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Abstract

An abstraction of the physical layer coding using bit pipest tare coupled through data-rates is
insufficient to capture notions such as node cooperatiorooperative relay networks. Consequently,
network-stability analyses based on such abstractionsadie for non-cooperative schemes alone and
meaningless for cooperative schemes. Motivated from this,paper develops a framework that brings
the information-theoretic coding scheme together withwoek-stability analysis. This framework does
not constrain the system to any particular achievable sehém, the relays can use any cooperative
coding strategy of its choice, be it amplify/compress/dizanor any alter-and-forward scheme. The
paper focuses on the scenario when coherence duration leecfame order of the packet/codeword
duration, the channel distribution is unknown and the fgditate is only known causally. The main
contributions of this paper are two-fold: first, it develapow-complexity queue-architecture to enable
stable operation of cooperative relay networks, and, stcorstablishes the throughput optimality of

a simple network algorithm that utilizes this queue-amttitre.
Index Terms
Cooperative relay networking, Network algorithm, Stdbitnalysis

. INTRODUCTION

Cooperative relaying is traditionally seen as a physicg¢dascheme for analyzing and de-
signing wireless link layer protocol§i[1], with limited metrk-layer insights originating from
such schemes. Indeed, the not-so-uncommon perceptionhiatever be the physical layer

transmission/coding scheme, the network can abstractatarfrate region” and then determine
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algorithms to stabilize queues, perform rate control arnkiotasks at the higher layers. From
this perspective, it seems unimportant for researchersttardayer to learn much about the
intricacies of the other.

There is a significant and growing body of work suggesting si@h abstractions may not be
accurate[[R] and that physical layer parameters must badedl into the analysis. A large class
of this work is based on signal-to-noise ratio (SNR) or skgoanterference-and-noise ratio
(SINR) models for the physical medium. While S(I)NR is a vievhile abstraction for physical-
layer schemes that “treat interference as noise”, it isnofteerused and does not capture more
involved physical layer transmission schemes [3]. Fronorimiation theory, it is well known
that “treating interference as noise” represents a veritdiohnclass of transmission schemes, and
a much larger class of schemes exist that achieve signifychigher throughput. Therefore, a
framework that brings the information-theoretic codinpesme together with network-stability
analysis is needed, to bridge the gap caused by the “uncanated union”[[4]. In this paper,
we explore building this bridge in the context of cooperatrelay networks.

We emphasize that a natural separation between networklitgtalnd physical layer coding
exists only for specific classes of networks (such as cagtaditnetworks [5]) and not in general,
and a joint framework is needed that can capture notions asgshysical layer cooperation. In
this paper, we focus on cooperative relay networks, wherkipteireasons exist for combining
network and physical layer aspects.

« First, the rate-maximizing physical-layer coding strgtegitomatically imposes scheduling
restrictions on the relays/transmitters in the networkr Eoherent combination at the
receivers to be at all possible, all nodes involved muststrah simultaneously in that
block.

« Second, it is codebooks and functions of codebooks beirgjvwext, stored and transmitted
by nodes and not traditional data packets.

« Finally, the codebook chosen by the source(s) determinesate of transmission, which
may or may not be alterable at intermediate nodes (this iy alistinction between general
information-theoretic coding theorems and say, packetaeinear network coded systems
where rate can always be varied at every node). For exangleelay were to use amplify-
and-forward or compress-and-forward as its physicalfaymtegies, it has no control over

rate and has a real vector as its “packet”.
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Fig. 1. Two-hop Cooperative Network

Given the need for a joint physical and network layer framdgwior cooperative networks,
the rest of the paper is organized as follows: in the nexti@ectve present a brief summary
of cooperative relay networking from a physical layer pertjve. In Sectiori 1ll, we present
our main results in this paper. In Sectibnl IV, we describe system model in the context
of heterogeneous cellular networks. In Sectionh V, we dbecdooperative schemes for such
networks in detail and present a queue-architecture thables both efficient and optimal
operation of the network. In Sectidn VI, we present the mdgorthm for operating such
networks, and establish that this algorithm is throughgpttmal. We conclude with Section
(V1T

II. BACKGROUND: COOPERATIVE RELAY NETWORKS

Cooperative relay networks have been researched extgnsinee the “MIMO effect” was
established. Until recently, it was considered hard if mophiactical for nodes to coordinate
transmissions to enable cooperative relaying. Howevegrgimg heterogeneous cellular networks
are increasingly moving in the direction of standardizingl a&valuating schemes with node
cooperation[[6],[[7]. As cell sizes decrease, an increaseeihedges and interference requires
node cooperation to increase throughput, and cooperatiaging is an important step in making
this happen.

Figure[1 shows the most basic configuration that incorpsratmperative relaying in het-

erogeneous cellular networks. To motivate this settingtake the example of a macrocellular
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network. Here, the source nodecorresponds to the macro-cell base-station, the relayswde
andr, correspond to pico-cell base-stations and the destinatbaiesd;, d, andds correspond

to mobiles. We focus on the downlink scenario where the souhas independent messages/bits
for the mobiles. The relays’ role is to help the source in dmaitting these messages. Further,
we assume a half-duplex cooperative constraint so thagrettie first-hop or the second-hop
links can be activated at any given time, with no direct4irifom the source to the destinations.
A more general and detailed system model for such cooperathay networks is provided in
Section1V.

Even for such simple networks with two relays and one destinaand fixed channels,
information-theoretic capacity is not yet known. Howewtiere has been significant progress
in developing cooperative communication schemes for systesis by using coherence and
physical-layer coordination among nodes. There are melsfrategies studied in literature that
enable this coordination, referred to Bswarding schemes. One such scheme of interest is
the so-called decode-and-forward scheme that requiragséd decode messages. In contrast to
traditional networks, the relays decode common messdaugsrte then transmitted cooperatively.
However, the relays still have decoded messages or packets teaditional networks. In[8],
the authors develop a throughput-optimal network algorithat can handle common messages.
In [9], the authors consider more general network configomat but the applicability is still
limited to decode-and-forward schemes with fixed chanmelessence, all of these apply only in
packet-in-packet-out networks. Complimentary to thideswork on optimal resource allocation
for non-cooperative wireless networks [10][12] (and refees therein).

In our effort, we do not want to constrain the system to a piackeacket-out framework.
We desire that the relays uaay information-theoretic cooperative coding strategy otiteice,
be it amplify/compress/quantize or any alter-and-forwsgtleme. This couples coding, resource
allocation and stability into one joint problem, and the lgses in [8], [10], [12] and the vast
literature on non-cooperative networks do not apply. Evendnalyses in [8],]9] for decode-
and-forward cooperative networks do not apply. This motisahe need for a new framework
and stability analysis.

Before proceeding to describe our results, a note to sta&elivious: if the channel state
is fixed and thus its capacity is precomputed, a simple siiit scheme will ensure stable

operation while maximizing the information theoretic rgtegion) for the network. The chal-
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lenge, of course, is when the fading state distribution awpaiti arrival rates are unknown, and
the fading state can only be observed causally. For exansplesider a fading channel with
block fading of 7" symbols each. Wheif’ is much smaller compared to the packet duration (or
equivalently the channel-coding duration), queueindésufg of packets at relays is not required
as the first-hop and second-hop can be operated sequemtitiiiyut reducing data-rates. When
T is comparable to (or larger than) the packet duration, gugu# packets at relays can provide
significant gains in terms of data-rates. Furthermore, wheag roughly the same as the packet
duration, queueing at relays is inevitable as the source doé know the fading state of the
second-hop while encoding the packet. In this paper, wesfaruthe second scenario when
T is larger than the packet/codeword duration. Given thatctiennel distribution is unknown
and the fading state is only known causally, we ask the quests it possible to stabilize the

network while operating it close to the boundary of its imh@tion-theoretic rate region?

[1l. M AIN RESULTS

The answer to the preceding question in Secfion Il is “yedijcl is proved for a simpler
network with two relays and one destination inl[13]. In théttimg, for cooperative schemes
such as amplify/quantize-and-forward and partial-deemdforward, the relays receive and
transmit real-valued “packets”. In order to accomplists tim [13], we introduce a new “state-
based” virtual-queue-architecture for these real-vallgatckets”, and develop a throughput-
optimal network algorithm that does not require the knogkdf the fading distribution. Each
“state” corresponds to a vector comprised of ¢hre channel-state of each link in the network.
This approach, although analytically very helpful, susfdrom a major issue that makes it
practically uninteresting - requiring that a virtual-geeloe maintained for each channel-state at
each node in the network leads to an explosion of queues fereimple network configurations.
Moreover, the approach in_[13] is particular to a single itbsion setting. In this paper, we
develop a simpler queue-architecture to enable stableatperof cooperative relay networks.
Further, we generalize it to any forwarding scheme with pldtdestinations.

The virtual-queue-architecture we introduce in this papeprimarily encoding-based. This
architecture is motivated by the manner in which adaptivelutetion and coding is currently
implemented in practice. In systems today, the source nog#ements a limited number of

encoding schemes (encoding functions and rate-vectoagh Encoding scheme is designed so
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that it can be successfully employed for a particular sulb$ettates. Even though encoding
schemes belong to a finite (and usually small) set, the mgpfunctions at the relays and
the decoding functions at the destinations are usuallye-stependent. A queue-architecture
that keeps virtual queues at the relays for each state pamdsg to the first-hop and each
encoding scheme is sufficient. This considerably reducesitimber of virtual queues that must
be maintained while still remaining a “sufficient statistice., these encoding-based queues are a
sufficiently rich representation for us to develop througtigptimal algorithms using them. Using
this new and somewhat intuitive virtual-queue-architeztwe develop a network algorithm that
has the following properties.

1) It does not require the knowledge of the fading distriiti

2) It does not require the knowledge of the arrival rates.

3) It keeps all the queues stable for any arrival rate-veeithin the throughput region, i.e.,

it is throughput-optimal.
Note that limiting ourselves to a small set of possible emmugpdchemes and rates inherently
reduces the network’s information-theoretic rate regidhe more fine-grained the encoding
schemes and resulting queue-architecture, the smalldosken rate region. However, note that
the encoding-based queue-architecture itself does natdimte any sub-optimality.

In summary, we introduce and study a new encoding-basedegarehitecture, which is
inspired by an adaptive coded modulation system analyzeldiraplemented at the physical
layer in systems today. However, in today’s systems, trehenited interaction, if any, between
network-layer algorithms and adaptive coding/modulatiand we argue that coupling them
together can be very useful in both the analysis and desigoooperative relay networks.
Indeed, we show that such a queuing architecture can restitroughput optimal algorithms,
and the network can achieve its information-theoretic ratgon corresponding to its choice of

encoding/decoding strategies while maintaining stabilit

V. SYSTEM MODEL

We consider discrete-time two-hop cooperative networles thclude the network shown in
Figure[1. We allow for arbitrary number of relays and degiores, i.e, the network consists
of a source node denoted by N relay nodes denoted by, rs,..., 7y, and K destination

nodes denoted by, ds, ..., dx. The source has independent messages for all the destinatio
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The relays aid in transmitting these messages to their cégpedestinations. Throughout this
paper, “first-hop” refers to the links from the source to te&ys, and “second-hop” refers to
the links from the relays to the destinations. At any giveneti half-duplex and cooperative-
communication constraints require that either the firgi-bo the second-hop can be activated
and not both. The presence of direct links from source toimkggdins will not invalidate the
analysis presented in this paper, but would render it censlily harder. For simplicity, we
assume that they are absent and thus concentrate on edjudépgth networks.

The channel model does not directly impact the queue-actoite, and thus the network
algorithm and stability analysis presented in this papbe €hannel is state dependent, and the
joint-state distribution be unknown. A particular channeddel of interest is a linear interaction
model with additive white Gaussian noise (AWGN). In the exttof an AWGN channel, an
example of state is a multiplicative fading parameter. Weaigoon a framework with i.i.d. block-
fading model with a block-length of’ symbols in the remainder of this paper. The channels
remain constant for the duration of one block, and then chan@ new (independent) realization
from an underlying distribution from block to block. Let Z, denote the channel fading blocks,
and letF denote the fading state-space, which is assumed to be wistmeblockt, f [t] € FV
denotes the fading realization for the first-hop dis[dl € 7V denotes the fading realization for
the second-hop. The combined fading-state is denotefjtby- (f;[¢], f2[t]). The corresponding
random vectors are denoted by[t], F»[t] and F[t]. Note thatF[¢] is i.i.d. over time, but can
be spatially correlated. Let the probability tHaf| takes valuef be 7¢. This is the underlying
probability distribution that is unknown to the central tatler.

Next, we explain the time-scales in which network and chhipaeameters evolve in our
system. The coherence tin¥e is assumed to be comparable to the channel-coding length in
symbols. For the ease of presentation, the “packet” (whsckither the channel codeword or
any real-vector representing the actual data packet)haagtssumed to be equal to the coherence
time T'. It is straightforward to extend the analysis when the “gditlength is a sub-multiple of
the coherence timé&'. Each “packet” is transmitted on the first-hop and the sedwy exactly
once. These transmissions need not happen in consecutigebtocks, i.e., these “packets” can
be buffered at the relays. The coding performed at the sptineemappings performed at the
relays, and the decoding at the destinations can be ashiter, this includes any and all schemes

that are information-theoretically capacity-optimalibcapacity is unknown, then the best known
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coding scheme. Further, we assume that the instantanesing{state is causally known globally
to the central controller. In other words, prior to transsios, the central controller is aware of

the entire network channel state for that particular tireek.

A. Notation

Vectors are denoted by bold letters. For vectors, equatityinequality operators are defined
component-wisea - b denotes the dot product ef andb. | - | denotes the cardinality of a
set. 1,z denotes the indicator function of eveht (a)" denotesmax(a,0). E[-] denotes the

expectation operator.

V. ACHIEVABLE RATES & QUEUE-ARCHITECTURE

The notion of a “packet” here is different from traditionatworks where a packet is decoded
at all intermediate relays, and is usually meant for oneigigson. In this paper, the term “packet”
refers to the set of coded symbols transmitted/receivedhénnietwork. Note that each of the
relays receives a different noisy version of the transmhittector (transmitted “packet”), which
is subsequently mapped to a transmit vector (“packet”) ahealay. Again, the destinations
receive a noisy version of a linear combination of relayahtmit “packets”. In this paper, we
refer to the physical-layer signalling vectors @kets at each node in the network. We choose
to use this language as the entire network layer analysiasedon understanding the dynamics
of these transmit vectors as they traverse the system. @arsipacket that is transmitted from
the source to thé( destinations. Let this packet be transmitted on the firgt-tioring block
t1, and be transmitted on the second-hop during black hen,g = (£ [¢1], f2[t2]) is said to be
the “state” seen by this packet. Note that this notion ofestatdifferent from physical channel
fading state, but is it of equal importance in our analysis.

A packet transmitted by the source is received by all theimgsdns in two hops, but the
amount of information each destination receives varieedémg on the encoding rates. Given
a state seen by the packet, the set of encoding rates thatecampported is known as the rate
region for the given state. An extremely challenging probken in the single destination setting
is to find the set of all achievable rates, or the capacityoreépr the given state. Even though the
capacity region is unknown in most cases, there are manyeefficooperative communication

schemes that have been developed. Therefore, the main &ithis paper are:if to develop a

November 1, 2018 DRAFT



gueue-architecture that can support existing (and futoeperative schemes, and to develop
a throughput-optimal network algorithm using this queushiecture.

The queue-architecture developed(in/[13] for single-desibn setting keeps “virtual” queues
at relays for every state. Suppose that each rate-regiohegnantized such that the convex-hull
of the set of quantized rate-vectors is “nearly” same asdteenegion itself. Further, let us assume
that the rate corresponding to each destination have to aetiged toL levels. Now, a direct
extension of the state-based virtual-queue-architectin@ld require “virtual” queues at relays
for each state and each quantized rate-vector, which sesult™|F|%™+1 “virtual” queues.
This scales exponentially in the number of destinatiGhClearly, such a queue-architecture is
not scalable in practice, and will face implementation éssu

In order to design a low-complexity queue-architecture, exploit the fact that practical
systems implement limited number of encoding schemes, #wicase of adaptive modulation
and coding. For example, the source might choose to encdgévamdestinations at a time using
superposition encoding. In this case, the total number cdeing schemes would b€ (K —1) L.

In another example, the source might choose to encode d@etimoundary rate-vectors again
with superposition encoding. Lett denote the set of encoding schemes, apddenote the
rate-vector corresponding to each encoding scheme M. Given that|M| < LX|F|XV  a
gueue-architecture needs to support these limited chowesde a queue-architecture can take
advantage of this, it needs to allow for arbitrary mappinghet relays and decoding at the
destinations. These are usually state-dependent, for @gamn amplify-and-forward mapping
is state-dependent.

Before describing our queue-architecture, we charaetdhe throughput region of the two-
hop cooperative network. For this, we assume the knowle@igleeofading distribution. Define
T = {(m,g)lm € M can be supported by stagec FN+VE1 which represents whether an
encoding scheme is supported by a state (ﬂ Naw, letf = (f, f,) be any fading-state whefe
is the fading-state of first-hop arfgis the fading-state of second-hop. Similarly, gt (g1, g2)
by any state. We defing = FIN*DK 7, — {(f g)|g, = f,}, andZ, = {(f, g)|g. = f,}. With

the above definitions, the throughput region of the netwarkcharacterized in the following

"We do not explicitly deal with packet error rate, as it is ased that the achievable rate-vector is defined appropyiatith

required packet error rate.
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lemma.
Lemma 1. A rate-vectorr is in the throughput region denoted Wy only if there exists
ag"® > 0 andb® > 0 for all m € M, g € F andf € F such that

r= Z (mea Bt g)eiy Hmg)ery) - (1)
m,g,f

> meai Bl geny = Y mebi Bl g g)er,y V(m, g) € T, 2)

feF feF

> a4+ bB < 1,VE. 3)

m,g

Proof: Let a;"® be the fraction of time for which packets corresponding teoeling scheme
m and stateg is transmitted from the source to the relays when the system fading state
f. Similarly, let b;"® be the fraction of time for which these packets are transehiftom the
relays to the destinationd](1) is flow conservation coistror the source, and(2) is the
flow conservation constraint for each encoding scheme aaté.qdf) is the time conservation
constraint for each fading-state. A central controlletwtite knowledge of the fading distribution
can achieve these rates using static time-division. [ |

An immediate corollary of this lemma is the following.

Corollary 2: The throughput regioff is convex.

Encoding-based Queue-architecture: At the source node, there areK queues consisting
of bits (or data) corresponding to th& destinations. We denote the queue at the source
corresponding tok-th destination byQ* with queue-lengthQ*[¢] during block¢. There is an
exogenous i.i.d. arrival proces$*[t] of data-bits intoQ* with mean rate),T" bits/block and
bounded variance. The vector of arrival ratgsis denoted by\. At each relay (say:), we
keep virtual queues corresponding to each encoding schemaad each fading state for the
first-hop g; denoted@”-8! with queue-length)™&1[¢] during block¢. This queue consists of
real-valued packets encoded at ratg. Since we keep virtual queues for each fading state
corresponding to the first-hop, the mapping function penkxt at the relays can a function of
the fading state. Similarly, the decoding function can bearecfion of the fading state. With this
queue-architecture, the number of virtual queues at edak i€| M ||F|V. This is considerably
less compared to the number of virtual queues required irstéte-based approach, and thus

provides a low-complexity queue-architecture. Note thatdain is high in the setting when the
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number of destinations are large and number of relays ardl,snach is the case in cellular
systems.

The queue dynamics is as follows: During blogkf the fading state for the first-hop is;
and if the central controller decides that the source shtnaldsmit a packet using encoding

schemem, then the following queues get updated:
Qilt+1] = (QLft] + A™[t] -} T)*, VE, (4)
Qret+1] = Qmet] + T, n. (5)
During blockt, if the fading state for the second-hopgs then the central controller can decide
to transmit packets from queuég’', Vn for some givenm andg; only if (m, g, g2) € Z.

This ensures that the packet is received successfully ahalldestinations. In this case, the

following queues get updated:
le[t + 1] = le[t] + Ak[t]>Vk7 (6)
QuEt+1 = (Q#[]—1)",Vn. (7)

Next, we address the question of designing a central céetriblat does not have the knowl-

edge of the arrival rates or the fading state distribution.

VI. THROUGHPUFOPTIMAL NETWORK ALGORITHM

In this section, we show that a throughput-optimal centaaitller can be designed without
the knowledge of the arrival rates or the fading state distion. Since cooperative schemes
require strong node coordination, the centralized nattiieeoalgorithm does not create additional
system requirements. The following algorithm is motivatesin back-pressure based Max-
Weight algorithms for non-cooperative networks.

Back-pressure-based Algorithm: In every block, the central controller makes decisions thase
on the current fading state of the system and the currentsglezgths. Let the fading-state during

block ¢ be f[t] = (fi, f2). The network algorithm run by the controller is as follows:

1) It computes

n=1

N
P (cz';m gy m) n
k

and an optimal parameter* for this problem.
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2) It computes

m,g1

N
B= max (r,-1)*) Q&
n=1
st. (m,(g,f)) €Z,

and a set of optimal parametefs and g, for this problem.

3) If A > B, then the central controller decides to transmit a paclehfthe source to the

relays using encoding scheme'.

4) Otherwise, the central controller decides to transmiaiekpt from queueg’™&!,Vn, i.e.,

from the relays to the destinations.
The controller repeats stefis- 4 in every block.

The following theorem provides a strong theoretical gua@mn the throughput performance
of this algorithm.

Theorem 3: The above algorithm stochastically stabilizes all the @sefor any\ if there
existse > 0 such that\+¢1 is within the throughput region given in Lemina 1, i.e., thelerying
network Markov chain is positive recurrent. In simple terthe algorithm is throughput-optimal.

Before proceeding to the proof of this theorem, we state dileviing lemma that is used in
the proof.

Lemma 4: Suppose that there exists> 0 such that\ + €1 is within the throughput region.
Then, there existg{"® > 0, b{"®* > 0 andd > 0 such that the following set of conditions are
satisfied:

A\ — Z (merk agv®) < =6, VE,

m,g,f

Zm(a?’g —bi"8) < —0,Ym, g,
f
> afE 4+ byt < 1V,

m7g

ag"® = 0,V(f, ) ¢ 7,¥(m,g) ¢ T,
b;mg = O,V(f, g) ¢ I2uv<m7 g) ¢ 1.

Proof: The proof of this lemma is fairly straightforward, and is ¢ied for brevity. [ |
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A. Proof of Theorem[3

Since the queues form a Markov chain, we use Foster-Lyapthemrem in order to prove
the stability [14], [15]. Without loss of generality, we asse thatr,, # 0, Vm. Otherwise, those
gueues at the relays can be removed without affecting tloaigimput region and the stability of
the system. Now, consider the Lyapunov function

VQI) = S (Q)* + 303 (r - 1QE t))

k n=1m,g1
whereQ|t] denotes the vector of all queue lengths.

Next, we consider an optimization problem that capturesatgerithm given in this section.

Consider a fading-staté and the following discrete optimization problem:

N
e Y [ (Q’s -rh 3 Qre [t]) r,’;a;”*g]
N
(- 1) (Z Qe m) Bgn,g] ’ (8)

n=1

st > (o8 + B8 <1,

m7g
a;rb7g == 07 v(f7 g) ¢ Il?
8 =0,Y(f,g) ¢ Io,V(m,g) ¢ Z,

af'®, B8 € 0,1}, Ym, g.

It is fairly straightforward to check that the algorithm givin this section results from this
optimization problem. We remark that this optimization magny redundant variables that are
introduced for the purpose of the proof.

Let an optimal assignment to the optimization problem[in k(e)@}”’g,B;“’g. Now, from (4),

@), (B) and[[¥7), we can bound queue-lenths during bloekl as follows:

2

(QL[t+1))° = (Q?[t] + AF[E] - ( TfnT@?’g>>
m,g 2

rﬁlT@?’g>

rk Tag® — Ak [t]) Yk,

IN

(Qs[t)* + (A*[t])* + (

m7g

—2Q" 1] (

m7g
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2
(0 1QUE [t 4+ 1)) < (rm-l@z%glwrm-lTZ(@fm’g—BE”’g))

g2

2
= (v 1QE ) + <m EONCEE B;”’g>>
g2
(- QB AT Y (a5 = 5%) . Yim. g,
g2

Applying the law of iterated expectations, we obtain

B[V (Qlt+1) -V (QE) Q] - M < zwf[ 320t (Zr’% —m)—
3 <2<rm AT (4 - A?’%))]

= 27T ZQ’;[t] ()\k — Z (Wfrﬁld?’g)> +
k m,g,f
Z( 1)%Qm [t (Z wf>] . 9)

where M is a finite positive value, as the variance associated wighatrival processes are
bounded and the throughput region is compact.

Let af"®, b7 be the values given by Lemria 4. Now, substituting vakjé$ instead ofa;™
andbg"® instead ofﬁ?g in right hand side of[(9) increases its value. This is due &oftilowing
reason. First, consider the linear program (LP) obtaineddbgxing the integer constraints of
the optimization probleni{8) and introducing non-negéfigionstraints. This relaxation is tight
as LPs have at least one optimal solution which is a boundairyt.pNext, the possible values
for af"®,b{"® is a subset of the feasible set for the LP. Therefore, by &gubsg results from
Lemmal4 in [(9), we have

EV(Q[t +1]) - V(QEIQH] - M <

T 1) QY ()\k - (wfrj;a;”vg)> +

m,g,f

g ()
Z@’“ + ) -1>2@:?gl[t]]. (10)

m,g,n

< =279
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Now, from (10), it is fairly straightforward to see that tkes strict negative drift except on a
compact subset of the set of queue-lengths. This complieéeproof.m

VIlI. CONCLUSION

In this paper, we develop encoding-based queue archieetburcooperative relay networks.
Cooperative relay networks are fundamentally differeotrfrtraditional capacitated and non-
cooperative wireless networks as they require physicarlapordination. This physical layer
coordination cannot be abstracted out at the network layéerms of bits-in-bits-out models,
and thus a stability analysis that incorporates both thesighi/layer encoding and the network
layer dynamics is needed, as performed in this paper. Thederg:based queue architecture
is a succinct representation needed for generating netatathilizing algorithms. Using this
gueue-architecture, we show that throughput-optimal agwalgorithms can be developed even

when the fade-distribution and input queue distributiores inknown.

REFERENCES

[1] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperatiiversity part | and part II,TEEE Trans. Commun., vol. 51,
no. 11, pp. 1927-48, Nov. 2003.

[2] L. Dong, “Cross-layer design for cooperative wirelestworks,” Ph.D. dissertation, Drexel University, 2008.

[3] A. Ephremides, “The audacity of throughput — a trilogyrafes,” Plenary Lecture, ISIT, 2010.

[4] A. Ephremides and B. Hajek, “Information theory and coomication networks: An unconsummated uniofEEE Trans.
Inform. Theory, pp. 2416-2434, 1998.

[5] S. Bodas, J. Grubb, S. Sridharan, T. Ho, and S. Vishwarfatbtwork with costs: Timing and flow decomposition,” in
Proc. of WNC3, Apr. 2007.

[6] “3GPP long term evolution (LTE) coordinated multipoinansmission/reception (CoMP),” details at http://wwgpB.org/.

[7] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. NishikawaydaM. Tanno, “Coordinated multipoint transmission/re &t
techniques for LTE-advanced [Coordinated and DistribBMO],” IEEE Wireless Communications, vol. 17, no. 3, pp.
26 —34, Jun. 2010.

[8] E. Yeh and R. Berry, “Throughput optimal control of coopiéve relaying networks,JEEE Trans. Inform. Theory, vol. 53,
pp. 3827-3832, Oct. 2007.

[9] ——, “Throughput optimal control of wireless networksttvitwo-hop cooperative relaying,” iRroc. |EEE International
Symposium on Information Theory (IST), Nice, France, Jun. 2007.

[10] L. Tassiulas and A. Ephremides, “Stability propertiégonstrained queuing systems and scheduling policiesyéotimum
throughput in multihop radio networkslEEE Trans. Autom. Control, vol. 37, no. 12, pp. 1936-1948, Dec. 1992.
[11] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on crodayer optimization in wireless networks,Selected

Areas in Communications, IEEE Journal on, vol. 24, no. 8, pp. 1452-1463, July 2006. [Online]. Avaliab
http://dx.doi.org/10.1109/JSAC.2006.879351

November 1, 2018 DRAFT


http://www.3gpp.org/
http://dx.doi.org/10.1109/JSAC.2006.879351

16

[12] L. Georgiadis, M. J. Neely, and L. Tassiuld&esource Allocation and Cross-Layer Control in Wireless Networks. Now
Publishers, 2006.

[13] J. Jose, L. Ying, and S. Vishwanath, “On the stabilitgiom of amplify-and-forward cooperative relay networkis,"| EEE
Info. Theory Workshop (ITW), Aug. 2009.

[14] S. P. Meyn and R. L. Tweedi&jarkov Chains and Sochastic Sability. Springer-Verlag, 1993.

[15] S. AsmussenApplied Probability and Queues. New York: Springer-Verlag, 2003.

November 1, 2018 DRAFT



	I Introduction
	II Background: Cooperative Relay Networks
	III Main Results
	IV System Model
	IV-A Notation

	V Achievable Rates & Queue-Architecture
	VI Throughput-Optimal Network Algorithm
	VI-A Proof of Theorem 3

	VII Conclusion
	References

