignore the explicit value ofti for i = 1, 2, . . . , N + 2):

1) In TS1, nodeA transmits a sinusoidal primary beacon
x1(t). Node B (Rj , j = {1, 2, . . . , N}) neglects the
initial and final transient portions of the received signal
and uses the steady portion to compute the channel phase
estimateŝθAB (θ̂ARk

).
2) In TS2, nodeB transmits a sinusoidal secondary beacon

x2(t). Node A (Rj , j = {1, 2, . . . , N}) neglects the
initial and final transient portions of the received signal
and uses the steady portion to compute the channel phase
estimateŝθBA (θ̂BRj

).
3) In TSi (i = {3, 4, . . . , N + 2}), node Rk (j =

{1, 2, . . . , N}) alternately transmits a sinusoidal beacon
xi(t). Nodes A and B neglect the initial and final
transient portions of the received signal and use the steady
portion to compute the channel phase estimatesθ̂RjA

(θ̂RjB) for j = {1, 2, . . . , N}.

Assume the desired key size is|K|. For round k =

2, 3, . . . , |K|
(N+1) log2(q)

, A, B andR1 repeat the operations as in
TS1,TS2, . . . ,TSN+2 to generate phase estimates and convert
them into bit vectors throughq-level quantization.

After |K|
(N+1) log2(q)

rounds, a key of size|K|
N+1 is shared

betweenA andB, which is denoted asK1. Similarly, a key
of size |K|

N+1 is shared betweenA andRj (j = {1, 2, . . . , N}),
which is denoted asKj1; a key of size |K|

N+1 is shared between
B and Rj (j = {1, 2, . . . , N}), which is denoted asKj2.
ThenRj computesKj1⊕Kj2 and transmits it over the public
channel.A receives the XOR information and computesKj1⊕
(Kj1⊕Kj2) = Kj2. Similarly,B obtainsKj1 byKj2⊕(Kj1⊕
Kj2) = Kj1. Now bothA andB have2N + 1 keysK1,Kj1

andKj2 for j = {1, 2, . . . , N}.
Finally, A and B set the final key as

K1||(K11 or K12)||(K21 or K22)|| · · · ||(KN1 or KN2).
The key reconciliation and privacy amplificationphase is
the same as the single relay case. Note that since a single
coherence timeinterval is evenly allocated to the keying
nodes and relay nodes, the increase ofN results in the
decrease of available observation timeTo (beacon duration
Ti). As will be shown later, this would lead to the increase
of estimation errors in MLE. Therefore, there must exist an
optimal maximumN under which key rate is maximized.

V. THEORETICAL PERFORMANCEANALYSIS

In this section, we analyze the performance of the coop-
erative key generation protocol in terms of the maximum
key rate the system can achieve. In information theory, the
mutual information of two random variables/sequences is a
quantity that measures the mutual dependence of the two
variables/sequences. Therefore, the secret key rate can be
upper bounded by the mutual information between the obser-
vations of two transceivers. Motivated by this, we first provide
an information-theoretic study into the upper bound on the
key rate using mutual information. This bound denotes the
maximum key rate that can be generated from the common
randomness between the keying nodes. In estimation theory,
Cramer-Rao bound provides a lower bound on the variance of
biased and unbiased estimators of a deterministic parameter.
Since we utilize maximum likelihood estimation (MLE) in our
proposed key generation protocol, we also propose to derive
a tighter bound on the key rate using the Cramer-Rao bound
(CRB).

A. Knowing the Limit: The Upper Bound on Key Rate from
Mutual Information

In this subsection, we analyze the mutual information be-
tween the observations of two nodesi andj at two ends of a
multipath fading channel. We start the analysis from the no-
relay case. As shown above, all the received signals can be
expressed as Eq. (4). These single-tone signals can be precisely
reconstructed from samples taken at sampling rate greater or
equal at Nyquist ratefs = 1

Ts
= 2fc (Note in the following

analysis, we choosefs ≫ 2fc). The discrete-time observation
at nodesi andj are

rij [m] = aαij cos(wc(tij +mTs) + θij) + nij [m] (7)

rji[m] = aαji cos(wc(tji +mTs) + θji) + nji[m] (8)

for m = 0, 1, . . . , Ns − 1, wheretij (tji) denotes the time of
the first sample. Note that when there is no relay, nodesA



andB each can generateNs samples by fully exploiting the
coherence timeinterval. That is, if we neglect the transmission
delay, delay spread and processing delay, the observation time
(i.e., beacon duration) isTo ≈ Tc

2 . Thus,Ns = Tofs =
Tcfs
2 .

Let Rij = [rij [0], rij [1], . . . , rij [Ns − 1]] and Rji =
[rji[0], rji[1], . . . , rji[Ns − 1]] denote the samples ob-
tained at nodesj and i, respectively. According to [12],
I(rij(t); rji(t)) = I(Rij ;Rji) asr(t) is fully defined byR.

In practice, given a setX of independent identically dis-
tributed data conditioned on an unknown parameterθ, a
sufficient statistic is a functionT (X) whose value contains
all the information needed to compute any estimate of the
parameter (e.g. a maximum likelihood estimate (MLE)). For
ease of exposition, we rewrite Eq. (4) here

r(t) = |h| cos θ cos 2πfct− |h| sin θ sin 2πfct+ n(t)

= |h| cos(2πfct+ θ) + n(t).

In MLE estimation,|h| cos(2πfct + θ) + n(t) is sampled to
estimate|h| andθ, where the complex expression of multipath
channel ish = |h|ejθ. Once|h| andθ are obtained, the terms
|h| cos θ cos 2πfct and|h| sin θ sin 2πfct are both determined.
So it is equivalent to sample and estimate a signal like
|h| cos θ cos 2πfct or |h| sin θ sin 2πfct to fully determine the
fading channel information. The “equivalent” received signals
at nodesi andj can be written as

rij [m] = aαij cos θ cos(wc(tij +mTs)) + nij [m]

rji[m] = aαji cos θ cos(wc(tji +mTs)) + nji[m]

for m = 0, 1, . . . , Ns − 1. Becauser[m] is fully defined by
r[m] and vice versa, the mutual information betweenrij [m]
and rji[m] is the same as that betweenrij [m] and rji[m],
i.e., I(Rij ;Rji) = I(Rij ;Rji), where Rij and Rji are the
discrete-time sequences ofrij [m] andrji[m], respectively.

Now the problem becomes a Gaussion random vari-
able estimation problem, where the in-phase component
rI(t) = |h| cos θ = α cos θ is to be estimated (in
the following, we abuse standard notation by lettinghI

denote the in-phase component). LetSi = Sj =
[a cos(wc(0Ts)), a cos(wc(1Ts)), . . . , a cos(wc(mTs))]. Both
nodesi and j can compute a sufficient statistiĉRji and R̂ij

for Rji andRij respectively [22]

R̂ji =
ST
j

||Sj ||2
Rji = hI

ji +
ST
j

||Sj ||2
Ni (9)

R̂ij =
ST
i

||Si||2
Rij = hI

ij +
ST
i

||Si||2
Nj (10)

where||Sj ||2 = ST
j · Sj and ||Si||2 = ST

i · Si.

Theorem 1: Let hI
ji, h

I
ij ∼ N (0, σ2

h) and Ni,Nj ∼
N (0, σ2). Based on sufficient statistics(R̂ji, R̂ij) at two ends,
nodesi andj can generate secret key bits at rate

RMI
k =

ln 2

Tc

log2(1 +
σ4
hN

2
sP

2

σ4 + 2σ2σ2
hNsP

),

where P denotes the transmission power,Ns denotes the
number of samples andTc is thecoherence time.

Proof: See Appendix A.

In the above discussions, we focus on two nodesi andj with
no relay node. We next analyze the key rate when there are
N relay nodes. If the sampling ratefs is fixed, the coherence
time Tc which contains2Ns samples is divided intoN + 2
shares. From the nodesA andB’s point of view, they each
“sends” 2Ns

N+2 samples. Thus, thecooperativekey generate rate
is

RMI
co =

(N + 1) ln 2

Tc

log2[1 +
σ4
h(

2Ns

N+2 )
2P 2

σ4 + 2σ2σ2
h(

2Ns

N+2 )P
] (11)

Although the mutual information between each node pairs
decreases due to the reduction of number of samples, the relay
nodes helpA andB to establish more key components, this
gain becomes more significant when SNR increases or the
channel changes very slowly. We have the following theorem

Theorem 2: When there areN relay nodes, thecooperative
gain is

lim
P→∞

RMI
co

RMI
s

= N + 1 (12)

lim
Ns→∞

RMI
co

RMI
s

= N + 1, (13)

whereRMI
s = RMI

k .
As we can see, the gain of cooperative key generation is
similar to the beamforming gain in cooperative networking,
which is linear to the number of relay nodes.

B. A More Practical Bound: The Upper Bound on Key Rate
from Cramer-Rao bound (CRB)

In the last subsection, we derive a theoretical upper bound
on key rate from mutual information. This bound serves as a
universal bound in the sense that it does not depend on the
specific method of estimation, and it is not tight in general.
Therefore, we next compute a more practical and tighter bound
on key rate from Cramer-Rao bound (CRB) in estimation
theory.

In the existing RSS based key generation methods, the
signal envelops are sampled and quantized for the calculation
of secret bits. By using the signal envelop, there exists a trade-
off between the reduction of the sensitivity of the system to
timing error and the loss of variability in the resulting key[12].
Different from that, in this paper, we use the uniformly
distributed channel phase for key generation to achieve a high
level of entropy. One of the most important properties of
Maximum Likelihood estimators (MLE) is that it attains the
Cramer-Rao bound at least asymptotically. Similarly, starting
from the no-relay case, we have the following theorem:

Theorem 3: When maximum likelihood estimation (MLE)
and uniform quantization are used, the expected key rate is
upper-bounded by

RCRB
k =

PQIA log2 q

Tc

,

wherePQIA is the average probability of quantization index
agreement.

Proof: See Appendix B.
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Fig. 2. Key rate versus observation timeTo under different SNRs.

When there areN relay nodes, the number of samples
at each node isN co

s = 2Ns

N+2 . We substituteNs for N co
s in

Eq. (24) and obtain the new CRB for̃θ. This bound is used
to calculatePco

QIA. Thus, the expected key rate for cooperative
key generation becomes

RCRB
co =

(N + 1)Pco
QIA log2 q

Tc

. (14)

It is easy to see that asq increases, nodei and j could
generate a longer bit vector during the samecoherence timeTc.
However, due to estimation errors the probability of generating
the same bit vector becomes less. We can derive the maximum
key agreement rate whenq satisfies

∂RCRB
co

∂q
= 0. (15)

From the above discussion, we conclude that there exists an
optimal q at which maximum key rate can be achieved. We
demonstrate how key rate changes as a function ofq through
simulations in Section VI.

C. Numerical Illustration on Theoretical Upper Bounds

Assumecoherence timeTc = 14ms. The example in Fig. 2
presents the two upper bounds on key rate between two nodes
(i.e., no relay) as the observation timeTo increases. The results
show that the upper bound derived from mutual information
serves as the universal upper bound on key rate. As expected,
with a fixed number of quantization levels, the increase of
SNR orTo leads to the increase of key rate. Since there are
only two nodes, the observation time for each node can be up
to 7ms. WhenTo changes from 0 to 2.4ms, key rate increases
rapidly, and it increases almost linearly as a function ofTo

after 2.4ms. Hence, a less observation time can be properly
chosen to still maintain an acceptable level of key rate. On the
other hand, while the maximumTo is constrained byTc/2, one
can further enhance the key rate by increasing SNR.

Fig. 3 plots the upper bounds on key rate when the number
of relaysN increases. The close match of the bound from
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TABLE II
SIMULATION CONFIGURATION

Carrier frequencyfc 900 MHz
Sampling frequencyfs 2.7 GHz
Average moving speedv 10 m/s
Coherence timeTc 14 ms
Node distanced 2 m – 10 m
Delay spreadν 1.2µs

mutual information and the bound from CRB beforeN = 500
shows that, the CRB can be used to efficiently approach
the universal upper bound when the nodes use ML phase
estimation. Recall that asN increases, the observation time
To for each node decreases because the wholecoherence time
are equally distributed to the keying nodes and relay nodes.
Due to the fact that the decrease ofTo causes more estimation
errors, there exists a threshold on key rate. This can be clearly
observed from the results: the bound based on CRB gradually
achieves the maximum and decreases afterN = 2500. For the
sake of clearly illustrating the inflection point on the bound
curve from CRB, we limit the range ofN in the figure. In
fact, there also exists a inflection point on the bound curve
from mutual information whenN goes to infinity.

Discussion. In our protocol, the keying nodes rely on a
common time reference to generateabsolutephase estimates.
If there exists no common time reference among the nodes,
each node has to count on its own local time obtained from its
local oscillator. This implies that the phase estimate generated
by each node will has an “unknown” offset associated with the
node itself, which prevents the key generation protocol from
working correctly. As a future direction, it is worthwhile to
extend our protocol to overcome the effect of unknown phase
offsets and allow key generation in the unsynchronized case.

We are also going to build a simple prototype to validate the
effectiveness of the protocol. The nodes can be implemented
by TMS320C6713 DSKs boards, and the primary beacons
can be generated and sent out by a function generator,e.g.,
HP33120A. In the implementation, we can use phase-locked
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Fig. 4. Key rate versus the number of quantization levelsq.

loops (PLLs) to realize phase and frequency estimation func-
tions for improving the efficiency. Since each node transmits
a periodic extension of a beacon received in a previous
timeslot, the phase and frequency estimation functions during
the synchronization timeslots can be realized by using phase-
locked loops (PLLs) with holdover circuits,i.e., the PLLs are
required for each node to store its local phase and frequency
estimates during protocol execution.

VI. SIMULATION STUDIES

A. Key Rate and Bit Error Probability

This section presents simulation results of the cooperative
key generation protocol in multipath fading channels. In our
simulation, we sample the beacon signal with sampling rate
fs = 3fc, wherefc = 900 MHz is the carrier frequency of
the single-tone signal. In a mobile scenario, we assume the
moving speedv = 10m/s. Thus, the Doppler frequency shift
is fd = v

λ
= 30Hz, which results in acoherence timeTc =

0.423
fd

= 14ms. Assumeν is the delay spread with a typical
value1.2× 10−6s and the distanced between nodes changes
from 2m to 10m. Thus, the random propagation delayτ = d

c
=

6.67ns ∼ 33.3ns. We chooseTo much larger than the delay
spreadν so that steady-state response can be achieved. The
simulation settings are summarized in Table II. Two different
methods are used here to estimate the variance of the phase
estimation error: (i) full ML estimation and (ii) approximate
analytical predictions using CRB.

The first example considers the effect of quantization level
q on key rate. Fig. 4 plots the key rate versusq given
SNR =25dB andTo =7.5µs using both the CRB analytical
predictions and simulations. The results show two regimes of
operation. In the small-quantization level regime, the effect of
log2 q dominates the key rate. In this regime, the probability
that two estimates fall into the same intervalPQIA is very
high. Thus, the increase ofq leads to the increase of key rate.
According to Eq. (15), whenq begins to exceed a threshold,
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Fig. 6. Bit error probabilitype versus observation timeTo.

the key rate begins to decrease and enters into the large-
quantization level regime. In this regime, the key rate decreases
quickly as q further increases. This is due to the fact that
the estimation errors dominate the performance as the length
of each interval2π

q
decreases,i.e., PQIA is very sensitive to

the estimation errors when the length of interval is small. As
might be expected, the CRB can be used to efficiently predict
the performance whenq is relatively small,e.g., q < 103 in
this setting. Since CRB is a lower bound on the variance of
the estimation error, it takes a much largerq to reach the
inflexion point compared to the simulation results. The above
result intuitively suggests that an optimalq can be chosen
to maximize the key rate. To evaluate the BER performance,
Fig. 5 plots the bit error probability between two nodes as a
function of q. The results show that, with a fixedTo = 7.5µs,
pe can be maintained at a very low level ifq < 100. We
can use Gray codes (one bit of error is introduced between
adjacent sectors) to encode the quantization indices to reduce
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pe. Also note that in these results, the coherence time is not
fully exploited (i.e., the observation timeTo = 7.5 µs≪ Tc),
so one can also reducepe so as to increase key rate by setting
a largerTo.

Fig. 6 plots bit error probabilitype as a function of
observation timeTo under SNR= 25 dB and q = 16. The
results show that the increase ofTo is equivalent to the increase
of SNR, which results in a close match of simulation results
and CRB. Fig. 7 plots the key rate of the cooperative key
generation protocol as the number of relay nodes increases
when the quantization levels is fixed atq = 16. We choose
To = 11 µs to maintain a high level of estimation accuracy.
The results show that key rate increases linearly as a function
of N , which confirms our previous analysis that the gain of
cooperative key generation scales with the number of relays.
As a final point on the results, we note that the further increase
of SNR (e.g., from 25 dB to 40 dB) does not help much
to improve the performance. This is because the estimation
accuracy is already high enough when choosing a shortq and
a reasonable value ofTo.

B. Key Randomness and The Effect of Mobility

As we discussed above, the proposed cooperative key gen-
eration scheme employs the inherent randomness of uniformly
distributed channel phases in multipath narrowband fading
channels. We employ a widely used randomness test suite
NIST to verify the randomness of the secret-bit generated
from our simulation [23]. To pass the test, all p-values must
be greater than0.01. In the test, we randomly select 10 bit
sequences generated from our simulation and compute their
p-values for 8 tests. The results in Table III show that the
average entropy of our generated bit sequences is very close
to a truly random sequence.

VII. SECURITY ANALYSIS

In this section, we provide a security discussion for the
proposed cooperative key generation scheme. We focus on

TEST P− value

Avg
DFT 0.6039
Lempel Ziv Comp. 0.4453
Monobit Freq. 0.5547
Runs 0.4045
Approximate Entropy 0.5869
Cumu. Sums (Forward) 0.5951
Cumu. Sums (Reverse) 0.5887
Block Frequency 0.5732
Serial 0.5732, 0.5091

TABLE III
RESULTS OFNIST.

both practical and analytical aspects. The security of the
proposed key generation scheme is guaranteed based on the
assumption that the adversary is not located near the legitimate
parties,i.e., A, B and other relay nodes. The is due to the
spatial decorrelation fact: since the signal decorrelatesover a
distance of approximately one half length [11], it is almost
impossible for an adversary which is located at a different
place with the transceivers to obtain the identical channel
response for key generation. That is, an entity which is at least
λ/2 away from the network nodes experiences fading channels
to the nodes are statistically independent of the channels
between the communicating nodes. As an example, consider
a wireless system with 900MHz carrier frequency. If the
adversary is more than 16cm away from the communicating
nodes, it experiences independent channel variations such
that no useful information is revealed to it. By passively
observing the signals transmitted between legitimate nodes,
it has been empirically shown in [10] that the eavesdropper
cannot obtain any significant information about the signals
received at legitimate nodes.

Another key point regarding the security aspect is that we
rely on the uniformity of the channel phase for extracting
secret key bits in the narrowband fading channels. As dis-
cussed in Section II-B, the complex lowpass equivalent signal
for r(t) can be written asrLP = rI(t) + jrQ(t), where
the phase ofr(t) is θ = arctan(

rQ(t)
rI(t)

). For uncorrelated
Gaussian random variablesrI(t) and rQ(t), it can be shown
thatθ is uniformly distributed over[0, 2π] [11]. Consequently,
our proposed PHY based key generation algorithm is best
suited for the narrowband fading channels, wherer(t) has a
Rayleigh-distributed amplitude and uniform phase. We have
the following theorem:

Theorem 4: The cooperative key generation scheme is se-
cure,i.e., the resulting secret key is effectively concealed from
the eavesdropper observing the public information:

1

N + 1
I(M0,M1,M2, . . . ,MN ;KAB,K11,K21, . . . ,KN1) ≤ ǫ

Proof: See Appendix C.

VIII. C ONCLUSION

In this paper, a novel cooperative key generation protocol
was developed to facilitate high-rate key generation in nar-



rowband fading channels, where two keying nodes extract the
phase randomness of the fading channel with the aid of relay
node(s). For the first time, we explicitly considered the effect
of estimation methods on the extraction of secret key bits from
the underlying fading channels and focused on a popular sta-
tistical method–maximum likelihood estimation (MLE). The
performance of the cooperative key generation scheme was ex-
tensively evaluated theoretically. We successfully established
both a theoretical upper bound on the maximum secret key rate
from mutual information of correlated random sources and a
more practical upper bound from Cramer-Rao bound (CRB) in
estimation theory. Numerical examples and simulation studies
were also presented to demonstrate the performance of the
cooperative key generation system. The results show that the
key rate can be improved by a couple of orders of magnitude
compared to the existing approaches.

APPENDIX A
PROOF OFTHEOREM 1

Proof: From the above discussion, it is easy to see that
R̂ij is a zero mean Gaussian random variable with variance
σ2
h + σ2

||Si||2
. Similarly, R̂ji is a zero mean Gaussian random

variable with varianceσ2
h + σ2

||Sj ||2
. Assume that nodesi

and j transmit with powerP = a2

2 . We have ||Si||2 =

||Sj ||2 ≈ PNs. Obviously,(R̂ij , R̂ji) retains all the common
randomness in(Rij ;Rji). Thus, the mutual information

I(rij(t); rji(t)) = I(Rij ;Rji) (16)

= I(R̂ij ; R̂ji).

The mutual informationI(R̂ij ; R̂ji) can be computed as
follows

I(R̂ij ; R̂ji) = H(R̂ij) +H(R̂ji)−H(R̂ij , R̂ji) (17)

=
ln 2

2
log2

(
2πe(σ2

h +
σ2

PNs

)

)

+
ln 2

2
log2

(
2πe(σ2

h +
σ2

PNs

)

)
−H(R̂ij , R̂ji)

= ln 2 log2

(
2πe(σ2

h +
σ2

PNs

)

)
−H(R̂ij , R̂ji).

Obviously, R̂ij and R̂ji form a multivariate normal distri-
bution, thus

H(R̂ij , R̂ji) =
ln 2

2
log2[(2πe)

2det(Σ)], (18)

whereΣ is the covariance matrix of vector
[
R̂ij , R̂ji

]T
, i.e.,

Σ =

[
σ2
h + σ2

PNs
Cov(R̂ij , R̂ji)

Cov(R̂ij , R̂ji) σ2
h + σ2

PNs

]
. (19)

The covariance of̂Rij , R̂ji is calculated by

Cov(R̂ij , R̂ji) = E(R̂ijR̂ji)− E[R̂ij ]E[R̂ji] (20)

= E

[
(hI

ij +
ST
j

||Sj ||2
Ni)(h

I
ji +

ST
i

||Si||2
Nj)

]

= E[h2
ij ]

= σ2
h.

And det(Σ) is the determinant ofΣ, which is computed by

det(Σ) = (σ2
h +

σ2

PNs

)2 − σ4
h (21)

=
2σ2

hσ
2

PNs

+
σ4

P 2N2
s

.

Thus, the mutual information between nodesi andj is

I(R̂ij ; R̂ji) = ln 2 log2(1 +
σ4
hN

2
sP

2

σ4 + 2σ2σ2
hNsP

). (22)

Assume thecoherence timeis Tc, the maximum key rate is

RMI
k =

1

Tc

I(R̂ij ; R̂ji) (23)

=
ln 2

Tc

log2(1 +
σ4
hN

2
sP

2

σ4 + 2σ2σ2
hNsP

),

where the superscriptMI in RMI
k denotes that the key rate

is derived as an upper bound from mutual information.

APPENDIX B
PROOF OFTHEOREM 2

Proof: To facilitate analysis, we assume that when the
number of samples increases by using larger observation time,
the estimation errors converge to zero-mean Gaussian random
variables with variancesσ2

θ̃
, which can be lower-bounded

by the Cramer-Rao bounds (CRB) [20]. Fig. 8 plots both
the distribution of the MLE errors using simulation and the
CRB results. The simulation results show that variance of the
estimation errorsσSIM

σ2
θ̃

= 1.6877 · 10−6 is lower-bounded

by the CRBσCRB
σ2
θ̃

= 1.5616 · 10−6. When estimating the

unknown phase of a sampled sinusoid of amplitudea in white
noise with Power Spectral Density (PSD)N0

2 , the CRB for the
variance of the phase estimate is given as

σ2
θ̃
≥ 4fsσ

2(2Ns − 1)

a2Ns(Ns + 1)
≈ 4No

a2To

≈ 4N0fs
a2Ns

, (24)

wherefs is the sampling rate,Ns is the number of samples
in the observation, andTo is the observation time (i.e., beacon
duration) in second. The approximations can be obtained by
assuming thatNs is large and the fact thatNs/fs = To =

Tc

2 .
Consider Eq. (8), we assumear = aα is the received

signal strength (we neglect the subscripti, j for simplicity).
The amplitude response of the fading channelα is Rayleigh
distributed, andE[α2] = 2σ2

h, thena2r = 2σ2
ha

2. Hence, the
CRB bound for the received signal can be expressed as a
function of SNR andNs

σ2
θ̃
≥ 4

SNRNs

, (25)

where

SNR =
a2r

2N0fs
=

2σ2
hP

σ2
. (26)

Suppose[0, 2π] is divided into q = 2n levels. Now we
analyze the probability that nodesi and j’s estimations fall
into the same interval when performing quantization. Let
PQIA denote the average probability of quantization index



−6 −4 −2 0 2 4 6

x 10
−3

0

50

100

150

200

250

300

350

Phase estimation error of MLE

P
df

 o
f M

L 
es

tim
at

io
n 

er
ro

rs

 

 

MLE Simulation
CRB 

SNR = 25dB 
T

o
 = 3µs

Fig. 8. The comparison of ML estimation error distribution using simulation
and CRB.

agreement. Without loss of generality, assume thatθ falls
into the i-th sector [ 2πi

q
, 2π(i+1)

q
) (i ∈ {0, 1, · · · , q − 1}).

As phase estimation errors are independent and Gaussian
distributed according to the CRB in Eq.(25), the probability
that θ̂ = θ + θ̃ ∈ [ 2πi

′

q
, 2π(i′+1)

q
) is (see Fig. 9)

Pi′(θ) =

∫ 2π(i′+1)
q

2πi′

q

1√
2πσθ̃

e
− (x−θ)2

2σ2
θ̃ dx, (27)

wherei′ ∈ {0, 1, · · · , q − 1} and θ̃ is the estimation error.
Thus,PQIA can be computed asPQIA(θ) =

∑q−1
i′=0 Pi′(θ)

2.
Note thatPQIA(θ) is a function ofθ. The value ofPQIA(θ)
goes up when the “true”θ approximates the center of a sector
and down whenθ is close to the boundaries of a sector. In
fact, givenφ ∈ [0, 2π], PQIA(θ) is symmetric to the center of
a sector and is changing periodically with period2π/q. Our
simulation results indicate that the variance of phase estimate
is much smaller than one. Thus, givenθ ∈ [ 2πi

q
, 2π(i+1)

q
),

PQIA(θ) is mainly determined byPi(θ) (i′ = i). Based on
the above analysis, we can compute the average probability of
quantization index agreement as

PQIA =

∫ 2π(i+1)
q

2πi
q

PQIA(θ)
q

2π
dθ (28)

≈
∫ 2π(i+1)

q

2πi
q

P2
i (θ)

q

2π
dθ.

When nodesi andj’s estimates lie in the same interval, they
agree on a bit vector of lengthlog2 q; otherwise they agree on
no bit. Hence, the expected key rate is

RCRB
k =

PQIA log2 q

Tc

. (29)

Note thatpe ≈ 1 − PQIA if we assume zero bits are gen-
erated when two nodes’ estimates fall into different intervals.
If gray codes are utilized,pe ≈ 1− PQIA/ log2 q.
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Fig. 9. An illustration of estimation error distribution onquantization
intervals.

APPENDIX C
PROOF OFTHEOREM 3

Proof: AssumeN relay nodes are involved with the key
establishment. An eavesdropperE monitors all the commu-
nications and tries to use these information to find the secret
key. Without loss of generality, we assume the key can be
established in one round. We have

I(R̂AB; R̂BA) = KAB (30)

I(R̂ARj
; R̂RjA) = Kj1 (31)

I(R̂BRj
; R̂RjB) = Kj2 (32)

SupposeA andB always chooseKj1 as their key component.
Let M0 = {R̂AE , R̂BE}. The informationE could learn dur-
ing the agreement ofKj1 is Mj = {R̂AE , R̂BE , R̂RjE ,Kj1⊕
Kj2}. Because channels between any two pair of nodes are
independent, hence, for anyǫ > 0, we have

I(R̂AE , R̂BE ;KAB) ≤ ǫ (33)

I(R̂AE , R̂BE , R̂RjE ;Kj1) ≤ ǫ, (34)

After the relay nodeRj broadcastsKj1⊕Kj2, E learnsKj1⊕
Kj2. However

I(Kj1 ⊕Kj2;Kj1) = 0. (35)

It is equivalent to a one-time-pad encryption onKj1 with
secrete keyKj2. Without knowingKj2, E could learn nothing
from the ciphertextKj1 ⊕Kj2, thus we have

I(Mj ;Kj1) = I(R̂AE , R̂BE , R̂RjE ;Kj1) + (36)

I(Kj1 ⊕Kj2;Kj1) ≤ ǫ.

The total information obtained byE is the set
{M0,M1,M2, . . . ,MN}, whose elements are independent of
each other. On the other side,A and B obtain the key
set {KAB,K11,K21, . . . ,KN1}, whose elements are also
independent of each other. According to the independence
of the random variables and the basic properties of mutual
information, we have

I(M0,M1,M2, . . . ,Mj;KAB,K11,K21, . . . ,Kj1)

= I(M0;KAB) +

n∑

j=1

I(Mj ;Kj1) ≤ (N + 1)ǫ
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