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Abstract—We consider the problem of jointly optimizing chan-
nel pairing, channel-user assignment, and power allocatig to
maximize the weighted sum-rate, in a single-relay cooperate
system with multiple channels and multiple users. Common riay-
ing strategies are considered, and transmission power cotnaints
are imposed on both individual transmitters and the aggregse
over all transmitters. The joint optimization problem natu rally
leads to a mixed-integer program. Despite the general expttion
that such problems are intractable, we construct an efficien
algorithm to find an optimal solution, which incurs computational
complexity that is polynomial in the number of channels and he
number of users. We further demonstrate through numerical
experiments that the jointly optimal solution can significantly
improve system performance over its suboptimal alternaties.

I. INTRODUCTION

We consider the problem of resource assignment for mul

channel multi-user communication through relaying. Thabpr
lem typically arises in cellular communication or wireléssal

area networks, through either dedicated relay stationseisu

temporarily serving as relay nodes. In traditional nartmand
cooperative relaying systems, the relay retransmits agssel

version of the received signal over the same frequency @&ann
In contrast, when multiple frequency channels are availab

the relay can exploit the additional frequency dimensian,

process incoming signals adaptively based on the diveirsity

channel strength.

In narrow-band cooperative relaying systems, the rel
retransmits a processed version of the received signaltbeer
same frequency channel. In contrast, when multiple freque
channels are available, the relay can exploit the additio
frequency dimension, to process incoming signals addptiv

based on the diversity in channel streng@hannel pair-

ing, which devises a matching of incoming and outgoi
subcarriers in OFDM-based relaying, was
dently in [Z] and [3] for single-user relayifigIn a multi-

user communication environment, both incoming and outgoi
channels at the relay are shared among all users. A cru
cial problem is to determine the assignment of a subsetg}
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1Since a vast majority of multi-channel relaying systemshie literature
are based on OFDM, we use it as an illustrative example invibi¥, so that
the terms “channel” and “subcarrier” are synonymous.

u
ﬂ%lthough this approach is often applied to integer program-

n
roposed indep

incoming-outgoing channel pairs to each user, which we term
channel-user assignment. Since the channel condition can vary
drastically for different users, and over the same incoming
and outgoing channels, judicious channel-user assignareht
channel pairing can potentially lead to significant improeat

in spectral efficiency. Together witpower allocation over
multiple channels at the transmitters, essential for perémce
optimization, these are three main resource assignmebt pro
lems in multi-channel multi-user relaying.

There is strong correlation among channel pairing, channel
user assignment, and power allocation. Joint consideratio
these three problems is required to achieve optimal system
performance. However, the combinatorial nature of channel
pairing and assignment generally leads to a mixed-integer
H[ogramming problem, whose solution often bears prohibiti
computational complexity and renders the problem inttaeta
As a result, previous attempts to optimize the performance
of multi-channel multi-user relaying systems through tese
allocation often consider only a subset of these three pro$l
[4] - [L6], or adopt suboptimal approachés|[17] -][23].

In this work, we consider all three resource assignment
problems in a dual-hop multi-channel relaying network for

{nulti-user communication through a single relay, undeessav

common relaying strategies. We show that there is an effi-
cient method to jointly optimize channel pairing, channsér

%zsignment, and power allocation in such general dual-hop
rel

aying networks. The proposed solution framework istbuil
pon continuous relaxation and Lagrange dual minimization

ning problems[[24], it generally provides only heuristic or

approximate solutions. However, by exploring the rich stru

1d choices of the optimization trajectory can preservé bot
the binary constraints and the strong duality property &f th

%:e in our problem, we show that judicious reformulation

r(‘:ontinuous version, thus enabling a jointly optimal santi

Through reformulation, we transform the core of the orig-
f).l problem into a special incidence of the class of three-
imensional assignment problems, which is NP hard in gen-
eral but has polynomial-time solutions — in terms of the
number of channels and users — for our specific setting of
channel pairing and channel-user assignment. For the often
studied conventional decode-and-forward (DF) relayinthwi

a maximum weighted sum-rate objective, we further propose
a divide-and-conquer algorithm for dual minimization, ki
guarantees that convergence to an optimal solution regjuire
only a polynomial number of iterations in the number of
channels. This ensures the scalability of the proposedisnlu

to large multi-channel systems.
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Our proposed solution is applicable to a wide range of syalso established in the general multi-hop caselin [13], for
tem configurations, accommodating both total and individuboth AF and DF relaying, and under either total power or
power constraints, and allowing direct source-destimdiitks individual power constraints. With consideration for thieedt
in relaying. We show that it can be modified to work with varsource-destination link, the authors of [14] and|[15] stodi
ious relaying strategies in addition to DF, including vatgof joint subcarrier pairing and power allocation in a singseu
compress-and-forward (CF) and amplify-and-forward (AF). OFDM system, for AF and DF relaying respectively. The
also accommodates general concave utility functions. dgino joint optimization problems were formulated as mixed-g&e
simulation and numerical comparison, we further illugtthiat programs and solved in the Lagrange dual domain. Although
there is often a large performance gap between the join#rict optimality was not established, the proposed sonhgti
optimal solution and the suboptimal alternatives. were shown to be asymptotically optimal as the number of

The rest of the paper is organized as follows. We firstubcarriers approaches infinity, based on the frequenoyado
provide a literature review of the related work in Sectidn Ivirtual time-sharing argument [25]. For relay-assisteditimu
In Section[1ll, we discuss the system model and formulatser scenarios, joint optimization of channel-user ass@nt
the joint optimization problem. For weighted sum-rate maxand power allocation was considered [in][16] for communica-
imization with DF relaying, we describe our framework ofion between a base station and users who have the ability to
finding the optimal solution with polynomial complexity inrelay information for each other. Based on the same virtual
Sectior IV. Extension to other relaying strategies arearpld time-sharing argumenf [25], asymptotically optimal smot
in Section[YY. Numerical studies are presented in Se¢tidn Wias provided for network utility maximization.
and conclusions are given in SectionVII. The problem is especially challenging when channel pair-
ing, channel-user assignment, and power allocation need to
be optimized jointly in relay-assisted multi-user sceogri
Existing work to tackle it has been scarce. [In][17], suchtjoin

Most existing works on optimizing resource allocation fooptimization was considered for cooperation among users in
multi-channel relaying systems consider a subset of theethiuplink communication, accounting for the splitting of band
aforementioned problems. After channel pairing was pregoswidth at a user that needs to simultaneously transmit its own
in [2] and [3], its optimization has been considered in saverdata and relay for others. The proposed problem was NP hard
studies. In the absence of the direct source-destinatien[l] and a suboptimal heuristic algorithm was constructed. The
showed that the sorted-SNR channel pairing scheme, whiithors of [18] studied this problem for a single relay using
matches the incoming and outgoing subcarriers accordiD§ without the direct source-destination link. Under a total
to the sorted order of their SNRs for some given powgiower constraint, they showed that, for sum-rate maxiritimat
allocation, is sum-rate optimal for a single-user AF ratayi it is optimal to separately design channel-user assignment,
OFDM system. When the direct source-destination link ishannel pairing, and power allocation. However, this appho
available, a low complexity optimal channel pairing scheme suboptimal for the general case when the direct link is
was established in"[5] for AF relaying. In addition, it wasvailable, when the user weights are non-uniform, or when
shown that channel pairing is optimal among all unitarydine individual power constraints are considered. In compatiso
processing at the relay under a fixed gain power assumptiowg. consider more general relaying strategies that use thetdi
However, none of these works considered optimizing powsource-destination link, so that the simple pairing scheme
allocation. Channel-user assignment in multi-user rel@yi based on sorted channel gain is no longer optimal. Further-
networks, under given power allocation, was considered more, our proposed approach accommodates individual power
[6], where the authors sought an optimal channel-user aoohnstraints in addition to total power constraints, reiayi
channel-relay assignment to maximize the uplink data r@te fstrategies other than DF, and other optimization objestive
AF and DF relaying with multiple relays. For a multi-channeln Section[V], we further illustrate with numerical data tha
network with multiple sources, single AF relay, and singléhere is a large performance gap between such a separate
destination, [[7] studied the problem of channel pairing arebtimization approach and the jointly optimal solution.
channel-user assignment. It maximizes the sum received SNRThere are also other studies on resource allocation in multi
assuming that the power allocation is given. A suboptimahannel relaying systems, with different system modelmfro
solution is proposed for distributed implementation ugijaghe the one presented in this paper (for example} [19]] [20]],[21
theory. Finally, the problem of optimal power allocatiorr fo[22], [23]). Due to the significant complexity in these syste
OFDM relaying in specific relay network setups was studiediodels, no general optimal solution has been found. Rather,
in numerous works for different relay strategies and powsuboptimal algorithms are proposed with an aim to support
constraints, see for examplé [8]] [9].[10]. satisfactory system performance. In contrast, in this work

Jointly optimizing channel pairing and power allocation fowe tackle the problem of joint resource optimization in a
single-user relaying was considered in several studies. Withostmpler, single-relay system with multiple users, propgsa
the direct source-destination link, [11] and[12] consédkthis provably optimal solution with a formal proof for polynonkia
problem for dual-hop DF relaying in an OFDM system fotime complexity. Some preliminary results of this study éav
total power and individual power constraints, respecyivél appeared in[]1]. This version contains substantial exterssi
was shown that joint subcarrier pairing and power alloecati@dding detailed solutions on how to accommodate alternate
are separable for sum-rate optimization. This separatias wpower constraints and performance objectives, and piiegent

II. RELATED WORK
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Hop 2 assigned multiple channel pairs. Hengg,,;. is constrained

g by
> N \\\@ N K N K
Sourc N—y DD bmk=1Ym, YD bk = 1,90 (2)

n=1k=1 m=1k=1

Hop 1 1

B. Power Allocation

Fig. 1. lllustration of dual-hop multi-channel relaying. Along any pathP(m n k) the source and relay transmis-
) b) ’

sion powers are denoted ¥/, , andP" ., respectively. We

new derivations, proofs, and numerical results. consider bottindividual power constraints
N N K N N K

I1l. SYSTEM MODEL AND PROBLEM FORMULATION SN P <Py Y DY Py <P, (3
n=1m=1 k=1 n=1m=1 k=1

We consider the scenario where a source communicates with _
K users via a single relay as illustrated in Fi. 1. The aviglap@nd thetotal power constraint,

radio spectrum is divided int&V equal bandwidth channels, N N K
accessible by all nodes. We focus on the downlink in our SN (Pok + Pri) < P, 4)
analysis in this paper, but the proposed solution framework n=1m=1k=1

can be adopted for the uplink by swapping the roles of the,o.ap P and P, are the maximum allowed transmission
source and the users. i , power by the source, the relay, and the combined source
We denote bye;”, h;", andh;™ the state of channel for 4y relay, respectively. This is a general representation o
1 <4 < N, over the first hop between the source and the relaje power limitations imposed on the system including,, e.g.
over the second hop between the relay and isend over the 5 qware constraint, legal or regulatory requirementnergy
direct link between the source and userrespectively. The cqnservation. Note that this general representation can be
additive noise on a channel at the relay and uisare modeled ¢5gily tailored to also specify systems with only indivitua
as i.i.d. zero—mean.Gaussmn random vanaples with vag@ne) ,\ver constraints, or only total power constraint, by Beti
o2 and o7, respectively. The channel state is assumed to Re or more ofP,, P., and P, to sufficiently large values.
available at both the source and the relay, which enables the £,.h constraint above is either inactive (i.e., at optitpai
to dynamically assign channels and allocate power accgrdi

" i satisfied with strict inequality) or active (i.e., at oplity
to channel conditions.

it is satisfied with equality). We consider the case where all
active constraints aretrictly active, i.e., if the problem is
. modified by changing the power limits by small amounts, at
A Channel Assignment optimality the constraints remain active. This is withoosd
The relay transmits a processed version of the incoming dafiagenerality, since any constraint that is active but nocty
to its intended user using a specific relay strategy. Theyrelactive can be made inactive, by increasing the power limit by
also conducts channel pairing and channel-user assignmengmall amount, without altering the problem solution.
Qhanr?el pairing refers to a qne-to-one mapping between theDefine Pone = (PS5 Pr PSS .+ P )andm =
incoming channels and outgoing channels at the relay. irou P,, P,, ;).
channel-user assignment, on the other hand, a subset of
incoming-outgoing channels is assigned to each user. Ilear
channel-pairing choices are closely connected with how tﬁ:e
channels are assigned to the users. We term the joint decisioWe initially focus on DF relaying but will later show how
on channel pairing and channel-user assignmenthianel the proposed method can be applied to other relaying schemes
assignment problem. As the different channels exhibit variousuch as AF and CF. We consider a general case where, apart
quality, judicious channel assignment can potentiallydlém from the relay path, the direct links are available betwdwn t
significant improvement in spectral efficiency. source and users. In this case, the signals received from the
We say a pattP(m, n, k) is selected, if first-hop channel relay path and the direct link can be combined to improve the
is paired with second-hop channeland the pair of channels decoding performance. In DF, each transmission time frame
(m,n) is assigned to usek. We define indicator functions is divided into two equal slots. In the first slot, the source

Relaying Strategy

émnk for channel assignment as follows: transmits an information block on each channel, which is
received by both the relay and the intended user. In the slecon

1, if P(m,n, k) is selected slot, the relay attempts to decode the received message from
Pk = 0, otherwise. @ each incoming channel (first hop), and forwards a version of

the decoded message on an outgoing channel (second hop)
There is a one-to-one mapping between first-hop channtdsthe intended user. The intended user collects the reteive
and second-hop channels. Furthermore, we require that eaignals in both time slots, applies maximum ratio combining
channel pair be assigned to only one user, but a user mayanel decodes the message.



LONG VERSION OF IEEE J. SELECT. AREAS COMMUN., VOL. 30, NO. 9CTOBER 2012 4

Consider the conventional repetition-coding based DF re-We then relax the binary constraint éh by defining a
laying [26], [27], where the relay is required to fully de@od continuous version of,,,z, denoted bye,,.., which may
the incoming message, re-encode it with repetition codingke any value in the intervdl, 1]. Then, the reformulated
and forward it to the intended user. The maximum achievablersion of the optimization problerfil(6) can be written as

source-destination rate on pam,n, k) is given by [27] . ps
1 _max Z %gf)mnk min{log(1 + a,, ==~ ),
R(m,n, k) = 5 min{log(1 + an P:..1.), &P Pk mnk
P? P
log (L + cmi Pk + bk Prn)} - () 10g(1 + cpnp, =M o by, =25 )} (10)
Ihsr|2 Ih'rk|2 Ihsk‘2 mnk
where a,, = ==, by = T, and ey, = S are st Gmnk = 1,Ym, ng)mnk =1, vn (11)
normalized channel power gains against the noise variance a
the relay and usek, and the base of logarithm is 2. 0< dpnk <1, Vm,m, k (12)
Q. @). @)

D. Optimization Objective
Various rate-utility functions can be used as objectives. F The_objective function[(J0) is concave if, PP,
convenience of illustration, in this paper we focus on th@NCE Gk log(1 + an m"k) and @i, og(1 + con, dj””’“ +
weighted sum- rate Denoting by, the relative weight for 4 mk) are the perspectlv& of the concave functions
userk, such thatzk , w, = 1, we formulate the problem of 1Og(1+”amp ) andlog(1 + e P2, e Onk Pl ), respec-

mnk

weighted sum-rate maximization as tively. It is also noted that the minimum of two concave
functions is a concave function. Furthermore, since all the

@Igg@ wk Z Z Grmnk R(m, n, k) (6) constraints are affine, and there are obvious feasible oint

n=1m=1 Slater’'s condition is satisfied [28]. Hence, the convex -opti

st (@), (13), @), mization problem[(T0) has zero duality gap, suggestingdhat

Grmnk € {0,1},  Vm,n, k (7) 9lobally optimal solution can be found in the Lagrange dual

domain.
>0, P ..>0 V k 8 . . . . .
mnk mnk = Uy VI E, (®) Using continuous relaxation on integer programming prob-
where® 2 [Dmnk] NxNx K> P? E [Ps INxNxK andP” 2 lems is not a new techniquie [24]. However, doing so typically

[Pr Inxnxi. Given the relative weights and the channégads only to heuristics or approximations. Clearly, swva
gains on each pat®(m,n, k), the optimization probleni]6) Maximization problem with relaxed constraints generaieg
finds the jointly optimal solution of channel pairing, chahn ©nly an upper bound to the original problem. In particuldr, a

user assignment, and power allocation by optimiziagP®, global optima for [ID) do not necessarily give a binaby

andPr. which is required for[{6). However, we next show that, in
the problem under consideration, indeed there alwaysseaist
IV. WEIGHTED SUM-RATE MAXIMIZATION FOR globally optimal solution to[(10) consisting of a binaiy and
MULTI-CHANNEL DF the proposed approach ensures that such an optimal solution

The optimization in [(B) is a mixed-integer programmin(.ﬁs found in polynomial time.

problem, which in general has intractable complexity due EJ Power All . 2 Mascimizati f L Functi
its combinatorial nature. However, in this section, we pres ~ "o oc?t|on via Maximization of Lagrange Function
a method to find an optimal solution with computationa(?\/er P®and P

complexity growing only polynomially with the number of Consider the Lagrange function fér{10),

channels and users. ~ Ps
L(®,P*,P" \) = Z = G min{log(1 + @, =72k,

m,n,k mnk

A. Convex Reformulation via Continuous Relaxation ps
The proposed approach is built on the reformulatioridf (6) log(1 + cmk g)m”k + bk m"k) (As + ) Z ik

'mnk mnk

into a convex optimization problem with a real-valuddand m,n,k
strong Lagrange duality. We later show that the reformdlate  — (), + \,) Z Pr o 4+ AnT, (13)
problem is optimized by a binar = ®. monk

We first SUbSt'tUtes . where\ = (A, A\, \¢) is the vector of Lagrange multipliers

A Dok and P, = Pk (9) associated with the power constrairit$ (3) apd (4). The dual
Pmnk Gmnk function is therefore

into the objective of(6). This does not change the origimdi-o = o o

o . . o A) = ¢ PP A 14
mization problem, since b, = 1, then [9) is trivially true; g(A) ;g?f;rﬁ( , P, P", ) (14)

and if ¢, = 0, then by I'Hopital’s rule,d,,. R(m,n, k)

remains zero before and after the substitution. Indeedyit-o >The perspective of functiofi : R™ — R.is defined ag(z, t) = tf(z/1),
. . . with domain {(z,t)|z/t € domf,t > 0}. The perspective operation
ously preserves the optimality of power allocation to eoaéor preserves concavity [28]. Here we include,,, — 0 in the domain of

Ps pr . =0forall (m,n,k) such thatp,,,, = 0. the perspectives. It is easy to see that they remain concave.

mnk — tm
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s.t. (@), @2), @). require the general form of this lemma to deal with contirgiou
The ab o f the L ¢ . values in®, X, andy™". In particular, the mapping fron®
he above maximization of the Lagrange function can h§ (X, {y™"}) is one-to-many, which is quite different from
carried out by first optimizing the power allocation giverefix tfhe binary case
®. The KKT conditions suggest that the maximization o Lemmall implies that any optimization oveK{ y™")

(I3) overP* and P" can be decomposed ity x N x K also optimizes® for the same objective. This allows us to

independent subproblems to find the optinfgf, . and P’ replace, in problemT8)p,ni With z,.,y"". Furthermore,

o omax Lonk(Gmnks Pk Prunis ) (15) the constant terms can be dropped frém (18). Hence, we can
Pk 20,Pp 20 equivalently seek solutions to the following problem
where L,k (q;mnka Py PrnisA) is - the  part  of max Z Tmn Z Y Ak (X) (29)
L(®,P*,P" \) that concerns only the patA(m,n, k). Xy o =
It can be shown that the solution {0 {15) has the followin
. . . . . .T. mn — 1, 5 mn — 1, 5 S’mnév s 1l
form. The derivation details are given in Appendix A. Not(gt zn::r 1,vm ;I Lvn, Osz 1,¥m,n
that, sinceP:* . and P'* . depends omp,,,; in an obvious (20)
way, we simply present them as functions)ofor the rest of o o
this section. Zyk =1,Ym,n, 0 <y™ <1,¥mnk. (21)
)
(BN, P (X)) = The following two-stage solution is sufficient. First, theer-
([a()f:j—kt) B %r émnlmO) Cifay, < e sum term is maximized ovey;"" for each(m,n) pair, i.e.,
/ o mn
p1, if amn > cpp and 224 < ,\fi’i\t (16) Amn(A) = glgxzk:yk Amnk(A) (22)
arg max ﬁmnk(imnk,Ps,Pr,)\), o.W. st @)

(P=,Pr)e{p1,p2}

An optimal solution to is readily obtained as
wherea = 2In2, [z]t = max{z,0}, p1 = (1,“’“;%) X P ) Y

nk
- X 1, if k=argmax;<;<x Amni(A)
wibn, 1 o mn* _ RS )
[a(bnk(AS+At)+(§zm'icmk)(AT+At)) am} Omnk, and pz - = Yk {O, otherwise (23)
+ .
<|:a()\1:i)\t) - ﬁ} ¢mnk70>- In the above maximization, arbitrary tie-breaking can be

performed if necessary. Next, insertir,,,(A) into (I9), we

C. Channel Assignment via Maximization of Lagrange Func- have the linear optimization problem

tion over ® m)%xz T AL () (24)
To maximize the Lagrange function ovér, we define m,n
y 1 . s.t. (20).
mn A) == Emn mnvPS* )\’Pr* >‘7)‘ . . ; : 3
£ ik e(Gmnks FrinieN): Frinie(A) X) It is well known that there always exists an optimal solution

(17) (24) that is binary[[24, Chapter 3]. An intuitive explanatis

the following. Since[(Z2K) is a linear program with a bounded
objective, an optimal solution can be found at the vertices
of the feasible region. Furthermore, singe is a doubly
stochastic matrix, it is a convex combination of permutatio

Note thatA,,,.(A) is independent oﬁ?mnk because of the
multiplication form of [18) by ¢.k. Then, [I#) can be
determined by the following optimization problem ov@r

max Z émnkAmnk(A) (18) matrices. One of these vertex permutation matrices is an
L ok optimal solution to[(24), so at least one optin¥lis binary.
st (), @) Thgn, to find a binary_o_ptimaK, @) is atwo-dimensional
’ assignment problem. Efficient algorithms, such as the Hungar-
To proceed, we present the following lemma on the decorian Algorithm [29], exist to produce an optimal solution kit
position of ®. computational complexity being polynomial iN.
Lemma 1: Any matrix ® = [fmnr]vxnxx With 0 < Finally, the optimalg,,.i given X is

omnr < 1 and satisfying[{I1) can be decomposed into one Ta . s

matrix X = [z,n]nvx v and M N vectorsy™” = [y1""|ix k., Pk (X) = T )™ (A) - (25)

such thatg,ne = Zpmny™, ¥m,n, k, with 0 < z,,, < 1 Since binaryz*, (\) and yp™*(A) are computed following

and0 <y < 1, satisfyingy",, @y = 1,Ym, 3., zmn = the above procedurey’, ,(X\) is also binary. This shows

1,Vn, and)_, y;"" = 1, ¥m,n. Furthermore, any such matrixthat there exists at least one binary optimal solution to the

X and vectorsy™” uniquely determines a matri$ that is maximization in [I8).

given by ¢pnir = Tmnyp™ and satisfied (11). Intuitively, the globally optimal solution described aleov

Proof: The proof is provided in AppendixIB. B suggests a pairing between the input and output channels at

Note that, even though the above decomposition can alsothe relay, and if channels andn are paired, they are assigned

applied to a binaryp as a trivial special case of Lemih 1, wao a single usek, whose associated,,,,(\) is the greatest
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among all users. Note that such an interpretation mightlsadobjective within a given neighborhood of a global optimum;
to conclude that we could have forgone continuous relaratiovhile using the non-summable, square-summable rule leads
from the very beginning and focused only on a bindy to asymptotic convergence to a global optimum. Furthermore
However, we would still have required the continucBisto one may satisfy any constraints aff) within a convex region
construct a convex optimization problem, whose strongitjualby projecting)\(l) onto the region. This is the genepmsibjected
property provides the optimality of the proposed approd@ble. subgradient method, which does not reduce the speed of
optimality of (X, {y™"}) taking binary values is implied only convergence[[32]. For example, Step 3 above ensures that
through the above derivation. A = 0, and we will further consider projection onto convex
Interestingly, the original optimization problerh {18) it regionsR; andR- in Sectior TV-F.
a binary matrix® is a special case of thaxillary three-
dimensional assignment problems [30]. It is well known that E. Primal Optimality

the general form of this family of problems is NP hard and | _ _ i
cannot be solved by continuous relaxation ®n unlike the  With standard subgradient updating, the dual optinals

two-dimensional assignment problem [al(24). In our case, tHbtained, from which we compute the channel assignment and
~ H H * Sk T% * *
special structure ofe expressed in[(11), namely the absendgOWer aIIocat_lor_1 mgtnce@ P ’P_ ), where @™ = @
of a constraint on per-user resource allocation, makes'tpesss'nce the optimization probler {10) is a convex program that
the availability of an efficient solution tg{L8) satisfies Slater’s condition, it has zero duality gap. Denot
It is also worth noting that, given an, there may exist by f*(m) the maximal value of the objective iR (10). Then

non-integer optimal solutions t§ {118). For example, when tf "(m) = g(A"), and furthermore it is concave im. We
maximal value ofA,,,; in (Z3) is achieved by multiple userscon5|der systems that have the followigtgictly diminishing

having the same channel gains, there is an infinite numisgfe-power rela}uor;\: , . . :
of optimal y™", leading to non-integer optimal solutions Assumptlon L f (7?) is strictly concave in any strictly
for ¢..n1. However, the procedure above finds only one gictive power constraink, € 1P, Pr, Bt}

the optimal solutions in binary form, which is sufficient for N Other words, as the data rate increases, each unit of
computing the dual function increment requires more and more marginal power. With a

strictly concaveR(m, n, k) in terms ofp,,,,.,., this assumption
o _ _ holds when either there is no tie-breaking [nl(23) [o1] (24) or
D. Dual Minimization: Baseline Subgradient Approach there is tie-breaking that is due to users or paths having the
The previous subsection provides a way to find the Lagrang@me weights or channel gdins

dual g(\) for any Lagrange multiplier vectoA. Next, the  Proposition 1: Under Assumptiori]1{®*, P**, P™) is a
standard approach calls for minimizing the dual function: globally optimal solution to the original probler] (6).

Proof: Since P** and P** are uniquely determined by
(26) A* and ®*, we need only to focus o®*.
st A>0. For any inactive constrainP,, we have\: = 0 and the

subgradients ofj(\) in the direction of)\, are all positive.
This can be solved using the subgradient mettiod [31]. It ifence any®* is feasible with respect t@,.

min g(A)

easy to verify that a subgradient at the pots given by For any strictly active constrain?,, we have\* > 0.
0N =7 — 3 PhlN) . 2ry Furthermore.
myn.k f*(ﬂ') = £(¢*3P8*3PT*7A*)
where P2*, (XA) and P)* , (\) are computed based oh {16) <f( Z ) — A ( Z pi.—mT . (28)
and¢?, . (A) found using[(2b). ok ik

For completeness, we first summarize the standard Sl(LJbI

gradient updating algorithm for solving the dual problem in ven Ass_umptlortll_, the abov_e S p(_)ssmle qnly when all
. . o L . strictly active constraints are satisfied with equalityefiéfore,
the following. We will present a modified dual minimization . : :
algorithm in Sectiofi IV-F, which is guaranteed to converme Iany<I> 's feasible with respect t&, and the complementary
g N ' 9 "€ Slackness condition is satisfied. Hend@*, P** ,P"™*) is a
polynomial time.

o © globally optimal solution to[(70).
1) In_ltlallze(l))\ C ) 0 Furthermore, sincg (10) is a constraint-relaxed version of
2) Given )‘l , obtain the olptlmal values oF7" . (A™), (@), ®* gives an upper bound to the objective F (6). Finally,
P;;;Lk()‘( ))’ andé¢;, k()‘( ))- since®* satisfies the binary constraints i (6) at each iteration
3) UpdateX throughA"™" = (A" — o) O]+ where  of the subgradient algorithm, it satisfies all constraintgg).
v() is the step size at thith iteration. Therefore, it is a globally optimal solution tb](6). n
4) Letl =1+ 1; repeat from Step 2) until the convergence \we point out that using conventional convex optimization
of min, g(A(l))- software packages directly on the relaxed problenh (10) ts no
Several step-size rules have been proven to guarantee con-

vergence under some general conditidng m][32] For examf‘However, we cannot rule out the possibility of a case whenerdfiorms of

| . . a _ . tie-breaking in[(2B) or[(24) might create linear segmentg i), although
ple, using a COHStant_Step Sizg 1.e., v N v, Or UsIiNg & p g simulation tests with arbitrary parameters, we haseproduced a case
constant step length, i.e., v = v/||0(AY)]|2, leads to an where this assumption fails.
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sufficient to solve[{B). This is because there is no guarang@orithm 1 Divide-and-Conquer Dual ~Minimization
that they will return a binary®*, and furthermore due to (PCDM)

complicated three-dimensional dependencies amopgy, if there exists some: andk such thatc,,,; > 0 then
there is no readily available method to transform a fraction Al = output of subgradient updating algorithm with
&~ to the desired binary solution. projection ontoA) € R,
Setep,p =0foralll<m<Nandl<k<N
F. Dual Minimization: Divide-and-Conquer Algorithm with A; = output of(l)subgradient updating algorithm with
Polynomial Complexity projection ontoA™ € R,
The standard subgradient method produces a global op- return A:ér{g)\?&rg}g()\)

timum, but its computational complexity is not generally else

known. Previous studies have provided asymptotic bounds or A\* = output of subgradient updating algorithm with
conjectures on its efficiency through computational exgere. projection ontoa® € R,

In general, the number of iterations in subgradient updatin  return \*

depends on the step-size rule, the distance between ted init end if

solution and the optimal solution, and the 2-norm of the
subgradientd [31]/132].

Next, we propose a new dual minimization algorithm that proposition 2: With DCDM, the computed channel assign-
guarantees convergence with polynomial complexitVimnd ment and power allocation matricé®*, Ps*, P™*), where
K, to a global optimum for our optimization problem. ltg+ — &* is a globally optimal solution to the original
uses a divide-and-conquer approach, by grouping the gessigoplem [).

locations of A* into two regions and applying projected Proof: Suppose there exists sonfer,n, k) such that
subgradient updating constrained within either. It ensdinat -« — 1 ande¢,, > 0. Then Lemmall2 shows that

. . . . (0 mnk
in each region, our choice of the initial(” z_;md subsequer_n A" € Ry. Therefore, by Propositiofl] 1A} obtained by
subgradient updating lead to convergence in polynomlaé.tlmsubgradient updating projected orfq is an optimal solution.
We first define the following two overlapping convex reg rthermore setting:,, = 0 for all 1 < m < N and
gions in terms ofA: 1 < k < N only reducesR(m,n, k) for all paths, so that
A . subsequently minimizing the Lagrange dual yields an ioferi
Ri=qAtdst Mz solution. Thereforearg minyc (x- x;3 9(A) = A7 is returned
min _ wimin{ min _ a;,, min  cuit by DCDM.
{:wy >0} {miam>0} — {mkicyy>0} A - 0} Supposec,,, = 0 for all (m,n, k) such thate? . =1,
4o¢(mn%x am min{ Py, P} + 1) T "i.e., all chosen paths have zero direct-link channel gaienT
settinge,,x, = 0 forall 1 <m < N andl < k < N only

min  a,,
A {m:am >0} reducesR(m,n, k) for the non-chosen paths. Subsequently
= : - > L b . .

Re {)\ As A+ max by, (Ar+20) 2 minimizing the Lagrange dual yields the same solution as
. nk before changing:,,,,. Furthermore, Lemm@ 2 shows that this

Cop o} optimal solution is inR,. Hence A} obtained by subgradient

] 1 A 0} : updating projected ont®, is an optimal solution. In this case,

a(min{Py, P} + o am) argminyex: a5} 9(A) = A3 is returned by DCDM. n
{m:am>0} The polynomial computational complexity of DCDM is

These are two possible regions wheké resides, which Stated in Propositiofl 3. Its proof requires the followingie
depends on whether there exists at leastdwsen path with Mas, which give upper bounds dfA"[> and [[8(A")]],
non-zero direct-link channel gain,,;. This is formalized in where|| - || denotes the 2-norm.

the following lemma. Its proof is given in [33]. Lemma 3: f\t global optimum,[[A"|[2 is upper bounded by
Lemma 2: If there exists somém, n, k) such thatp?, , = Amaz = O(N). _ _ _
1 andc,,; > 0, thenA* € R,. Otherwise \* € Ro. Proof: The proof is provided in AppendixID. ]

The proposed divide-and-conquer dual minimization Lemma 4: At every step of subgradient updating in the
(DCDM) algorithm considers both possible regions fef. DCDM algorithm, [[#(A")]|, is upper bounded by,... =
It first creates the two conditions in Lemrk 2 by artificiallyO(N?).
setting direct-link channel gains to zero. It then applies t Proof: The proof is provided in AppendXIE. [ |
projected subgradient algorithm @&y andR. separately, and  Proposition 3: To achieve a weighted sum-rate within an
chooses the better solution between these two. The algoritarbitrarye > 0 neighborhood of the optimum(A*), using ei-
is formally detailed in Algorithn{l, and its optimality andther a constant step size or a constant step length in subgtad
complexity are given in Propositiodd 2 ahtl 3, respectivelypdating, the DCDM algorithm has polynomial computational
Note that one cannot use Lemih 2 to determbefgre the complexity in N and K.
optimal channel assignment matdxis chosen, which region Proof: At each iteration of the standard subgradient
A* is in. This necessitates the comparison step in the DCDiypdating algorithm, the procedures described in Secliigi |
algorithm. and[1V=Q are employed. This has computational complexity
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polynomial in N and K. Therefore, it remains to show thatand future relaying strategies to find the optimal solution.

the total number of iterations is not more than polynomial iHowever, the closed-form solutions f@i**

N or K.

pr*

mnk

) may

mnk>’

be difficult to find in some cases, requiring more involved

For either case of projecting onfd; or R», one may choose numerical computation.

an initial A(”) such that the distance betweaf’) and A* is
upper bounded by,,.... Then, it can be shown that, at tit@
iteration, the distance between the current begt objetnime
optimum objectivey(\*) is upper bounded, b mw*” ,
if2 a constant step size is used (i.e/) = 1/) or by
Nnazbmaz v 0masl if 5 constant step length is used (i) =
v/]10( )\%l) )||2) [BIN[32]. For the former and latter bounds, if we
setv = ¢/02,,. andv = ¢/0,,.. respectively, both are upper
bounded bye when! > \2 62 /e = O(N*). Hence, the

max

number of required iterations until convergence, for eitbie

nLa:L

the two projected subgradient updating procedures in DCDM,

is polynomial in N and independent oK. |

For relaying strategies that do not have concave achievable

rates, such as AF, near-optimal solutions can be obtained by
using the proposed approach in the following senses:
e A concave bound of the achievable rate may be used to

approximateR(m, n, k). For example, with AF, we have
R(m,n, k) = 3log(1+ Haa’” ;ER +bﬁ’};”“ + PS Cmk)-

A concave upperbound is obtained byl removmg “1” from
the denominator. By substituting such a concave bound
for R(m,n, k) in the original optimization problem, we
obtain a solution that optimizes in terms of the bound. In
the case of AF, such solution is near-optimal for weighted
sum-rate, since the “1” is negligible for paths with high

Note that using the non-summable, square-summable step-effective SNR, while paths with low effective SNR do not

size rule in the early iterations of subgradient updatirftgro

contribute substantially to the performance objective.

leads to faster movement toward a global optimum than using It has been shown iri_[25] that, regardless of the convex-
a constant step size or a constant step length. This is dt to i ity of the objective function in a multi-channel resource

larger step sizes whéns small. However, such a step-size rule
does not guarantee polynomial convergenceﬁlrﬁ'eerefore

assignment problem, if the objectiv@ optimum is a
concave function of the maximum allowed powers, the

one may start with the non-summable, square-summable rule, duality gap of the Lagrange dual induced by power con-
and then switch to one of the constant-step rules when the straints is zero. This is due to time-sharing over resource
step size or step length is sufficiently near the prescribed assignment strategies. Furthermore, there is a frequency-
value in Propositiori]3. This would reduce the convergence domain approximation of time-sharing, so that the duality

time in practice while preserving the guarantee of polyradmi
complexity.

V. EXTENSIONS TOGENERAL RELAYING STRATEGIES

gap is asymptotically zero when the number of channels
goes to infinity. Hence, for systems with a large number
of channels, near-optimal results can be achieved by the
proposed approach.

For any relaying strategy in which data sent through Finally, if we considerR(m,n,k) as a general concave
different communication path®(m,n, k) are independent utility function of the rate on pat#®(m, n, k), then for concave
and the achievable rateB(m,n,k) is a concave function and increasing rates, the utility function is also concave

PT

mnk /!

in transmission powersPs, .

), the proposed solution in the optimization variables, so that a similar optimiaati

approach gives jointly optimal channel assignment and pow&pproach is applicable. An example is the weighteéhir
allocation for weighted sum-rate maximization. To see, this  utility function [35], which represents general fairneasgets
first note that any concave rate function would lead to convéxch as proportional fairness and max-min fairness. Nate th
programming for the relaxed and reformulated problem, tvhid¢his provides only fairness among the paths, instead of gmon
satisfies Slater's condition and hence has zero duality gasers who could be assigned multiple paths.

Furthermore, toward maximizing the Lagrange function, we

can generalize (15) into the following form:
PS P

mnk ¢mnk
Since the partial derivatives of the above maX|m|zat|on o}

jective containsP;, . and P’ . only in the form o

= Ap)ar -
ps Prnk

mnk=

20p

mnk=—

>0

mnk

brmnk

I
I?7nnk

and

mnk

VI. NUMERICAL RESULTS

In this section, we compare the performance of jointly

thlmal channel pairing, channel-user assignment, ancepow
allocation with that of suboptimal schemes. We further gtud
the different factors that affect the performance gap under
, we always have’;” , and P77, as the product of these schemes, in order to shed light on the tradeoff between

dmni and a non-negative factor. This leads to a maximizatigrerformance optimality and implementation complexityeTh
problem of the form in[(28), which has been shown to adnsuboptimal schemes considered are

a binary optimal solution in Sectidn TV}C.

Besides DF, the time-sharing variants of any relaying estrat
gies with long-term or short-term average power constsaas
well as all capacity achieving strategies, have concaveeach

able rates[[34]. Our algorithm is applicable to these curren

4Consider the following idealized example for illustratidh /(1) = % for
all 1, the number of iterations would need to e= ©(e*ma=) to satisfy
the convergence requiremeRt; , v = O(Amaz)-

o No Pairing: Channel-user assignment and power allo-
cation are jointly optimized, but no channel pairing is
performed, i.e. the same incoming and outgoing channels
are assumed. The solution is found by always assigning
an identity matrix toX instead of solving[{24).

o« No PA: Allocate power uniformly across all chan-
nels, subject to power constraints. Channel pairing and
channel-user assignment are jointly optimized by solving
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user 1 s [ Q;_n.‘
user 2 08 S Nopa
~—— Separate Opt.
' ' [| —#%— Max Channel Gai
S R user 3

user 4

Fig. 2. Simulation configuration witll = 4 users

Normalized Weighted Sum-Rate

@) with given power, which is a three-dimensional as
signment problem over binarg@. The solution is found
by following the procedure in Sectién TVC.

o Separate Optimization: The three-stage solution proposet
in [28], with channel-user assignment based on maximu
channel gain over the second-hop channels, channel p....
ing baged on sorted channel gains, and water-filling powﬁ&. 3. Normalized weighted sum-rate vs. nominal SNR with —
allocation. [.25,.25,.25,.25], N = 16, K = 4, and DF relaying.

o Max Channel Gain: Channel-user assignment by maxi-
mum channel gain over the second hop, with uniforr o3 _
power allocation and no channel pairing. P

We use OFDMA as an example for a multi-channel syster o7y 78278
The relaying network setup is shown in F[g. 2, where thDIEﬂ —#— Max Channel Gaif
distance between the source and the relay is denotefi, by § 0.61
and K = 4 users are located on a half-circle arc around th £
relay with radiusi,.4. A 4-tap frequency-selective propagatior § 0.5-
channel is assumed for each hop, and the number of chanrg
is set to/N = 16. We define a nominal SNR, denoted byc—:s 0.4
SNR.om, as the average received SNR over each subcarr s
under uniform power allocation. Specifically, with totalvper
constraint?;, we have SNRym 2 %, wherex = 3
denotes the pathloss exponent, denotes the noise power 0.
per channel, and,,; denotes the average distance between tl
source and users. A total power constraint and equal ingtid ‘
power constraints on both the source and the relay are agsur 0 1 2 3 4 5 6 7 8 9

. 2 . . Nominal SNR, dB
with Ps = P, = $ P, unless it is stated otherwise.

4
Nominal SNR, dB

0.3

Fig. 4. Normalized weighted sum-rate vs. nominal SNR with =

A. Performance versus Nominal SNR [.15,.15,.35,.35], N = 16, K = 4, and DF relaying.

We compare the performance of various channel assignment
and power allocation schemes at different ShRlevels them around the half-circle arc. In order to properly corepar
for K = 4. We fix the ratiods,/d,q to be 1/3. Fig.[3 weighted sum-rate under different number of users, we do not
depicts the normalized weighted sum-rate (normalized OW%rmaIizeZszl wy = 1. Instead, we fixv, = 1 for all k. The
N) vs. SNRom for DF relaying with equal weight,.e., w £ nominal SNR is SNRym = 4dB, and the ratial,, /d,.q = 1/3.
[welixx = [.25,.25,.25,.25]. The jointly optimal scheme Fig[H shows the normalized weighted-sum rate vs. the number
outperforms the other suboptimal schemes, and providescdsisers for DF relaying under total power constrditAs we
much as 2@ gain over theSeparate Optimization scheme. see, the sum-rate is improved due to the multi-user diyersit
The gain is increased when an unequal weight vestois gain with an increased number of users. In addition, cosrsist
required to satisfy different user QoS demands or fairnegrformance gain under joint optimization can be seen over
Fig.[4 shows the normalized weighted sum-rate vs. GNRor  different user population sizes.
w = [.15,.15,.35,.35], where a substantial gain is observed

by employing the jointly optimal solution. C. Impact of Relay Position
Through this experiment, we study how the relay position
B. Performance versus Number of Users affects the performance under various resource assignment

In this experiment, we show how the number of users affedshemes. The{ = 4 users are located close to each other
the performance of various resource assginment schemes.a&/@ cluster, and they have approximately the same distance t
increase the number of users in Eh 2, and uniformly platkee relay and the source. We change the relay position along
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2.2

Normalized Weighted Sum—-Rate
Normalized Weighted Sum-Rate

=
©

1.8 —O— Joint Opt. i . = Joint Opt.
—<— No Pairing —<— No Pairing

1.7 —+—No PA L —+—No PA
—*— Separate Opt. —*— Separate Opt.
—4— Max Channel Gaif —— Max Channel Gair

l.l‘ L L L T T X

° 5 10 15 20 25 30 0.1 0.2 0.3 0.4 0.5 0.6 0.7
No. of Users d_/d

Fig. 5. Normalized weighted sum-rate vs. number of users agal weight Fig. 6. Normalized weighted sum-rate vs. relay locatidfi: = 4. w —
w; =1, for1 <4 < K, N =16, and DF relaying. [.195, 15,.35,.35], N = 16g, and DF relaying. y o

the path between the source and the user cluster.[Figs 6
[1 demonstrate the normalized weighted-sum rate vs. the re 0 7 |
dsr/dsq. We setw = [.15,.15,.35,.35], and SNRom = 3dB. ’

Fig. [ shows the DF relaying case under both total ar
individual power constraints, and F[d. 7 shows the AF relgyi |
case under a total power constraint.
We see from Fig[6 that better performance is observig
when the relay is closer to the source than to the users &
DF relaying, as correctly decoding data at relay is impdrta g %4 i
in successful DF relaying. In addition, comparing the joir'g m
optimal scheme withNo Pairing scheme, we see that theg 04
gain of channel pairing is evident when the relay is closi
to the source, but diminishes when the relay moves clos o35
to the users. In the latter case, as the first-hop becomes —— Separate Opt.
bottleneck, channel pairing at the second-hop provides o3 w | =% No Pairing, Sept. Opt w w
benefit. This is not the case for AF relaying. As shown i 0 ot 02 03 ds?/g:d 0% 06 o7 08
Fig.[d, channel pairing gain is observed throughout differe
relay positions. Furthermore, the performance of the pintrig. 7.  Normalized weighted sum-rate vs. relay locatidt;= 4, w =
optimal solution only has mild variation throughout diféet [-15,-15,.35,.35], N = 16, and AF relaying.
relay positions, unlike th&lo PA scheme. This suggests that
the benefit of optimal power allocation for AF relaying is raor
significant when the relay is closer to either the source er t
users.

Rate

0.55- . : :!

ed Sum
o
wn

i

—0O— Joint Opt.
—<— No Pairing
—+—No PA

fp a wide variety of scenarios. The potentially significant i
provement of system performance over suboptimal alteresiti
demonstrates the benefit of judicial design in such systems.

VIl. CONCLUSION

We have studied the problem of jointly optimizing chan-
nel pairing, channel-user assignment, and power allatatio
in a general single-relay multi-channel multi-user system For notational simplicity, we drop all subscripts, n, and
Although such joint optimization naturally leads to a mixed® from (I3). We have the following maximization problem,
integer programming formulation, we show that there is afhich can be solved in the two cases below.
efficient algorithm to find an optimal solution to our problem w~ aP?

The proposed approach transforms the original problem into A% Emnm{log (1 + % ) ’

a specially structured three-dimensional assignmentl@nob cP* bP

which not only preserves the binary constraints and stramg L log (1 + =+ — ) } = (As FA)P? — (A + ) P"
grange duality, but in some cases can also lead to polynemial ¢ ¢ (29)
time computation complexity through careful choices of the

optimization trajectory. The proposed framework is aabie st. P, PT>0.

APPENDIXA
DERIVATION OF EQUATION (186)
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A. CaeOne: a<c In the former case) > 0 sincea # c. Furthermore, since
In this case, the first term inside thein function in [29) is the first and second terms in then function in [29) are the

always smaller than the second term. HenEgl (29) is reduc@ine, we obtain the same solution as[inl (34).
to In the latter case, we define two new variablés= (A, +

w - uP* A)Pf and V" = (A, + A\¢)P". Substituting them into the
max 5 log <1+ 3 >_<A5+At>PS—(AT+At>Pr objective of [35), we have

Ps,P"

~ Ve bv"
s.t. P P">0. (30) max g¢10g (1 + = ¢ + = ) —-Ve-vr.
vevr 2 d(Ns + ) A+ M)
Then, the optimal solutions from water-filling are obtairsed (36)
The solution depends on the relation betweg#i— and
P = v R R O i o
o 2()‘3 + At) 1n2 a ’ B A c b Tk i
o If S vl v then we haveV"™™ = 0, since

) otherwise a better solution td_{36) would H&s =
B. Case Two : a >c VS + V™ V"™ = 0). SubstitutingV”* = 0 into (38),
For this more complicated case, we propose the following \ye havels* — [ w >\3+>\t]+ é.

. . . . . 2In2 c
solut|.on. We inspect the two possm.le outco_mesf in comparing, |t o = Mf%, (30) is a function of V* + V") only,
the first and second terms in thein function in [29) at and V' =0 i$ a maximizer. Hence, again we have
optimality. Two separate maximization df (29) are performed o [ Asﬂtr&
— L2In2 '

under the constraint of either outcome. Then, the optimal

(P*, P") is given by the better of these two solutions. *
1) Assumption 1: aP** < bP"™ + c¢P** : Under this

assumption, we havé > 0 and the following optimization

(&
If A—frAt < 3 similarly we hgveVS* =0. Hovyeve__r,
this together with our assumption that constraint (ii) of
(33) is strictly satisfied, i.ehP"™" < (a —c)P**, implies
thatV"* < 0, which is not a feasible solution. Therefore,

problem: in this case at optimality the conditid®"* = (a—c) P**
- ps ils.
max %¢log (1+a¢~5 )—()\s+)\t)Ps_(/\r+)\t)Pr prevails
s.t. (71') P P">0 APPENDIXB
S s PROOF OFLEMMA[T]
(i) aP® < bP" 4 cP? . (32) . - - i -
Given any ® = [dmnk]nxnxkx With 0 < dppr <
It has two possible solutions from the KKT conditions. Ong and satisfying [(T1), letz,,, = Z?:l Gmmi. From

is obtained when the Lagrange multiplier corresponding EN 121@[( Grnk = 1, We haveZN L Tmn = 1. Similarly.

. . . . . . .. m= = 1 m= . 1

constraint (i) is zero and the constraint is strictly da&i$. e have> "™ | #,., = 1. Hence0 < z,,, < 1. Then,y"
n= — — 1

This implies that can be constructed as
w 1\ - — Trn > 0
e e — , P =0. 33 mn _ mnk/Tmn;, mn
(2()\5+/\t)1n2 a) ¢ (33) Yk {1/K, o =0 (37)

However, this solution contradicts with the assumptiont tha

K mn __ mn
(ii) is strictly satisfied. The other, correct solution orsat Hence,> ,_, yi"" = 1 and0 < y;*" < 1. Note thatl/K
the borderP” = %< P*°. By inserting this into the objective above is arbitrarily chosen, and the mapping frémo (X,

function, we have y™™") is one-to-many.
Given X and y™" with 0 < 2, < 1 and0 <y <

per _ < wb B l)+¢; 1, satisfyinng:[:1 Ton = 1,Vm, Z;szl Tmn = 1,Vn, and
2b()\3 + /\t) In2+ 2(0’ - C)()\T + /\t) In2 a 7 Zszl kann = 17vm7nr C|ear|y0 < (bmnk = Imny;nn < 1,
(34) and it is easy to verify thaf{11) is satisfied. This estalelish

pre — @7 € psx the equivalence o and the proposed decomposition.
= )
2) Assumption 2: aPs* > bP™* + ¢P** : Under this APPENDIXC
assumption, we have the following optimization problem: PROOF OFLEMMA [2
w - cP* bP We note that there exists at least one index vector
nax 5gblog (1 +—=+— > - (m/,n', k") such thaw? ,,..,.(X*) = 1. Furthermore, this cho-
' . ¢ ¢ . sen path must have non-degenerate user weight and channel
(As + M) P? = (Ar + X)) P gains so that the weighted rate functiop R(m’, n’, k') is not
st. (i) P°,P" >0 uniformly zero, i.e.wgr > 0, apy > 0, andby, gk + iy > 0.
(ii) aP® > bP" + cP* (35) Suppose there existsp? ... (A") = 1 such that
Sk * H H Wyt 1 Wyt
P (XY) is either [m — a—m/] or [a(kii/\t) -

From the KKT conditions, at optimality, eithé®P"* = (a — 11+ he f d the |
c)P**, or the Lagrange multiplier corresponding to constraim;n/k/] - In the former casl?am/ S Cmps AN t.e atter,
(ii) is zero and the constraint is strictly satisfied. py >y @Nd g5 > fde. Furthermore, sincé
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and ¢,,,/,» cannot both be zero in the latter casg,,r > 0.
Then we have

min{PSaPt} > Z mnk(A*) > Ps;;n’k’(A*)
m,n,k

Wi 1 —+

> min { Gt

- —1"}
a(A;+ A7) e
Wi 1

— . 38
T a4+ N min{an, e} (38)
Hence\: +A; > ——— o minday oy} SOA* € Ry.

] = a(min{a,,s,c,,s;/ } min{Ps,P; }+1)"’
Otherwise, for allp*, .. (A") = 1, we havea,, > ¢, and
S * 1 +
Ponk(XY) = [a(bnki)\*-i—)\ )+(amk—cmk)()\*+>\ ) — o] We
proceed with the fo Iowmg cases:
o If there exists¢? ..., (A") = 1 such thatc,,,» > 0 and

“wmi ~ Uuwthen we have

AEHAY ARAHAL?
min{PSv Pt} > Z ;L*nk (A*) > P;L*/n/k/ (A*)
m,n,k
wk/bn/k/ 1

a(br (A5 + A7) + (am — e ) (A + A7) o

wk'b % 1

Y

Cop! k!

(39)

wk/cm/k/
ala,, min{P,P; }+1)’

which implies that\? + A\ > and

hence\® € R;.

« Else, if there exists¢?,, . ..(A") = 1 such that

2 .
ot > Dale then cppe > 0 since by and

cmk cannot. both be zero. In this case, the third ex-

pression in [(1I6) applies to the pa(lm’,n’,k’). Since

Wby 1 + . _
[a(b Tt NEFXN) (s —Core Y ONEFNT)) a ,:I is the op

timal power allocation for this path we have

Em/n/k/(]., P’ri,l’n’k”P;I];n’k’ A*)

Lm’n’k’(lvpri?’n’k’vpm 'n’'k’s A*) (40)
where

Pt 8 Wi b _

R La(bpr (N A+ A 4 (@mr — e ) (N2 + AT))

11+
am’:|
/ 1 7+
PS2I 1Lt é[ Wk - 41
m’'n’'k OL()\* 4 /\*) Con' k! ( )

correspond to the casesn Psh e =b /k/Pm ke T

Cm/k/Pm I/ k! and am/P n'k’ > b /k/Pm/n/k/ +
e P32, respectively. This implies thaf (42).
Hence,
W' Cm/ k!
As+ AL >
T2 da(ap min{ Py, B} + 1)’
SOA* € R;.

« Else, the only scenario left is when,, = 0 for {m, k :
k(A7) = 1}. In this case, there exists, > 0, since

(b (X + Af) o PaGarmentid (X5 4 X))
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otherwise the achieved sum-rate is uniformly zero. Then
for any (m’,n’, k') such thatg* , .., (A") =1,

min{ Py, P} > > P () > Pt (XY)
m,n,k
W by g 1
(b (A5 + X)) +amr (Ar + X)) am ’
(43)

which implies that (AT + A7) + 7=5(A7 + A7) >

o P, Pt}+a1/) Considering the extreme case for the

slope and intércept of this linear inequality, we have
A" € Rs.

APPENDIXD
PROOF OFLEMMA [3

To find an upper bound fofA™(|2, we consider the follow-
ing cases for the activation pattern of the individual power
constraints [[B) and the total power constraiit (4) at global
optimum.

« Neither constraint in (@) is active: In this case,[[d) must

be active, since otherwise there would be more power to
increase the sum-rate. Thus, we haye= A\ = 0 and

m,n,k
Since ¢* . (A*) < 1, substitutinge?, ., (A*) = 1 and
A¥ = X = 0 into (28), and considering all possible
scenarios of((116), we have

14+ wg 1 .+ wg
P Y ([ Ly Ly

m,n,k

Wi N2
= = . 45
Z ;) (45)

m,n,k
Hence, we have; < £ N , so that

N2
< — 46
”)‘ HQ Pt ( )

« Both congtraintsin (3) are active: We have

PS_Z mnk

m,n,k

m,n,k

Again, substitutings?, . (A*) = 1 into (18), and consid-
ering all possible scenarios, we conclude that

Wi 1 +
Pos 3w [y - o
[ﬁ B Lr
a(AE+ ) ek
l(am > ka)wkbnk }
a(bnr(A: + /\*) (am — emr)(Ar + AF))

N2
- Z /\* +/\ a(A:+Xp) (48)

mnk
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Wy

am/ — Cm’k’
7)P7f11’n’k’ Z

log(1 4 o P22 100) — (NS + A PS2 L

Wi’
Tk 108(1 + @mr P ) — (A5 4+ A0 (1 + b
n' k!

Wi’
Tk log(l =+ am/Pﬁ,L]}n/k/) + ()\: + )\:)Pﬁ’?’n'k' Z

% log(1 + ay, min{Ps, P }) + ¥ >
a

Wi

10g(1 + Cm/klpﬁ,?/n/k/)
Wy

10g(1 + Cm/klp/,flzln/k/)

4 4 4a,y min{ Py, P} > 1 + ¢ P32, 10

. W Crn/ k!
4+ 4 m/’ Psa P > - 42
Ay in{ ) + a0 £ A7) (42)
1am > cmp)wi(am — Cmk) min  a,,
Pr < . . My
= mzk bk N5+ X)) + (@m — k) (A5 + A)) updating is performed ovei\s + \¢) + %(Ar +
o n,k "
- Z Wy - N2 (49) At) > eo. Since there exists some andk such thatwy, > 0,
- LT+ A7) a4 am > 0, we havee, > 0. Furthermorep,,;, > 0 since From
o (@8), we see that in all scenarios
Hence, we hava® + Ay < 2= andAr + AF < 22 so
that Lo Lo Py < — < T oo (54)
2 " a4 gm D) T ae
X € N (50 e .
o armfl{ s "} | P A0y < Bm = Cmk pec (30 o Weldm = Cmi)
« Only one congtraint in (@) is active: We have either bk ayb (55)

Ax =0 and [48), or\: = 0 and [49). For both cases, an

upperbound fof|A*||, is given by [BD).
Summarizing the three cases above, we have

V2N?

|y < .
| Hz_ozmin{Ps,Pr,Pt}

(51)

APPENDIXE
PROOF OFLEMMA [4

We first note that there must exist one péth, n, k) with

The second inequality above hold sineg*,, (A)) = 0 when
bni, = 0.

We note that the bounds i (52)-{55) are not functions of
m andn. Substituting the bounds of either of these two cases
into (27), and noting that onlyW? paths are chosen, we have
[6(N)]|2 = O(N?).
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