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Abstract— Everyday people turn to the web to exchange services, data and ideas on websites such as BitTorrent, Yahoo 

Answers, Yelp, Amazon Mechanical Turk and more. These information exchange systems differ in many ways, but all 
share a common vulnerability to selfish behavior and free-riding. In this paper, we build incentives schemes based on 
social norms. Social norms prescribe a social strategy for the users in the system to follow and deploy reputation schemes 
to reward or penalize users depending on whether they follow or deviate from the prescribed strategy when selecting 
actions. Because users in these systems often have only limited capability to observe the global system information, e.g. the 
reputation distribution of the users participating in the system, their beliefs about the reputation distribution are 
heterogeneous and biased. Such belief heterogeneity causes a positive fraction of users to not follow the social strategy. In 
such practical scenarios, the standard equilibrium analysis deployed in the economics literature is no longer directly 
applicable and hence, the system design needs to consider these differences. To investigate how the system designs need to 
change when the participating users have only limited observations, we focus on a simple social norm with binary 
reputation labels but allow adjusting the punishment severity through randomization. First, we model the belief 
heterogeneity using a suitable Bayesian belief function. Next, we formalize the users’ optimal decision problems and 
derive in which scenarios they follow the prescribed social strategy. With this result, we then study the system dynamics 
and formally define equilibrium in the sense that the system is stable when users strategically optimize their decisions. By 
rigorously studying two specific cases where users’ belief distribution is constant or is linearly influenced by the true 
reputation distribution, we prove that the optimal reputation update rule is to choose the mildest possible punishment. 
This result is further confirmed for higher order beliefs in simulations. It is also shown that more observations do not 
necessarily lead to a higher efficiency. In conclusion, our proposed design framework enables the development of optimal 
social norms for various deployment scenarios with limited observations. 

 
Index Terms— Reputation, social norm, information exchange systems, limited observations, game theory. 

I. INTRODUCTION 

 As the web has evolved, it has become increasingly social. People turn to the web to 

exchange ideas, data and services, as evidenced by the popularity of sites like Wikipedia, Bit-

Torrent, Yahoo Answers, Yelp, and online labor markets like Amazon Mechanical Turk (AMT). 

While these systems, which we refer to as information exchange systems, differ in many ways, 

they share a common vulnerability to selfish behavior and free-riding. For example, a worker on 

AMT may attempt to complete jobs with as little effort as possible while still being paid; a user 

in a peer-to-peer system may wish to download files without using bandwidth to upload files for 

others. In order for these sites to thrive, participants must be properly motivated to contribute.  

Distributed optimization techniques have been applied extensively in engineering to enable the 
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efficient usage of resources by obedient or cooperative users. Only in recent years have 

engineers started to investigate incentive issues in systems formed by self-interested users. Many 

of the existing mechanisms to combat free-riding problems rely on game-theoretic approaches 

and can be classified as either pricing mechanisms or reciprocity mechanisms. Pricing 

mechanisms are appropriate in some settings, but do not make sense for applications like Yahoo 

Answers, Wikipedia, or Yelp, where much of the appeal is that the information is free.  

Under a reciprocity mechanism, a user is rewarded or punished based on its behavior in the 

system. Rewards and punishment are typically determined according to a differential service 

scheme [1], which might require, for example, that a user who contributed heavily to the system 

in the past should receive more resources than a user who contributed less [2]. This preferential 

treatment provides an incentive for users to cooperate, and can be implemented using either 

virtual currency or reputation. Under a virtual currency mechanism, users are incentivized to 

contribute through a system of rewards based on virtual currency [3][4][5][6]. However, prior 

work shows that even optimal designs based on virtual currency cannot achieve optimal 

performance [7]. To measure good behavior, reciprocity mechanisms frequently associate a 

rating or reputation score with each other in the system. Depending on how a user’s rating is 

generated, reciprocity-based protocols can be classified as direct reciprocity mechanisms [8], or 

indirect reciprocity mechanisms [9]. Direct reciprocity implies that the interaction between two 

users is influenced only by their history of interactions with each other, and not by their 

interactions with other users. Though easy to implement, direct reciprocity requires frequent 

interactions between two users in order to establish accurate mutual ratings. This is restrictive in 

systems characterized by high churn, asymmetry of interests, or infrequent interactions between 

any pair of users, such as most peer production systems, online labor markets, and review sites.  

Protocols that are based on indirect reciprocity typically assign to each user a global reputation 

[10] based on its past interactions with all other users in the system. A differential service 

scheme recommends actions (e.g., “share a file with this user” or “do not share a file with this 

user”) based only on the reputations of users, and not on their entire history of interactions. Much 
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of the existing work on reputation mechanisms is concerned with practical implementation 

details. Some focuses on effective information gathering techniques which differ in how the 

global reputation is calculated and propagated (e.g., through efficient information aggregation 

[11] or secure user identification [12]). Empirical studies have examined the impact of reputation 

on a seller’s prices and sales [13][14][15], motivation for participating in reputation-based 

mechanisms [16], among other things. There has also been some work analytically exploring the 

use of reputation mechanisms to combat moral hazard in a repeated games setting [17][18][19], 

including some that does not require the presence of a trusted centralized system [20]. This work 

typically considers one (or a few) long-lived seller with many short-lived buyers, which is not 

appropriate for information exchange systems where there are many interacting users playing the 

role of buyer or seller or both, contributing and seeking information.  

To rigorously capture the impact of various strategy and protocol design choices on infor-

mation exchange systems, the authors of [21] propose a framework using social norms which 

were originally designed to sustain cooperation in a community with a large population of indi-

viduals participating in anonymous random matching games [22][23][24]. In an incentive sch-

eme based on a social norm, each individual is assigned a dynamic label indicating its reputation 

or status based on past behavior, and individuals with different labels are treated differently by 

others in the system. Hence, a social norm can be adopted easily in social communities with an 

infrastructure that collects, processes, and delivers information about individuals’ behavior.  

We build incentive schemes for information exchange systems based on social norms. In 

information exchange systems, users often have imperfect knowledge of the global information, 

in particular, the reputation distribution of the participating users. For example, users observe the 

reputations of a limited number of other users on the website and form (probably biased) beliefs 

of the reputation distribution. Moreover, users’ beliefs are heterogeneous since the observations 

of various users are different.  Such belief heterogeneity causes a positive fraction of users to not 

follow the social strategy. In contrast, standard equilibrium analysis [21][23] requires that all 

users follow the social strategy and is conducted under two assumptions: (1) users have 
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homogenous and accurate knowledge about the reputation distribution; and (2) users believe that 

all users obey the social strategy. These assumptions [21][23] hold only if users have unlimited 

observations and hence, they have perfect knowledge about the reputation distribution of the 

participating users. However, they do not hold in many practical systems where users only have 

limited observations and the system dynamics does not evolve to an equilibrium where all users 

follow the social strategy. Instead users have heterogeneous beliefs about the reputation 

distribution and they tend to trust other users with high reputations and distrust those with low 

reputations. Therefore, users’ limited observation capability leads to a different system design. 

The main contributions of this paper are summarized as follows: 

 We propose a simple class of social norms with binary reputations but allow adjusting the 

punishment severity through randomization. This class is simple and easy to implement 

while has also been shown to be close to the optimal strategy for the unlimited 

observations case in [21]. (Note that this strategy includes the contagion strategy [23] as a 

special case.) Similar randomization approach is also used in [22]. 

 We model the users’ heterogeneous beliefs of the reputation distribution due to limited 

observations using a Bayesian belief model, which captures the feature that the 

observation depends on the current true reputation distribution and that more observations 

lead to more accurate information about the reputation distribution.  

 We prove that users follow the social strategy only if their beliefs about the reputation 

distribution are above certain thresholds, i.e., they need to have sufficient “trust” in the 

society. Using this result, we can show that, in most interesting scenarios, the optimal 

design is to use the mildest possible punishment, thereby leading to a different social 

norm design than in the unlimited observations cases.   

The rest of this paper is organized as follows. Section II describes the basic setup, the social 

norms and builds the belief model. Section III investigates users’ decision problem. System 

dynamics and the equilibrium are then studied. In Section IV, the impact of punishment on the 

equilibrium performance is investigated. The optimal design is derived for two specific Bayesian 
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belief functions. Simulations are conducted in Section V followed by conclusions in Section VI.  

II. SYSTEM MODEL 

A. Setup 

We consider an information exchange system where users request and provide information or 

resources. We utilize the widely-used continuum model (mass 1), implicitly assuming that the 

user population is large and static. The system is modeled as a discrete-time system where time 

is divided into periods. When a requester generates a task, it is posted on the website and a 

provider is assigned to solve the task. We assume that there is no price associated with the task 

(as in Yelp, Yahoo Answers and etc.), the provider is the only strategic part that needs to decide 

whether or not to exert effort to solve the task. Upon accepting, the provider incurs a cost c to 

fulfill the task while the requester receives a benefitb . We assume 0b c   to make providing 

the service socially valuable and denote /b c   as the benefit-to-cost ratio. This is a simple 

gift-giving game (see Fig. 1) in which the dominant strategy for the provider is not to provide 

service. Incentives can be provided if the provider is long-lived in the system and will also 

become a requester in the future. We assume that users discount the future utility by a constant 

rate  0,1  . For the accurate modeling for the real systems, we assume that in each period, 

each user requests a task to be solved and another user is randomly assigned to solve this task. 

This random matching model is common in the economics literature [22][23][24]. Nevertheless, 

the analysis could also apply to the scenarios where a fraction  0,1   of the population 

generates tasks in each period. The parameter  only indicates the request arrival rate of the 

system but does not change the result. For the considered case 1  , each user is a requester as 

well as a provider who is assigned to another user’s requested task.  

B. Punishment adjustable social norm 

A social norm , which is designed by the protocol designer, is composed of a social strategy

 , a reputation update rule  , and a reputation set  . Each user is tagged with a reputation   

representing its social status. We consider only two available reputation labels for the users 

 0,1   with 1   indicating a good status and 0   indicating a bad status. Denote the 
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social strategy by the mapping :  , where  is the reputation set of the requester and 

 0,1  stands for the action set of the provider.  The action 1a   represents the case where 

the provider offers the service while when 0a   it does not provide service. Simply, the social 

strategy is (1) 1, (0) 0   . The social strategy favors good users in such a way that the 

providers are suggested to provide service only to good requesters but not to provide service to 

bad requesters. This strategy has the similar merit as the well-known Tit-for-Tat (TfT) strategy in 

rewarding for cooperative behaviors and punishing for non-cooperative behaviors. However, TfT 

strategy requires direct reciprocity between interacting users while the social strategy that we use 

is applicable in systems where users have infrequent interactions and with indirect reciprocity.  

 The social norm also imposes a reputation update rule based on the action that the provider 

takes. Intuitively, users who follow the social strategy should receive good reputations and those 

who do not should receive bad reputations. Denote the reputation update rule by the mapping 

: ' [0,1]    , where    is the provider’s reputation, '   is the requester’s 

reputation and [0,1]  indicates the probability that the provider has a good reputation in the next 

period. The update rule that we use is:  , 0, ,a a     and  

  
 
 

1 if   1
1,1,

0, if   1

a
a

a






 


，
         

 
 

if   1
0,1,

0, if   1

a
a

a

 




 


，
 (1) 

Essentially, if the provider deviates from the prescribed social strategy when meeting a good 

requester2, its reputation drops to 0; if the bad provider follows the prescribed social strategy, it 

restores a good reputation with probability  0,1  . Hence, for a user to receive service when it 

becomes a requester in the future, it needs to follow the social strategy as a provider in the 

current period. The parameter   adjusts the severity of punishment of the social norm which 

needs to be designed by the system designer. Such randomization can be easily implemented by 

the central entity that maintains and processes users’ reputations. A similar randomization 

approach is also used in [22] to adjust the punishment severity. For 1  , the punishment is the 

mildest, allowing the bad provider to repair its reputation after one-time cooperation with a good 
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requester; for 0  , the punishment is the harshest, preventing the bad provider from having a 

good reputation again in the future no matter how it behaves; for  0,1  , the expected time 

periods for which the user remains in the bad reputation is at least1 / . Even though we focus on 

a system using only binary reputation labels, randomization affects the punishment severity 

similarly as a system using multiple (more than 2) reputation labels. We portray the 

aforementioned reputation update rule in Fig. 2.  

C. Belief heterogeneity 

In this subsection, we model the users’ belief heterogeneity due to their limited observations. 

Because users are far-sighted, their decisions depend on how they evaluate the status of the 

society, i.e., the reputation distribution of the system. Since we are considering a binary 

reputation system, the reputation distribution can be fully described by the fraction of users with 

good reputations, which we define as the social reputation s  and use in the rest of this paper.  

In each period, each user observes the system (e.g. observes the reputations of a number of 

other users) and form a belief of the social reputation. The beliefs are different for different users. 

Also, note that a user’s belief also varies across time because it makes different observations in 

each period. For a given social reputation s , we model users’ beliefs of the social reputation as a 

probability measure on the support  0,1 . Specifically, conditional on the true social reputation, 

users believe with probability  | sf    that the social reputation is  . We introduce the 

observation granularity M  to describe how much users are able to observe the system. The 

interpretation of such granularity can be the number of other users’ reputations that the strategic 

user is able to observe by sampling the website or the number of past interactions that it is able to 

memorize. The larger M  is, the more accurate beliefs that the users have about the social 

reputation should be. In the following, we describe a belief function that satisfies this property 

(similar belief function is used in [25] to model users’ posterior beliefs after observations):  

    ,
0

)( | 1
M

M mm
s s s m M

m

M
f f

m
    



 
 

 
  , (2) 

with  



 8

    
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
    

  (3) 

and where  ·  denotes the gamma function. Essentially  ,m M mf   is the beta distribution

 1, 1B m M m   . In Bayesian statistics, the beta distribution can be seen as the posterior 

probability of the parameter  of a binomial distribution after observing m  successes and 

M m  failures. Hence,  ,m M mf   can be interpreted as the user’s belief of the social reputation 

after observing m good users and M m  bad users. Furthermore, suppose that the matching 

process is uniformly random, the number of observations of good users also follows a binomial 

random distribution with parameter s . With the beta distribution, users’ belief distribution is 

continuous and parameterized by M and s . Let us discuss the extreme cases: 

  0M  .    , 0,0m Mf f   is constant and hence,  f   is constant. It implies that users’ 

beliefs of the social reputation are uniformly random.  

  M  . In this case,    sf I     where  ·I  is the indicate function. It implies that 

as the observation granularity becomes infinite, users have perfect knowledge of the social 

reputation. This result is obtained in the following proposition. 

Proposition 1: For a given s ,  , , there exists  M   large such that  M M   , 

  | 1
s

s

sf d
 

  

  


 

    (4) 

Proof: Omitted due to space limitation. The proof can be found in [27]. ■ 

III. SYSTEM DYNAMICS AND EQUILIBRIUM 

In this section, we discuss the system dynamics and formally define the Bayesian-Nash 

equilibrium. For this, we first need to formalize the provider’s decision problem and characterize 

the social reputation distribution that arises in the steady-state in our model.  

A. User’s decision problem 

We begin by investigating a typical provider’s decision problem assuming that it has a belief

 . The provider’s decision will be based on its own reputation , the requester’s reputation  

and its belief   toward the social reputation. The provider chooses an action  , |a     to 
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maximize its total expected discounted utility. Depending on which action the provider takes, the 

reputation transition follows the reputation update rule. The provider will follow the social 

strategy if the long-run payoff is larger than the payoff by deviating and will deviate otherwise. 

For the social strategy , the stage payoff is  , ,|      when the provider chooses an action 

determined by   and holds the belief   and the long-run payoff is given by 

        
   

        
, , , ,

| , , ,1, 1 | , , , 0,

| |V

V V

        

              

 

  



 
 (5) 

As in [26], we assume that the provider believes that bad users play defect and good users 

follow the social strategy when calculating its payoff. For example, if the provider has a belief 

0  , it believes that no other user will provide service to itself when it requests service in the 

future even if it has a good reputation. The next proposition shows that the provider needs to 

have sufficient “trust” in the society in order for it to be willing to follow the social strategy.  

Proposition 2: The optimal action  * , |a     for the provider with belief  to follow the 

prescribed social strategy has a threshold property, i.e., 

     * *,   if  1 1 ,   if  
1,1 | ;       0,1 |

0,   if  

1 (

0,   if  

1) G B

G B

a a
     

 
   

   
  

 
 

 (6) 

and    * , |a         for all other cases where ,G B   are threshold beliefs determined by 

the system parameters , , ,b c  . Moreover, G B   and equality holds only if 1a  .  

Proof: (1) First we consider the decision problem when the provider has a good reputation. 

Obviously, if the requester’s reputation is bad, it is optimal that the provider follows the social 

strategy and plays defect (not provide). If the requester’s reputation is good, the provider may 

have incentives to deviate from the social strategy due to the instant cost. At the decision point, 

the provider meets a good requester, the expected stage payoff by following the social strategy is 

  b c    and the stage payoff by deviating is ( ) b    . Deviation causes its reputation to 

drop to bad. The difference in payoffs occurs when it has not met with another good requester 

yet and hence, it does not have the opportunity to restore its reputation or it has met with another 

good requester, provided the service but remains a bad reputation according to the punishment 
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probability . This makes it lose the instant payoff b at that time period as the requester because 

of the bad reputation. The utility loss X  in the current period can be recursively calculated by 

     1 1X X b X          (7) 

Hence, 

 
 1 1

b
X


 




 (8) 

To make following the social strategy incentive compatible, it should be larger than the cost c , 

 
 11

b
c


 




 (9) 

which then yields the condition on the user’s belief 

 
 
1

G

 
  




   (10) 

Hence, the provider with a good reputation follows the social strategy only if G   

(2) Next we consider the incentives of the bad users. If the requester has a bad reputation, it is 

also obvious that the provider will follow the social strategy and play defect. If the requester has 

a good reputation, the decision depends on the provider’s belief of the social reputation. At the 

decision point, the expected payoff is ( ) c     if the provider follows the social strategy and is 

( ) 0     if it deviates.  Following the social strategy increases its reputation to 1 with proba-

bility . If the realization is that the typical user remains bad, the expected future utility is the 

same as it deviates. Hence, we only need to consider the realization that the typical user restores 

a good reputation. Then the analysis is similar to the first case. The loss in the future utility needs 

to satisfy the following to make incentive compatible for users to follow the social strategy, 

 
 11

b
c


 




 (11) 

which yields, 

 
 1

1
B

 
 




   (12) 

The provider with a bad reputation follows the social strategy only if B  . ■ 

The above proposition is consistent with our intuitions: the user will only follow the social 

strategy if it believes the society is in a sufficiently good status. However, it provides more 
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insights about users’ behaviors: (1) Because both ,G B   are strictly positive, there are always a 

positive fraction of users who deviate because of the heterogeneous beliefs; (2) Increasing the 

punishment (smaller  ) prevents fewer good users from deviating (as G  becomes smaller) 

while it gives more bad users incentives to deviate (as B becomes larger); (3) The incentive for 

bad users to cooperate is always no larger than that for good users since G B  . The following 

corollary is a direct result if both belief thresholds are larger than 1 and hence, no user cooperates.  

Corollary 1. No cooperation can be sustained if 

 
 

1.
1 

  



  (13) 

The above condition highlights that when users are too impatient (small  ), the benefit-to-

cost ratio is too small (small  ) or the punishment is too mild (large  ),  no cooperation can be 

sustained. However, when designing information exchange systems, we are interested in 

sustaining cooperation among the self-interested users and hence, we next derive conditions and 

the associated system designs to achieve this.  

B. Dynamics and Equilibrium 

Suppose initially the social reputation is s . Limited observations induce heterogeneous beliefs 

 | sf    among users. Users optimize their strategies *a  according to Proposition 2; these 

strategies induce dynamics in the new social reputation  *,s a . The equilibrium requires a 

consistency check: the steady state social reputation remains invariant, i.e. 

  *,s s a    (14) 

Definition 1. (Bayesian-Nash equilibrium) Given , , , M   , let s be a social reputation, 

 | sf    be the induced belief distribution due to limited observations, and *a be the strategy 

for the users. We say that  *, ,s f a  constitutes an equilibrium if 

1. Users adopt the optimal strategy *  to maximize their expected utilities (as in Proposition 2).  

2. The invariant property holds  *,s s a   . 

It is worth noting that the users’ optimal strategy does not rely on the current social reputation 

s  since the threshold beliefs are only functions of , ,    but not s . However, because the 

belief distribution is induced by s , the fraction of users who follow the social strategy is thus 
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influenced by s , which in turn determines the social reputation in the next period. If we denote 

   *,s s sa      as the change in the social reputation, we can calculate it as follows: 

        
bad to good good to b

2

ad

1 | |s s s B s s G sFF               
, (15) 

with 

    
1

| |
B

B s sf dF
 

     


   ,           
0

| |
G

s sGF f d




     


    (16) 

The first part in (15) is the fraction of users whose reputations change from bad to good and 

the second part is the fraction of users whose reputations change from good to bad. To constitute 

an equilibrium, it is sufficient and necessary that   0s  . However, we are more interested in 

whether such an equilibrium is stable if there are some disturbances (e.g. small reputation update 

errors). The following proposition provides the condition for the stable equilibrium.  

Proposition 3: (stable equilibrium) The equilibrium with s is stable if and only if 

    
0    and    0s

s
s

d

d







   (17) 

Proof:   0s  is the condition for equilibrium. Because  s  is continuous in s , it is also 

sufficient and necessary that the first derivative is negative. ■ 

Now we study the conditions under which the stable equilibrium exists.  

Proposition 4: Given , , , M   , the existence of the stable equilibrium depends on B . 

1. If 1B  , 0s   is the unique stable equilibrium. 

2. If 1B  , there exists at least one stable equilibrium  0,1s  . 

Proof: (1) If 1B  ,  | 0B sF      for all s and hence,   0s  . Equality holds only for

0s  . It is also obvious that the first derivative at 0s   is negative, therefore it is the only 

stable equilibrium. 

(2) If 1B  , we see that    1 0, 0 0s s     . Because  ·  is a continuous function 

in s , it is guaranteed that there exists at least one solution to   0s  and the first derivative 

is negative. Moreover, notice that 0s   is not a stable equilibrium. ■ 

Proposition 4 proves that neither full efficiency nor zero efficiency occurs in the stable 
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equilibrium in the limited observations case. As we will see later, the actual efficiency will 

depend on the punishment severity which needs to be carefully designed by the system designer. 

Before proceeding to that, we compare the achievable efficiency for limited observations case 

with that for the unlimited observations case to illustrate the different design aspects.  

C. Unlimited observations 

In this subsection, we investigate how the system evolves if users make unlimited 

observations (i.e.    | s sf I     ) to illustrate why the system design should be different 

than in the limited observations case. Suppose the system starts with an initial social reputation

0 [0,1]s  , we are interested in which long-run state t
s
  that the system will be trapped in.  

Proposition 5: With unlimited observations, the long-run system state is 

(1)  If 0 , 1t
s B s     ;  (2)  If 0 , 0t

s G s     ; (3) If 0 0, t
G s B s s       . 

Proof: Omitted due to space limitation. The proof can be found in [27]. ■ 

   We see that, in unlimited observations case, appropriately choosing the initial social reputation 

can lead to full efficiency while starting from the wrong initial social reputation leads to zero 

efficiency regardless of the choice of  . This is quite different from the limited observations 

case where the full efficiency can never be achieved while zero efficiency also does not occur in 

a stable equilibrium. The achievable efficiency depends on the punishment severity of the social 

norm and hence, this needs to be carefully designed as discussed in the next section.  

IV. OPTIMAL PUNISHMENT DESIGN 

The minimum social reputation beliefs ,G B  that sustain cooperation are determined by the 

punishment.  The harsher the punishment is (smaller  ), fewer good providers deviate while 

also fewer bad providers cooperate to restore their reputations. Hence, when designing the 

punishment, the tension between the incentives to the good and bad users needs to be considered. 

In this section, we characterize the impact of punishment on the achievable system efficiency. In 

this paper we are interested in maximizing the cooperation among the users and hence, we use 

the social reputation, i.e. the fraction of good users in the system,  as the efficiency metric.  
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    The objective of the system designer in our model is to choose the optimal punishment , 

given the network environment parameters , , ,b c M such that the social reputation is 

maximized (hence the probability that users cooperate is also maximized which leads to the 

maximized social welfare). Formally, the design problem is to solve  

 
   

maximize     

subject to    0                0  

s

s
s

s

d










  ，
 (18) 

In the following, we establish bounds on the achievable efficiency.  

Proposition 6. Fix , , M  and fix  , then the robust equilibrium *
s is bounded as follows 

 
 

    
 

 
1 1

*

1 1 1 1

1

1

1

11 1

M M
BB

sM M M M
BB G G

  


    

 

   






 


  
 (19) 

where ,G B  are determined in Proposition 2. 

Proof: Omitted due to space limitation. The proof can be found in [27]. ■ 

Corollary 2. Fix , , M  , for large  , the stable equilibrium *
s is bounded away from 1,  

 
   

1

* 1 0,
1

1
1,

M

s

 
 


 

      

  (20) 

Proof: Simply combining Proposition 5 and the fact that the upper bound is increasing in   

when   is large yields the result. The right hand side is derived by choosing 1  .■ 

The above result shows that the upper bound depends on the granularity of observations.  If 

the system designer wants to achieve a higher efficiency, it is necessary that users are able to 

make more observations to acquire more accurate reputation distribution information. (Though 

having more observations may not be the sufficient condition.) In some systems, the number of 

observations can be designed by the designer. For example, the website designer may only allow 

users to access the reputations of a limited number of other users due to privacy and security 

concerns. Therefore the tradeoff between efficiency and privacy needs to be carefully considered. 

However, in this paper, we assume that the number of observations is exogenously determined.   

The mildest punishment maximizes the efficiency upper bound for large . In the following 

we consider several specific cases of limited observations which induce different user belief 
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distributions and show that the mildest punishment does indeed maximize the efficiency.  

A. Example 1: 0M  (constant belief distribution) 

We consider the simplest case 0M  , i.e. users have no observation. In the belief model that 

we use, 0M  corresponds to the case that users have a (constant) uniform belief over all 

possible social reputations, namely   1| sf     and  

    | |,1s B sB GGF F             (21) 

For this simple case, we are able to explicitly solve the unique stable equilibrium.  

  
 

 

   

*

1

1 1
1

1
11

B
s

B G


   

     
    




 












 (22) 

It is equivalent to consider the maximization problem, 

 
   max

1

1


  
 

 
    

  (23) 

The objective function is a quadratic function. The maximum is achieved at  

  
 

* 1
min 1

1

1

2
,

  


 
   
 







 (24) 

If the benefit-to-cost ratio   is large, the first term in (24) is also larger than 1. Such condition 

can be easily satisfied (e.g. 2  ). Hence, in most scenarios, choosing the mildest punishment, 

namely 1  , is optimal for the efficiency maximization.  

Proposition 7: Fix ,   and for 0M  , the optimal punishment rule is 

  
 

* 1
min 1

1

1

2
,

  


 
   
 







 (25) 

and the induced stable equilibrium is 
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   
  

  
   

 


 
     

 




   

 

 
 

 


 
 

 (26) 

Proof: Simply solving (25) for  0,1  yields the result. ■ 

B. Example 2: 1M  (linear belief distribution) 
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In this subsection we consider the case 1M  . For example, users observe the reputation of 

one other user by sampling the system. It can also be interpreted as that users have linear belief 

distribution regarding the true social reputation. The belief function thus is given by 

           1,1 0,1| 1 2 1 1+ 2s s s s sf f f              (27) 

Note    1,1 0,1, 1ff       . Hence, the cumulative belief functions are linear in s , 

      2
| 2 11s B B sB BF            (28) 

      | 1 2 1s G GG G G sF             (29) 

To solve   0s  , it is equivalent to solve   / 0s s    for 0s  . Let     /s s sg    . 

            2
1 2 1 2 2 11s B B B s s G G G G s sg                     (30) 

The above function is a quadratic function regarding s . It is difficult to solve the stable 

equilibrium and even more difficult to analyze the impact of punishment directly. In the 

following, we instead first establish tighter upper and lower bounds of the efficiency in the stable 

equilibrium than the general bounds given by (26) when   is large. Using the new bounds we 

are able to derive the optimal punishment based on which optimal social norms can be designed. 

Proposition 8. Fix ,  and fix  , 1M  , for large  , the stable equilibrium *
s is bounded by 

  
    

 
 

2 2

*
2 2

1 1

1 1 3 12
B B

s
B B G G B G

   


       

 
 

   
 (31) 

Proof:  For large , the belief thresholds G  and B are approximated by 

 ,
1 1

G B

  
 
 

   (32) 

(1) We first establish the upper bound. Note that the quadratic coefficient of (30) is 

     
2

1
1

1
2 1 1 2 0G G B B

   
 


         

  
 (33) 

Hence,  sg   is a convex quadratic function. Because there must be one and only one root that 

lies in  0,1 , it is upper bounded by 
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s
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 

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

 



  (34) 

Because  2 21 1B B    , this upper bound is tighter than the general upper bound.  

(2) Next we establish the lower bound. Note the slope at 0s   of  sg  is 
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     1 3 21B B G G        (35) 

By the convexity, the root in  0,1 is lower bounded by 

  
    

 
     

2

* 0

2 2

1

1 1 3 1 1 3
B

s
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g  


         


 
    

 (36) 

Because    1 3 1B B    , the lower bound is tighter than the general bound.  ■ 

The upper bound in the above proposition in fact has more implications for the optimal 

punishment design. For large  , in order to maximize the upper bound, it is equivalent to 

consider the following maximization problem 

  
2

2
max m

1
1      or  1a xB 

  


 
  

 
 (37) 

Expanding the objective function in (37), we get 

 
2 2

1 1 1 1
1 2 .

   
   

    
   


 





 (38) 

Remember that we need to ensure that 1B   since otherwise the only robust equilibrium is 0 

according to Proposition 4 and hence, the feasible  needs to satisfy 

 .
1 





 (39) 

Choosing 1  maximizes (38) and hence, it maximizes the upper bound for all feasible . 

Note that for 1  , the upper bound is indeed the actual efficiency because the upper and lower 

bounds are identical. Therefore, 1  maximizes the efficiency of the stable equilibrium. The 

following proposition restates this result and also determines the social reputation in equilibrium.  

Proposition 9. Fix ,  , 1M   for large  , the stable equilibrium *
s is maximized by choosing 

* 1  , and the optimal solution is 
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 (40) 

Note that this stable equilibrium efficiency is close to 1 when   is large or   is close to 1. For 

the higher order cases, i.e. values of M other than 0 and 1, it is rather difficult to derive any 

analytical results. We will investigate this in the simulation section numerically. However, from 

the analysis for the two specific examples, some design insights can still be drawn: when the 
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benefit-to-cost ratio is large (1), it is optimal to choose 1  , which is the mildest punishment 

possible, and (2) a larger M  leads to a higher social reputation for this choice of punishment. 

V. SIMULATIONS 

In this section, we provide some simulation results. Fig. 3 illustrates the system evolution for 

various environments. It is shown that the system quickly converges to the stable state. In this set 

of simulations 0,1, 2M  , the stable equilibrium is unique and hence, any initial state converges 

to the same stable equilibrium. However, there can also be multiple stable equilibria in which 

case different initial states converge to different stable equilibria. As we show in Fig. 4 for

6M  , there are two stable equilibria. If the system starts with a high initial state, it eventually 

has a high social reputation while if the initial social reputation is low, the final social reputation 

is also low. Fig. 5 shows the case with perfect information, i.e. M   . If the initial social 

reputation is higher than B , no matter which  the system designer chooses, the system 

achieves full efficiency, i.e. all agents have good reputations; if the initial social reputation is 

lower than G , the system achieves zero efficiency, i.e. all agents have bad reputations; for the 

initial social reputation that lie between [ , ]G B  , the system stays in the same state.  

 Fig. 6 illustrates the impact of M . As we see, more observations do not necessarily lead to 

better performance for a given punishment. In fact, the bounds established in (19) does not tell 

the monotonicity regarding M . However, for a larger , more observations do have a better 

performance. Because 1  is often the optimal choice, basically M should be larger to achieve 

a higher efficiency. In order to obtain the better performance, users need to have more accurate 

information of the reputation distribution. Fig. 7 further compares the simulated optimal 

equilibria with the bounds established by (20). The established bounds are close to the simulation 

points and the performance becomes quite close to full efficiency as M increases.  

 Fig. 8 and Fig. 9 illustrate the impact of the benefit-to-cost ratio   and the discount factor  . 

For a given punishment probability, the system performance improves with  . Moreover, for all 

simulated values of  , choosing 1  generates the best performance. The discount factor    
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has a similar impact as  : Larger   leads to a better performance and choosing 1  generates 

the highest efficiency. Even though the fact that the mildest punishment is optimal may seem 

counter-intuitive, this finding can be easily explained as follows. Punishment is often used to 

prevent users from misbehaving. When users are good, harsher punishments impose greater 

threat on these users if they would deviate. Hence, it may seem that harsher punishments are 

needed to obtain a better performance. However, this intuition is only valid when all users are on 

the equilibrium path, i.e. they always follow the social strategy. For the limited observations 

scenario, there are always a positive fraction of users who deviate no matter what the punishment 

is. Once users are in the punishment phase, harsher punishment becomes a disincentive for them 

to restore their reputations. As we show that punishment has much greater impact on the belief 

threshold for bad users, the system eventually will be in an equilibrium with a lower efficiency.  

VI. CONCLUSIONS 

In this paper, we design the optimal social norm protocol for information exchange systems 

where users have heterogeneous beliefs due to limited observations of the system. First, a Baye-

sian belief model is proposed to model the belief heterogeneity. Second, the optimal provider 

strategy is shown to have a threshold property: users cooperate only when they have sufficient 

“trust” in the system (i.e. believe that sufficient users are cooperating).  Finally, the impact of the 

punishment severity on the stable equilibrium and the achievable system efficiency is rigorously 

studied. When users can make unlimited observations, full or zero efficiency occurs in the stable 

equilibrium. However, in the more realistic limited observations scenario, full efficiency can 

never be achieved and different punishment strategies lead to different stable equilibria having 

different efficiencies. We show that choosing the mildest punishment is optimal for many 

interesting scenarios and support this finding with both analytical and simulation results.  
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Figure 3. Stable state of the system for 0.25, 10    and 0.9  . 
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Figure 2. Reputation updating rule. 
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Figure 1. The utility matrix of the gift-giving game. 
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Figure 5. Stable state of the system for 0.25, 8, M      and 0.9  . 
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Figure 4. Stable state of the system for 0.25, 8, 6M     and 0.9  . 
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Figure 7. Bounds on the optimal social reputation for various observation granularities. 
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Figure 6. Impact of the observation granularity M (fix 0.5, 5   ). 
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Figure 9. Impact of the discount factor   (fix 4, 1M   ). 
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Figure 8. Impact of the benefit-to-cost ratio   (fix 0.5, 1M   ). 
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