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Censoring for Bayesian Cooperative Positioning in
Dense Wireless Networks

Kallol Das, Student Member, IEEEHenk Wymeerschiviember, IEEE

Abstract—Cooperative positioning is a promising solution for
location-enabled technologies in GPS-challenged envirarents.
However, it suffers from high computational complexity and
increased network traffic, compared to traditional positioning ap-
proaches. The computational complexity is related to the nmber
of links considered during information fusion. The network traffic
is dependent on how often devices share positional informiin
with neighbors. For practical implementation of cooperatve
positioning, a low-complexity algorithm with reduced paclet
broadcasts is thus necessary. Our work is built on the insigtthat
for precise positioning, not all the incoming information from
neighboring devices is required, or even useful. We show tha
blocking selected broadcasts (transmit censoring) and diarding
selected incoming information (receive censoring) basednoa
Cramér-Rao bound criterion, leads to an algorithm with reduced
complexity and traffic, without significantly affecting accuracy
and latency.

Index Terms—Indoor positioning, link selection, cooperative
positioning, distributed wireless localization, Cramér Rao bound,
censoring.

I. INTRODUCTION

needs to be processed and fused. Moreover, cooperating de-
vices broadcast their positional information (point esties or
distributions), leading to increased network traffic andkes

loss. The impact of packet loss on positioning performance
was considered in [9], [10], showing severe degradations.
These drawbacks make cooperative positioning algorithms
challenging to implement in practice.

When more than the minimum number of reference nodes
for positioning is available to a given device, some formiik |
selection can be applied [11]-[16]. Such link selection ban
seen agnformation censoringpreviously applied in decentral-
ized detection for sensor networks [17], [18]. For posiiigy
the use of the closest reference nodes as a censoringariteri
was proposed in [11]. The closest reference nodes may not
be the most informative for positioning as the geometric
configuration also affects the positioning performanceisTh
problem has been partially addressed in [12], [13], where
the Cramér-Rao bound (CRB) was used to choose the best
reference nodes. In [15], [16] geometric dilution of prémis
(GDOP) was applied to select the best four satellites for
a GPS receiver. None of the methods above are designed

P_OSITIONAL _mformatlon IS co_nS|dered to be of _gre"?‘tfor cooperative positioning. Recently, [19] considerech-no
importance in many applications, such as navigatiqghyesian cooperative positioning and proposed to use the
[1], search-and-rescue operations [2], disaster manayeme,iohhors with the highest received signal strength to cedu
[3], sensor networks [4], supply chain monitoring [5], and,y5jexity and energy consumption in sensor nodes. In [20],

traffic control [6]. Focusing on range-based systems, idiffe
techniques are currently available for positioning, whazmn

be classified into two major categories: non-cooperatiwe a

we have shown that in non-Bayesian cooperative positigning
complexity and traffic can beeduced simultaneouslyithout
Begrading positioning performance, by using a CRB-based

cooperative [7]. In a non-cooperative setting, devicey rélijarion. This is achieved by blocking the broadcasts ef th
on distance estimates with reference nodes, whereas in Qe that do not have reliable estimates (transmit cergori

cooperative setting, devices additionally use distantimates

and selecting the most informative links after receivirgnsis

between each other. These additional measurements cae enﬁgm neighbors (receive censoring)
positioning in GPS-challenged environments, such as irddoo |, this paper, we extend transmit and receive censoring to

or in urban canyons.

Bayesian cooperative positioning, where the nodes shdlre fu

Depending on the use of prior information, cooperativgatistical positional information instead of point esibes.
positioning algorithms can be further divided into two eateq,r main contributions are as follows:

gories: non-Bayesian and Bayesian. In non-Bayesian msthod | \ye propose a simple, yet effective censoring criterion

devices exchange position estimates [7], whereas in Bayesi

based on the modified Bayesian CRB in conjunction with

methods, devices exchange full statistical informatioh [8
While cooperation leads to improved performance, it also
results in a high computational complexity per device, due
to the additional information from neighboring devicesttha

a simple message approximation;

We show that the complexity of Bayesian cooperative
positioning can be reduced significantly, by applying
receive censoring

« We show that network traffic can be reduced to some
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extent when devices block the broadcast of unreliable
information, by applyingneighbor-agnostic transmit cen-
soring

We show that the network traffic can be reduced signif-
icantly when devices block the broadcast of information



that will be ignored by neighbors, by applyimgighbor- Algorithm 1 SPAWN (iterationk, agents).
aware transmit censoring 1 recelveb(k ) (-) from neighborsj € 5_;
« We propose a combined censoring scheme that Ieads
to reduced complexity and reduced traffic, without S|g—
nificantly affecting the positioning performance or the

. select the setS‘(k). of most informative links through
receive censoring
3 convertb(k 2 (+) to a distribution oveiX;

latency.
The remainder of this paper is arranged as follows. In Sectio " (x) « ( i, %, )b(k 1)(x»)dx»
II, we describe our model and assumptions. In Section Il X=X\ P\%j—i 1%, X)X, J)E

the censoring criterion is introduced, and then applied to,.
develop three censoring schemes. Results from simuladiens

discussed in Section IV. Finally, we present our conclusion b(k) (%) o b(o) (x;) H mx,;—x, (%)
in Section V.

4. compute new belief

JES(U

Il. PROBLEM FORMULATION 5: decide if transmit censored
A. System Model 6: broadcasbgé) (+) if not censored

We consider a wireless network comprising two classes of
nodes: agents and anchors. Agents have unknown positic =7, ‘ ‘ ‘ ‘ ‘ ‘ ‘
while anchor have a priori known positions. The goal of th N » ; P

iteration- 1
agents is to determine their positions, based on the positid
the anchors and distances estimates between nodes. We de
by x; the position of nodeé and byS_.; the indices of nodes
from which nodei can receive signals. Through a rangins
protocol (e.g., time of arrival (TOA) or received signalestgth é k

iteration 2

(RSS)) with nodej € S—.;, nodei can estimate the dlstanceé 107
djﬂZ = ||x; — x;|| + n;—i, wheren;_,; is the ranging noise.

For simplicity, as in [8], we assume;_; ~ N(O 07_)1)

Our model assumes all nodes are static, but our findings ¢

be extended to a mobile scenario where nodes move in disci L
time slots.
—

iteration 3

10

B. Drawbacks of Cooperative Positioning

[

Different algorithms for cooperative positioning have hee T * e,
proposed (see [7], [8] and references therein). In this pap error [m]
we will consider the sum-product algorithm over a W|reless . . .
network (SPAWN) from [8], as it offers excellent perfor- Fig. 1. Positioning performance of SPAWN at different itenas.
mance with low latency. In SPAWN, every agent has an
associated a priori distributiobggz (x;). Statistical information
is exchanged and computed iteratively through messagesmmunication range and 13 systematically placed anchors
corresponding to distributions of two- or three-dimension[8, see Figure 13], with a ranging noise varianceoﬁLi =
continuous random variables. At every iteratiok),(every (10 cm)2 The positioning performance of SPAWN in terms of
agent {) updates its distribution, written déf) (x;), named the complementary cumulative distribution function (CQDF
the belief. SPAWN is summarized in Algorlthm 1, for a agerdf the positioning error at different iterations (from top t
¢ at iterationk. This algorithm is executed in parallel by everybottom) is shown in Figure 1. Observe that after 5 iterations
agent in the network until the beliefs have converged.dhiyti 99% of the agents have less than 1 meter positioning error.
the bellefsb(o) (x;) are set to uniform distributions (whichThe remaining 1% agents could not satisfactorily converge
are not broadcast) for the agents and delta Dirac distdbsti due to their bad geometrical placement or limited connégtiv
for the anchors. In Algorithm 1, lines 2 and 5 are not paBespite the fast convergence and excellent positioninfpper
of standard SPAWN, but form the focus of this paper. Thmance, SPAWN suffers from two important drawbacks. First
messages and beliefs in SPAWN are distributions of multf all, the complexity of SPAWN per agent (to be detailed in
dimensional random variables. Exact representation cfetheéSection IV-B1) grows linearly with the number of neighbors.
distributions is generally impossible, so one must resort tn our example, the average number of links per agent is
non-parametric [21] or parametric [22] representationkil®y/ roughly 13.7, whereas in a non-cooperative environmerit wit
the representation has a direct impact on the complexity thie same communication range, this number in only 1.5.
SPAWN, we will not make any assumptions on the messagkence, the complexity is almost ten times larger. Secoradly,
representation. every iteration of SPAWN, every agent broadcasts a packet,
As a performance example, we have simulated a 100 metentaining its location information. This results in a larg
x100 meter environment with 100 agents having 20 metamount of network traffic.



(MBFIM) is defined as
5?2 log p (cij_)i | Xi, xj)
Fi = — Z E’ﬂ/j4w',7x7:yxj 6X2

JES K

-, {Plospeta)} 0

The expectation in (1) occurs over the ranging noise and the
nodes’ positions. The MBFIM can be broken up into a term
related to measurementBy; ;) and a term related to a priori
information Ep ;). Whenpx,(x;) is a Gaussian distribution

. . . . ) ) with covariance matrix®;, then Fp,; = 3. !. Assuming
Fig. 2. Transmit and receive censoring schemes in a codgenagtwork, . . . L v ..
with 3 agents (L, 2, and 3) and 3 anchors (A, B, and C). Gaussian ranging noise, the expectation over the rangiisg no
can be carried out analytically [24], leading to

1 xi—%x; (xi—%;)"
lIl. CENSORING Fui= Y Q—Exi,xj{ ! J } @)

jes_; Ji—i lI%i — x| [I%s — x|

A. Concept The expectation over; and x; is generally difficult to
erform analytically, so we resort to Monte Carlo integrati
gsuming we can draww samples{xgn)},]f:1 from px, (-),
€ S_; U {i}, we find that

We will describe the intended censoring schemes by e}
sidering a small example with three agents and three ancho
depicted in Figure 2. Agent 3 is connected to only oné
anchor, so initially it has limited knowledge about its gmsi. F; ;
Hence, this agent can only provide limited information ® it

T
neighbors. In turn, this implies that if this agent blocke th = Z 21 /pxi (xi)px, (x;) Xi =X (%i = %) dx;dx;
broadcast of its positional information, the overall pemfiance ~ jes.., Zi—i i = 3551 fls — ]
will not be greatly affected. We define this blockingtemsmit No1 L (n) (n) (n) )\ T
censoring(TxC). Agent 2 is connected to two anchors, which _ 1 1 X, X (Xi =% ) 3)
gives it a position ambiguity. Its information may be useful” N Z 2 Z ’x(n) _xm "x(n) _x™
for other agents. So agent 2 should broadcast its positional *<" " S (e J ! J

information. Agent 1 can get information from three anchoisinally, the MBCRB can be calculated as
and also from agent 2. By ignoring the information from agent
2, its positioning accuracy may be relatively unaffectece W MBCRB; = trace(F;l) ) (4)

define this ignoring aseceive censoringRxC). This MBCRB; is also defined wherb_; = (), i.e., even
when there are no neighbors for the update, or when there
_ o are no measurements. In this cad&3CRB,; = trace(X;).
B. Censoring Criterion Incidentally, we note that whemx,(x;) is uniform, and
1) The Modified Bayesian Cramér-Rao Bourittansmit P (%)), J E.Sﬂ' are delta Djrac di;tributions, (4) reverts
fa the censoring criterion considered in [20].

and receive censoring as intuited in the previous sectio '2) Message Approximation for Censorinin order to be

require a rigorous criterion based on which agents deCiggle to compute the MBCRB efficiently, the distributions

whether or not to censor. This criterion should reflect (g th (x;) should not be too complex. On %he other hand. the
Xj . f

quality of the ranging; (ii) the local geometry of the agent@xf ) (k) )
and its neighbors; (iii) the uncertainty of the agent's fiosj true beliefsbx (x;) can have many different shapes. For
and the uncertainty of the neighbors’ positions. In additioour purpose, the details of the Shapebéﬁ,)(xi) are not so
the criterion should allow fast computation. One criteribat important, but rather we wish to capture how concentrated
satisfies these conditions is the modified Bayesian Cram#re distribution is, and the position of the centers of mass.
Rao bound (MBCRB) [23], defined as follows. Assume tha&imple Gaussian approximation is not sufficient as it cannot
bothx;, the position of the agent in question, a{"’di}jesﬂp capture the common case when an agent can communicate
the positions of the neighbors of ageénare random variables with two anchors, leading to a bimodal belief with two highly
with corresponding distributiofgx , (x;), j € S—;U{i}, then concentrated components. Hence, we propose to approximate
the so-called modified Bayesian Fisher information matrike beliefs with a mixture of two Gaussians: we first detesmin
the number of componentﬁffk) € {1,2} of the belief

(k) i i
1As we will see later, these distributions will be simple appmations to bxi (Xl) of agentx; at iterationk. Forkevery component, we
the beliefsbgg (x;), computed in SPAWN. then determine the meawi@ and ,ué Z.)) and the covariance



Algorithm 2 Receive censoring for SPAWN (iterati@nagent Algorithm 3 Link selection of L most informative links.

i). 1 if |S_;| > L then
1 receiveby " (x;) from neighborsj € S_.; 2. createS;, = {allsubsetsof 5_.; of size L}
o if N(kflf_ 1 then 3: for [=11t0|S;| do {subset index}
o a (k—1) 4: let S;.[!] be thel-th subset inSy,
3 if trace(X; ) < ~rx then 5 determine
4 sets™) = ¢
5 else MBCRB;[l] = trace(F; '[1]) ,
6: se!ectL neighbors fromS_,;: see Algorithm 3 where
7. end if -
8: else 1 x; —x; (x; —x;)
e F,[l] = — Ey . J J
o remove ambiguity iy " (x;) 1 -;z ol Y {Hxi — x5 [Jxi — x|
10.  gotoline 3 sesell
11: end if + [25’“‘1)}
12: usesz). for update
6: end for
7. select the best subset
matrix (=) and ={"). For simplicity and robustness, we I= arg min MBCRB; I

further onIS/ consider the covariance matrix with the latges

trace: 21(.'“) = argmaxg (o E;k)étrace(z). Finally, we & lsetSL’“i to Sy [l]
A 9: else

approximate %il) beliefs at) iteratioh by a mixture of two 10 setS(fz t0 S_.;
Gaussians apy, (x;) ~ bx (x;), where 11: end if

P () = N (1 30) 4 a7 () 59 9)
2) Receive Censoringtn receive censoring, an agent will

When Ni(k) = 1, we have that,ufi) = ,ug? We note decide to discard uninformative incoming information from
that this approximation is used only within the censoringeighboring agents. To allow prior Fisher information oé th
methods, while the messages computed and propagatedoim Fp, = 2;1, we perform a separate pre-processing
SPAWN remain unaffected. More sophisticated approximgtep to remove ambiguities (see Algorithm 2): based on
tions toby’ (x;) can of course be considered, but as we wilts belief b V(x;) at the previous iteration, ageritcan
see, a mixture of two Gaussians is sufficient for our scenarifstermine the covariance matr®!" " and the number of
componentsNi(k_l) € {1,2}. When Ni(k_l) = 2, the agent
will try to remove the ambiguity in its belief by considering
the information from the neighbors. Ambiguity removal can

1) Neighbor-Agnostic Transmit Censoringn neighbor- simply be performed by checking the consistency between the
agnostic transmit censoring, an agent will decide to brastlccomponents irbglgjl)(xi) and the beliefs of all the neighbors
or censor its positional information based on the uncestaih bg’;fl)(xj), j € S_,. After ambiguity removaf, a link
its own belief. After calculating its belieb‘é?f (x;) at iteration selection algorithm (see Algorithm 3) is executed to select

k, agenti can determine the covariance matibgk) associated the most informative subset of > 3 neighbors. However,

C. Censoring Schemes

with pgé) (x;), indicating how concentrated the belief is. Anwhen trace(EEk_l) < 7rx, the agent discards all incoming
agent will transmit-censor when informatior? by setting S(fz = (). The size of the subset
(indicated byL in Algorithm 3) should be at least 3 for two-

trace(EEk)) > YTX- (6) dimensional positioning.

3) Neighbor-Aware Transmit CensoringWhile transmit
The transmit censoring threshold-x, expressed im?, de- censoring as described in Section 1I-C1 can reduce the
pends on the ranging model and the performance requiremengtwork traffic, it is clear that in combination with receive
During the first iteration (non-cooperative phase) ages t censoring further reductions in network traffic are possibl
can only communicate with zero or one anchors will hawshen all neighbors of ageni satisfy the receive censoring
beliefs that are not concentrated. Hence, these agents will
censor their beliefs. In later iterations, agents can abt@re  2when the ambiguity irbgﬁ:U(xi) cannot be removed, line 6 of Algo-
information from neighbors, leading to more concentrat@ghm 2 is executed based on one arbitrarily chosen compcmeéffl)(xi).
beliefs, and thus less transmit censoring. We note that th@s approximation turns out to have little impact on the fiperformance,
censoring criterion does not directly depend on the neiggfﬁetﬂgtcf;fcgm’a?ggurs when ageéar all of its neighbors have beliefs that
bors’ beliefs. For that reason, we call this censoring sehem SEssentially, we co.nsider the agent as well-localized, sturtber process-
neighbor-agnostic. ing is required.



Algorithm 4 Neighbor-aware transmit censoring for SPAWNyise variance. As we will see in Section IV-B5, the system

(iterationk, agent;). is not very sensitive to the value of either threshold. We set
1 if trace(Ef.k)) > ~yrx then L=3 ln.AIgonthm 3. . .
*) We will denote byNoC the SPAWN algorithm with no
2. block the broadcast dfy (x;) censoring, byTxC when only neighbor-agnostic transmit cen-
3 else soring is used, byRxC when only receive censoring is used,
4: broadcast = FALSE _ L and by TxRxCwhen receive censoring with neighbor-aware
5. for j=1to|S_;| do{neighbor’s index} transmit censoring is used.
6: if N =2 OR trac 25’“71)) > rx then
; g:gggcast = TRUE B. Simulation Discussion
9; end if 1) Reduction in ComplexityThe complexity of SPAWN
10:  end for is mainly related to the number of messages used during
11:  if broadcasthen message multiplication (line 4 in Algorithm 1). In partieu|
12: broadcasbglgi) (x:) in a sample-based message representationk, the compléxity o
13- end if the message multiplication scales @$Q? SLZ ), where@
14: end if is the number of samples per message (typically 1000 —

10000) and‘ Sff‘ denotes the cardinality of the sSf_’fz).. In
. . a parametric message representation, the complexityssaale

neighbors. Hence, those broadcasts are unnecessary. We,Gahe computation of the message parameters, which typical

thus develop a neighbor-aware transmit censoring SChameirﬁolves solving a non-convex optimization problem [22 A

outlined in Algorithm 4, which blocks broadcasts that will . . . . k)| .
be ignored by all the neighbors [25]. Observe that neighb(y\r/-e will see later, without link selectlor*Sﬂ- ~ 10, while
agnostic transmit censoring corresponds to lines 1-3 im-Algwith link seIection‘Sﬁfg < 3. The complexity of the link
rithm 4. It is important to note that this scheme suffers fram ) i ) (s““?
hidden node problem: when an agent is not aware a neighbof®ection algorithm (Algorithm 3) scales @<N( L )) ’

present (due to packet loss, transmit censoring, or asyriumeivhere N from (3) is relatively small (say, 200). For ‘small

links), it may decide to transmit censor too early. L, the link selection process is much less complex than the
message multiplication, which directly motivates the nézd
IV. NUMERICAL RESULTS reduce the number of multiplied messages. The complexity

can be further reduced by performing a greedy, rather than
exhaustive search of themost informative links in Algorithm
We consider random networks similar to those described 31 As a indication, Table | shows the normalized simulation
Section 1I-B, with 100 randomly placed agents, 13 anchorstiges for a parametric message representation [27]. We ob-
100 m by 100 m map, 20 m communication radius, and krve that with the TXRXC strategy, SPAWN can be executed
cm ranging noise standard deviation. Our focus is on a lingyughly 19 times faster than without censoring. For a non-
of-sight (LOS) scenario, though the censoring methods ean parametric representation, results (not shown) indicsitadar
applied unaltered in non-LOS (NLOS) conditions when NLOZomplexity reductions.
detection is employed [26]. Figure 3 shows, as a function of the iteration index, the
We will first fix the receive censoring threshotgix and average number of multiplied messages per agent for the
transmit censoring thresholdrx, both expressed inn®. ifferent censoring strategies. When no censoring is eyeplp
The value ofyrx is directly related to desired positioningover 10 links are considered per agent at every iteratioreax
accuracy, with more aggressive censoring (i.e., largenesal the first, non-cooperative iteration). The TxC strategyultss
of yrx) leading to faster convergence, lower complexity, by a marginal reduction, as some broadcasts are blocked. In
a reduction in accuracy. Receive censoring is switched @ntrast, the RxC strategy leads to a significant reducticie
whenqgrx = 0. The value ofyrx reflects when an agent isnumber of links used. After two iterations, most agents meet
deemed informative for neighbors. More aggressive cengorithe receive censoring threshold, so the number of links will

(i.e., smaller value ofyrx) leads to fewer broadcasts, age close to zero. The combination TXRxC leads to additional
only highly informative information is shared, but also &s$

information in the network. Transmit censoring is switched

A. Simulation Setup

\ : : TABLE |
off when yrx = +oo. For combined transmit and receive  NorRMALIZED SIMULATION TIME FOR SPAWNWITH DIFFERENT
censoring, we require thattx > ~rx: When an agent’s CENSORING SCHEMESFOR 10 ITERATIONS.
belief has met the receive censoring threshold, it shoutd na
block its broadcasts. We have chosagx = (0.28 m)* and SPAWN ¢ RXC  TxXRXC
2 . . NoC
yrx = (0.45m)~, which are both on the order of the ranging S
simulation time 18.9 18.2 1.1 1.0

[normalized]

“Le., tracgs!" V) < ypx AND NF TV =1, vj € 5.
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Fig. 4. Network traffic: comparison of average number of Hoasts per Fig. 6. Convergence speed of different censoring schemes.
agent, for different censoring schemes.

TXC for the first few iterations. Then, neighbor-aware traits
gains, as agents are more likely to receive useful infolmnati censoring can harness the fact that an agent’s neighboes hav
and hence more quickly meet the receive censoring threshattet the receive censoring threshold and block that agent’s
The quantitative reduction in complexity due to the redurcti broadcast. Hence, the average number of broadcasts dis# clo
in the number of multiplied messages depends on the paticub zero with further iterations.
message representation. 3) Positioning Performance We now investigate the posi-

2) Reduction in Network Traffic The high network traffic tioning performance of the different censoring schemeg- Fi
in SPAWN is due to every agent broadcasting its belief atyeveure 5 shows complementary cumulative distribution functio
iteration. Figure 4 shows, as a function of the iteratioreind (CCDF) of the positioning error, i.e., the probability thhe
the average number of broadcasts per agent for the differpositioning error exceeds a certain value, after 10 itenati
censoring strategies. Without censoring, almost evenyntag&Ve can observe that the CCDF of TxC follows the CCDF of
will broadcast its belief at every iteration, except thetfase. conventional SPAWN because most of the available links are
Applying the TxC strategy results in a reduction of the numbesed (see also Figure 3). On the other hand, RxC results in a
of broadcasts, especially in the first few iterations, whemyn performance degradation compared to conventional SPAWN,
agents are not yet well-localized. In later iterations, wheost as agents only use a subset 6f = 3 links from the
agents are well-localized, no censoring takes place, tiegul available links during message multiplication. Intenegly,
in almost the same number of broadcasts compared to convitie TXRXC strategy outperforms RxC. The reason for this is
tional SPAWN. The TxRXxC strategy follows the same trend akat uninformative beliefs are transmit-censored, sodbang



receive censoring, the links to choose from all correspoand 1[3]
concentrated beliefs.

4) Convergence Speed:he convergence speed of the al—[4]
gorithm is directly related to the latency and the refreste.r
In Figure 6 we compare the positioning performance as a
function of the iteration index. The positioning perfornsan s
is measured in terms of the CCDF at a fixed value of the
positioning error (1 m). For instance, a curve with label
“TxC” shows, under the TXC strategy, the probability that ar{ﬁ]
agent will have a positioning error greater than 1 m, at every
iteration. We observe that RxC converges the slowest, Whi|[%
TxC and TXRxC require 5-6 iteration to converge, irrespecti
of the error value.

5) Sensitivity to Parametergrx, vrx, and L: We varied
v1x, YrX, and L. Changingyrx around(0.45 m)2 did not (8]
lead to a significant change in performance or traffic, but
too conservative transmit censoring causes increasecretw [°]
traffic. Any change inygrx affects the complexity of the
algorithm through the average number of used links, as gell a
the required number of iterations for convergence. By ratyc (10!
vrx t0 (0.14 m)2, the gap in positioning performance between
NoC and RxC can be reduced significantly, at a small cost
in complexity, as fewer agents meet the receive censorifg!
threshold. Finally, changindg from 3 to 4 did not yield any
significant performance improvement, but results in addi
complexity in Algorithm 3.

[12]

V. CONCLUSIONS ANDFUTURE WORK [13]

Motivated by the need to reduce complexity and network
traffic in cooperative positioning schemes, we have proposé4!
and evaluated different censoring schemes. All censoring
decisions are distributed and based on a modified Bayesian
Cramér-Rao bound criterion. By applying the proposed ce 15
soring schemes to Bayesian cooperative positioning, we hav
found that: (i) receive censoring (ignoring uninformatirréor-
mation) can dramatically reduce the complexity of inforimiat
fusion, but at the cost in positioning performance; (iinseit
censoring (blocking broadcasts of unreliable informaticen
reduce the network traffic during first few iterations withou
positioning performance degradation; (iii) receive ceimgp [
with neighbor-aware transmit censoring (blocking broatka
of information that will be ignored) can further significgnte-
duce the network traffic. Overall, this latter scheme manmsta [19;
the excellent performance and low latency of Bayesian ceope
ative positioning without censoring, but does so at a foacti
of the computational cost, and at a fraction of the network
traffic. These advantages of censoring schemes, along wyibj
their distributed nature make them promising for largdesca
dense networks. Future work includes extending the prapose
censoring schemes to account for NLOS conditions withopzt.]
explicit NLOS detection, as well as a testbed implementatio

[16]

[17]
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