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Abstract

We develop a novel design framework for dynamic distributed spectrum sharing among secondary

users (SUs), who adjust their power levels to compete for spectrum opportunities while satisfying the

interference temperature (IT) constraints imposed by primary users. The considered interaction among

the SUs is characterized by the following three unique features. First, the SUs are interacting with each

other repeatedly and they can coexist in the system for a long time. Second, the SUs have limited

and imperfect monitoring ability: they only observe whether the IT constraints are violated, and their

observation is imperfect due to the erroneous measurements. Third, since the SUs are decentralized,

they are selfish and aim to maximize their own long-term payoffs from utilizing the network rather

than obeying the prescribed allocation of a centralized controller. To capture these unique features, we

model the interaction of the SUs as a repeated game with imperfect monitoring. We first characterize

the set of Pareto optimal operating points that can be achieved by deviation-proof spectrum sharing

policies, which are policies that the selfish users find it in their interest to comply with. Next, for

any given operating point in this set, we show how to construct a deviation-proof policy to achieve

it. The constructed deviation-proof policy is amenable to distributed implementation, and allows users

to transmit in a time-division multiple-access (TDMA) fashion. In the presence of strong multi-user

interference, our policy outperforms existing spectrum sharing policies that dictate users to transmit at

constant power levels simultaneously. Moreover, our policy can achieve Pareto optimality even when the

SUs have limited and imperfect monitoring ability, as opposed to existing solutions based on repeated

game models, which require perfect monitoring abilities. Simulation results validate our analytical results

and quantify the performance gains enabled by the proposed spectrum sharing policies.
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I. INTRODUCTION

Cognitive radios have increased in popularity in recent years, because they have the potential to

significantly improve the spectrum efficiency. Specifically, cognitive radios enable the secondary

users (SUs), who initially have no rights to use the spectrum, to share the spectrum with primary

users (PUs), who are licensed to use the spectrum, as long as the PUs’ quality of service

(QoS), such as the throughput, is not affected by the SUs [1]. A common approach to guarantee

PUs’ QoS requirements is to impose interference temperature (IT) constraints [1][2][3][5]–[13];

that is, the SUs cannot generate an interference level higher than the interference temperature

limit set by the PUs. One of the major challenges in designing cognitive radio systems is to

construct a spectrum sharing policy that achieves high spectrum efficiency while maintaining the

IT constraints set by PUs.

The spectrum sharing policy, which specifies the SUs’ transmit power levels, is essential to

improve spectrum efficiency and protect the PUs’ QoS. Since SUs can use the spectrum as long

as they do not degrade the PUs’ QoS, they can use the spectrum and coexist in the system

for long periods of time. In general, the optimal spectrum sharing policy should allow SUs to

transmit at different power levels temporally even when the environment (e.g. the number of SUs,

the channel gains) remains unchanged. However, most existing spectrum sharing policies require

the SUs to transmit at constant power levels over the time horizon in which they interact1 [2]–

[14]. These policies with constant power levels are inefficient in many spectrum sharing scenarios

where the interference among the SUs is strong. Under strong multi-user interference, increasing

one user’s power level significantly degrades the other users’ QoS. Hence, when the cross channel

gains are large, the feasible QoS region is nonconvex [20]. In this case of nonconvex feasible

QoS region, a spectrum sharing policy with constant power levels is inferior to a policy with

time-varying power levels in which the users transmit in a time-division multiple-access (TDMA)

fashion, because the latter can achieve the Pareto boundary of the convex hull of the nonconvex

feasible QoS region.

Another important feature neglected in the design of spectrum sharing policies in recent works

[2]–[11] is the selfishness of SUs, who aim to maximize their own QoS and may deviate from

1Although some spectrum sharing policies go through a transient period of adjusting the power levels before the convergence

to the optimal power levels, the users maintain constant power levels after the convergence.
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the prescribed spectrum sharing policy, if by doing so their QoS can be improved. Hence, the

spectrum sharing policy should be deviation-proof, which means that selfish SUs cannot improve

their QoS by deviating from the policy. In this way, selfish SUs will find it in their self-interest

to follow the policy.

Given the fact that the SUs will interact with each other repeatedly when sharing the spectrum,

we model the interaction among the SUs as a repeated game. In a repeated game, the stage

game is played repeatedly, and a user’s payoff in the repeated game is the discounted average

of the stage-game payoffs (i.e. QoS in the stage games). Users can choose different actions (i.e.

power levels) in different stage games, and the repeated-game payoff is a convex combination

of different stage-game payoffs. A repeated-game strategy prescribes what action to take given

past observations, and therefore, can be considered as a spectrum sharing policy. If a repeated

game strategy constitutes an equilibrium, then no user can gain from deviation at any occasion.

Hence, an equilibrium strategy is a deviation-proof spectrum sharing policy.

The spectrum sharing policy in a repeated game framework was studied in [15]–[18], under

the assumption of perfect monitoring, namely the assumption that each SU can perfectly monitor

the individual transmit power levels of all the other SUs. In the policies in [15]–[18], when a

deviation from the prescribed policy by any user is detected, a perpetual punishment phase [15]

or a punishment phase of certain duration [16][18] will be triggered. In the punishment phase,

all the users transmit at the maximum power levels to create strong interference to each other,

resulting in low QoS of all the users as a punishment. Due to the threat of this punishment, all

the users will follow the policy in their self-interests. However, since the monitoring can never

be perfect, the punishment phase, in which all the users receive low throughput, will be triggered

even if no one deviates. Thus, the users’ repeated-game payoffs, averaged over all the stage-game

payoffs, cannot be Pareto optimal because of the low payoffs received in the punishment phases.

Hence, the policies in [15]–[18] must have performance loss in practice where the monitoring

is always imperfect.

Repeated games with imperfect monitoring have been studied extensively in the game theory

literature. In [19], it is shown that for a general repeated game with imperfect monitoring,

Pareto optimal operating points can be asymptotically achieved if certain sufficient conditions

are satisfied. One sufficient condition requires the users to be able to statistically distinguish

sufficiently many different actions. Translated to the spectrum sharing scenario, it requires the
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SUs to be able to distinguish a certain number of interference temperature levels, where the

number of distinguishable IT levels grows linearly with the number of power levels each user

can choose from. This requirement indicates the need for a large amount of feedback information

on IT levels. Moreover, another sufficient condition requires the users to be sufficiently patient,

namely they discount future payoffs arbitrarily little (i.e., their discount factors are arbitrarily

close to one). This requirement on the users’ patience limits the scenarios to which the policy

in [19] can be applied.

In this paper, we design deviation-proof spectrum sharing policies with time-varying power

levels to achieve Pareto optimal operating points that are not achievable by existing policies

with constant power levels [2]–[14]. We provide a systematic design approach, which first

characterizes the set of Pareto optimal operating points achievable by deviation-proof policies,

and then for any operating point in this set, constructs a deviation-proof policy to achieve it. The

proposed policy can be easily implemented in a distributed manner. Moreover, we prove that the

proposed policy can achieve Pareto optimal operating points, even when the SUs are impatient

(namely they discount future payoffs, and their discount factor are strictly smaller than one),

and have limited and imperfect monitoring ability. Specifically, their monitoring ability can be

limited in that they only need to distinguish two IT levels regardless of the number of power

levels each user can choose from, and their monitoring can be imperfect due to the erroneous

measurements of the interference temperature.2 This requirement on the users’ monitoring ability

is significantly relaxed compared to existing works based on repeated games, which require either

perfect monitoring of all the users’ individual transmit power levels [15]–[18] or sufficiently good

monitoring to distinguish sufficiently many IT levels [19].

We illustrate the performance gain of the proposed policies over the existing policies in Fig. 1.

We show the best operating points achievable by different classes of policies in a spectrum

sharing system with two SUs. Due to the strong multi-user interference, the best operating

points achievable by policies with constant power levels [2]–[14] (the dashed curve) are Pareto

dominated by the best operating points achieved by policies with time-varying power levels (the

straight line). The proposed policy, which are deviation-proof, can achieve a portion of the Pareto

2As will be described later in this paper, there is an entity that regulates the interference temperature in the system, who

measures the interference temperature imperfectly and feedbacks to the users a binary signal indicating whether the constraints

are violated.
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Fig. 1. An illustration of the best operating points achievable by different policies in a two-SU spectrum sharing system.

TABLE I

COMPARISON WITH RELATED WORKS IN DYNAMIC SPECTRUM SHARING.

Power levels Distributed Deviation-

proof

Monitoring

[2][3] Constant No No N/A

[4]–[11] Constant Yes No N/A

[12]–

[14]

Constant Yes Yes N/A

[15]–

[18]

Time-varying Yes Yes Imperfect

Proposed Time-varying Yes Yes Perfect

optimal operating points (the thick line). Under imperfect monitoring, the policies designed under

the assumption of perfect monitoring [15]–[18] (the solid curve) have large performance loss

compared to the proposed policy.

Finally, we summarize the comparison of our work with the existing works in dynamic

spectrum sharing in Table I. We distinguish our work from existing works in the following

categories: the power levels prescribed by the spectrum sharing policy are constant or time-

varying, whether the policy can be implemented in a distributed fashion or not, whether the

policy is deviation-proof or not, and what are the requirements on the SUs’ monitoring ability.
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The “monitoring” category is only discussed within the works based on repeated games.

The rest of the paper is organized as follows. In Section II, we describe the system model

for dynamic spectrum sharing. Then, in Section III, we formulate the policy design problem

using repeated games. We solve the policy design problem in Section IV. Simulation results are

presented in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL FOR DYNAMIC SPECTRUM SHARING

We consider a system with one primary user 3 and N secondary users (see Fig 2 for an

illustrating example of a system with two secondary users). The set of SUs is denoted by

N , {1, 2, . . . , N}. Each SU has a transmitter and a receiver. The channel gain from SU i’s

transmitter to SU j’s receiver is gij . Each SU i chooses a power level pi from a finite set Pi. In

other words, each SU choose from discrete power levels. We assume that 0 ∈ Pi, namely SU i

can choose not to transmit. We define SU i’s maximum transmit power as Pmax
i = maxpi∈Pi pi.

The set of joint power profiles is denoted by P =
∏

i∈N Pi, and the joint power profile of all the

SUs is denoted by p = (p1, . . . , pN) ∈ P . Let p−i be the power profile of all the SUs other than

SU i. Each SU i’s instantaneous payoff (QoS) is a function of the joint power profile, namely

ui : P → R+. Each SU i’s payoff ui(p) is decreasing in the other SUs’ power levels pj, ∀j 6= i.

Note that we do not assume that ui(p) is increasing in pi.4 But we do assume that ui(p) = 0 if

pi = 0, because a SU’s payoff should be zero when it does not transmit. One example of many

possible payoff functions is the SU’s throughput:

ui(p) = log2

(
1 +

pigii∑
j∈N ,j 6=i pjgji + ni

)
, (1)

where ni is the noise power at SU i’s receiver.

As in [8]–[11], there is a local spectrum server (LSS) serving as a mediating entity among

the SUs. The LSS has a receiver to measure the interference temperature and a transmitter to

broadcast signals, but it cannot control the actions of the autonomous SUs. The LSS could be

a device deployed by the PU or simply the PU itself, if the PU manages by itself the spectrum

3Although we study a system with one PU as in [2]–[3][5]–[7][12], our model and design framework can be easily extended

to the scenario of multiple PUs located in different geographic regions.
4In some scenarios with energy efficiency considerations, the payoff is defined as the ratio of throughput to transmit power,

which may not monotonically increase with the transmit power.
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Local 

Spectrum 
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LSS

Secondary Users

Distress Signals

Intermediate IT limit

PU

IT limit

Fig. 2. An example system model with two secondary users. The solid line represents a link for data transmission, and the

dashed line indicate a link for control signals. The channel gains for the corresponding data link are written in the figure.

The primary user (PU) specifies the interference temperature (IT) limit to the local spectrum server (LSS). The LSS sets the

intermediate IT limit to the secondary users and send distress signals if the estimated interference power exceeds the IT limit.

leased to the SUs. Even when the PU is the LSS, it is beneficial to consider the LSS as a separate

logical entity that performs the functionality of spectrum management. The LSS could also be

a device deployed by some regulatory agency such as Federal Communications Commission

(FCC), who uses it for spectrum management in that local geographic area. In both cases, the

LSS aims to improve the spectrum efficiency (e.g. the sum throughput of all the SUs) and the

fairness, while ensuring that the IT limit set by the PU is not violated. Note that the PU may

also want to maximize the spectrum efficiency to maximize its revenue obtained from spectrum

leasing, since its revenue may be proportional to the sum throughput of the SUs.

The LSS measures the interference temperature at its receiver imperfectly. The measurement

can be written as
∑

i∈N pigi0 + ε, where gi0 is the channel gain from SU i’s transmitter to the

LSS’s receiver, and ε is the additive measurement error. We assume that the measurement error

has zero mean and a probability distribution function fε known to the LSS. We assume as in

most existing works (e.g. [2]–[12]) that the IT limit Ī set by the PU is known perfectly by the

LSS. Although the LSS aims to keep the interference temperature below the IT limit Ī , it will set

a lower intermediate IT limit I ≤ Ī to be conservative because of measurement errors. Hence,

the IT constraint imposed by the LSS is∑
i∈N pigi0 ≤ I. (2)
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Even if the actual interference temperature
∑

i∈N pigi0 does not exceed the intermediate IT limit

I , the erroneous measurement
∑

i∈N pigi0 + ε may still exceed the IT limit Ī set by the PU. In

this case, the LSS will broadcast a distress signal to all the SUs. Given the joint power profile

p, this false alarm probability is

Γ(p) = Pr
(∑

i∈N pigi0 + ε > Ī |
∑

i∈N pigi0 ≤ I
)
, (3)

where Pr(A) is the probability that the event A happens. We can see that a larger intermediate

IT limit I enables the SUs to transmit at higher power levels, but results in a larger false alarm

probability and a higher frequency of sending distress signals. Hence, there is an interesting

tradeoff between the spectrum efficiency and the cost of sending distress signals.

A SU’s payoff is affected by the multi-user interference
∑

j∈N ,j 6=i pjgji, which is dependent

on the cross channel gains among different SUs. When the multi-user interference is weak due

to small cross channel gains, power control becomes less important, since one SU’s power level

does not affect the others’ payoffs. Hence, in this paper, we focus on the more interesting

scenario when the multi-user interference is strong and power control is essential for efficient

interference management. We quantify the strength of multi-user interference as follows. First,

we write p̃i = (p̃i1, . . . , p̃
i
N) as the joint power profile that maximizes SU i’s payoff subject to

the IT constraint, namely

p̃i = arg max
p∈P

ui(p), subject to
∑

i∈N pigi0 ≤ I. (4)

Since ui is decreasing in pj, ∀j 6= i, we have p̃ij = 0, ∀j 6= i. For notational simplicity, we

define the maximum payoff achievable by SU i as v̄i , ui(p̃
i). Then, we say a spectrum sharing

scenario has strong multi-user interference if the following property is satisfied.

Definition 1 (Strong Multi-user Interference): A spectrum sharing scenario has strong multi-

user interference, if the set of feasible payoffs V = conv{u(p) = (u1(p), . . . , uN(p)) : p ∈

P ,
∑

i∈N pigi0 ≤ I}, where conv(X) is the convex hull of X , has N + 1 extremal points5:

(0, . . . , 0) ∈ RN , u(p̃1), . . . ,u(p̃N).

This definition characterizes the strong interference among the SUs: the increase of one SU’s

payoff comes at such an expense of the other SUs’ payoffs that the set of feasible payoffs

without time sharing is nonconvex. A spectrum sharing scenario satisfies this property when

5The extremal points of a convex set are those that are not convex combinations of other points in the set.
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the cross channel gains among users are large [20]. In the extreme case of strong multi-user

interference, simultaneous transmissions from different SUs result in packet loss, as captured in

the collision model [21]. According to this definition, the set of feasible payoffs can be written

as V = conv{(0, . . . , 0),u(p̃1), . . . ,u(p̃N)}. Moreover, its Pareto boundary is B = {v ∈ V :∑N
i=1 vi/v̄i = 1, vi ≥ 0, ∀i} as part of a hyperplane, which can be achieved only by SUs

transmitting in a TDMA fashion.

III. FORMULATION OF THE POLICY DESIGN PROBLEM

In this section, we first formulate the interaction among the SUs as a repeated game with

imperfect monitoring, and define the deviation-proof spectrum sharing policy. Then, we formally

define the policy design problem and outline our design framework to solve it.

A. Formulation of The Repeated Game

Similar to [2]–[14], we assume that the system parameters, such as the number of SUs and

the channel gains, remain fixed during the considered time horizon. The system is time slotted at

t = 0, 1, . . .. We assume that the users are synchronized as in [2]–[14]. At the beginning of time

slot t, each SU i chooses its power level pti, and receives a payoff ui(pt). The LSS obtains the

measurement
∑

i∈N p
t
igi0+εt, where εt is the realization of the error ε at time slot t, and compare

the measurement with the IT limit Ī . The set of measurement outcomes of the comparison Y

has two elements, namely Y = {y0, y1}. The (measurement) outcome yt is determined by

yt =

 y0, if
∑

i∈N p
t
igi0 + εt > Ī

y1, otherwise
. (5)

We write the conditional probability distribution of the outcome y given the joint power profile

p as ρ(y|p), which can be calculated as

ρ(y1|p) =

∫
x≤Ī−

∑
i∈N pigi0

fε(x) dx,

ρ(y0|p) = 1− ρ(y1|p). (6)

At the end of time slot t, the LSS sends a distress signal if the outcome yt = y0. Note that the

LSS does not send signals when the outcome is y1, and the SUs know that the outcome is y1

by default when they do not receive the distress signal.
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Note that in repeated games with perfect monitoring [15]–[18], the outcome available to each

SU at time slot t is precisely the joint power profile chosen by the SUs, i.e. yt = pt. We say

the monitoring is imperfect if yt 6= pt. In a general repeated game with imperfect monitoring,

in order to achieve Pareto optimality, the set of outcomes Y should have a large cardinality,

namely |Y | ≥ |Pi|+ |Pj| − 1 for all i ∈ N and all j 6= i [19]. In contrast, our proposed policy

can achieve Pareto optimality even when |Y | = 2 regardless of the cardinality of the SU’s action

set Pi.
At each time slot t, each SU i determines its transmit power pti based on its history, which is

a collection of all the past power levels it has chosen and all the past measurement outcomes.

Formally, the history of SU i up to time slot t ≥ 1 is hti = {p0
i , y

0; . . . ; pt−1
i , yt−1} ∈ (Pi × Y )t,

and that at time slot 0 is h0
i = ∅. The history of SU i contains private information about SU

i’s power levels that is unknown to the other SUs; in contrast, we define the public history

as ht = {y0; . . . ; yt−1} ∈ Y t for t ≥ 1 and h0 = ∅. The public history ht only contains the

measurement outcomes that are known to all the SUs.

In this paper, we focus on public strategies, in which each SU’s decision depends on the public

history only. Hence, each SU i’s strategy σi is a mapping from the set of all possible public

histories to its action set, namely σi : t∞t=0Y
t → Pi. Due to realization equivalence principle [25,

Lemma 7.1.2], we lose nothing by only considering public strategies, in terms of the achievable

Pareto optimal operating points.

The spectrum sharing policy is the joint strategy profile of all the SUs, defined as σ =

(σ1, . . . , σN). The SUs are selfish and maximize their own long-term discounted payoffs. As-

suming, as in [15]–[19], the same discount factor δ ∈ [0, 1) for all the SUs, each SU i’s (long-term

discounted) payoff can be written as

Ui(σ) = (1− δ)

ui(p0) +
∞∑
t=1

δt ·
∑

yt−1∈Y

ρ(yt−1|pt−1)ui(p
t)

 ,
where p0 is determined by p0 = σ(∅), and pt for t ≥ 1 is determined by pt = σ(ht) =

σ(ht−1; yt−1). The discount factor represents the “patience” of the SUs; a larger discount factor

indicates that a SU is more patient. The discount factor is determined by the delay sensitivity

of the SUs’ applications.

We define the deviation-proof policy as the perfect public equilibrium (PPE) of the game. The

PPE prescribes a strategy profile σ from which no SU has incentive to deviate after any given
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history at any time slot, and thus can be considered as a deviation-proof policy. It is normally

more strict than Nash equilibrium, because it requires that the SUs have no incentive to deviate

at any given history, while Nash equilibrium only guarantees this at the histories that possibly

arise from the equilibrium strategy. We can also consider PPE in repeated games with imperfect

monitoring as the counterpart of subgame perfect equilibrium defined in repeated games with

perfect monitoring [25].

Before the definition of PPE, we introduce the concept of continuation strategy: SU i’s

continuation strategy induced by any history ht ∈ Y t, denoted σi|ht , is defined by σi|ht(hτ ) =

σi(h
thτ ),∀hτ ∈ Y τ , where hthτ is the concatenation of the history ht followed by the history

hτ . By convention, we denote σ|ht and σ−i|ht the continuation strategy profile induced by ht

of all the SUs and that of all the SUs other than SU i, respectively. Then the PPE is defined as

follows [25, Definition 7.1.2]

Definition 2 (Perfect Public Equilibrium): A strategy profile σ is a perfect public equilibrium

if for any public history ht ∈ Y t, the induced continuation strategy σ|ht is a Nash equilibrium

of the continuation game, namely for all i ∈ N ,

Ui(σ|ht) ≥ Ui(σ
′
i|ht ,σ−i|ht), for all σ′i. (7)

We define the equilibrium payoff as a vector of payoffs v = (U1(σ), . . . , UN(σ)) achieved at

the equilibrium.

B. The Policy Design Problem

The primary user or the regulatory agency aims to maximize an objective function defined

on the SUs’ payoffs, W (U1(σ), . . . , UN(σ)). This definition of the objective function is gen-

eral enough to include the objective functions deployed in many existing works, such as [2]–

[7][15][16]. An example of the objective function is the weighted sum payoff
∑N

i=1wiUi, where

{wi}Ni=1 are the weights satisfying wi ∈ [0, 1],∀i and
∑N

i=1wi = 1. The PU (respectively, the

regulatory agency) maximizes the objective function for the revenue (the spectrum efficiency),

while maintaining the IT constraint (2). To reduce the cost of sending distress signals, a constraint

on the false alarm probability is also imposed as Γ(p) ≤ Γ̄, where Γ̄ is the maximum false alarm

probability allowed. At the maximum of the welfare function, some SUs may have extremely

low payoffs. To avoid this, a minimum payoff guarantee γi ≥ 0 is imposed for each SU i. To
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SU 2's payoff

SU 1's payoff

Step 1: Quantify the set of 
Pareto optimal equilibrium 
payoffs

Step 2: Determine the 
optimal equilibrium payoff

Step 3: Construct the optimal 
spectrum sharing policy

Fig. 3. The procedure of solving the design problem.

sum up, we can formally define the policy design problem as follows

max
σ

W (U1(σ), . . . , UN(σ)) (8)

s.t. σ is public perfect equilibrium,∑
i∈N

σi(h
t) · gi0 ≤ I, ∀t, ∀ht ∈ Y t,

Γ(σ(ht)) ≤ Γ̄, ∀t, ∀ht ∈ Y t,

Ui(σ) ≥ γi, ∀i ∈ N .

IV. SOLVING THE POLICY DESIGN PROBLEM

In this section, we solve the policy design problem (8) following the procedure outlined in

Fig. 3. We first quantify the set of Pareto optimal equilibrium payoffs (i.e. the Pareto optimal

payoffs that can be achieved by deviation-proof policies), then determine the optimal equilibrium

payoff based on the welfare function, and finally construct the deviation-proof policy to achieve

the optimal equilibrium payoff.

A. Quantify The Set of Pareto Optimal Equilibrium Payoffs

The first step in solving the design problem (8) is to characterize the set of Pareto optimal

equilibrium payoffs for the dynamic spectrum sharing system. In particular, we are interested in

the case when the SUs are impatient (their discount factor is strictly smaller than 1), as opposed
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to the asymptotic case when the SUs are arbitrarily patient (their discount factor goes to 1) in

[15][16][19]. For repeated games with perfect monitoring, the characterization of Pareto optimal

equilibrium payoffs with impatient users is provided in [18]. Our result in Theorem 1 is the first

one that analytically quantifies the set of Pareto optimal equilibrium payoffs for repeated games

with imperfect monitoring and impatient users.

For the spectrum sharing systems with strong multi-user interference, recall from Definition 1

that the set of feasible payoffs can be written as V = conv{(0, . . . , 0),u(p̃1), . . . ,u(p̃N)}, and

that its Pareto boundary is B = {v :
∑N

i=1 vi/v̄i = 1, vi ≥ 0,∀i}. Now we need to determine

which portion of the Pareto boundary B can be achieved as equilibrium payoffs (i.e. payoffs that

can be achieved by deviation-proof policies).

Before stating Theorem 1, we define the benefit from deviation as follows.

Definition 3 (Benefit From Deviation): We define SU j’s benefit from deviation from SU i’s

payoff maximizing power profile p̃i as

bij = max
pj∈Pj ,pj 6=p̃ij

ρ(y0|p̃i)− ρ(y0|pj, p̃i−j)
uj(pj, p̃i−j)/v̄j

. (9)

Our definition of the benefit from deviation results from two intuitions. First, whether there is a

benefit from deviation should depend on whether the deviation can be statistically detected. A

deviation can be statistically detected only if ρ(y0|p̃i) < ρ(y0|pj, p̃i−j). This is because ρ(y0|p̃i) <

ρ(y0|pj, p̃i−j) implies that the probability of sending the distress signal is larger when the power

profile is (pj, p̃
i
−j), in which SU j deviates from p̃ij to pj , than the corresponding probability

when the power profile is p̃i, in which SU j does not deviate. Hence, it is statistically correct

for the SUs to associate the receipt of the distress signal y0 with the event of deviation. Since

uj(pj, p̃
i
−j)/v̄j is always larger than 0, the benefit from deviation is negative if and only if

ρ(y0|p̃i) < ρ(y0|pj, p̃i−j). In other words, there is no benefit but only cost from deviation if the

deviation can be statistically identified by the distress signal.

Second, the benefit from deviation depends on how likely deviation can be detected (reflected

by |ρ(y0|p̃i) − ρ(y0|pj, p̃i−j)|), as well as how much a SU can gain from deviation (reflected

by uj(pj, p̃
i
−j)/v̄j). Since bij < 0, its absolute value |bij| can be considered as the cost from

deviation. The cost from deviation |bij| increases with |ρ(y0|p̃i)− ρ(y0|pj, p̃i−j)|, the likelihood

that a deviation is detected. In addition, |bij| decreases with uj(pj, p̃
i
−j)/v̄j , the payoff SU j

obtains from deviation normalized by its maximum payoff.
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Now we state Theorem 1, which analytically quantifies the set of Pareto optimal equilibrium

payoffs.

Theorem 1: We can achieve the following set of Pareto optimal equilibrium payoffs

Bµ =

{
v :

N∑
i=1

vi
v̄i

= 1,
vi
v̄i
≥ µ

i
,∀i ∈ N

}
, (10)

where µ
i
, maxj 6=i

1−ρ(y0|p̃j)
−bji , if and only if first, the following two sets of conditions are satisfied

for all i ∈ N and for all j 6= i:

• Condition 1: benefit from deviation bij < 0;

• Condition 2: no incentive for SU i to deviate:

1−
ui(pi, p̃

i
−i)

v̄i
+
∑
j 6=i

ρ(y0|p̃i)− ρ(y0|pi, p̃i−i)
−bij

≥ 0, ∀pi,

and second, the discount factor δ is larger than a threshold:

δ ≥ δ ,
1

1 +
1−
∑
i∈N µ

i

N−1+
∑
i∈N

∑
j 6=i(−ρ(y0|p̃i)/bij)

. (11)

Proof: We provide an outline of the proof here. Please refer to Appendix A for the complete

proof.

The proof heavily replies on the concept of self-generating sets [26]. Simply put, a self-

generating set, associated with a discount factor, is a set in which every payoff is an PPE payoff

under the associated discount factor [26]. Any self-generating set is associated with a minimum

discount factor; any discount factor larger than the minimum one can be associated with that

self-generating set. The main contribution of the proof is to find the largest self-generating set

and the associated minimum discount factor. Since we focus on the Pareto optimal equilibrium

payoffs, we restrict to the self-generating sets on the Pareto boundary. This restriction allows us

to obtain the analytical expression of the largest self-generating set Bµ. Meanwhile, the sufficient

and necessary conditions for Bµ to be self-generating are obtained.

Theorem 1 provides the sufficient and necessary conditions for the existence of Pareto optimal

equilibrium payoffs. Condition 1 (respectively, Condition 2) ensures that at the power profile p̃i,

SU j for any j 6= i (respectively, SU i) has no incentive to deviate. When the conditions are

satisfied, Theorem 1 quantifies the set of Pareto optimal equilibrium payoffs Bµ. We can choose

any payoff in Bµ as the deviation-proof operating point. Theorem 1 also gives us the minimum
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discount factor under which any payoff in Bµ is achievable. We can determine the maximum

level of impatience the users can have in order to achieve any payoff in Bµ.

Remark 1: Note that we have not assumed the monotonicity of the payoff function ui. If each

SU’s payoff function increases with its own transmit power, then Condition 2 in Theorem 1 holds

true as long as Condition 1 is satisfied.

Remark 2: Note also that the set of Pareto optimal equilibrium payoffs Bµ could be empty if

µ
i

is large. More precisely, Bµ is nonempty if and only if
∑

i∈N µi ≤ 1.

B. Determine The Optimal Operating Point

Since we have identified the set of Pareto optimal equilibrium payoffs Bµ, the problem of find

the optimal operating point that solves the policy design problem can be written as

max
v

W (v1, . . . , vN) (12)

s.t. (v1/v̄1, . . . , vN/v̄N) ∈ Bµ,

vi ≥ γi, ∀i ∈ N .

The linear constraints in the above problem can be further simplified as vi ≥ max{µ
i
·v̄i, γi}, ∀i ∈

N . Hence, we get the sufficient and necessary conditions under which the optimization problem

(12) is feasible: ∑
i∈N max{µ

i
, γi/v̄i} ≤ 1 . (13)

The optimization problem (12) is easy to solve when W is a convex function in (v1, . . . , vN).

For example, if the objective function is the weighted sum of the users’ payoffs, namely W =∑N
i=1 wivi, the solution can be obtained analytically as v?i∗ = (1−

∑
j 6=i max{µ

j
, γj/v̄j}) · v̄i for

i∗ = arg maxj∈N wj v̄j , and v?i = max{µ
i
, γi/v̄i} · v̄i for all i 6= i∗.

C. Construct The Deviation-Proof Policy

Given the optimal payoff v? ∈ Bµ, we can construct the deviation-proof policy that achieves

the payoff v?. According to Definition 1, any payoff v? ∈ Bµ should be achieved by alternating

among N operating points: u(p̃1), . . . ,u(p̃N). Hence, the deviation-proof policy σ∗ satisfies

σ∗(ht) ∈ {p̃1, . . . , p̃N} for any t ≥ 0 and for any public history ht ∈ Y t. Since only one SU

transmits in a time slot, the deviation-proof policy can also be regarded as a scheduling in a

August 23, 2021 DRAFT



16

TDMA fashion. By judiciously deciding which SU can transmit in each time slot, each SU

i receives a discounted expected average payoff v?i and has no incentive to deviate from the

policy. The deviation-proof policy can be implemented by each SU in a distributed manner. The

algorithm run by SU i is described in the algorithm in Table II.

The intuition of why the algorithm in Table II works is as follows. At each time slot t, each

SU i calculates the indices for all the SUs, αi(t),∀i ∈ N , where

αj(t) =
vj(t)/v̄j − µj

1− vj(t)/v̄j +
∑

k 6=j(−ρ(y0|p̃j)/bjk)
, ∀j ∈ N .

The index αi(t) measures SU i’s “urgency” to transmit at time slot t. The SU i∗ with the largest

index αi∗(t) = maxi αi(t) will transmit at time slot t. When no distress signal is received (which

indicates no deviation), SU i∗’s index in the next time slot is very likely to be small, in order to

give the other SUs larger opportunities to transmit. However, when the distress signal is received

(which indicates deviation), they calculate the indices in a different way, such that SU i∗ still has

a large index in the next time slot. Hence, a SU may not have the incentive to deviate, because

it will leads to a smaller opportunity to transmit in the future.

Theorem 2 ensures that if all the SUs run the algorithm in Table II locally, they will achieve

the optimal operating point v?, and will have no incentive to deviate.

Theorem 2: For any target payoff v? ∈ Bµ, and any discount factor δ ≥ δ, the strategy

generated by each user running the algorithm in Table II is PPE and achieves v?.

Proof: We provide an outline of the proof here. Please refer to Appendix B for the complete

proof.

The key to the proof is to demonstrate that all the payoffs {v′i(t) · v̄i}i∈N ,∀t ≥ 0 generated

in the algorithm in Table II are in the self-generating set (the set of Pareto optimal equilibrium

payoffs) Bµ.

D. Implementation Issues

We discuss the implementation issues of our proposed design framework, which can be

implemented in three phases as illustrated in Fig. 4. In Phase I, the LSS exchanges some

information with the SUs following the procedure described in Table III. In Phase II, using

the information obtained in Phase I, the LSS quantifies the set of Pareto optimal equilibrium

payoffs, and solves the policy design problem for the optimal equilibrium payoff. Finally in
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TABLE II

THE ALGORITHM RUN BY USER i.

Input: The normalized target payoffs {v?i /v̄i}i∈N given by the LSS

Initialization: Set t = 0, v′j(0) = v?j /v̄j for all j ∈ N .

repeat

Calculates the index αj(t) =
v′j(t)−µ

j

1−v′j(t)+
∑

k 6=j(−ρ(y0|p̃j)/bjk)
, ∀j

Finds the largest index i∗ , arg maxj∈N αj(t)

if i = i∗ then

Transmits at the power level p̃ii

end if

Updates v′j(t+ 1) for all j ∈ N as follows:

if No Distress Signal Received At Time Slot t (yt = y1) then

v′i∗(t+ 1) = 1
δ
· v′i∗(t)− ( 1

δ
− 1) · (1 +

∑
j 6=i∗

ρ(y0|p̃i∗ )
−bi∗j

)

v′j(t+ 1) = 1
δ
· v′j(t) + ( 1

δ
− 1) · ρ(y0|p̃

i∗ )
−bi∗j

, ∀j ∈ N , j 6= i∗

else

v′i∗(t+ 1) = 1
δ
· v′i∗(t)− ( 1

δ
− 1) · (1−

∑
j 6=i∗

ρ(y1|p̃i∗ )
−bi∗j

)

v′j(t+ 1) = 1
δ
· v′j(t)− ( 1

δ
− 1) · ρ(y1|p̃

i∗ )
−bi∗j

, ∀j ∈ N , j 6= i∗

end if

t← t+ 1

until ∅

Phase I:

Information 

exchange between 

the LSS and SUs

(Table III, Table IV)

Phase III:

Decentralized 

implementation 

by SUs

(Theorem 2,

Table II)

Phase II:

LSS determines 

the optimal 

equilibrium payoff

(Theorem 1)

Initialization:

optimal payoff

SU 1's local solver

LSS measures 

the interference 

temperature

SU N's local solver

distress signal

power 

level

power

level

Step 1: Quantify the achievable equilibrium payoffs (by Theorem 1)

Step 2: Determine the optimal equilibrium payoff to achieve

SU 1

SU N

Architecture of implementing the algorithm in Table II

(See Table III for a detailed description

of the information exchange procedure, 

and Table IV for the amount of 

information exchanged)

LSS

Fig. 4. Illustration of the implementation.
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TABLE III

THE INFORMATION EXCHANGE PHASE.

Events Information obtained

SUs choose {p̃i}i∈N LSS: {ρ(y0|p̃i)}i∈N

SUs choose (pij , p̃
i
−j), ∀j, pj LSS: ρ(y0|pij , p̃i−j),∀j, pj

LSS broadcasts SU i: ρ(y0|p̃i), ρ(y0|pij , p̃i−j)

SUs broadcast LSS, SUs: bij ,∀i, j 6= i

SUs send to LSS LSS: {v̄i}i∈N

TABLE IV

COMPARISON OF THE TOTAL AMOUNT OF INFORMATION EXCHANGED.

The total amount of information exchanged

[4]–[7][12] O(N) per iteration · # of iterations

[10][13] O(N2) per iteration · # of iterations

Proposed
∑
i

∑
j 6=i |Aj |+N2 + 1

Phase III, the LSS sends the optimal equilibrium payoff to the SUs, as an input to each SU’s

decentralized algorithm of constructing the optimal deviation-proof policy.

1) Overhead of information exchange: We briefly comment on the overhead of the information

exchange in the proposed framework. First, the information exchange in Phase I is necessary

for the LSS to determine and for the SUs to achieve the optimal equilibrium payoff. A similar

information exchange phase is proposed in [15][16][22]–[24]. The information exchange phase

can be considered as a substitute for the convergence process needed by the algorithms in [4]–

[7][10][12][13]. In the proposed policy, since the players implement the policy without any

information exchange in Phase III, the only information exchange happen in Phase I and at

the end of Phase II (when the MU broadcasts the optimal equilibrium payoff). The information

exchange method in our framework is advantageous in that its duration and the amount of

information to exchange are predetermined. On the other hand, the amount of information to

exchange in [4]–[7][10][12][13] is proportional to the convergence time of their algorithms, which

are generally unbounded. We summarize the overhead of information exchange (measured by

the number of real numbers or pilot signals transmitted) in the related works in Table IV.
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2) Computational complexity: As we can see from Table II, the computational complexity

of each SU in constructing the optimal policy is very small. At each period t, each SU only

needs to compute N indices {αj(t)}j∈N , and N normalized payoffs {v′j(t)}j∈N , all of which

can be calculated by analytical expressions. In addition, although the original definition of the

strategy requires each SU to memorize the entire history of measurement outcomes, in the actual

implementation, each SU only needs to know the current measurement outcome and memorize

N normalized payoffs {v′j(t)}j∈N .

V. SIMULATION RESULTS

In this section, we demonstrate the performance gain of our spectrum sharing policy over

existing policies, and validate our theoretical analysis through numerical results. Throughout

this section, we use the following system parameters by default unless we change some of them

explicitly. The noise powers at all the SUs’ receivers are normalized as 0 dB. The maximum

transmit powers of all the SUs are 10 dB, ∀i. For simplicity, we assume that the direct channel

gains have the same distribution gii ∼ CN (0, 1),∀i, and the cross channel gains have the same

distribution gij ∼ CN (0, β),∀i 6= j, where β is defined as the cross interference level. The

channel gain from each SU to the LSS also satisfies gi0 ∼ CN (0, 1), ∀i. The IT limit set by the

PU is Ī = 10 dB. The measurement error ε is Gaussian distributed with zeros mean and variance

0.1. The maximum false alarm probability is Γ̄ = 10%. The SUs’ payoffs are their throughput

as in (1). The welfare function is the average payoff, i.e. W =
∑N

i=1
1
N
Ui. The minimum payoff

guarantee is 10% of the maximum achievable payoff, i.e. γi = 0.1 · v̄i,∀i.

A. Performance Evaluation

1) Comparison with policies with constant power levels: We first compare the performance

of the proposed policy with that of the optimal policy with constant power levels. The optimal

policy with constant power levels (or “the optimal stationary policy”) is the solution to the

modified version of the design problem (8). First, we add an additional constraint that the power

profile is constant, namely σ(ht) = p? for all t ≥ 0 and for all ht ∈ Y t. Second, we drop the

incentive constraint that σ is PPE from (8). Hence, the performance of the optimal stationary

policy is the best that can be achieved by existing stationary policies [4]–[11], and is an upper

bound for the deviation-proof stationary policies [12]–[14].
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Fig. 5. Performance comparison of the proposed policy and the optimal policy with constant power levels (‘stationary’ in the

legend) under different numbers of users and different cross interference levels. A zero average throughput indicates that there

exists no feasible policy that satisfies all the constraints in the policy design problem.

In Fig. 5, we compare the performance of the proposed policy and that of the optimal stationary

policy under different cross interference levels and different numbers of SUs. As expected, the

proposed policy outperforms the optimal stationary policy in medium to high cross interference

levels (approximately when β ≥ 1). In the cases of high cross interference levels (β ≥ 2) and

many users (N = 5), the stationary policy fails to meet the minimum payoff guarantees due to

strong interference (indicated by zero average throughput in the figure). On the other hand, the

desirable feature of the proposed policy is that the average throughput does not decrease with

the increase of the cross interference level, because SUs transmit in a TDMA fashion. For the

same reason, the average throughput does not change with the number of SUs.

Note that the proposed policy is infeasible (zero average throughput) when the cross interfer-

ence level is very small. This is because it cannot be deviation-proof in this scenario. When the

interference level is very small, SU j can deviate from p̃i and receives a high reward uj(pj, p̃i−j)

because the interference from SU i, p̃iigij , is small. Hence, the benefit of deviation bij is large,

and the deviation is inevitable. This observation leads to an efficient way for the LSS to check the

cross interference level without knowing the channel gains. If the proposed policy is infeasible,

the LSS knows that the cross interference level is low, and can switch to stationary policies.

August 23, 2021 DRAFT



21

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 T
hr

ou
gh

pu
t

Variance of Measurement Error

 

 

Proposed, False alarm probability 10%
Optimal Punish−Forgive, False alarm probability 10%
Proposed, False alarm probability 30%
Optimal Punish−Forgive, False alarm probability 30%
Proposed, False alarm probability 50%
Optimal Punish−Forgive, False alarm probability 50%

Fig. 6. Performance comparison of the proposed policy and the punish-forgive policy with the optimal punishment length

under different error variances and different false alarm probabilities.

2) Comparison with “punish-forgive” policies proposed under perfect monitoring: We also

compare the proposed policy with existing policies designed under the assumption of perfect

monitoring [15]–[18]. Specifically, we consider the “punish-forgive” policy in [15]–[18], which

requires SUs to switch to the punishment phase of L time slots once a deviation is detected.

In the punishment phase, all the SUs transmit at the maximum power levels to create high

interference to the deviator6. A special case of the punish-forgive policy when the punishment

length L = ∞ [15] is the celebrated “grim-trigger” strategy in game theory literature [25].

As discussed before, the punish-forgive policy works well if the SUs can perfectly monitor the

individual power levels of all the SUs, because in this case, the punishment serves as a threat and

will never be carried out in the equilibrium. However, when the SUs have imperfect monitoring

ability, the punishment will be carried out with some positive probability, which decreases all

the SUs’ average payoffs.

Fig. 6 shows that the proposed policy outperforms the punish-forgive policies under different

variances of measurement errors and different false alarm probabilities. For each combination of

the error variance and the false alarm probability, we choose the punish-forgive policy with the

6Note that all the SUs transmitting at the maximum power levels. For the punish-forgive policy [15]–[18], we allow the

violation of the IT constraint in the punishment phase. Note that the IT constraint is never violated in the proposed policy.
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Fig. 7. The impact of the variance of the measurement error on the performance of the proposed policy and the minimum

discount factor required under which the proposed policy is deviation-proof.

optimal punishment length. The performance of punish-forgive polices degrades with the increase

of the error variance and the false alarm probability, because of the increasing probability of

mistakenly triggered punishments. Some interesting observation on how the performance of the

proposed policy changes with the error variance and the false alarm probability is explained in

details in the following subsections.

B. Impacts of Variances of Measurement Errors

Fig. 7 shows that with the increase of the variance of measurement errors, the average

throughput decreases, and the SUs’ patience (the discount factor) required to achieve Pareto

optimal equilibrium payoffs increases. First, when the error variance increases, the intermediate

IT limit I must decrease to maintain the constraint on the false alarm probability. The decrease

of I leads to the decrease of SUs’ maximum transmit power levels allowed, which results in

the decrease of the average throughput. Another impact of the increase in the error variance is

that ρ(y0|pj, p̃i−j) =
∫
x>Ī−pjhj0−p̃iihi0

fε(x)dx increases, which leads to the increase of benefit of

deviation bij . Hence, the minimum discount factor δ increases according to Theorem 1.
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Fig. 8. The impact of the false alarm probability on the performance of the proposed policy and the minimum discount factor

required under which the proposed policy is deviation-proof.

C. Impacts of Constraints on The False Alarm Probability

Fig. 8 shows that with the increase of the false alarm probability limit Γ̄, both the average

throughput and the users’ patience (the discount factor) required to achieve Pareto optimal equi-

librium payoffs increase. First, with an increased false alarm probability limit, the intermediate

IT limit I can increase, which leads to an increase of the SUs’ maximum transmit power levels

and thus an increase of the users’ throughput. Meanwhile, since

ρ(y0|p̃i)− ρ(y0|pj, p̃i−j) = −
∫ Ī−I

Ī−I−h0jpj

fε(x)dx

increases when I increases, the benefit of deviation bij increases. This leads to an increase of

the minimum discount factor.

This observation indicates an interesting design tradeoff. On one hand, a smaller false alarm

probability can reduce the overhead of sending distress signals, and can also relax the requirement

on SUs’ patience. On the other hand, a larger false alarm probability can increase the average

throughput, such that the spectrum efficiency or the revenue can increase. Our theoretical results

characterize such a tradeoff, which can be used to choose the optimal intermediate IT limit I .
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VI. CONCLUSION

In this paper, we studied power control in dynamic spectrum sharing among SUs under the

interference temperature constraint, and proposed a dynamic spectrum sharing policy that allows

SUs to transmit in a TDMA fashion. The proposed policy can achieve Pareto optimal operating

points that are not achievable under existing spectrum sharing policies with constant power

levels. The proposed policy is amenable to distributed implementation and is deviation-proof, in

that the SUs are in their self-interests (i.e. maximizing their own QoS) to follow the policy. The

proposed policy can achieve Pareto optimality even when the SUs have limited and imperfect

monitoring ability: they only observe distress signals that erroneously indicate the violation of

the interference temperature constraint. Simulation results validate our analytical results on the

policy design and demonstrate the performance gains enabled by the proposed policy.

APPENDIX A

PROOF OF THEOREM 1

The proof culminates in the demonstration that under certain conditions, a set of Pareto optimal

payoffs can be a self-generating set. Then according to [25, Proposition 7.3.1][26], all the payoffs

in the set are equilibrium payoffs. More specifically, we derive the sufficient and necessary

conditions (i.e. Conditions 1-3 in Theorem 1) under which a subset of Pareto optimal payoffs

is a self-generating set, and find the largest subset of Pareto optimal payoffs that can be self-

generating (i.e. Bµ defined in Theorem 1).

A. Preliminaries on Self-generating Sets

We first provide some background knowledge related to the self-generating sets. Similar to

Markov decision processes (MDP’s), when we analyze the game, we can decompose the average

payoff into the current payoff and the continuation payoff (i.e. the average payoff starting from

the next time slot). However, there are two key differences between the decomposition in a game

and that in a MDP. First, there are multiple users in a game, as opposed to MDP’s in which there

is usually only one user. Second, the incentive compatibility constraints, which are not present

in a MDP, need to be considered in a game. Hence, the decomposability in a game is defined

as follows [25, Definition 7.3.2][26].7

7For the ease of reference, we duplicate the definition in [25, Definition 7.3.2] here.
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Definition 4 (Decomposability): A payoff v ∈ RN is decomposable on a set W ⊆ RN with

respect to discount factor δ and (pure) action profile p, if there exists a mapping γ : Y → W ,

such that for all i ∈ N , we have

vi = (1− δ) · ui(p) + δ ·
∑
y∈Y

γi(y)ρ(y|p) (14)

≥ (1− δ) · ui(p′i,p−i) + δ ·
∑
y∈Y

γi(y)ρ(y|p′i,p−i), ∀p′i ∈ Pi. (15)

A payoff v is decomposable on a set W with respect to discount factor δ, if there exists an

action profile p, such that v is decomposable on a set W with respect to discount factor δ and

action profile p.

In the above definition, we can see that each user i’s payoff vi is decomposed into the

current payoff ui(p) and the expected continuation payoff
∑

y∈Y γi(y)ρ(y|p), which specifies

the continuation payoff γi(y) starting from the next period given the signal y. Importantly, the

decomposition needs to be incentive compatible, in the sense that each user i cannot choose a

different action p′i to improve the average payoff. For convenience, we write D(W ; δ,p) as the

set of payoffs that can be decomposed on set W with respect to discount factor δ and action

profile p, namely

D(W ; δ,p) = {v ∈ RN : v is decomposable on set W with respect to δ and p.} (16)

Similarly, we write D(W ; δ) , ∪p∈PD(W ; δ,p) as the set of payoffs that can be decomposed

on set W with respect to discount factor δ.

A self-generating set is a set W , in which every payoff v ∈ W is decomposable on the set

W itself. The formal definition is as follows [25, Definition 7.3.4][26].

Definition 5 (Self-generating Sets): A set W is self-generating under discount factor δ, if

W ⊆ D(W ; δ).

The self-generating sets play an important role in repeated game theory, because every payoff

in a self-generating set is an equilibrium payoff. We restate this important result formally in the

following lemma [25, Proposition 7.3.1][26].

Lemma 1 (Self-generation): For any bounded set W ⊂ RN , if W is self-generating, then

every payoff in W is an equilibrium payoff of the repeated game.
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B. Outline of The Proof

In the above subsection, we have summarized some important results related to self-generation

in repeated game theory. Now we outline the proof of Theorem 1.

Recall that due to Definition 1, the Pareto boundary of the considered repeated game is

B =

{
v :
∑
i∈N

vi
v̄

= 1, vi ≥ 0, ∀i ∈ N

}
.

Consider a subset of the Pareto boundary

Bµ ,

{
v :
∑
i∈N

vi
v̄

= 1,
vi
v̄
≥ µi, ∀i ∈ N

}
, (17)

where µi ≥ 0 for all i ∈ N . Our focus is to show that under certain conditions, the subset of the

Pareto boundary Bµ can be a self-generating set, which means that every Pareto optimal payoff in

Bµ can be an equilibrium payoff. In the next subsection, we derive the necessary conditions if Bµ
is self-generating. These necessary conditions lead to Conditions 1-3 in Theorem 1. A byproduct

of the first necessary condition are the constraints on the boundary µ of the self-generating sets

Bµ (i.e. the lower bound µ of µ in Theorem 1), which leads to the characterization of the largest

possible self-generating set Bµ. In the final subsection, we show that these necessary conditions

are also sufficient for Bµ to be self-generating.

C. Necessary Conditions For a Set of Pareto Optimal Payoffs To Be Self-generating

Suppose that Bµ is self-generating. Then for any payoff v ∈ Bµ, there exists an action profile

p and a mapping γ : Y → Bµ, such that for all i ∈ N , we have

vi = (1− δ) · ui(p) + δ ·
∑
y∈Y

γi(y)ρ(y|p) (18)

≥ (1− δ) · ui(p′i,p−i) + δ ·
∑
y∈Y

γi(y)ρ(y|p′i,p−i), ∀p′i ∈ Pi. (19)

The first observation is that the action profile p that decomposes a Pareto optimal payoff v ∈ Bµ
must be a payoff-maximizing action profile for a certain user. In other words, p ∈ {p̃1, . . . , p̃N}.

This is because the average payoff v and the continuation payoffs γ(y),∀y ∈ Y, are all on the

Pareto boundary B. In other words,
∑

i∈N vi/v̄i = 1 and
∑

i∈N γi(y)/v̄i = 1,∀y ∈ Y . Since the

average payoff is the convex combination of the current payoff and the expected continuation

August 23, 2021 DRAFT



27

payoff, the current payoff must also lie on the Pareto boundary, i.e.
∑

i∈N ui(p)/v̄i = 1.

According to Definition 1, the only action profiles that lie on the Pareto boundary are p̃1, . . . , p̃N .

Based on the above observation, we have D(W ; δ) = ∪i∈ND(W ; δ, p̃i). Suppose that a payoff

v ∈ Bµ is decomposed by p̃i, namely v ∈ D(W ; δ, p̃i). Using the facts that ui(p̃i) = v̄i and

uj(p̃
i) = 0,∀j 6= i, we have

vi = (1− δ) · v̄i + δ ·
∑
y∈Y

γi(y)ρ(y|p̃i) (20)

≥ (1− δ) · ui(pi, p̃i−i) + δ ·
∑
y∈Y

γi(y)ρ(y|pi, p̃i−i), ∀pi ∈ Pi,

and for all j 6= i,

vj = δ ·
∑
y∈Y

γj(y)ρ(y|p̃i) (21)

≥ (1− δ) · uj(pj, p̃i−j) + δ ·
∑
y∈Y

γj(y)ρ(y|pj, p̃i−j), ∀pj ∈ Pj.

Since user j 6= i chooses p̃ij = 0 in action profile p̃i, we say that under action profile p̃i, user i

is the active user and user j 6= i is an inactive user.

Next, we show that the incentive compatibility constraints for inactive users and the active

user imply Condition 1 and Condition 2 of Theorem 1, respectively. The incentive constraints

for inactive users also give us constraints on the boundary µ of Bµ. In addition, to make sure

that γ(y) ∈ Bµ,∀y, the discount factor should satisfy Condition 3 of Theorem 1.

1) Incentive Constraints For Inactive Users: We examine the incentive compatibility con-

straint for an inactive users j 6= i in (21), which will lead to the first necessary condition. First,

since uj(pj, p̃i−j) > 0,∀pj > 0, for the inequality in (21) to hold, we must have
∑

y∈Y γj(y)ρ(y|p̃i) >∑
y∈Y γj(y)ρ(y|pj, p̃i−j), which is equivalent to[

ρ(y0|p̃i)− ρ(y0|pj, p̃i−j)
]
· (γj(y0)− γj(y1)) > 0, ∀pj > 0. (22)

Note that the probability of receiving distress signals given action profile (pj, p̃
i
−j) is no smaller

than the probability given p̃i, because

ρ(y0|pj, p̃i−j)− ρ(y0|p̃i) =

∫ Ī−p̃iigi0

Ī−p̃iigi0−pjgj0
fε(x)dx ≥ 0. (23)

Since ρ(y0|pj, p̃i−j) ≥ ρ(y0|p̃i), we must have γj(y1) > γj(y0). This requirement is intuitive:

we should set a lower continuation payoff following the distress signal y0 in order to deter user

j 6= i from deviating from p̃i.
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From the equality constraint in (21), we have

δ =
vj∑

y∈Y γj(y)ρ(y|p̃i)
. (24)

Plugging in the above expression of δ, we can eliminate discount factor δ in the inequality of

(21) and obtain an equivalent inequality as follows∑
y∈Y

γj(y)

[(
1− vj

uj(pj, p̃i−j)

)
ρ(y|p̃i) +

vj
uj(pj, p̃i−j)

ρ(y|pj, p̃i−j))
]
≤ vj, ∀pj 6= p̃ij. (25)

For notational simplicity, we write the coefficient of γj(y1) in the above inequality as

cij(pj, p̃
i
−j) ,

(
1− vj

uj(pj, p̃i−j)

)
ρ(y1|p̃i) +

vj
uj(pj, p̃i−j)

ρ(y1|pj, p̃i−j)) (26)

= ρ(y1|p̃i) + vj ·
ρ(y1|pj, p̃i−j)− ρ(y1|p̃i)

uj(pj, p̃i−j)
(27)

= ρ(y1|p̃i) + vj ·
ρ(y0|p̃i)− ρ(y0|pj, p̃i−j)

uj(pj, p̃i−j)
, (28)

and define the maximum value of the coefficient cij as

c+
ij , max

pj∈Pj ,pj 6=p̃ij
cij(pj, p̃

i
−j) (29)

= ρ(y1|p̃i) + vj · max
pj∈Pj ,pj 6=p̃ij

ρ(y0|p̃i)− ρ(y0|pj, p̃i−j)
uj(pj, p̃i−j)

(30)

Since γj(y1) > γj(y0), the set of inequality constraints in (21)

cij(pj, p̃
i
−j) · γj(y1) + (1− cij(pj, p̃i−j)) · γj(y0) ≤ vj, (31)

for all pj > 0, is equivalent to a single constraint

c+
ij · γj(y1) + (1− c+

ij) · γj(y0) ≤ vj. (32)

Hence, the incentive constraints (21) for user j 6= i can be rewritten as ρ(y1|p̃i) · γj(y1) + (1− ρ(y1|p̃i)) · γj(y0) =
vj
δ

c+
ij · γj(y1) + (1− c+

ij) · γj(y0) ≤ vj

, (33)

where µj · v̄j ≤ γj(y) ≤ v̄j,∀y ∈ Y .

The first necessary condition of Bµ ⊆ D(Bµ; δ) is c+
ij < 0, as stated in the following

proposition.

Proposition 1: If Bµ ⊆ D(Bµ; δ), then c+
ij < 0 for all i ∈ N and for all j 6= i.
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Proof: If Bµ ⊆ D(Bµ; δ), then any payoff v in Bµ should satisfy v ∈ D(Bµ; δ). Pick a

payoff v̂i, in which

v̂ij =


(

1−
∑

k 6=i µk

)
· v̄i, j = i

µj · v̄j, j 6= i
. (34)

Note that v̂i is the payoff profile in which every user j 6= i has the smallest payoff µj · v̄j and

user i has the largest payoff
(

1−
∑

k 6=i µk

)
· v̄i. We show that v̂i ∈ D(Bµ; δ) implies c+

ij < 0

for all j 6= i.

First, v̂i can only be decomposed by p̃i. Otherwise, suppose that v̂i is decomposed by p̃j, j 6= i.

Then the decomposition of user i’s payoff is

v̂ii = δ ·
(
ρ(y1|p̃j) · γi(y1) + (1− ρ(y1|p̃j)) · γi(y0)

)
. (35)

Since the convex combination of γi(y1) and γj(y1) is equal to v̂ii/δ, which is strictly larger than

v̂ii , at least one of γi(y1) and γj(y1) is strictly larger than v̂ii . However, γi(y) ∈ Bµ implies that

γi(y) ≤ v̂ii,∀y ∈ Y , which leads to contradiction. Hence, v̂i can only be decomposed by p̃i.

Now that v̂i is decomposed by p̃i, we focus on the incentive constraints for an arbitrary user

j 6= i in (33). From the equality in (33) and the requirement that γj(y1) > γj(y0), we have

γj(y1) ≥ v̂ij/δ > v̂ij . Then suppose that c+
ij ≥ 0, in order to satisfy the inequality in (33), we

must have γj(y0) < v̂ij , which is contradictory to the fact that γj(y0) ∈ Bµ. Hence, we must have

c+
ij < 0 for all j 6= i.

Since the above argument of v̂i applies to any i ∈ N , we have c+
ij < 0 for all i ∈ N and for

all j 6= i.

The first necessary condition that c+
ij < 0 has two implications. First, since ρ(y1|p̃i) and vj

are both nonnegative, we have

max
pj∈Pj ,pj 6=p̃ij

ρ(y0|p̃i)− ρ(y0|pj, p̃i−j)
uj(pj, p̃i−j)

< 0, (36)

where leads to Condition 1 in Theorem 1 that benefit from deviation bij < 0.
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Second, to decompose v̂i, we have

c+
ij = ρ(y1|p̃i) + vij · max

pj∈Pj ,pj 6=p̃ij

ρ(y0|p̃i)− ρ(y0|pj, p̃i−j)
uj(pj, p̃i−j)

(37)

= ρ(y1|p̃i) + µj v̄j ·
bij
v̄j

(38)

= ρ(y1|p̃i) + µj · bij (39)

< 0, (40)

which gives us a lower bound on µj , namely

µj >
ρ(y1|p̃i)
−bij

=
1− ρ(y0|p̃i)
−bij

. (41)

Since v̂i should be decomposed for all i ∈ N , we have

µj > max
i 6=j

1− ρ(y0|p̃i)
−bij

, (42)

which leads to the lower bound µ
j

in Theorem 1.

2) Incentive Constraints For The Active User: We examine the incentive constraints for the

active user i in (20), which will lead to the second necessary condition (i.e. Condition 2 in

Theorem 1).

Suppose that a payoff v ∈ Bµ is decomposed by p̃i. We rewrite the incentive constraint for

the active user i here

vi = (1− δ) · v̄i + δ ·
∑
y∈Y

γi(y)ρ(y|p̃i) (43)

≥ (1− δ) · ui(pi, p̃i−i) + δ ·
∑
y∈Y

γi(y)ρ(y|pi, p̃i−i), ∀pi ∈ Pi.

Since γ(y) ∈ Bµ, given the inactive users’ continuation payoffs γj(y), the active user’s contin-

uation payoff is determined by γi(y) = v̄i

(
1−

∑
j 6=i

γj(y)

v̄j

)
.

First, it is not difficult to check that if {γj(y)}j 6=i,∀y satisfy the inactive users’ equality

constraints in (33), then γi(y) = v̄i

(
1−

∑
j 6=i

γj(y)

v̄j

)
will satisfy the active user’s equality
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constraint in (45).

(1− δ) · v̄i + δ ·
∑
y∈Y

γi(y)ρ(y|p̃i) = (1− δ) · v̄i + δ ·
∑
y∈Y

v̄i

(
1−

∑
j 6=i

γj(y)

v̄j

)
ρ(y|p̃i)

= (1− δ) · v̄i + δ ·
∑
y∈Y

v̄iρ(y|p̃i)− δ ·
∑
y∈Y

∑
j 6=i

γj(y)

v̄j
ρ(y|p̃i)

= v̄i − δ · v̄i
∑
j 6=i

∑
y∈Y

γj(y)ρ(y|p̃i)
v̄j

= v̄i − δ · v̄i
∑
j 6=i

vj/δ

v̄j
= v̄i

(
1−

∑
j 6=i

vj
v̄j

)
= vi.

The inequality constraint in (45) requires that the active user i has no incentive to choose

another action pi 6= p̃ii. Although the active user i’s current payoff is maximized at p̃i, it may

still have the incentive to deviate for the following reason. Since γj(y1) > γj(y0) for all j 6= i,

we have γi(y1) < γi(y0). In other words, the active user i has a larger continuation payoff when

the distress signal y0 is received. Hence, it may want to deviate, such that the probability of

receiving the distress signal is increased, if the increase of the expected continuation payoff

outweighs the decrease of the current payoff. To prevent the active user i from deviating, we

should make its continuation payoffs γi(y1) and γi(y0) as close as possible. Equivalently, we

should make the inactive users’ continuation payoffs γj(y1) and γj(y0) as close as possible.

For an inactive user j 6= i, the closest continuation payoffs that satisfy the incentive constraints

(33) are the ones that satisfy the inequality with equality. Hence, we can solve for the continuation

payoffs as

γj(y1) =
1
δ
(1− c+

ij)− (1− ρ(y1|p̃i))
ρ(y1|p̃i)− c+

ij

· vj, γj(y0) =
ρ(y1|p̃i)− 1

δ
c+
ij

ρ(y1|p̃i)− c+
ij

· vj. (44)

Given the inactive users’ continuation payoffs, we can obtain the active user’s continuation

payoffs γi(y1) and γi(y0). Plugging the expression of γj(y1) and γj(y0) into the inequality in
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(45), we have for all pi 6= p̃ii,

vi ≥ (1− δ) · ui(pi, p̃i−i) + δ ·
∑
y∈Y

γi(y)ρ(y|pi, p̃i−i)

⇔ vi − (1− δ) · ui(pi, p̃i−i)− δ ·
∑
y∈Y

v̄i

(
1−

∑
j 6=i

γj(y)

v̄j

)
ρ(y|pi, p̃i−i) ≥ 0

⇔ vi − (1− δ) · ui(pi, p̃i−i)− δ ·

[
vi − v̄i ·

∑
j 6=i

ρ(y1|pi, p̃i−i)− c+
ij

ρ(y1|p̃i)− c+
ij

· vj
v̄j
·
(

1

δ
− 1

)]
≥ 0

⇔ (1− δ) · vi − (1− δ) · ui(pi, p̃i−i) + (1− δ) · v̄i ·
∑
j 6=i

ρ(y1|pi, p̃i−i)− c+
ij

ρ(y1|p̃i)− c+
ij

· vj
v̄j
≥ 0

⇔ vi − ui(pi, p̃i−i) + v̄i ·
∑
j 6=i

ρ(y1|pi, p̃i−i)− c+
ij

ρ(y1|p̃i)− c+
ij

· vj
v̄j
≥ 0

⇔ vi − ui(pi, p̃i−i) + v̄i ·
∑
j 6=i

(
1 +

ρ(y1|pi, p̃i−i)− ρ(y1|p̃i)
ρ(y1|p̃i)− c+

ij

)
· vj
v̄j
≥ 0

⇔ v̄i ·

(
vi
v̄i

+
∑
j 6=i

vj
v̄j

)
− ui(pi, p̃i−i) + v̄i ·

∑
j 6=i

vj/v̄j
ρ(y1|p̃i)− c+

ij

·
(
ρ(y1|pi, p̃i−i)− ρ(y1|p̃i)

)
≥ 0

⇔ v̄i − ui(pi, p̃i−i) + v̄i ·
∑
j 6=i

ρ(y1|pi, p̃i−i)− ρ(y1|p̃i)
bij

≥ 0,

which leads to Condition 2 in Theorem 1.

3) Constraints On The Discount Factor: Now we derive the necessary conditions on the

discount factor. The minimum discount factor δ(µ) required for Bµ to be a self-generating set

can be solved by

δ(µ) = max
v∈Bµ

δ, subject to v ∈ D(Bµ; δ). (45)

Since D(Bµ; δ) = ∪i∈ND(Bµ; δ, p̃i), the above optimization problem can be reformulated as

δ(µ) = max
v∈Bµ

min
i∈N

δ, subject to v ∈ D(Bµ; δ, p̃i). (46)

To solve the optimization problem (46), we explicitly express the constraint v ∈ D(Bµ; δ, p̃i)

using the results derived in the previous two subsections. The inactive users’s continuation payoffs

have been derived in (44), which determine the active user’s continuation payoffs. Hence, the

constraint v ∈ D(Bµ; δ, p̃i) on discount factor δ is equivalent to

γ(y) ∈ Bµ,∀y ∈ Y, (47)
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which can be written explicitly as

γj(y1) =
1
δ
(1− c+

ij)− (1− ρ(y1|p̃i))
ρ(y1|p̃i)− c+

ij

· vj ∈ [µj · v̄j, v̄j],∀j 6= i (48)

γj(y0) =
ρ(y1|p̃i)− 1

δ
c+
ij

ρ(y1|p̃i)− c+
ij

· vj ∈ [µj · v̄j, v̄j],∀j 6= i (49)

γi(y1) = v̄i

(
1−

∑
j 6=i

γj(y1)

v̄j

)
∈ [µj · v̄j, v̄j] (50)

γi(y0) = v̄i

(
1−

∑
j 6=i

γj(y0)

v̄j

)
∈ [µj · v̄j, v̄j] (51)

Since γj(y1) > γj(y0), the constraints on γj(y1) and γj(y0) can be simplified as

γj(y1) =
1
δ
(1− c+

ij)− (1− ρ(y1|p̃i))
ρ(y1|p̃i)− c+

ij

· vj ≤ v̄j (52)

⇔ δ ≥
1− c+

ij

1− c+
ij +

(
v̄j
vj
− 1
)

(ρ(y1|p̃i)− c+
ij)
, (53)

and

γj(y0) =
1
δ
(1− c+

ij)− (1− ρ(y1|p̃i))
ρ(y1|p̃i)− c+

ij

· vj ≥ µj · v̄j. (54)

Note that the constraint (54) will be satisfied as long as c+
ij < 0.

Since γi(y1) < γi(y0), the constraints on γi(y1) and γi(y0) can be simplified as

γi(y1) ≥ µi · v̄i ⇔ δ ≥ 1

1 + vi
v̄i

1−µi∑
j 6=i

1−c+
ij

ρ(y1|p̃i)−c
+
ij

·
vj
v̄j

, (55)

and

γi(y0) ≤ v̄i. (56)

Note that the above constraint on γi(y0) is satisfied as long as (54) is satisfied for all j 6= i.

Note also that the constraint (52) is satisfied as long as (55) is satisfied.

To sum up, the discount factor needs to satisfy the following constraint:

δ ≥ 1

1 + vi
v̄i

1−µi∑
j 6=i

1−c+
ij

ρ(y1|p̃i)−c
+
ij

·
vj
v̄j

=
1

1 + vi
v̄i

1−µi∑
j 6=i

1−c+
ij

−bij

=
1

1 + vi
v̄i

1−µi∑
j 6=i

(
ρ(y0|p̃i)
−bij

+
vj
v̄j

) . (57)
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Hence, the optimization problem (46) is equivalent to

δ(µ) = max
v∈Bµ

min
i∈N

xi(v), (58)

where

xi(v) ,
1

1 + vi
v̄i

1−µi∑
j 6=i

(
ρ(y0|p̃i)
−bij

+
vj
v̄j

) .

Since xi(v) is decreasing in vi and increasing in vj,∀j 6= i, the payoff v∗ that maximizes

mini∈N xi(v) must satisfy xi(v∗) = xj(v
∗) for all i and j. Now we find the payoff v∗ such that

xi(v
∗) = xj(v

∗) for all i and j.

Define z , vi
v̄i

1−µi∑
j 6=i

(
ρ(y0|p̃i)
−bij

+
vj
v̄j

) = vi
v̄i

1−µi
1− vi

v̄i
+
∑
j 6=i

ρ(y0|p̃i)
−bij

,∀i ∈ N . Then we can solve for vi
v̄i

as

follows

vi
v̄i

=
z
(

1 +
∑

j 6=i
ρ(y0|p̃i)
−bij

)
+ µi

1 + z
. (59)

Since
∑

i∈N
vi
v̄i

= 1, we can solve for z as

z =
1−

∑
i∈N µi

N − 1 +
∑

i∈N
∑

j 6=i
ρ(y0|p̃i)
−bij

. (60)

Hence, the minimum discount factor is δ(µ) = 1
1+z

, which leads to Condition 3 in Theorem 1.

D. Necessary Conditions Are Also Sufficient

In the previous subsection, we have derived three necessary conditions for the set Bµ to be

self-generating. Now we show that the three necessary conditions are also sufficient for Bµ to

be self-generating.

Given any payoff v ∈ Bµ, we can determine the action profile p̃i that decomposes it and the

corresponding continuation payoffs based on the results in the previous subsection. First, the

action profile p̃i that decomposes v is determined by

i = arg min
j∈N

xj(v) = arg max
j∈N

vj
v̄j

1− µj
1− vj

v̄j
+
∑

k 6=j
ρ(y0|p̃j)
−bjk

. (61)

Then we determine the continuation payoffs as
γj(y1) =

1
δ

(1−c+ij)−(1−ρ(y1|p̃i))
ρ(y1|p̃i)−c+ij

· vj ≤ v̄j,∀j 6= i,

γj(y0) =
1
δ

(1−c+ij)−(1−ρ(y1|p̃i))
ρ(y1|p̃i)−c+ij

· vj ≥ µj · v̄j,∀j 6= i,

γi(y) = v̄i

(
1−

∑
j 6=i

γj(y)

v̄j

)
,∀y ∈ Y

. (62)
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Conditions 1 and 2 ensure that the incentive constraints for the active user (20) and the inactive

users (21) are satisfied by setting the continuation payoffs as above. Condition 3 on the discount

factor δ ensures that the above continuation payoff γ(y) ∈ Bµ. Hence, any payoff v ∈ Bµ is

decomposable on set Bµ with respect to discount factor δ ≥ δ(µ). Then Bµ is self-generating,

and any payoff in Bµ is an equilibrium payoff.

APPENDIX B

PROOF OF THEOREM 2

We have characterized the largest set of Pareto optimal equilibrium payoffs Bµ. In the algo-

rithm in Table II, we start with the target payoff v? ∈ Bµ as the average payoff at period 0, and

decompose it into a current payoff and a continuation payoff. The decomposition tells us what

action profile to play in period 0. Then we decompose the continuation payoff and determine

the action profile to play in period 1. By performing the decomposition in every period, we can

determine what action profile to play given any signal at every period.

Specifically, suppose that the continuation payoff at period t is v(t). Then the action profile

p̃i to decompose v(t) is determined by

i∗ = arg min
j∈N

xj(v(t)) = arg max
j∈N

vj(t)

v̄j

1− µj
1− vj(t)

v̄j
+
∑

k 6=j
ρ(y0|p̃j)
−bjk

, (63)

where vj(t)

v̄j

1−µj
1−

vj(t)

v̄j
+
∑
k 6=j

ρ(y0|p̃j)
−bjk

is exactly user j’s index αj(t). Then we can determine the con-

tinuation payoff v(t+ 1) according to (62).
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