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Censoring for Bayesian Cooperative Positioning in
Dense Wireless Networks

Kallol Das, Student Member, IEEE, Henk Wymeersch,Member, IEEE

Abstract—Cooperative positioning is a promising solution for
location-enabled technologies in GPS-challenged environments.
However, it suffers from high computational complexity and
increased network traffic, compared to traditional positioning ap-
proaches. The computational complexity is related to the number
of links considered during information fusion. The network traffic
is dependent on how often devices share positional information
with neighbors. For practical implementation of cooperative
positioning, a low-complexity algorithm with reduced packet
broadcasts is thus necessary. Our work is built on the insight that
for precise positioning, not all the incoming information from
neighboring devices is required, or even useful. We show that
blocking selected broadcasts (transmit censoring) and discarding
selected incoming information (receive censoring) based on a
Cramér-Rao bound criterion, leads to an algorithm with reduced
complexity and traffic, without significantly affecting accuracy
and latency.

Index Terms—Indoor positioning, link selection, cooperative
positioning, distributed wireless localization, Cramér Rao bound,
censoring.

I. I NTRODUCTION

POSITIONAL information is considered to be of great
importance in many applications, such as navigation

[1], search-and-rescue operations [2], disaster management
[3], sensor networks [4], supply chain monitoring [5], and
traffic control [6]. Focusing on range-based systems, different
techniques are currently available for positioning, whichcan
be classified into two major categories: non-cooperative and
cooperative [7]. In a non-cooperative setting, devices rely
on distance estimates with reference nodes, whereas in a
cooperative setting, devices additionally use distance estimates
between each other. These additional measurements can enable
positioning in GPS-challenged environments, such as indoors
or in urban canyons.

Depending on the use of prior information, cooperative
positioning algorithms can be further divided into two cate-
gories: non-Bayesian and Bayesian. In non-Bayesian methods,
devices exchange position estimates [7], whereas in Bayesian
methods, devices exchange full statistical information [8].
While cooperation leads to improved performance, it also
results in a high computational complexity per device, due
to the additional information from neighboring devices that

Kallol Das is with the Pervasive Systems Group, University of Twente,
Enschede, The Netherlands (Email: k.das@utwente.nl). Henk Wymeersch
is with the Department of Signals and Systems, Chalmers University of
Technology, Gothenburg, Sweden (Email: henkw@chalmers.se). This research
was supported, in part, by the European Research Council, under Grant No.
258418 (COOPNET), and the Swedish Research Council, under Grant No.
2010-5889.

needs to be processed and fused. Moreover, cooperating de-
vices broadcast their positional information (point estimates or
distributions), leading to increased network traffic and packet
loss. The impact of packet loss on positioning performance
was considered in [9], [10], showing severe degradations.
These drawbacks make cooperative positioning algorithms
challenging to implement in practice.

When more than the minimum number of reference nodes
for positioning is available to a given device, some form of link
selection can be applied [11]–[16]. Such link selection canbe
seen asinformation censoring, previously applied in decentral-
ized detection for sensor networks [17], [18]. For positioning,
the use of the closest reference nodes as a censoring criterion
was proposed in [11]. The closest reference nodes may not
be the most informative for positioning as the geometric
configuration also affects the positioning performance. This
problem has been partially addressed in [12], [13], where
the Cramér-Rao bound (CRB) was used to choose the best
reference nodes. In [15], [16] geometric dilution of precision
(GDOP) was applied to select the best four satellites for
a GPS receiver. None of the methods above are designed
for cooperative positioning. Recently, [19] considered non-
Bayesian cooperative positioning and proposed to use the
neighbors with the highest received signal strength to reduce
complexity and energy consumption in sensor nodes. In [20],
we have shown that in non-Bayesian cooperative positioning,
complexity and traffic can bereduced simultaneously, without
degrading positioning performance, by using a CRB-based
criterion. This is achieved by blocking the broadcasts of the
nodes that do not have reliable estimates (transmit censoring)
and selecting the most informative links after receiving signals
from neighbors (receive censoring).

In this paper, we extend transmit and receive censoring to
Bayesian cooperative positioning, where the nodes share full
statistical positional information instead of point estimates.
Our main contributions are as follows:

• We propose a simple, yet effective censoring criterion
based on the modified Bayesian CRB in conjunction with
a simple message approximation;

• We show that the complexity of Bayesian cooperative
positioning can be reduced significantly, by applying
receive censoring;

• We show that network traffic can be reduced to some
extent when devices block the broadcast of unreliable
information, by applyingneighbor-agnostic transmit cen-
soring;

• We show that the network traffic can be reduced signif-
icantly when devices block the broadcast of information
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that will be ignored by neighbors, by applyingneighbor-
aware transmit censoring;

• We propose a combined censoring scheme that leads
to reduced complexity and reduced traffic, without sig-
nificantly affecting the positioning performance or the
latency.

The remainder of this paper is arranged as follows. In Section
II, we describe our model and assumptions. In Section III
the censoring criterion is introduced, and then applied to
develop three censoring schemes. Results from simulationsare
discussed in Section IV. Finally, we present our conclusions
in Section V.

II. PROBLEM FORMULATION

A. System Model

We consider a wireless network comprising two classes of
nodes: agents and anchors. Agents have unknown positions,
while anchor have a priori known positions. The goal of the
agents is to determine their positions, based on the positions of
the anchors and distances estimates between nodes. We denote
by xi the position of nodei and byS→i the indices of nodes
from which nodei can receive signals. Through a ranging
protocol (e.g., time of arrival (TOA) or received signal strength
(RSS)) with nodej ∈ S→i, nodei can estimate the distance
d̂j→i = ‖xi − xj‖ + nj→i, wherenj→i is the ranging noise.
For simplicity, as in [8], we assumenj→i ∼ N

(
0, σ2

j→i

)
.

Our model assumes all nodes are static, but our findings can
be extended to a mobile scenario where nodes move in discrete
time slots.

B. Drawbacks of Cooperative Positioning

Different algorithms for cooperative positioning have been
proposed (see [7], [8] and references therein). In this paper,
we will consider the sum-product algorithm over a wireless
network (SPAWN) from [8], as it offers excellent perfor-
mance with low latency. In SPAWN, every agent has an
associated a priori distribution,b

(0)
Xi

(xi). Statistical information
is exchanged and computed iteratively through messages,
corresponding to distributions of two- or three-dimensional
continuous random variables. At every iteration (k), every
agent (i) updates its distribution, written asb(k)

Xi
(xi), named

the belief. SPAWN is summarized in Algorithm 1, for a agent
i at iterationk. This algorithm is executed in parallel by every
agent in the network until the beliefs have converged. Initially,
the beliefsb

(0)
Xi

(xi) are set to uniform distributions (which
are not broadcast) for the agents and delta Dirac distributions
for the anchors. In Algorithm 1, lines 2 and 5 are not part
of standard SPAWN, but form the focus of this paper. The
messages and beliefs in SPAWN are distributions of multi-
dimensional random variables. Exact representation of these
distributions is generally impossible, so one must resort to
non-parametric [21] or parametric [22] representations. While
the representation has a direct impact on the complexity of
SPAWN, we will not make any assumptions on the message
representation.

As a performance example, we have simulated a 100 meter
×100 meter environment with 100 agents having 20 meter

Algorithm 1 SPAWN (iterationk, agenti).

1: receiveb
(k−1)
Xj

(·) from neighborsj ∈ S→i

2: select the setS(k)
→i of most informative links through

receive censoring
3: convertb(k−1)

Xj
(·) to a distribution overXi

mXj→Xi

(
xi

)
∝

∫

p
(
d̂j→i |xi,xj

)
b
(k−1)
Xj

(
xj

)
dxj

4: compute new belief

b
(k)
Xi

(
xi

)
∝ b

(0)
Xi

(
xi

) ∏

j∈S
(k)
→i

mXj→Xi

(
xi

)

5: decide if transmit censored
6: broadcastb(k)

Xi
(·) if not censored
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Fig. 1. Positioning performance of SPAWN at different iterations.

communication range and 13 systematically placed anchors
[8, see Figure 13], with a ranging noise variance ofσ2

j→i =

(10 cm)
2. The positioning performance of SPAWN in terms of

the complementary cumulative distribution function (CCDF)
of the positioning error at different iterations (from top to
bottom) is shown in Figure 1. Observe that after 5 iterations,
99% of the agents have less than 1 meter positioning error.
The remaining 1% agents could not satisfactorily converge
due to their bad geometrical placement or limited connectivity.
Despite the fast convergence and excellent positioning perfor-
mance, SPAWN suffers from two important drawbacks. First
of all, the complexity of SPAWN per agent (to be detailed in
Section IV-B1) grows linearly with the number of neighbors.
In our example, the average number of links per agent is
roughly 13.7, whereas in a non-cooperative environment with
the same communication range, this number in only 1.5.
Hence, the complexity is almost ten times larger. Secondly,at
every iteration of SPAWN, every agent broadcasts a packet,
containing its location information. This results in a large
amount of network traffic.
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Fig. 2. Transmit and receive censoring schemes in a cooperative network,
with 3 agents (1, 2, and 3) and 3 anchors (A, B, and C).

III. C ENSORING

A. Concept

We will describe the intended censoring schemes by con-
sidering a small example with three agents and three anchors,
depicted in Figure 2. Agent 3 is connected to only one
anchor, so initially it has limited knowledge about its position.
Hence, this agent can only provide limited information to its
neighbors. In turn, this implies that if this agent blocks the
broadcast of its positional information, the overall performance
will not be greatly affected. We define this blocking astransmit
censoring(TxC). Agent 2 is connected to two anchors, which
gives it a position ambiguity. Its information may be useful
for other agents. So agent 2 should broadcast its positional
information. Agent 1 can get information from three anchors
and also from agent 2. By ignoring the information from agent
2, its positioning accuracy may be relatively unaffected. We
define this ignoring asreceive censoring(RxC).

B. Censoring Criterion

1) The Modified Bayesian Cramér-Rao Bound:Transmit
and receive censoring as intuited in the previous section,
require a rigorous criterion based on which agents decide
whether or not to censor. This criterion should reflect (i) the
quality of the ranging; (ii) the local geometry of the agents
and its neighbors; (iii) the uncertainty of the agent’s position,
and the uncertainty of the neighbors’ positions. In addition,
the criterion should allow fast computation. One criterionthat
satisfies these conditions is the modified Bayesian Cramér-
Rao bound (MBCRB) [23], defined as follows. Assume that
bothxi, the position of the agent in question, and{xj}j∈S→i

,
the positions of the neighbors of agenti, are random variables
with corresponding distributions1 pXj

(xj), j ∈ S→i∪{i}, then
the so-called modified Bayesian Fisher information matrix

1As we will see later, these distributions will be simple approximations to
the beliefsb

(k)
Xj

(xj), computed in SPAWN.

(MBFIM) is defined as

Fi = −
∑

j∈S→i

Enj→i,xi,xj







∂2 log p
(

d̂j→i | xi,xj

)

∂x
2
i







︸ ︷︷ ︸

=FM,i

−Exi

{
∂2 log pXi

(xi)

∂x2
i

}

︸ ︷︷ ︸

=FP,i

. (1)

The expectation in (1) occurs over the ranging noise and the
nodes’ positions. The MBFIM can be broken up into a term
related to measurements (FM,i) and a term related to a priori
information (FP,i). WhenpXi

(xi) is a Gaussian distribution
with covariance matrixΣi, then FP,i = Σ

−1
i . Assuming

Gaussian ranging noise, the expectation over the ranging noise
can be carried out analytically [24], leading to

FM,i =
∑

j∈S→i

1

σ2
j→i

Exi,xj

{

xi − xj

‖xi − xj‖

(xi − xj)
T

‖xi − xj‖

}

. (2)

The expectation overxi and xj is generally difficult to
perform analytically, so we resort to Monte Carlo integration.
Assuming we can drawN samples{x(n)

j }N
n=1 from pXj

(·),
j ∈ S→i ∪ {i}, we find that

FM,i

=
∑

j∈S→i

1

σ2
j→i

∫

pXi
(xi)pXj

(xj)
xi − xj

‖xi − xj‖

(xi − xj)
T

‖xi − xj‖
dxidxj

≈
1

N

∑

j∈S→i

1

σ2
j→i

N−1∑

n=0

x
(n)
i − x

(n)
j

∥
∥
∥x

(n)
i − x

(n)
j

∥
∥
∥

(

x
(n)
i − x

(n)
j

)T

∥
∥
∥x

(n)
i − x

(n)
j

∥
∥
∥

. (3)

Finally, the MBCRB can be calculated as

MBCRBi = trace
(
F

−1
i

)
. (4)

This MBCRBi is also defined whenS→i = ∅, i.e., even
when there are no neighbors for the update, or when there
are no measurements. In this case,MBCRBi = trace(Σi) .

Incidentally, we note that whenpXi
(xi) is uniform, and

pXj
(xj), j ∈ S→i are delta Dirac distributions, (4) reverts

to the censoring criterion considered in [20].
2) Message Approximation for Censoring:In order to be

able to compute the MBCRB efficiently, the distributions
pXj

(xj) should not be too complex. On the other hand, the

true beliefs b
(k)
Xi

(xi) can have many different shapes. For

our purpose, the details of the shape ofb
(k)
Xi

(xi) are not so
important, but rather we wish to capture how concentrated
the distribution is, and the position of the centers of mass.A
simple Gaussian approximation is not sufficient as it cannot
capture the common case when an agent can communicate
with two anchors, leading to a bimodal belief with two highly
concentrated components. Hence, we propose to approximate
the beliefs with a mixture of two Gaussians: we first determine
the number of componentsN (k)

i ∈ {1, 2} of the belief
b
(k)
Xi

(xi) of agentxi at iterationk. For every component, we

then determine the mean (µ
(k)
1,i andµ

(k)
2,i ) and the covariance
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Algorithm 2 Receive censoring for SPAWN (iterationk, agent
i).

1: receiveb
(k−1)
Xj

(
xj

)
from neighbors,j ∈ S→i

2: if N
(k−1)
i = 1 then

3: if trace
(

Σ
(k−1)
i

)

< γRX then

4: setS(k)
→i = ∅

5: else
6: selectL neighbors fromS→i: see Algorithm 3
7: end if
8: else
9: remove ambiguity inb(k−1)

Xi

(
xi

)

10: goto line 3
11: end if
12: useS

(k)
→i for update

matrix (Σ(k)
1,i and Σ

(k)
2,i ). For simplicity and robustness, we

further only consider the covariance matrix with the largest
trace: Σ(k)

i = argmax
Σ∈

n

Σ
(k)
1,i

,Σ
(k)
2,i

o trace(Σ). Finally, we

approximate all beliefs at iterationk by a mixture of two
Gaussians asp(k)

Xi
(xi) ≈ b

(k)
Xi

(xi), where

p
(k)
Xi

(xi) =
1

2
N

(

µ
(k)
1,i ,Σ

(k)
i

)

+
1

2
N

(

µ
(k)
2,i ,Σ

(k)
i

)

. (5)

When N
(k)
i = 1, we have thatµ(k)

1,i = µ
(k)
2,i . We note

that this approximation is used only within the censoring
methods, while the messages computed and propagated in
SPAWN remain unaffected. More sophisticated approxima-
tions to b

(k)
Xi

(xi) can of course be considered, but as we will
see, a mixture of two Gaussians is sufficient for our scenario.

C. Censoring Schemes

1) Neighbor-Agnostic Transmit Censoring:In neighbor-
agnostic transmit censoring, an agent will decide to broadcast
or censor its positional information based on the uncertainty of
its own belief. After calculating its beliefb(k)

Xi
(xi) at iteration

k, agenti can determine the covariance matrixΣ
(k)
i associated

with p
(k)
Xi

(xi), indicating how concentrated the belief is. An
agent will transmit-censor when

trace
(

Σ
(k)
i

)

≥ γTX. (6)

The transmit censoring thresholdγTX, expressed inm2, de-
pends on the ranging model and the performance requirements.
During the first iteration (non-cooperative phase) agents that
can only communicate with zero or one anchors will have
beliefs that are not concentrated. Hence, these agents will
censor their beliefs. In later iterations, agents can obtain more
information from neighbors, leading to more concentrated
beliefs, and thus less transmit censoring. We note that the
censoring criterion does not directly depend on the neigh-
bors’ beliefs. For that reason, we call this censoring scheme
neighbor-agnostic.

Algorithm 3 Link selection ofL most informative links.

1: if |S→i| > L then
2: createSL = {all subsets of S→i of size L}
3: for l = 1 to |SL| do {subset index}
4: let SL[l] be thel-th subset inSL

5: determine

MBCRBi[l] = trace
(
F

−1
i [l]

)
,

where

Fi[l] =
∑

j∈SL[l]

1

σ2
j→i

Exi,xj

{

xi − xj

‖xi − xj‖

(xi − xj)
T

‖xi − xj‖

}

+
[

Σ
(k−1)
i

]−1

6: end for
7: select the best subset

l̂ = argmin
l

MBCRBi[l]

8: setS(k)
→i to SL[l̂]

9: else
10: setS(k)

→i to S→i

11: end if

2) Receive Censoring:In receive censoring, an agent will
decide to discard uninformative incoming information from
neighboring agents. To allow prior Fisher information of the
form FP,i = Σ

−1
i , we perform a separate pre-processing

step to remove ambiguities (see Algorithm 2): based on
its belief b

(k−1)
Xi

(xi) at the previous iteration, agenti can

determine the covariance matrixΣ(k−1)
i and the number of

componentsN (k−1)
i ∈ {1, 2}. WhenN

(k−1)
i = 2, the agent

will try to remove the ambiguity in its belief by considering
the information from the neighbors. Ambiguity removal can
simply be performed by checking the consistency between the
components inb(k−1)

Xi
(xi) and the beliefs of all the neighbors

b
(k−1)
Xj

(xj), j ∈ S→i. After ambiguity removal,2 a link
selection algorithm (see Algorithm 3) is executed to select
the most informative subset ofL ≥ 3 neighbors. However,
when trace

(

Σ
(k−1)
i

)

< γRX, the agent discards all incoming

information3 by setting S
(k)
→i = ∅. The size of the subset

(indicated byL in Algorithm 3) should be at least 3 for two-
dimensional positioning.

3) Neighbor-Aware Transmit Censoring:While transmit
censoring as described in Section III-C1 can reduce the
network traffic, it is clear that in combination with receive
censoring further reductions in network traffic are possible:
when all neighbors of agenti satisfy the receive censoring

2When the ambiguity inb(k−1)
Xi

(xi) cannot be removed, line 6 of Algo-

rithm 2 is executed based on one arbitrarily chosen component of b
(k−1)
Xi

(xi).
This approximation turns out to have little impact on the final performance,
as this case only occurs when agenti or all of its neighbors have beliefs that
are not concentrated.

3Essentially, we consider the agent as well-localized, so nofurther process-
ing is required.
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Algorithm 4 Neighbor-aware transmit censoring for SPAWN
(iterationk, agenti).

1: if trace
(

Σ
(k)
i

)

> γTX then

2: block the broadcast ofb(k)
Xi

(
xi

)

3: else
4: broadcast = FALSE
5: for j = 1 to |S→i| do {neighbor’s index}

6: if N
(k−1)
j = 2 OR trace

(

Σ
(k−1)
j

)

> γRX then
7: broadcast = TRUE
8: break
9: end if

10: end for
11: if broadcastthen
12: broadcastb(k)

Xi

(
xi

)

13: end if
14: end if

threshold,4 the broadcasts of agenti will be ignored by all
neighbors. Hence, those broadcasts are unnecessary. We can
thus develop a neighbor-aware transmit censoring scheme, as
outlined in Algorithm 4, which blocks broadcasts that will
be ignored by all the neighbors [25]. Observe that neighbor-
agnostic transmit censoring corresponds to lines 1–3 in Algo-
rithm 4. It is important to note that this scheme suffers froma
hidden node problem: when an agent is not aware a neighbor is
present (due to packet loss, transmit censoring, or asymmetric
links), it may decide to transmit censor too early.

IV. N UMERICAL RESULTS

A. Simulation Setup

We consider random networks similar to those described in
Section II-B, with 100 randomly placed agents, 13 anchors, a
100 m by 100 m map, 20 m communication radius, and 10
cm ranging noise standard deviation. Our focus is on a line-
of-sight (LOS) scenario, though the censoring methods can be
applied unaltered in non-LOS (NLOS) conditions when NLOS
detection is employed [26].

We will first fix the receive censoring thresholdγRX and
transmit censoring thresholdγTX, both expressed inm2.
The value ofγRX is directly related to desired positioning
accuracy, with more aggressive censoring (i.e., larger values
of γRX) leading to faster convergence, lower complexity, but
a reduction in accuracy. Receive censoring is switched off
when γRX = 0. The value ofγTX reflects when an agent is
deemed informative for neighbors. More aggressive censoring
(i.e., smaller value ofγTX) leads to fewer broadcasts, as
only highly informative information is shared, but also to less
information in the network. Transmit censoring is switched
off when γTX = +∞. For combined transmit and receive
censoring, we require thatγTX ≥ γRX: when an agent’s
belief has met the receive censoring threshold, it should not
block its broadcasts. We have chosenγRX = (0.28 m)

2 and
γTX = (0.45 m)

2, which are both on the order of the ranging

4I.e., trace(Σ(k−1)
j ) < γRX AND N

(k−1)
j = 1, ∀j ∈ S→i.

noise variance. As we will see in Section IV-B5, the system
is not very sensitive to the value of either threshold. We set
L = 3 in Algorithm 3.

We will denote byNoC the SPAWN algorithm with no
censoring, byTxC when only neighbor-agnostic transmit cen-
soring is used, byRxC when only receive censoring is used,
and by TxRxCwhen receive censoring with neighbor-aware
transmit censoring is used.

B. Simulation Discussion

1) Reduction in Complexity:The complexity of SPAWN
is mainly related to the number of messages used during
message multiplication (line 4 in Algorithm 1). In particular,
in a sample-based message representation, the complexity of
the message multiplication scales asO(Q2

∣
∣
∣S

(k)
→i

∣
∣
∣), whereQ

is the number of samples per message (typically 1000 –
10000) and

∣
∣
∣S

(k)
→i

∣
∣
∣ denotes the cardinality of the setS

(k)
→i . In

a parametric message representation, the complexity scales as
O(C

∣
∣
∣S

(k)
→i

∣
∣
∣), whereC is a (generally large) constant related

to the computation of the message parameters, which typically
involves solving a non-convex optimization problem [22]. As
we will see later, without link selection,

∣
∣
∣S

(k)
→i

∣
∣
∣ ≈ 10, while

with link selection
∣
∣
∣S

(k)
→i

∣
∣
∣ ≤ 3. The complexity of the link

selection algorithm (Algorithm 3) scales asO

(

N
(

˛

˛

˛S
(k)
→i

˛

˛

˛

L

)
)

,

where N from (3) is relatively small (say, 200). For small
L, the link selection process is much less complex than the
message multiplication, which directly motivates the needto
reduce the number of multiplied messages. The complexity
can be further reduced by performing a greedy, rather than
exhaustive search of theL most informative links in Algorithm
3. As a indication, Table I shows the normalized simulation
times for a parametric message representation [27]. We ob-
serve that with the TxRxC strategy, SPAWN can be executed
roughly 19 times faster than without censoring. For a non-
parametric representation, results (not shown) indicatedsimilar
complexity reductions.

Figure 3 shows, as a function of the iteration index, the
average number of multiplied messages per agent for the
different censoring strategies. When no censoring is employed,
over 10 links are considered per agent at every iteration (except
the first, non-cooperative iteration). The TxC strategy results
in a marginal reduction, as some broadcasts are blocked. In
contrast, the RxC strategy leads to a significant reduction in the
number of links used. After two iterations, most agents meet
the receive censoring threshold, so the number of links will
be close to zero. The combination TxRxC leads to additional

TABLE I
NORMALIZED SIMULATION TIME FOR SPAWNWITH DIFFERENT

CENSORING SCHEMES, FOR 10 ITERATIONS.

SPAWN
NoC TxC RxC TxRxC

simulation time
[normalized]

18.9 18.2 1.1 1.0
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Fig. 3. Complexity: comparison of the average number of usedlinks (or
messages multiplied) for different censoring schemes.
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Fig. 4. Network traffic: comparison of average number of broadcasts per
agent, for different censoring schemes.

gains, as agents are more likely to receive useful information,
and hence more quickly meet the receive censoring threshold.
The quantitative reduction in complexity due to the reduction
in the number of multiplied messages depends on the particular
message representation.

2) Reduction in Network Traffic :The high network traffic
in SPAWN is due to every agent broadcasting its belief at every
iteration. Figure 4 shows, as a function of the iteration index,
the average number of broadcasts per agent for the different
censoring strategies. Without censoring, almost every agent
will broadcast its belief at every iteration, except the first one.
Applying the TxC strategy results in a reduction of the number
of broadcasts, especially in the first few iterations, when many
agents are not yet well-localized. In later iterations, when most
agents are well-localized, no censoring takes place, resulting
in almost the same number of broadcasts compared to conven-
tional SPAWN. The TxRxC strategy follows the same trend as
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Fig. 5. Positioning performance comparison after 10 iterations with and
without censoring.
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Fig. 6. Convergence speed of different censoring schemes.

TxC for the first few iterations. Then, neighbor-aware transmit
censoring can harness the fact that an agent’s neighbors have
met the receive censoring threshold and block that agent’s
broadcast. Hence, the average number of broadcasts drop close
to zero with further iterations.

3) Positioning Performance :We now investigate the posi-
tioning performance of the different censoring schemes. Fig-
ure 5 shows complementary cumulative distribution function
(CCDF) of the positioning error, i.e., the probability thatthe
positioning error exceeds a certain value, after 10 iterations.
We can observe that the CCDF of TxC follows the CCDF of
conventional SPAWN because most of the available links are
used (see also Figure 3). On the other hand, RxC results in a
performance degradation compared to conventional SPAWN,
as agents only use a subset ofL = 3 links from the
available links during message multiplication. Interestingly,
the TxRxC strategy outperforms RxC. The reason for this is
that uninformative beliefs are transmit-censored, so thatduring
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receive censoring, the links to choose from all correspond to
concentrated beliefs.

4) Convergence Speed:The convergence speed of the al-
gorithm is directly related to the latency and the refresh-rate.
In Figure 6 we compare the positioning performance as a
function of the iteration index. The positioning performance
is measured in terms of the CCDF at a fixed value of the
positioning error (1 m). For instance, a curve with label
“TxC” shows, under the TxC strategy, the probability that an
agent will have a positioning error greater than 1 m, at every
iteration. We observe that RxC converges the slowest, while
TxC and TxRxC require 5–6 iteration to converge, irrespective
of the error value.

5) Sensitivity to ParametersγTX, γRX, and L: We varied
γTX, γRX, and L. ChangingγTX around(0.45 m)

2 did not
lead to a significant change in performance or traffic, but
too conservative transmit censoring causes increased network
traffic. Any change inγRX affects the complexity of the
algorithm through the average number of used links, as well as
the required number of iterations for convergence. By reducing
γRX to (0.14 m)2, the gap in positioning performance between
NoC and RxC can be reduced significantly, at a small cost
in complexity, as fewer agents meet the receive censoring
threshold. Finally, changingL from 3 to 4 did not yield any
significant performance improvement, but results in additional
complexity in Algorithm 3.

V. CONCLUSIONS ANDFUTURE WORK

Motivated by the need to reduce complexity and network
traffic in cooperative positioning schemes, we have proposed
and evaluated different censoring schemes. All censoring
decisions are distributed and based on a modified Bayesian
Cramér-Rao bound criterion. By applying the proposed cen-
soring schemes to Bayesian cooperative positioning, we have
found that: (i) receive censoring (ignoring uninformativeinfor-
mation) can dramatically reduce the complexity of information
fusion, but at the cost in positioning performance; (ii) transmit
censoring (blocking broadcasts of unreliable information) can
reduce the network traffic during first few iterations without
positioning performance degradation; (iii) receive censoring
with neighbor-aware transmit censoring (blocking broadcasts
of information that will be ignored) can further significantly re-
duce the network traffic. Overall, this latter scheme maintains
the excellent performance and low latency of Bayesian cooper-
ative positioning without censoring, but does so at a fraction
of the computational cost, and at a fraction of the network
traffic. These advantages of censoring schemes, along with
their distributed nature make them promising for large-scale
dense networks. Future work includes extending the proposed
censoring schemes to account for NLOS conditions without
explicit NLOS detection, as well as a testbed implementation.
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