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Abstract—We characterize the capacity of Rayleigh block-
fading multiple-input multiple-output (MIMO) channels in the
noncoherent setting where transmitter and receiver have no
a priori knowledge of the realizations of the fading channel.
We prove that unitary space-time modulation (USTM) is not
capacity-achieving in the high signal-to-noise ratio (SNR) regime
when the total number of antennas exceeds the coherence time
of the fading channel (expressed in multiples of the symbol
duration), a situation that is relevant for MIMO systems with
large antenna arrays (large-MIMO systems). This result settles
a conjecture by Zheng & Tse (2002) in the affirmative. The
capacity-achieving input signal, which we refer to asBeta-variate
space-time modulation (BSTM), turns out to be the product
of a unitary isotropically distributed random matrix, and a
diagonal matrix whose nonzero entries are distributed as the
square-root of the eigenvalues of a Beta-distributed random
matrix of appropriate size. Numerical results illustrate that using
BSTM instead of USTM in large-MIMO systems yields a rate
gain as large as13% for SNR values of practical interest.

I. I NTRODUCTION

The use of multiple antennas increases tremendously the
throughput of wireless systems operating over fading chan-
nels [1], [2]. Specifically, when a genie provides the receiver
with perfect channel state information (the so calledcoher-
ent setting), the capacity of a multiple-input multiple-output
(MIMO) fading channel grows linearly in the minimum between
the number of transmit and receive antennas [2]. In practice,
however, the fading channel is not knowna priori at the receiver
and must be estimated, for example through the transmission
of pilot symbols. Lack ofa priori channel knowledge at the
receiver determines a capacity loss compared to the coherent
case. This loss, which depends on the rate at which the fading
channel varies in time, frequency, and space [3]–[6], can be
characterized in a fundamental way by studying capacity in
the noncoherent settingwhere neither the transmitter nor the
receiver are assumed to havea priori knowledge of the realiza-
tions of the fading channel (but both are assumed to know its
statistics perfectly). In the remainder of the paper, we will refer
to capacity in the noncoherent setting simply as capacity. We
emphasize that in the noncoherent setting the receiver is allowed
to try and gain channel knowledge.Channel estimation is simply
viewed as a specific form of coding [7].
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For frequency-flat fading channels, a simple model to capture
channel variations in time is the Rayleigh block-fading model
according to which the channel remains constant over a blockof
T > 1 symbols and changes independently from block to block.
The parameterT can be thought of as the channel’s coherence
time. Even if the capacity of the Rayleigh block-fading MIMO
channel has been studied extensively in the literature [3],[8],
[4], [9], no closed-form capacity expression is available to date.
Zheng and Tse [4] showed that capacity behaves in the high
signal-to-noise ratio (SNR) regime as1

C(ρ) =M∗

(
1− M∗

T

)
log(ρ) +O(1), ρ→ ∞. (1)

Here,ρ denotes the SNR,M∗ , min{M,N, ⌊T/2⌋} with M
andN standing for the number of transmit and receive antennas,
respectively, andO(1) indicates a bounded function ofρ (for
sufficiently largeρ). The high-SNR capacity expression given
in (1) is insightful as it allows one to determine the capacity
loss (at high SNR) due to lack ofa priori channel knowledge.
Recalling that in the coherent case

Ccoh(ρ) = min{M,N} log(ρ) +O(1), ρ→ ∞

one sees that this loss is pronounced when the channel’s coher-
ence timeT is small. The capacity expression (1) also implies
that, for a given coherence timeT and number of receive anten-
nasN , the capacitypre-log (i.e., the asymptotic ratio between
the capacity in (1) andlog(ρ) asρ→ ∞) is maximized by using
M = min{N, ⌊T/2⌋} transmit antennas.2

WhenT ≥M+N (channel’s coherence time larger or equal
to the total number of antennas) the high-SNR expression (1)
can be tightened as follows [4, Sec. IV.B]:

C(ρ) =M∗

(
1− M∗

T

)
log(ρ) + c+ o(1), ρ→ ∞. (2)

Here,c, which is given in [4, Eq. (24)], depends onT ,M , andN
but not onρ, ando(1) → 0 asρ→ ∞. Differently from (1), the
high-SNR expression (2) describes capacity accurately already
at moderate SNR values [11], because it captures the first two
terms in the asymptotic expansion ofC(ρ) for ρ → ∞. The
key element exploited in [4] to establish (2) is the optimality
of isotropically distributed unitaryinput signals [3, Sec. A.2]
at high SNR. The isotropic unitary input distribution is often
referred to asunitary space-time modulation(USTM) [12], [9],
[13]. Capacity-approaching coding schemes that are based on

1WhenT = 1, capacity grows double-logarithmically inρ [10, Thm. 4.2].
2More generally, for fixedT andN , and for arbitrary SNR, the capacity for

M > T is equal to the capacity forM = T [3, Thm. 1].
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USTM and do not require the explicit estimation of the fading
channel have been recently proposed in [13].

In this paper, we focus on the caseT < M+N (channel’s co-
herence time smaller than the total number of antennas), which
is of interest for point-to-point communication systems using
large antenna arrays. The use of large antenna arrays in MIMO
systems (large-MIMOsystems) has been recently advocated to
reduce energy consumption in wireless networks, to combat the
effect of small-scale fading, and to release multi-user MIMO
gains with limited co-operation among base stations and low
complexity channel estimation algorithms [14]–[16].

Contributions: We prove that in the large-MIMO setting
whereT < M + N , USTM is not capacity-achieving at high
SNR. The capacity-achieving input signal turns out to consist of
the product of a unitary isotropically distributed random matrix
and a diagonal matrix whose nonzero entries are distributed
as the square-root of the eigenvalues of a Beta-distributedran-
dom matrix of appropriate size. Utilizing this input distribu-
tion, which we refer to asBeta-variate space-time modulation
(BSTM), we extend (2) to the caseT < M + N . We show
that using BSTM instead of USTM yields a rate gain of about
13% when SNR is30 dB andN ≫ T . Note that our result
holds for allT , M , andN values satisfying1 < T < M +N .
In other words, differently from most of the literature on large-
MIMO systems, our analysis is not asymptotic in the number of
antennas.

Our proof technique exploits the geometric structure in the
MIMO block-fadingchannel input-output relation first observed
in [4]. The set of tools used to establish our main result is, how-
ever, different from the one used in [4]. In particular, differently
from [4], our proof is based on the duality approach [10], andon
a novel closed-form characterization of the probability density
function (pdf) of the MIMO block-fading channel output, which
generalizes a previous result obtained in [9]. These two tools
allow us to simplify the derivation of (2) for the caseT ≥M+N
compared to the derivation provided in [4], and to generalize (2)
to the large-MIMO settingT < M +N .

Notation: Uppercase boldface letters denote matrices and
lowercase boldface letters designate vectors. Uppercase sans-
serif letters (e.g.,Q) denote probability distributions, while
lowercase sans-serif letters (e.g.,r) are reserved for pdfs. The
superscriptsT andH stand for transposition and Hermitian trans-
position, respectively. We denote the identity matrix of dimen-
sionM × M by IM ; diag{a} is the diagonal square matrix
whose main diagonal contains the entries of the vectora, and
λq{A} stands for theqth largest eigenvalue of the Hermitian
positive-semidefinite matrixA. For a random matrixX with
probability distributionQX, we writeX ∼ QX. We denote
expectation byE[·], and use the notationEX[·] or EQX

[·] to
stress that expectation is taken with respect toX ∼ QX. We
write D(QY(·) ‖RY(·)) for the relative entropy between the
probability distributionsQY andRY. Furthermore,CN (0,Σ)
stands for the distribution of a circularly-symmetric complex
Gaussian random vector with covariance matrixΣ. For two
functionsf(x) andg(x), the notationf(x) = O(g(x)), x →
∞, means thatlim supx→∞

∣∣f(x)/g(x)
∣∣ < ∞, andf(x) =

o(g(x)),x→ ∞, means thatlimx→∞

∣∣f(x)/g(x)
∣∣ = 0. Finally,

log(·) indicates the natural logarithm,Γ(·) denotes the Gamma

Parameter Definition

L max{N,T −M}

L min{N, T −M}

P max{N, T}

P min{N, T}

TABLE I
FOUR PARAMETERS RELATED TO THE CHANNEL’ S COHERENCE TIMET ,

THE NUMBER OF TRANSMIT ANTENNASM , AND THE NUMBER OF

RECEIVE ANTENNASN .

function [17, Eq. (6.1.1)], andΓm(a) designates thecomplex
multivariate Gamma function [18, Eq. (44)]

Γm(a) = πm(m−1)/2
m∏

k=1

Γ(a− k + 1). (3)

II. SYSTEM MODEL AND KNOWN RESULTS

A. System Model

We consider a point-to-point Rayleigh block-fading MIMO
channel withM transmit antennas,N receive antennas, and
channel’s coherence timeT > 1. The channel input-output
relation within a coherence interval can be compactly written
in matrix notation as follows [4], [8], [9]:

Y =
√
ρ/M ·XH+W. (4)

Here,X = [x1 · · · xM ] ∈ CT×M contains the signal transmit-
ted from theM antennas within the coherence interval,H ∈
CM×N is the channel’s propagation matrix,W ∈ CT×N is the
additive noise, andY ∈ CT×N contains the signal received at
theN antennas within the coherence interval. We will assume
throughout the paper thatM ≤ min{N, ⌊T/2⌋}. The random
matricesH andW are independent of each other and have inde-
pendent and identically distributed (i.i.d.)CN (0, 1) entries. We
consider the noncoherent setting where neither the transmitter
nor the receiver havea priori knowledge of the realizations of
H andW, but both know their statistics perfectly.

We assume thatH and W take on independent realiza-
tions over successive coherence intervals. Under thisblock-
memorylessassumption, the ergodic capacity of the channel
in (4) is given by

C(ρ) =
1

T
sup
QX

I(X;Y). (5)

Here,I(X;Y) denotes the mutual information [19, Sec. 8.5]
between the input matrixX and the output matrixY, and the
supremum is over all probability distributionsQX on X that
satisfy the average-power constraint

E
[
tr{XX

H}
]
≤ TM. (6)

Since the variance of the entries ofH andW is normalized
to one,ρ in (4) can be interpreted as the SNR at each receive
antenna.

Throughout the paper, we will often make use of four param-
eters (L, L, P , P ) related to the coherence timeT , the number
of transmit antennasM , and the number of receiver antennasN .
These parameters are listed in Table I for future reference.
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B. Properties of the Capacity-Achieving Input Distribution

Even if no closed-form expression is available to date for
C(ρ), the structure of the capacity-achieving input distribu-
tion is partially known. We next review two properties of the
capacity-achieving input distribution that will reveal useful for
our analysis.

Lemma 1 ([3, Thm. 2]):The capacity-achieving input ma-
trix X is the product of aT×M isotropically distributed unitary
matrix Φ and an independentM × M nonnegative diagonal
matrixD = diag{[d1 · · · dM ]T}.

For the caseT ≥ M + N , taking D deterministic with
diagonal entries equal to

√
T turns out to be optimal at high

SNR. In this case, the resulting input matrixX is a scaled
isotropically distributed unitary matrix. This input distribution,
which is known as USTM [12], [9], [13], is the one used in [4]
to establish (2).

WhenT < M+N , USTM is not optimal at high SNR, as we
shall illustrate in Section III. Nevertheless, the optimaldistribu-
tion of X = ΦD shares the following property with USTM:
the probability distribution induced on

√
ρdm =

√
ρ‖xm‖,

m = 1, . . . ,M , by the capacity-achieving input distributiones-
capes to infinity[10, Def. 4.11] asρ→ ∞. Namely, it allocates
vanishing probability to every interval of the form

[
0,
√
ρ0
]

with
ρ0 > 0. This property is formalized in the following lemma:

Lemma 2:Fix an arbitraryρ0 > 0 and let

K(ρ0) ,
{
A = [a1 · · · aM ] ∈ C

T×M :

min
m=1,...,M

{ρ‖am‖2} < ρ0

}
. (7)

Let {Q(ρ)
X
, ρ > 0} be a family of input distributions

(parametrized with respect to the SNRρ) satisfying (6) and the
following additional property

lim
ρ→∞

I(X;Y)

C(ρ)
= 1, X ∼ Q

(ρ)
X
.

Then,limρ→∞ P

(
X ∈ K(ρ0), X ∼ Q

(ρ)
X

)
= 0.

Proof:The proof follows along the same lines of the proofs
of [5, Thm. 8] and [4, Lem 8].

An important consequence of the escape-to-infinity property
of the capacity-achieving input distribution is that the asymp-
totic behavior ofC(ρ) asρ → ∞ does not change if we con-
strain the probability distribution of

√
ρdm (m = 1, 2, . . . ,M )

to be supported outside the interval[0,
√
ρ0], ρ0 > 0. More

precisely, we have the following result.
Lemma 3:Fix an arbitraryρ0 > 0 and letK(ρ0) as in (7).

Denote byCK(ρ) the capacity of the channel (4) when the
inputX is subject to the average-power constraint (6) and to the
additional constraint thatX /∈ K(ρ0) with probability 1 (w.p.1).
Then,C(ρ) = CK(ρ) + o(1), ρ→ ∞.

Proof: The proof follows from [10, Thm. 4.12].

III. C APACITY IN THE HIGH-SNR REGIME

A. Asymptotic Characterization of Capacity

The main result of this paper is Theorem 4 below, which pro-
vides a high-SNR characterization ofC(ρ) that generalizes (2),

in that it holds also in the large-MIMO settingT < M +N .3

Theorem 4:The capacityC(ρ) of the Rayleigh block-fading
MIMO channel (4) withN receive antennas, coherence timeT ,
andM ≤ min{N, ⌊T/2⌋} transmit antennas is given by

C(ρ) =M

(
1− M

T

)
log(ρ) + c+ o(1), ρ→ ∞ (8)

where

c ,
1

T
log

(
ΓM (M)ΓM (L)

ΓM (N)ΓM (T )

)
+M

(
1− M

T

)
log

(
T

M

)

+
ML

T
log

(
N

L

)
+
L

T

(
E
[
log det

(
HH

H
)]

−M
)
. (9)

Here,L andL are defined in Table I, and

E
[
log det

(
HH

H
)]

=

M∑

i=1

ψ(N − i+ 1)

= −Mγ +

M∑

i=1

N−i∑

k=1

1

k
(10)

whereψ(·) denotes Euler’s digamma function [17, Eq. (6.3.1)]
andγ ≈ 0.577 is Euler’s constant.

Proof: See Section IV. A sketch of the proof for the single-
input multiple-output case, which is simpler to analyze than the
MIMO case, is given in [20].

In Section III-B below we compareC(ρ) in (8) with the
capacity lower bound obtained using USTM. The input distribu-
tion that achieves (8) is described in Section III-C. Numerical
results illustrating the lack of tightness of the USTM-based
capacity lower bound in the large-MIMO setting are provided
in Section III-D.

B. Rates Achievable with USTM

For the caseT ≥ M + N , the high-SNR capacity expres-
sion (8) coincides with the one reported in [4, Sec. IV.B].4

In this case, USTM, i.e.,X =
√
TΦ, with Φ unitary and

isotropically distributed, achieves (8). WhenT < M +N , the
novel capacity characterization provided in Theorem 4 implies
that USTM is not capacity-achievingat high SNR, as formalized
in the following corollary.

Corollary 5: The rate achievable using USTM over the
Rayleigh block-fading MIMO channel (4) withN receive an-
tennas, coherence timeT , andM ≤ min{N, ⌊T/2⌋} transmit
antennas is

CUSTM(ρ) =M

(
1− M

T

)
log(ρ) + cUSTM + o(1), ρ→ ∞

(11)

3Because of the constraintM ≤ min{N, ⌊T/2⌋}, large-MIMO settingin
this paper indicates a point-to-point MIMO uplink with a large antenna array at
the receiver.

4The expression forc given in [4, Eq. (24)] contains a typo: the argument of
the logarithm in the second addend should be divided byM as one can verify
by comparing [4, Eq. (24)] with the result given in [4, Thm. 9]for the case
M = N .
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where

cUSTM ,
1

T
log

(
ΓM (M)

ΓM (T )

)
+M

(
1− M

T

)
log

(
T

eM

)

+

(
1− M

T

)
E
[
log det(HH

H)
]
.

Note thatcUSTM = c whenT ≥M+N ; however,cUSTM <
c whenT < M +N .

Proof: The proof follows by repeating the same steps as
in Section IV-B after having replaced the capacity-achieving
input distribution (to be described in Section III-C) with USTM.

C. The Capacity-Achieving Input Distribution at High SNR

1) Matrix-variate distributions:To describe the input proba-
bility distribution that achieves (8), we shall need the following
preliminary results from multivariate statistics.

Definition 6: An m×m random matrixA is said to have a
complex Wishart distributionwith n > 0 degrees of freedom
and covariance matrixΣ if A = BB

H, where the columns of
them×nmatrixB are independent andCN (0,Σ)-distributed.
In this case, we shall writeA ∼ Wm(n,Σ).

Note that whenm > n, the matrixA is singular and, hence,
does not admit a pdf. In this case, the probability distribution
of A is sometimes referred to aspseudo-Wishartor singular
Wishart.

Definition 7: An m ×m random matrixC is said to have a
complex matrix-variate Beta distributionof parametersp > 0

and n > 0 if C can be written asC =
(
T

H
)−1

AT
−1,

whereA ∼ Wm(p,Σ) andB ∼ Wm(n,Σ) are independent,
andA + B = T

H
T, with T upper-triangular with positive

diagonal elements [21, p. 406]. In this case, we shall write
C ∼ Betam(p, n).

For the case whenn < m or p < m, the probability distri-
bution ofC is usually referred to as singular complex matrix-
variate Beta distribution because it involves singular Wishart
distributions. In the next lemma, we state two properties ofthe
complex matrix-variate Beta distribution that will be usedin the
proof of Theorem 4.

Lemma 8:Let C ∼ Betam(p, n) with p ≥ m > 0 andn >
0. The following properties hold:

1) C is unitarily invariant [22, Def. 2.6], i.e.,C ∼ UCU
H

for everym×m unitary matrixU independent ofC.
2) The joint pdf of the ordered eigenvaluesλ1 ≥ · · · ≥ λm

of C takes on two different forms according to the value
of n. If n ≥ m, then1 > λ1 > · · · > λm > 0 w.p.1, and
the joint pdf ofλ1, . . . , λm is given by

fλ1,...,λm(a1, . . . , am)

=
πm(m−1)

Γm(m)
· Γm(p+ n)

Γm(p)Γm(n)

·
m∏

i=1

ap−m
i (1− ai)

n−m ·
m∏

i<j

(ai − aj)
2. (12)

If 0 < n < m, thenλ1 = · · · = λm−n = 1 w.p.1, and
1 > λm−n+1 > · · · > λm > 0 w.p.1. Moreover, the joint
pdf of λm−n+1, . . . , λm is given by

fλm−n+1,...,λm(am−n+1, . . . , am)

=
πn(n−1)

Γn(n)
· Γn(p+ n)

Γn(m)Γn(p+ n−m)

·
m∏

i=m−n+1

ap−m
i (1 − ai)

m−n ·
m∏

m−n<i<j

(ai − aj)
2. (13)

Proof: Part 1 and (12) in part 2 follow by extending to the
complex case [23, Lem. 3.11] and [24, Thm. 3.3.4], respectively;
to prove (13) it is sufficient to note that̃C = (Im − C) ∼
Betam(n, p) (see [24, Def. 3.3.2]), that̃C has rankn < m, and
that itsn nonzero eigenvalues are distributed as the eigenvalues
of aBetan(m, p+ n−m)-distributed random matrix.

We shall also need the following result relating Wishart-
distributed and Beta-distributed matrices.

Lemma 9:Let S ∼ Wm(p + n,Σ) with m > 0, n > 0,
andp ≥ m. Furthermore, letC ∼ Betam(p, n) be independent
of S. Finally, putS = T

H
T, whereT is upper-triangular with

positive diagonal elements. Then,A = T
H
CT ∼ Wm(p,Σ).

Proof: The lemma follows from a generalization to the
complex case of [24, Thm. 3.3.1] for the nonsingular case
n ≥ m, and of [25, Thm. 1] for the singular case0 < n < m.

Note that Lemma 8 (part 1) implies that the eigenvalues ofA

and ofCS in Lemma 9 have the same distribution.

2) The Optimal Input Distribution:We are now ready to de-
scribe the input distribution that achieves (8). This distribution
takes on two different forms according to the relation between
T,M andN . Specifically, one should takeX = ΦD whereΦ
is unitary and isotropically distributed, andD =

√
TN/L · D̃

with L defined in Table I, and with̃D being a diagonal matrix
whoseorderedpositive entries{d̃1, . . . , d̃M} are distributed as
follows:

a) CaseT < M + N : The squared nonzero entries
{d̃21, . . . , d̃2M} of D̃ have the same joint pdf as the ordered
eigenvalues of a positive-definiteM ×M random matrixZ ∼
BetaM (T−M,M+N−T ).The resulting pdf of{d̃21, . . . , d̃2M}
is obtained by settingp = T −M andn =M +N −T in (12)
if T ≤ N , and in (13) ifN < T < M +N .

b) CaseT ≥M +N : The nonzero entries{d̃1, . . . , d̃M}
of D̃ should be taken so that̃d1 = · · · = d̃M = 1 w.p.1. This
results in the USTM distribution used in [4].

In the remainder of the paper, we shall denote byQ
opt
D

the
probability distribution ofD =

√
TN/L ·D̃ we have just intro-

duced. Furthermore,we shall refer to the probability distribution
of X = ΦD resulting by choosingΦ unitary and isotropically
distributed andD ∼ Q

opt
D

as BSTM. Note that BSTM reduces
to USTM whenT ≥M +N .

As shown in [4, p. 369], USTM is optimal for the caseT ≥
M +N because it maximizes

h(UDH) + (T −M −N)E
[
log det

(
D

2
)]

(14)
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whereU ∈ CM×M is an isotropically distributed unitary matrix
independent of bothD andH, andh(·) denotes the differential
entropy. In fact, the average-power constraint (6) impliesthat

h(UDH) ≤MN log(πeT ) ; E
[
log det(D2)

]
≤M log(T )

and under USTM, which yieldsD =
√
T ·IM , both inequalities

hold with equality.
In the large-MIMO settingT < M + N , however, the

second term in (14) turns negative and USTM does no longer
maximize (14). As we shall now illustrate, the maximizing
distribution ofD turns out to beQopt

D
, which results in BSTM.

Through algebraic manipulations similar to the ones leading to
(46) and (47) in Section IV, it is possible to show that

h(UDH) + (T −M −N)E
[
log det

(
D

2
)]

= h(G) + k.

Here,k is a constant that does not dependent onD, andG ∈
CM×(T−M) is a random matrix with singular values jointly
distributed as the singular values ofDH, and with isotropically
distributed singular vectors. Lemma 10 below implies that the
choiceD ∼ Q

opt
D

induces a matrixG that is Gaussian with
i.i.d.CN (0, TN/(T −M)) entries. But a GaussianGwith i.i.d.
entries maximizesh(G), and, hence, (14).

Lemma 10:Let D ∼ Q
opt
D

and letH be an independent
M×N random matrix with i.i.d.CN (0, 1) entries. The singular
values ofDH are distributed as the singular values of anM×L
matrixG with i.i.d. CN (0, TN/L) entries.

Proof: For the caseT ≥M +N , we have thatL = N and,
hence,D =

√
T · IM . Consequently,DH = (

√
T · H) ∼ G,

from which the statement in the lemma follows.
For the caseT < M + N (and, hence,L = T − M )

we shall proceed as follows. LetD =
√
TN/(T −M) · D̃,

and letU be anM ×M unitary and isotropically distributed
random matrix independent of̃D andH. SinceHH

H is uni-
tary invariant, we have thatHH

H ∼ U
H
HH

H
U, and hence

D̃HH
H
D̃ ∼ D̃U

H
HH

H
UD̃. Now note thatD̃U

H
HH

H
UD̃

and UD̃
2
U

H
HH

H have the same eigenvalues; furthermore,
UD̃

2
U

H ∼ BetaM (T − M,M + N − T ), which fol-
lows from Lemma 8 (part 1), and from [22, Lem. 2.6]; fi-
nally, HH

H ∼ WM (N, IM ). Hence, by Lemmas 8 and 9
the eigenvalues ofUD̃

2
U

H
HH

H—and consequently also the
eigenvalues of̃DHH

H
D̃—have the same distribution as the

eigenvalues of aWM (T −M, IM )-distributed random matrix.

D. Gain of BSTM over USTM

The use of USTM is motivated by several practical consider-
ations [8], [9], [13]. Is it then worth to replace USTM by the
capacity-achieving BSTM in the large-MIMO setting? In this
section, we shall investigate the rate gain that results from the
use of BSTM instead of USTM.

Asymptotic Analysis:In Corollary 11 below we show that
the rate gain resulting from the use of BSTM instead of USTM
grows logarithmically in the number of receive antennas.

Corollary 11: Let T andM ≤ ⌊T/2⌋ be fixed. Then

lim
N→∞

lim
ρ→∞

(
C(ρ)− CUSTM(ρ)− M2

2T
log(N)

)
= cM,T (15)

whereC(ρ) andCUSTM(ρ) are given in (8) and (11), respec-
tively, and

cM,T ,
1

T
log
(
ΓM (T −M)

)
+
M(T −M)

T
log

(
e

T −M

)

− M

2T

[
M log(πe) + log(2)

]
.

Proof: As we are interested in the limitN → ∞, we shall
assume without loss of generality thatL = T −M andL =
N . Since the first term in the high-SNR expansion ofC(ρ) and
CUSTM(ρ) is the same,

lim
ρ→∞

(
C(ρ)− CUSTM(ρ)

)
= c− cUSTM = c0 + cN

wherec0 andcN are defined as follows:

T · c0 = log
(
ΓM (T −M)

)
+M(T −M) log

(
e

T −M

)

T · cN = (N − T +M)E
[
log det

(
HH

H
)]

− log
(
ΓM (N)

)

−MN +M(T −M) log(N). (16)

Note thatcN is a function ofN , while c0 is not. Consequently,
to establish (15) it is sufficient to study the limitN → ∞ of
the first two terms on the right-hand side (RHS) of (16). For the
first term, we use (10) and the following asymptotic expansion
of the Euler’s digamma function [17, Eq. (6.3.18)]:ψ(m) =
log(m)− 1/(2m) + o(1/m) , m→ ∞, which yields

(N − T +M)E
[
log det

(
HH

H
)]

= (N − T +M)
M∑

i=1

ψ(N − i+ 1)

= −M(T −M) log(N) +N
M∑

i=1

log(N − i+ 1)

− M

2
+ o(1), N → ∞. (17)

For the second term on the RHS of (16) we proceed as follows:

log
(
ΓM (N)

)

=
M(M − 1)

2
log(π) +

M∑

i=1

log
(
(N − i)!

)

(a)
=

M∑

i=1

(
(N − i) log(N − i) +

log(N − i)

2
+ i

)
−MN

+
M

2
log(2) +

M2

2
log(π) + o(1), N → ∞

= N

[
M∑

i=1

log(N − i)

]
+
M2

2
log
(πe
N

)
+
M

2
log(2e)

−MN + o(1), N → ∞. (18)

Here, (a) follows from Stirling’s formula n! =
nne−n

√
2πn (1 + o(1)) , n → ∞. We complete the proof by

substituting (17) and (18) into (16), and using that

lim
N→∞

N log

(
N − i+ 1

N − i

)
= 1.
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Fig. 1. Rate gain resulting from the use of BSTM instead of USTM as a function
of the number of receive antennasN and the channel’s coherence timeT ; in
the figure,ρ = 30dB, andM = min{⌊T/2⌋, N}.

Numerical Results:Let C̃(ρ) be the high-SNR approxi-
mation ofC(ρ) obtained by neglecting theo(1) term in (8).
Similarly, let C̃USTM(ρ) be the high-SNR approximation of
CUSTM(ρ) obtained by neglecting theo(1) term in (11). As can
be inferred from the results reported in [4], [9], [11],C̃USTM(ρ)
is a good approximation forCUSTM(ρ) atρ & 30 dB. Numeri-
cal evidence suggests that the same holds for the pairC̃(ρ) and
C(ρ). To illustrate the gain resulting from the use of BSTM
instead of USTM for a finite (but large) number of receive anten-
nas, we plot in Fig. 1 the ratio[C̃(ρ)− C̃USTM(ρ)]/C̃USTM(ρ)
for different values ofT andN , whenρ = 30 dB andM =
min{⌊T/2⌋, N}.

We observe from Fig. 1 that the rate gain resulting from the
use of BSTM instead of USTM becomes significant when the
number of receive antennasN is much larger than the channel’s
coherence timeT . For example, whenN = 100 andT = 10,
the rate gain amounts to13%. However, whenT = N = 100
the rate gain is below3%.

IV. PROOF OFTHEOREM 4

The proof is effected by exhibiting capacity upper and lower
bounds that agree up to ao(1) term.

A. Upper Bound

Fix ρ0 > 0 and letK(ρ0) as in (7); as a consequence
of Lemma 3, we can restrict—without loss of generality—the
supremum in (5) to input distributionsQX satisfying the con-
straintX /∈ K(ρ0) w.p.1. Our capacity upper bound is based
on duality [10], [26], which is a technique that allows one to
obtain tight upper bounds onI(X;Y) by carefully choosing
a probability distribution ofY. Specifically, letPY |X denote
the conditional probability distribution ofY givenX, andQY

denote the distribution induced onY byQX through (4). Finally,
letRY be an arbitrary distribution ofY with pdf rY. We use du-
ality to upper-boundI(X;Y) in (5) as follows [10, Thm. 5.1]:

I(X;Y) = EX

[
D(PY |X ‖QY)

]

(a)
= EX

[
D(PY |X ‖RY)

]
−D(QY ‖RY)

(b)

≤ EX

[
D(PY |X ‖RY)

]

= −EQY
[log(rY(Y))]− h(Y |X). (19)

Here, (a) follows from Topsøe’s identity [27], and (b) is a conse-
quence of the nonnegativity of relative entropy [19, Thm. 2.6.3].
The conditional differential entropyh(Y |X) in (19) is given by

h(Y |X) = N

M∑

i=1

E

[
log

(
1 +

ρ‖xi‖2
M

)]
+NT log(πe). (20)

To evaluate the first term on the RHS of (19), we need to choose
a specific output pdfrY. Let us expressY in terms of its singular
value decomposition (SVD)

Y = UΣV
H (21)

where U ∈ CT×P and V ∈ CN×P (P is defined
in Table I) are (truncated) unitary matrices, andΣ =
diag{[σ1(Y) · · · σP (Y)]T} contains the singular values ofY
arranged in decreasing order. To make the SVD unique, we
shall assume that the diagonal entries ofU are real and non-
negative. Hence,V is an element of the complexStiefel man-
ifold S(N,P ) [18], [4], while U belongs to asubmanifold
S̃(T, P ) of S(T, P ). We put forward the following result about
the volume ofS(n,m) andS̃(n,m) for the casen ≥ m (see [18,
Sec. V])

|S(n,m)| = 2mπmn

Γm(n)
;
∣∣∣S̃(n,m)

∣∣∣ = |S(n,m)|
(2π)m

=
πm(n−1)

Γm(n)
.

WhenQX is capacity-achieving, Lemma 1 and the Gaussianity
of H andW, imply thatU andV are uniformly distributed on
S̃(T, P ) andS(N,P ), respectively, and independent of each
other and ofΣ. We shall take an output pdf for which this
property holds. Furthermore, we take the firstM singular values
of Y distributed as the ordered singular values of the noiseless
channel output matrix

√
ρ/M · XH =

√
ρ/M · ΦDH, with

Φ unitary and isotropically distributed, andD ∼ Q
opt
D

. By
Lemma 10, this implies that the firstM singular values ofY are
distributed as the singular values of anM ×L matrix with i.i.d.
CN (0, λ) entries, whereλ , NTρ/(ML). We take the remain-
ingP −M singular values distributed as the singular values of
an independent(N−M)×(T−M) matrix with i.i.d.CN (0, 1)
entries. The intuition behind this choice is the following:in the
absence of the additive noiseW in (4), the output matrixY has
rankM ; this suggests that, in the high-SNR regime, the smallest
P −M singular values ofY carry information aboutW only.
Summarizing, we take the pdfrσ1,...,σP of the ordered singular
values ofY as follows5

rσ1,...,σP (a1, · · · , aP ) = rσ1,··· ,σM (a1, · · · , aM )

· rσM+1,··· ,σP (aM+1, · · · , aP )

where

rσ1,··· ,σM (a1, · · · , aM )

=
k1e

−
∑M

i=1 a2
i/λ

λML

M∏

i=1

a
2(L−M)+1
i ·

M∏

i<j

(
a2i − a2j

)2
,

a1 > · · · > aM (22)

5We shall indicateσi(Y) simply asσi whenever no ambiguity occurs.
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with k1 , 2MπM(M−1)/
(
ΓM (L)ΓM (M)

)
and

rσM+1,··· ,σP (aM+1, · · · , aP )

= k2e
−

∑P
i=M+1 a2

i

P∏

i=M+1

a
2(P−P )+1
i ·

P∏

M<i<j

(
a2i − a2j

)2
,

aM+1 > · · · > aP (23)

with P defined in Table I, and

k2 ,
2P−Mπ(P−M)(P−M−1)

ΓP−M (P −M)ΓP−M (P −M)
.

Here, both (22) and (23) follow from [22, Thm. 2.17] and the
change of variable theorem. We are now ready to evaluate the
first term on the RHS of (19). Let

JP ,P (σ1, · · · , σP ) =
P∏

i=1

σ
2(P−P )+1
i ·

P∏

i<j

(
σ2
i − σ2

j

)2
(24)

be the Jacobian of the SVD transformation [4, App. A]. The
change of variables theorem yields

−E[log(rY(Y))] = −E[log(rU,Σ,V(U,Σ,V))]

+ E

[
log
(
JP,P (σ1, · · · , σP )

)]

= −E[log(rU(U))]− E[log(rV(V))]

− E
[
log
(
rσM+1,...,σP (σ1, . . . , σM )

)]

− E
[
log
(
rσM+1,...,σP (σM+1, . . . , σP )

)]

+ E

[
log
(
JP,P (σ1, · · · , σP )

)]
(25)

where the second equality follows from the independence be-
tweenU,V, andΣ. BecauseU andV are uniformly distributed
on the corresponding manifolds,

−E[log(rU(U))] = log
∣∣∣S̃(T, P )

∣∣∣ (26)

−E[log(rV(V))] = log |S(N,P )| . (27)

Substituting (22), (23), (24), (26) and (27) into (25) we obtain
after simple algebraic manipulations

−E[log(rY(Y))] =ML log(λ) + log

(
ΓM (M)ΓM (L)

ΓM (N)ΓM (T )

)

+NT log(π) + k3 E

[
M∑

i=1

log(σ2
i )

]

+

M∑

i=1

P∑

j=M+1

E
[
log
(
(σ2

i − σ2
j )

2
)]

+
1

λ

M∑

i=1

E
[
σ2
i

]
+ E

[
P∑

i=M+1

σ2
i

]
. (28)

Here,k3 , P − P + M − L. We next upper-bound the last
three terms on the RHS of (28). Using that the singular values
are arranged in decreasing order we obtain

M∑

i=1

P∑

j=M+1

E
[
log
(
(σ2

i − σ2
j )

2
)]

≤ 2(P −M)

M∑

i=1

E
[
log(σ2

i )
]
. (29)

For the second-last term, the power constraint (6) and the noise-
variance normalization imply that

1

λ

M∑

i=1

E
[
σ2
i

]
≤ NT (ρ+ 1)

λ
=ML+ o(1), ρ→ ∞ (30)

where we used thatλ = NTρ/(ML). Finally, to upper-bound
the last term in (28) we proceed as in [4, p. 377] and obtain

E

[
P∑

i=M+1

σ2
i

]
≤ (T −M)(N −M). (31)

Substituting (29), (30), and (31) into (28), and then (28) and (20)
into (19), we get

I(X;Y)

≤ML log(ρ)−M (N + T −M − L)︸ ︷︷ ︸
=L

+ log

(
ΓM (M)ΓM (L)

ΓM (M)ΓM (T )

)
+ML log

(
NT

ML

)

+ (T −M − L)E

[
M∑

i=1

log(σ2
i )

]

︸ ︷︷ ︸
,c1(ρ)

+N

(
E

[
M∑

i=1

log(σ2
i )

]
−

M∑

i=1

E

[
log

(
1 +

ρ‖xi‖2
M

)])

︸ ︷︷ ︸
,c2(ρ)

+ o(1), ρ→ ∞. (32)

To conclude the proof, we boundc1(ρ) andc2(ρ) by exploiting
that X /∈ K(ρ0) w.p.1. LetZ be a(T − M) × N random
matrix, independent of the channel matrixH, and with i.i.d.
CN (0, 1) entries. GivenX = ΦD, the matrixYH

Y has the
same conditional distribution as [4, p. 377]

H
H
(
IM +

ρ

M
D

2
)
H

︸ ︷︷ ︸
,A

+ Z
H
Z︸︷︷︸

,B

.

This property allows us to use Weyl’s theorem [21, Thm. 4.3.1]
to boundc1(ρ) as follows:

c1(ρ) = EX

[
EY |X

[
M∑

i=1

log
(
λi
{
Y

H
Y
})
∣∣∣∣∣X
]]

≤ EX

[
EH,Z

[
M∑

i=1

log
(
λi{A}+ λ1{B}

)
∣∣∣∣∣X
]]

≤ EX


EH




M∑

i=1

log
(
λi{A}+ EZ[λ1{B}]︸ ︷︷ ︸

,η

)
∣∣∣∣∣∣∣
X





 . (33)

Here, in the last step we used Jensen’s inequality. We next
rewrite the argument in the expectation on the RHS of (33) in a
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more convenient form:
M∑

i=1

log
(
λi{A}+ η

)

(a)
= log det

((
IM +

ρ

M
D

2
)
HH

H + ηIM

)

= log det
(
IM +

ρ

M
D

2
)

+ log det

(
HH

H + diag

{[
η
(
1 +

ρ

M
‖x1‖2

)−1

· · · η
(
1 +

ρ

M
‖xM‖2

)−1
]T})

(b)

≤ log det
(
IM +

ρ

M
D

2
)

+ log det

(
HH

H + η
(
1 +

ρ0
M

)−1

IM

)

︸ ︷︷ ︸
,κ(H,ρ0)

. (34)

Here, (a) follows becauseHH
(
IM + (ρ/M)D2

)
H and(

IM + (ρ/M)D2
)
HH

H have the same M nonzero
eigenvalues [21, Thm. 1.3.20], and (b) follows because
X /∈ K(ρ0) w.p.1 and because for two matricesA andB, if
A − B is positive semidefinite thendet(A) ≥ det(B) [21,
Cor. 7.7.4]. Substituting (34) into (33) we obtain

c1(ρ) ≤ E

[
log det

(
IM +

ρ

M
D

2
)]

+ E[κ(H, ρ0)] (35)

≤M log

(
1 +

Tρ

M

)
+ E[κ(H, ρ0)]

=M log

(
Tρ

M

)
+ E[κ(H, ρ0)] + o(1), ρ→ ∞. (36)

To boundc2(ρ) we use (35) and obtain

c2(ρ) ≤ E[κ(H, ρ0)] . (37)

Finally, substituting (36) and (37) into (32) we get

I(X;Y) ≤M (T −M) log(ρ) + T · cρ0 + o(1), ρ→ ∞
(38)

where

cρ0 ,
1

T
log

(
ΓM (M)ΓM (L)

ΓM (N)ΓM (T )

)
+M

(
1− M

T

)
log

(
T

M

)

+
ML

T
log

(
N

L

)
+
L

T

(
E[κ(H, ρ0)]−M

)
. (39)

Note that the RHS of (38) does not depend on the choice of the
input distribution. Hence, (38) is an upper bound on capacity
as well. BecauseH has i.i.d. Gaussian entries, and, hence, its
singular values have finite differential entropy, we can apply [10,
Lem. 6.7(b)] combined with the dominated convergence theo-
rem [28, p. 180] and obtain

lim
ρ0→∞

E[κ(H, ρ0)] = E

[
lim

ρ0→∞
κ(H, ρ0)

]

= E
[
log det(HH

H)
]
.

Hence,cρ0 in (39) can be made arbitrarily close toc in (9) by
choosingρ0 sufficiently large.

B. Lower Bound

To obtain a capacity lower bound that matches the upper
bound derived in Section IV-A, we evaluateI(X;Y) for the
BSTM input distribution introduced in Section III-C. More
specifically, we proceed as follows. Fixρ0 > 0 and let

K̃(ρ0) ,
{
Λ = diag{[λ1 · · · λM ]T} :

0 < min
m=1,...,M

{λ2m} < ρ0/ρ
}
.

Starting fromQ
opt
D

(see Section III-C), we define the following
family of probability distributions parameterized with respect
to6 ρ

Q
opt,ρ
D

(Λ) =





Q
opt
D
(Λ)

1−P(D∈K̃(ρ0),D∼Q
opt
D )
, if Λ /∈ K̃(ρ0)

0, if Λ ∈ K̃(ρ0).
(40)

Note that Qopt,ρ
D

(Λ) is supported outsidẽK(ρ0) and that
limρ→∞ Q

opt,ρ
D

(Λ) = Q
opt
D
(Λ) for all Λ.

1) Preliminary Results:In Lemma 12 below, we establish
that whenX = ΦDwithD ∼ Q

opt,ρ
D

andΦ unitary and isotropi-
cally distributed, the joint pdf of the largestM singular values of
the output matrixY in (4) converges pointwise to the pdf of the
nonzero singular values of

√
ρ/M ·ΦDH. Furthermore, the pdf

of the remainingP −M singular values converge pointwise to
the pdf of the singular values of an independentGaussian matrix.
We remark that we implicitly used this property to constructthe
output distribution in Section IV-A.

Lemma 12:Let X = ΦD whereΦ is unitary and isotrop-
ically distributed andD ∼ Q

opt,ρ
D

; let Y as in (4). Denote by
σ1 > · · · > σP the singular values ofY and let

σ̃ =
[(√

M/ρ
)
σ1 · · ·

(√
M/ρ

)
σM σM+1 · · · σP

]T
. (41)

The pdf of σ̃ converges pointwise asρ → ∞ to the pdf of a
vectoru ∈ CP whose firstM entries are distributed as the or-
dered nonzero singular values ofDH, with D ∼ Q

opt
D

andH as
in (4), and whose remainingP−M entries are distributed as the
nonzero singular values of an independent(T −M)× (N−M)
random matrix with i.i.d.CN (0, 1) entries.

Proof: See Appendix A.
Note that by Scheffé’s Theorem [29], pointwise convergence
of pdfs implies convergence in distribution of̃σ to u. This
weaker convergence result (which is not sufficient to establish
our capacity lower bound) has been already pointed out (without
proof) in [4, Lem. 16].

In Lemma 13 below we collect four asymptotic results regard-
ing the differential entropy and the expected logarithm of the
entries ofσ̃ in (41) that we shall need in the proof of the lower
bound.

Lemma 13:Let σ̃ = [σ̃1 · · · σ̃P ]T andu = [u1 · · · uP ]T as
in Lemma 12. Then

1) h(σ̃) = h(u) + o(1), ρ→ ∞
2) E[log(σ̃i)] = E[log(ui)] + o(1), ρ→ ∞, 1 ≤ i ≤ P
3) E

[
log
(
σ̃2
i − σ̃2

j

)]
= E

[
log(u2i − u2j)

]
+ o(1), ρ → ∞,

1 ≤ i < j ≤ P

6AlthoughQopt,ρ
D

depends on bothρ andρ0, the choice ofρ0 in the proof of
the lower bound will turn out to be immaterial.
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4) E
[
log
(
σ̃2
i −Mσ̃2

j /ρ
)]

= E
[
log(u2i )

]
+ o(1), ρ → ∞,

1 ≤ i < j ≤ P .

Proof: See Appendix B.
2) The Actual Bound:We evaluate the mutual information

I(X;Y) = h(Y)− h(Y |X) (42)

in (5) forX = ΦD with Φ unitary and isotropically distributed
andD ∼ Q

opt,ρ
D

. The second term on the RHS of (42) is given
by

h(Y |X) = NT log(πe) +N

M∑

i=1

E
[
log
(
1 + ρ‖xi‖2/M

)]

= NT log(πe) +N

M∑

i=1

E
[
log(ρd2i /M)

]

+N

M∑

i=1

E
[
log
(
1 +M/(ρd2i )

)]

(a)
= NT log(πe) +MN log(ρ/M)

+N E
[
log det

(
D

2
)]

+ o(1), ρ→ ∞. (43)

Here, (a) follows becauseρd2i ≥ ρ0 w.p.1, and hence,0 ≤
log
(
1 + M/(ρd2i )

)
≤ log(1 + M/ρ0) w.p.1, which implies

that

lim
ρ→∞

E

[
log

(
1 +

M

ρd2i

)]
= E

[
lim
ρ→∞

log

(
1 +

M

ρd2i

)]
= 0

as a consequence of the dominated convergence theorem [28,
p. 180]. We shall computeh(Y) in SVD coordinates [cf., (21)]
as follows:

h(Y)
(a)
= h(U)︸ ︷︷ ︸

=log |S̃(T,P )|

+ h(V)︸ ︷︷ ︸
=log |S(N,P)|

+ h(σ1, . . . , σP )

+ E

[
log
(
JP,P (σ1, . . . , σP )

)]

(b)
= log |S̃(T, P )|+ log |S(N,P )|+ M

2
log
( ρ
M

)

+ h(σ̃) + E

[
log
(
JP,P (σ1, . . . , σP )

)]
. (44)

Here, (a) follows because the isotropic distribution ofΦ and
the Gaussianity ofH and W imply that U and V are uni-
formly distributed onS̃(T, P ) andS(N,P ), respectively, and
independent ofΣ; In (b), we used (41) and thath(Ax) =
h(x) + log det(A) for a random vectorx and a deterministic
matrix A [19, Eq. (8.71)]. It is convenient to express also the
JacobianJP,P in (44) in terms ofσ̃. Using (24) and (41) we
obtain

E

[
log
(
JP,P (σ1, . . . , σP )

)]

= k4 log
( ρ
M

)
+

M∑

i=1

E

[
log
(
σ̃
2(P−P )+1
i

)]

+

M∑

i<j

E

[
log
((
σ̃2
i − σ̃2

j

)2)]

+

P∑

i=M+1

E

[
log
(
σ̃
2(P−P )+1
i

)]

+

P∑

M<i<j

E

[
log
((
σ̃2
i − σ̃2

j

)2)]

+

M∑

i=1

P∑

j=M+1

E

[
log
((
σ̃i

2 −Mσ̃2
j /ρ
)2)]

(45)

wherek4 ,M(P +P −M − 1/2). Substituting (45) into (44),
and using Lemma 13, we obtain

h(Y) = log |S̃(T, P )|+ log |S(N,P )|
+M(P + P −M) log(ρ/M) + h(u1, . . . , uM )

+

M∑

i=1

E

[
log
(
u
2(P+P−2M)+1
i

)]

+

M∑

i<j

E

[
log
((
u2i − u2j

)2)]
+ h(uM+1, . . . , uP )

+

P∑

i=M+1

E

[
log
(
u
2(P−P )+1
i

)]

+

P∑

M<i<j

E

[
log
((
u2i − u2j

)2)]
+ o(1), ρ→ ∞. (46)

We next evaluate the terms on the RHS of (46) by proceeding
as follows. By Lemmas 12 and 10,{u1, . . . , uM} are jointly
distributed as the singular values of anM×LGaussian random
matrixG with i.i.d. CN (0,

√
NT/L) entries. Evaluatingh(G)

in the SVD coordinate system, we get

h(G) = log |S̃(M,M)|+ log |S(L,M)|+ h(u1, . . . , uM )

+

M∑

i=1

E

[
log
(
u
2(L−M)+1
i

)]

+

M∑

i<j

E

[
log
((
u2i − u2j

)2)]
. (47)

Similarly, by Lemma 12,{uM+1, . . . , uL} are jointly dis-
tributed as the singular values of a(T −M)×(N−M) random
Gaussian matrix̃W with i.i.d. CN (0, 1) entries. Thus,

h(W̃) = log
∣∣∣S̃(T −M,P −M)

∣∣∣+ log|S(N −M,P −M)|

+ h(uM+1, . . . , uP ) +

P∑

i=M+1

E

[
log
(
u
2(P−P )+1
i

)]

+

P∑

M<i<j

E

[
log
((
u2i − u2j

)2)]
. (48)

Substituting (47) and (48) into (46), and then (43) and (46) into
(42), we obtain

I(X;Y)

=M(T −M) log
( ρ
M

)
+ h(G) + h(W̃)

+

M∑

i=1

E

[
log
(
u
2(P+P−M−L)
i

)]
−N E

[
log det

(
D

2
)]

︸ ︷︷ ︸
,α

+ log(k5)−NT log(πe) + o(1), ρ→ ∞ (49)
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wherek5 , |S̃(T, P )|·|S(N,P )|/
[
|S̃(T−M,P−M)|·|S(N−

M,P −M)| · |S̃(M,M)| · |S(L,M)|
]
. The term denoted byα

in (49) can be simplified as follows:

α
(a)
= LE

[
M∑

i=1

log
(
u2i
)
]
−N E

[
log det

(
D

2
)]

(b)
= LE

[
log det

(
D

2
HH

H
)]

−N E
[
log det

(
D

2
)]

= (L−N)E
[
log det

(
D

2
)]

+ LE
[
log det

(
HH

H
)]

(c)
= (L−N)M log(T ) + LE

[
log det

(
HH

H
)]
. (50)

Here, in (a) we used thatL = P + P −M − L, (b) follows
from Lemma 12, and (c) holds because whenT ≥M +N we
have thatD =

√
T · IM , and whenT < M +N we have that

L − N = 0. Finally, substituting (50) into (49), we get after
straightforward algebraic manipulations

I(X;Y) =M(T −M) log(ρ) + T · c+ o(1), ρ→ ∞

wherec is given in (9). This concludes the proof.

V. CONCLUSIONS

It was shown in [4] that USTM achieves the high-SNR ca-
pacity of a Rayleigh block-fading MIMO channel in the regime
where the channel’s coherence timeT is larger or equal to
the sum of the number of transmit antennasM and receive
antennasN . In the same paper, it was also conjectured that
when T < M + N , a situation relevant for large-MIMO
systems, USTM is no longer optimal. In this paper, we prove
this conjecture. Specifically, we establish that USTM is not
capacity-achieving whenT < M +N by determining the input
distribution (which we refer to as BSTM) that achieves capacity
at high SNR. The correspondingcapacity-achieving input signal
is the product of a unitary isotropically distributed matrix and
a diagonal matrix whose nonzero entries are distributed as the
square-root of the eigenvalues of a Beta-distributed matrix of
appropriate size. The analytical and numerical results reported
in Section III-D illustrate that the rate gain determined byusing
BSTM instead USTM grows logarithmically in the number of
receive antennasN , and can be as large as13% for practically
relevant SNR values, whenN ≫ T andM = ⌊T/2⌋.

APPENDIX A
PROOF OFLEMMA 12

Throughout this appendix, we shall focus for simplicity on
the caseT ≤ N . We shall, however, outline the additional steps
needed to generalize the proof to the caseT > N . Letqopt,ρ

D
and

q
opt
D

be the pdfs corresponding to the probability distributions
Q

opt,ρ
D

andQopt
D

, respectively (such pdfs exist whenT ≤ N ).
Let fY |D denote the conditional pdf ofY givenD. Denote by

f
(ρ)
σ̃

andfu the pdf ofσ̃ andu, respectively. Finally, denote by
f
(ρ)
σ̃ |D and fu |D the conditional pdf of̃σ andu givenD. The

proof consists of the following three steps:

1) We first obtain a closed-form expression forfY |D, thus
generalizing the result obtained in [9, Sec. III.A] (for the

special case ofD being a scaled identity matrix) to ar-
bitrary diagonal matrices. This result is of independent
interest.

2) We then calculatef(ρ)
σ̃ |D from fY |D and show thatf(ρ)

σ̃ |D
converges pointwise tofu |D asρ→ ∞.

3) Finally, we show that
∣∣∣f(ρ)
σ̃ |D(a |Λ) · qopt,ρ

D
(Λ)
∣∣∣ ≤ k (51)

wherek is a finite constant that does not depend ona and
Λ, i.e., the bound is uniform in botha andΛ. As D ∼
Q

opt,ρ
D

implies thatD has compact support, we can invoke
the dominated convergence theorem [30, Thm. 1.34] and
conclude that

lim
ρ→∞

f
(ρ)
σ̃

(a) = lim
ρ→∞

∫
f
(ρ)
σ̃ |D(a |Λ)qopt,ρ

D
(Λ)dΛ

=

∫
lim
ρ→∞

[
f
(ρ)
σ̃ |D(a |Λ)qopt,ρ

D
(Λ)
]
dΛ

=

∫
fu |D(a |Λ)qopt

D
(Λ)dΛ = fu(a).

A. Step 1

Setρ̃ , ρ/M . SinceY is conditionally Gaussian givenX,

fY |X(Y |X) =
1

πNT
·
exp
[
− tr

(
Y

H
(
ρ̃XX

H + IT

)−1
Y

)]

det(ρ̃XXH + IT )
N

.

To obtain fY |D from fY |X, it is convenient to consider the
eigenvalue decomposition ofYY

H:

YY
H = Ũ

(
Σ

2
0P×(T−P )

0(T−P )×P 0T−P

)

︸ ︷︷ ︸
,∆

Ũ
H. (52)

Here, Ũ is a T × T unitary matrix, andΣ, defined in (21),
contains the singular valuesσ1 > · · · > σP of Y. Set now
Λ , (ρ̃−1

D
−2 + IM )−1 and recall thatX = ΦD, whereΦ

is unitary and isotropically distributed, and, hence, uniformly
distributed onS(T,M). Proceeding as in [9, Sec. III],

fY |D(Y |D) =
1

|S(T,M)|

∫
fY |X(Y |ΦD)dΦ

=
1

πNT
· exp

[
− tr

(
Y

H
Y
)]

det(ρ̃D2 + IM )
N

· 1

|S(T,M)|

·
∫

S(T,M)

exp
[
tr
(
∆ΦΛΦ

H
)]
dΦ. (53)

The integral on the RHS of (53) is computed in closed-form
in [9, Sec. III.A] for the special caseD =

√
T · IM , which

corresponds to USTM. We shall next evaluate this integral (and,
hence,fY |D) in closed-form for an arbitrary diagonal matrix
D. We start by observing that the integral under examination re-
sembles the well-known Itzykson-Zuber integral [31, Eq. (3.2)],
with the crucial differences that, in our case, the integration is
performed over the Stiefel manifoldS(T,M) instead of the
unitary groupU(T ) , S(T, T ). Let Φ̃ = [Φ Φ⊥] whereΦ⊥ is
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aT×(T−M)matrix chosen so that̃Φ is unitary, i.e.,̃Φ ∈ U(T ).
Then [32, Eq. (5)]

∫

S(T,M)

etr(∆ΦΛΦ
H)dΦ =

1

|U(T −M)|

∫

U(T )

etr(∆ΦΛΦ
H)dΦ̃. (54)

The assumptionT ≤ N entails that the nonzero entries of
the diagonal matrixD are distinct (see Section III-C); hence,
the nonzero entries of the diagonal matrixΛ are distinct as
well. Furthermore, whenT ≤ N we have thatP = T (and
P = N ) and, hence,∆ = Σ

2 [see (52)]. Starting from
Λ = diag{[λ1 · · · λM ]T}, we next define the following full-
rankT × T diagonal matrix:

Λǫ , diag{[λ1 · · · λM ǫ′M+1 · · · ǫ′T ]T}.

Here, ǫ′M+1, . . . , ǫ
′
T are nonnegative real numbers chosen so

that the nonzero entries ofΛǫ are distinct. As the unitary group
U(T ) is compact,

∫

U(T )

etr(Σ
2
ΦΛΦ

H)dΦ̃ = lim
ǫ′M+1→0,...,ǫ′T→0

∫

U(T )

etr(Σ
2
Φ̃ΛǫΦ̃

H)dΦ̃.

(55)

The argument of thelim operator on the RHS of (55) is the
Itzykson-Zuber integral. Hence, by [31, Eq. (3.4)] we get7

∫

U(T )

etr(Σ
2
Φ̃ΛǫΦ̃

H)dΦ̃ =

|U(T )| ·
T∏
i=1

Γ(i) · det(A)

T∏
i<j

(σ2
i − σ2

j ) ·
T∏
i<j

(λ̃i − λ̃j)

. (56)

Here,{λ̃j}Tj=1 are the diagonal entries ofΛǫ, andA is aT ×T

matrix defined as follows:[A]i,j = exp(σ2
j λ̃i). We next com-

pute the limitǫ′M+1 → 0, . . . , ǫ′T → 0 of the RHS of (56)
using l’Hôpital’s Theorem, substitute the final result into (54),
and obtain [33, Lem. 5]

∫

S(T,M)

etr(∆ΦΛΦ
H)dΦ

=
|U(T )|

|U(T −M)|︸ ︷︷ ︸
=|S(T,M)|

·
det(M) det

(
Λ

M−T
)
·

T∏
i=T−M+1

Γ(i)

T∏
i<j

(σ2
i − σ2

j ) ·
M∏
i<j

(λi − λj)

(57)

with M being aT × T matrix defined as follows:

[M]i,j =

{
eλiσ

2
j , 1 ≤ i ≤M, 1 ≤ j ≤ T

σ
2(T−i)
j , M < i ≤ T, 1 ≤ j ≤ T.

Substituting (57) into (53) and using thatΛ =(
ρ̃−1

D
−2 + IM

)−1
, we obtain the following closed-form

7Note that—differently from our setup—in [31, Eq. (3.4)] theHaar measure
on the unitary group is normalized.

expression for the conditional pdffY |D:

fY |D(Y |D)

=
1

πNT
·

T∏

i=T−M+1

Γ(i) · exp
[
− tr

(
Y

H
Y
)]

det(ρ̃D2 + IM )
N

· det(M) det
(
Λ

M−T
)

T∏
i<j

(σ2
i − σ2

j ) ·
M∏
i<j

(λi − λj)

=
ρ̃−M(M−1)/2

πNT
·

T∏

i=T−M+1

Γ(i) · det
(
ρ̃−1

D
−2 + IM

)T−M

det(ρ̃D2 + IM )
N−M+1

·
exp
(
−∑P

i=1 σ
2
i

)

T∏
i<j

(σ2
i − σ2

j )

· det(M)
M∏
i<j

(d2i − d2j)

. (58)

We remark that (58) holds under the assumption thatT ≤ N ,
which ensures that the{di}Mi=1 are all distinct.

WhenT > N , we have thatd1 = · · · = dl =
√
TN/L,

wherel = T−L = min{M,T−N} (see Section III-C). Hence,
λ1 = · · · = λl = λ , [L/(TNρ̃) + 1]−1. Let in this case

Λ
′
ǫ , diag{[λ+ ǫ′1 · · · λ+ ǫ′l λl+1 · · · λM ǫ′M+1 · · · ǫ′T ]T}

whereǫ′1, . . . , ǫ
′
l and ǫ′M+1, . . . , ǫ

′
T are positive real numbers

chosen so that the diagonal elements ofΛ
′
ǫ are distinct. Let also

∆ǫ , diag{[σ2
1 · · · σ2

N ǫN+1 · · · ǫT ]T}, whereǫN+1, . . . , ǫT
are positive real numbers chosen so that the diagonal elements
of ∆ǫ are distinct. To obtainfY |D, we need to replace (55) with
(59) on the top of next page, and then follow the same steps lead-
ing to (58). The corresponding steps are omitted. For simplicity,
in the remainder of the proof we shall focus exclusively on the
caseT ≤ N .

B. Step 2

1) Computingf(ρ)
σ̃ |D: To obtainf(ρ)

σ̃ |D from fY |D, we express
Y in terms of its SVD [see (21)], which yields

fU,Σ,V |D(U,Σ,V |D)

= fY |D(UΣV
H |D) · JN,T (σ1, · · · , σT ) (60)

whereJN,T is the Jacobian of the SVD transformation given
in (24) (recall that we assumedT ≤ N , and, hence,P = T and
P = N ).

Next, we integrate the RHS of (60) overU andV and then
operate the change of variableσ 7→ σ̃ defined in (41). These
two steps yield

f
(ρ)
σ̃ |D(σ̃ |D)

=
2T e−

∑T
i=M+1 σ̃2

i

N∏
i=N−T+1

Γ(i) ·
T−M∏
i=1

Γ(i)

· det
(
ρ̃−1

D
−2 + IM

)T−M

det(D2 + ρ̃−1IM )
N−M+1

·
M∏

i<j

(
σ̃2
i − σ̃2

j

)
·

T∏

M<i<j

(σ̃2
i − σ̃2

j ) ·
M∏

i=1

T∏

j=M+1

(
σ̃2
i −

σ̃2
j

ρ̃

)
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∫

U(T )

etr(∆ΦΛΦ
H)dΦ̃ = lim

ǫN+1→0,...,ǫT→0
lim

ǫ′1→0,...,ǫ′l→0
lim

ǫ′M+1→0,...,ǫ′T→0

∫

U(T )

etr(∆ǫΦ̃Λ
′

ǫΦ̃
H)dΦ̃ (59)

· e−ρ̃
∑M

i=1 σ̃2
i det(M)︸ ︷︷ ︸

,cρ(σ̃)

·

T∏
i=1

σ̃
2(N−T )+1
i

M∏
i<j

(d2i − d2j )

. (61)

2) Convergence off(ρ)
σ̃ |D to fu |D as ρ → ∞: We start by

characterizing the limitρ→ ∞ of cρ(σ̃) in (61). LetL be a
T×T matrix defined as in (62) on the top of next page. Observe
now thatcρ(σ̃) = det(L) and thatL21 vanishes asρ → ∞.
These two facts imply that

lim
ρ→∞

cρ(σ̃) = lim
ρ→∞

det(L)

= lim
ρ→∞

(
det(L11) det(L22)

)

= det
(
L̃
)
·

T∏

M<i<j

(σ̃2
i − σ̃2

j ) (63)

with L̃ being aM ×M matrix defined by
[
L̃
]
i,j

= e−σ̃2
j /d

2
i .

Substituting (63) into (61), we get after some algebraic manip-
ulations

lim
ρ→∞

f
(ρ)
σ̃ |D(σ̃ |D)

=

2M det
(
L̃
)
·

M∏
i=1

σ̃
2(N−M)+1
i

det(D)
2N ·

N∏
i=N−M+1

Γ(i)

·
M∏

i<j

σ̃2
i − σ̃2

j

d2i − d2j
d2i d

2
j

︸ ︷︷ ︸
,f1(σ̃1,...,σ̃M )

· 2T−Me−
∑T

i=M+1σ̃
2
i ·

T∏
i=M+1

σ̃
2(N−T )+1
i ·

T∏
M<i<j

(
σ̃2
i − σ̃2

j

)2

T−M∏
i=1

Γ(i) ·
N−M∏

i=N−T+1

Γ(i)

︸ ︷︷ ︸
,f2(σ̃M+1,...,σ̃T )

(64)

The proof of part 2 is concluded by noting that

lim
ρ→∞

f
(ρ)
σ̃ |D(σ̃ |D) = f1(σ̃1, . . . , σ̃M ) · f2(σ̃M+1, . . . , σ̃T )

= fu |D(σ̃ |D)

where the last equality follows from [22, Thms. 2.17 and 2.18].

C. Step 3

We next establish that the functionf(ρ)
σ̃ |D(σ̃ |D) ·qopt,ρ

D
(D) is

bounded. By (40), this is obviously true for the case whenD ∈
K̃(ρ0). We analyze next the caseD /∈ K̃(ρ0). Throughout this
appendix, we shall usek to indicate a constant term that does not
depend oñσ, D, andρ. Note thatk can take on different values
at each appearance. We start by observing that for an arbitrary

ζ ∈ (0, 1), there exists aρth > 0 such thatP{D ∈ K̃(ρ0),D ∼
Q

opt
D
} ≤ ζ for all ρ > ρth. Hence, forρ > ρth,

q
opt,ρ
D

(D) =
q

opt
D
(D)

1− P{D ∈ K̃(ρ0),D ∼ Q
opt
D
}
≤ q

opt
D
(D)

1− ζ
. (65)

Since we are interested in the limitρ → ∞, we will assume
throughout thatρ > ρth, so that (65) holds. Letd2 , TN/L. It
follows from (12) and from the change of variable theorem that

q
opt
D
(D) = fλ1,...,λM

(
d21
d2
, · · · , d

2
M

d2

)
·

M∏

i=1

2di
d

= k ·
M∏

i=1

(
di
d

)2(T−2M)+1(
1− d2i

d2

)N−T

·
M∏

i<j

(
d2i − d2j
d2

)2

. (66)

Here, the second equality follows by settingm =M , p = T −
M , andn =M +N −T in (12). Substituting (66) into (65) we
obtain

f
(ρ)
σ̃ |D(σ̃ |D) · qopt,ρ

D
(D)

≤ k · det
(
ρ̃−1

D
−2 + IM

)T−M

det(D2 + ρ̃−1IM )
N−M+1

· det(M)e−ρ̃
∑M

i=1 σ̃2
i

·
M∏

i=1

σ̃
2(N−T )+1
i ·

M∏

i<j

(σ̃2
i − σ̃2

j ) ·
M∏

i=1

T∏

j=M+1

(
σ̃2
i −

σ̃2
j

ρ̃

)

︸ ︷︷ ︸
≤

M∏
i=1

σ̃
2(N−i)+1
i

· e−
∑T

i=M+1σ̃
2
i ·

T∏

i=M+1

σ̃
2(N−T )+1
i ·

T∏

M<i<j

(σ̃i
2 − σ̃j

2)

︸ ︷︷ ︸
≤

T∏
i=M+1

σ̃
2(N−i)+1
i

·
M∏

i<j

(d2i − d2j) ·
M∏

i=1

d
2(T−2M)+1
i (d2 − d2i )

N−T

︸ ︷︷ ︸
≤k·

M∏
i=1

di

≤ k ·
M∏

i=1

[
1 + 1/(ρ̃d2i )

]T−M

︸ ︷︷ ︸
≤(1+M/ρ0)M(T−M)=k

·
det(M)

T∏
i=1

σ̃
2(N−i)+1
i

M∏
i=1

(ρ̃−1 + d2i )
N−M+1/2

·
M∏

i=1

di
(ρ̃−1 + d2i )

1/2

︸ ︷︷ ︸
≤1

· exp
(
−ρ̃

M∑

i=1

σ̃2
i −

T∑

i=M+1

σ̃2
i

)

≤ k · det(N) (67)
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L , M · diag{[e−ρ̃σ̃2
1 · · · e−ρ̃σ̃2

M 1 . . . 1︸ ︷︷ ︸
T−M

]T}

=




e
− ρ̃

1+ρ̃d21
σ̃2
1 · · · e

− ρ̃

1+ρ̃d21
σ̃2
M

eλ1σ̃
2
M+1 · · · eλ1σ̃

2
T

...
. . .

...
...

. . .
...

e
− ρ̃

1+ρ̃d2
M

σ̃2
1 · · · e

− ρ̃

1+ρ̃d2
M

σ̃2
M

eλM σ̃2
M+1 · · · eλM σ̃2

T

(ρ̃σ̃2
1)

T−M−1 · e−ρ̃σ̃2
1 · · · (ρ̃σ̃2

M )T−M−1 · e−ρ̃σ̃2
M σ̃

2(T−M−1)
M+1 · · · σ̃

2(T−M−1)
T

...
. . .

...
...

. . .
...

e−ρ̃σ̃2
1 · · · e−ρ̃σ̃2

M 1 · · · 1




=

(
L11 L12

L21 L22

)
. (62)

where theT × T matrixN is defined as follows:

N , diag

{[
(ρ̃−1 + d21)

−(N−M+1/2)

· · · (ρ̃−1 + d2M )−(N−M+1/2), 1 · · · 1︸ ︷︷ ︸
T−M

]T}

·M · diag
{[
e−ρ̃σ̃2

1 · · · e−ρ̃σ̃2
M e−σ̃2

M+1 · · · e−σ̃2
T

]T}

· diag
{[
σ̃
2(N−1)+1
1 · · · σ̃2(N−T )+1

T

]T}
.

Next, we upper-bounddet(N) by bounding the entriesni,j of
N, which are given by

ni,j =





exp
[
−
(
d2i + ρ̃−1

)−1
σ̃2
j

]

(d2i + ρ̃−1)
N−M+1/2

· σ̃2(N−j)+1
j ,

1 ≤ i ≤M, 1 ≤ j ≤M

exp
[
−(1 + ρ̃d2i )

−1σ̃2
j

]

(d2i + ρ̃−1)
N−M+1/2

· σ̃2(N−j)+1
j ,

1 ≤ i ≤M, M < j ≤ T

(
ρ̃σ̃2

j

)T−i · e−ρ̃σ̃2
j · σ̃2(N−j)+1

j ,

M < i ≤ T, 1 ≤ j ≤M

σ̃
2(T+N−i−j)+1
j · e−σ̃2

j , M < i ≤ T, M < j ≤ T.

In the following, we shall repeatedly make use of the fact that
the functionf(x) = e−βx2

xα with α, β, x > 0 is maximized
for x = x∗ =

√
α/(2β), and that the corresponding maximum

values isf(x∗) =
[
α/(2βe)

]α/2
. This implies that

f(x) = e−βx2

xα ≤
(

α

2βe

)α/2

, x > 0. (68)

1) Case1 ≤ i ≤M, 1 ≤ j ≤M :

ni,j

(a)

≤ k ·
(
d2i + ρ̃−1

)N−j+1/2 (
d2i + ρ̃−1

)−(N−M+1/2)

= k ·
(
d2i + ρ̃−1

)M−j

(b)

≤ k ·
(
d2 +

M

ρth

)M−j

= k.

Here, (a) follows from (68) by settingα = 2(N − j) + 1, β =
(d2i + ρ̃−1)−1, andx = σ̃j ; (b) follows becausedi ≤ d and
j ≤M .

2) Case1 ≤ i ≤M, M < j ≤ T :

ni,j = exp
[
−(1 + ρ̃d2i )

−1σ̃2
j

]
︸ ︷︷ ︸

≤1

· σ̃2(N−j)+1
j

·
(
d2i + ρ̃−1

)−(N−M+1/2)

︸ ︷︷ ︸
(a)

≤
(

ρ̃
1+ρ0/M

)N−M+1/2

≤ k · σ̃2(N−j)+1
j ρ̃N−M+1/2. (69)

Here, (a) follows becaused2i ρ ≥ ρ0.

3) CaseM < i ≤ T, 1 ≤ j ≤M :

ni,j = ρ̃T−ie−ρ̃σ̃2
j σ̃

2(T+N−i−j)+1
j

(a)

≤ k · ρ̃T−i ·
(
1

ρ̃

)T+N−i−j+1/2

= k · ρ̃−(N−j+1/2)

≤ k · ρ−(N−j+1/2)
th = k.

Here, (a) follows from (68) by settingα = 2(T+N−i−j)+1,
β = ρ̃, andx = σ̃j .

4) CaseM < i ≤ T, M < j ≤ T : We haveni,j ≤ k,
which follows directly from (68) by settingα = 2(T +N − i−
j) + 1, β = 1, andx = σ̃j .

To show thatdet(N) is bounded, it remains to further ana-
lyze case 2, whereni,j is not bounded. Let{i1, . . . , iT } be an
arbitrary permutation of{1, . . . , T }. Then [21, Sec. 0.3]

det(N) =
∑

(i1,...,iT )

sgn(i1, . . . , iT ) · ni1,1 · . . . · niT ,T . (70)

Here, the sum is over all the(T !) permutations of{1, . . . , T }
andsgn(·) denotes the sign of the permutation [21, p. 8]. We
observe that for eachni,j (1 ≤ i ≤ M,M < j ≤ T ) that
appears in the product on the RHS of (70), there exists a factor
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ni′,j′ in the same product withM < i′ ≤ T , 1 ≤ j′ ≤M (case
3). Note now that

ni,j · ni′,j′

(a)

≤ k · σ̃
2(N−j)+1
j︸ ︷︷ ︸

(b)

≤
(
ρ̃σ̃2

j′

)N−j+1/2

· ρ̃N−M+1/2

·
(
ρ̃σ̃2

j′
)T−i′ · e−ρ̃σ̃2

j′ · σ̃2(N−j′)+1
j′

≤ k · ρ̃2N+T−M+1−j−i′ · σ̃2(2N+T+1−j−i′−j′)
j′ e−ρ̃σ̃2

j′

︸ ︷︷ ︸
(c)

≤k·ρ̃−(2N+T+1−j−i′−j′)

≤ k · ρ̃−(M−j′)

≤ k · ρ−(M−j′)
th = k.

Here, (a) follows from (69), in (b) we used thatρ̃σ̃2
j′ = σ2

j′ ≥
σ2
j = σ̃2

j for j′ ≤ M < j, and (c) follows from (68) by setting
α = 2(2N + T + 1− j − i′ − j′), β = ρ̃, andx = σ̃j′ .

Summarizing, we showed that
∣∣∣f(ρ)
σ̃ |D(σ̃ |D) · qopt,ρ

D
(D)

∣∣∣ ≤ k · det(N) ≤ k

which concludes the proof of the lemma.

APPENDIX B
PROOF OFLEMMA 13

Throughout this appendix, we shall setd ,
√
NT/L, and

ρ̃ , ρ/M , and denote byqopt,ρ
D

andqopt
D

the pdfs corresponding
to the probability distributionsQopt,ρ

D
andQopt

D
, respectively, by

f
(ρ)
σ̃

andfu the pdf ofσ̃ andu, respectively, and byf(ρ)
σ̃ |D and

fu |D the conditional pdf of̃σ andu givenD, respectively. We
shall usek to denote a finite constant; its value might change
at every appearance. Since the lemma only addresses limiting
behaviors asρ → ∞, we shall assume throughout thatρ >
ρth > 0. Finally, for simplicity we shall focus exclusively on
the caseT ≤ N ; the proof for the caseT > N follows from
analogous steps.

A. Proof of Part 1

The proof is based on the following theorem.
Theorem 14 ([34, Thm. 1]):Let {xi ∈ Cm} be a sequence

of random vectors with pdfsfi and letx ∈ Cm be a ran-
dom vector with pdff. Assume thatfi converges tof point-
wise. If there exist i) a finite constantF > 0 such that
max{supx fi(x), supx f(x)} ≤ F for all i, and ii) a finite con-
stantL > 0 such thatmax{

∫
‖x‖κfi(x)dx,

∫
‖x‖κf(x)dx} ≤

L for someκ > 1 and alli, thenh(xi) → h(x).
Since we established in Appendix A thatf

(ρ)
σ̃

converges tofu
pointwise asρ → ∞, we just need to verify that bothf(ρ)

σ̃
and

fu satisfy the conditions i) and ii) in Theorem 14.
1) f

(ρ)
σ̃

andfu are bounded:Because of (51), and since0 <
di ≤ d, we have that

f
(ρ)
σ̃

(σ̃) =

∫
f
(ρ)
σ̃ |D(σ̃|D)q

opt,ρ
D

(D)dD ≤ k · dM = k.

To show thatfu is bounded, we first prove thatfu |D · qopt
D

is
bounded by using (64) and (66):

fu |D(u |D) · qopt
D
(D)

= k · det(L̃)
M∏
i=1

d
2(N−M+1)
i

·
M∏

i=1

u
2(N−M)+1
i ·

M∏

i<j

(
u2i − u2j

)

︸ ︷︷ ︸
≤

M∏
i=1

u
2(N−i)+1
i

· e−
∑T

i=M+1 u2
i ·

T∏

i=M+1

u
2(N−T )+1
i ·

T∏

M<i<j

(
u2i − u2j

)2

︸ ︷︷ ︸
≤

T∏
i=M+1

u
2(N+T−2i)+1
i

·
M∏

i<j

(
d2i − d2j

)
·
(

M∏

i=1

d
2(T−2M)+1
i

(
d2 − d2i

)N−T

)

︸ ︷︷ ︸
≤k·

M∏
i=1

di

≤ k · det(L̃) ·
M∏

i=1

d
−(2(N−M)+1)
i ·

M∏

j=1

u
2(N−j)+1
j

︸ ︷︷ ︸
(a)

≤ k

·
T∏

i=M+1

e−u2
i u

2(N+T−2i)+1
i︸ ︷︷ ︸

(b)

≤k

≤ k.

Here, (a) follows from (68) with the choiceα = 2(N − j) + 1,
β = d−2

i , andx = uj, as detailed below

e−u2
j/d

2
i · d−(2(N−M)+1)

i · u2(N−j)+1
j

≤ k · d2(M−j)
i ≤ k · d2(M−j) = k

for all 1 ≤ i, j ≤M ; (b) follows again from (68). Thus

fu(u) =

∫
fu |D(u |D) · qopt

D
(D)dD ≤ k · dM = k.

2) f
(ρ)
σ̃

and fu have finite second moment:We takeκ = 2,
and obtain

∫
‖σ̃‖2f(ρ)

σ̃
(σ̃)dσ̃ =

1

ρ̃

M∑

i=1

E
[
σ2
i

]
+

P∑

i=M+1

E
[
σ2
i

]

(a)

≤ 1

ρ̃
NT (ρ+ 1) + (N −M)(T −M)

≤ (1 + 1/ρth)MNT + (N −M)(T −M)

= k. (71)

Here, (a) follows from (30) and (31). Furthermore,
∫
‖u‖2fu(u)du = E

[
tr
(
DHH

H
D
)]

+ (N −M)(T −M)

= k.

This concludes the proof.
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B. Proof of Part 2

Let 0 < δ < 1 and letr be a positive integer satisfyingr >
1. Denote byf(ρ)σ̃i

the pdf of σ̃i and byfui the pdf ofui. The
expectation on Lemma 13–Part-2 can be rewritten as follows:

lim
ρ→∞

E
f
(ρ)
σ̃i

[log(x)] = lim
ρ→∞

{
E
f
(ρ)
σ̃i

[log(x) · I{x < δ}]
+ E

f
(ρ)
σ̃i

[log(x) · I{δ ≤ x ≤ r}]

+ E
f
(ρ)
σ̃i

[log(x) · I{x > r}]
}

(72)

whereI{·} is the indicator function. We analyze the three terms
on the RHS of (72) separately. For the first term, [10, Lemma
6.7(a)] and Lemma 13–Part 1 imply that

lim
ρ→∞

E
f
(ρ)
σ̃i

[log(x) · I{x < δ}] = ǫ1(δ)

whereǫ1(δ) → 0 asδ → 0. For the second term, we have that

lim
ρ→∞

E
f
(ρ)
σ̃i

[log(x) · I{δ ≤ x ≤ r}]

= Efui
[log(x) · I{δ ≤ x ≤ r}]

as a consequence of the dominated convergence theorem. Fi-
nally, for the third term we proceed as follows:

E
f
(ρ)
σ̃i

[log(x) · I{x > r}] =
∞∑

l=r

l+1∫

l

f
(ρ)
σ̃i

(x) log(x)dx

(a)

≤
∞∑

l=r

l+1∫

l

f
(ρ)
σ̃i

(x)
√
x dx

≤
∞∑

l=r

√
l + 1

l+1∫

l

f
(ρ)
σ̃i

(x) dx

≤
∞∑

l=r

√
l + 1

∞∫

l

f
(ρ)
σ̃i

(x) dx

(b)

≤
∞∑

l=r


√l+ 1 ·

E
f
(ρ)
σ̃i

[
x2
]

l2




(c)

≤
∞∑

l=r

[√
l + 1 · k

l2

]

≤
√
2k

∞∑

l=r

l−3/2. (73)

Here,(a) follows becauselog(x) ≤ √
x, x ≥ 1, (b) follows

from Markov’s inequality, and (c) is a consequence of (71). Note
that (73) holds for allρ > ρth. Hence, we have

0 ≤ ǫ2(r) , lim
ρ→∞

E
f
(ρ)
σ̃i

[log(x) · I{x > r}] ≤
√
2k

∞∑

l=r

l−3/2.

Since
∑∞

l=r l
−3/2 converges, we can makeǫ2(r) arbitrarily

close to0 by choosingr sufficiently large. Summarizing, we
showed that

lim
ρ→∞

E
f
(ρ)
σ̃i

[log(x)] = Efui
[log(x) · I{δ ≤ x ≤ r}]

+ ǫ1(δ) + ǫ2(r).

The RHS of this equality can be made arbitrarily close to
Efui

[log(x)] by choosingδ sufficiently small andr sufficiently
large. This concludes the proof.

C. Proof of Part 3

To establish the desired result, it is sufficient to show that

E[log(σ̃i − σ̃j)] = E[log(ui − uj)] + o(1), ρ→ ∞ (74)

and that

E[log(σ̃i + σ̃j)] = E[log(ui + uj)] + o(1), ρ→ ∞. (75)

Lemma 13–Part 1 implies that, for sufficiently largeρ, h(σ̃i −
σ̃j) > −∞ andh(σ̃i + σ̃j) > −∞; We can now establish (74)
and (75) through steps similar to the ones in Part 2.

D. Proof of Part 4

The proof is analogous to the proof of part 2 and part 3.
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Commun. (AËU), vol. 65, no. 8, pp. 707–712, Aug. 2011.

[27] F. Topsøe, “An information theoretical identity and a problem involving
capacity,”Studia Scientiarum Math. Hung., vol. 2, pp. 291–292, 1967.

[28] G. R. Grimmett and D. R. Stirzaker,Probability and Random Processes,
3rd ed. Oxford, U.K.: Oxford Univ. Press, 2001.

[29] H. Scheffé, “A useful convergence theorem for probability distributions,”
Ann. Math. Stat., vol. 18, no. 3, pp. 434–438, 1947.

[30] W. Rudin,Real and Complex Analysis, 3rd ed. New York, NY, U.S.A.:
McGraw-Hill, 1987.

[31] C. Itzykson and J. B. Zuber, “The planar approximation.II,” J. Math. Phys.,
vol. 21, pp. 411–421, 1980.

[32] A. Onatski, “The Tracy–Widom limit for the largest eigenvalues of sin-
gular complex Wishart matrices,”Ann. Appl. Probab., vol. 18, no. 2, pp.
470–490, Apr. 2008.

[33] A. Ghaderipoor, C. Tellambura, and A. Paulraj, “On the application of
character expansions for MIMO capacity analysis,”IEEE Trans. Inf. The-
ory, vol. 58, no. 5, pp. 2950–2962, May 2012.

[34] M. Godavarti and A. Hero, “Convergence of differentialentropies,”IEEE
Trans. Inf. Theory, vol. 50, no. 1, pp. 171–176, Jan. 2004.

Wei Yang (S’09) received the B.E. degree in com-
munication engineering and M.E. degree in commu-
nication and information systems from the Beijing
University of Posts and Telecommunications, Beijing,
China, in 2008 and 2011, respectively. He is cur-
rently pursuing a Ph.D. degree in electrical engineer-
ing at Chalmers University of Technology, Gothen-
burg, Sweden. From July to August 2012, he was a
visiting student at the Laboratory for Information and
Decision Systems, Massachusetts Institute of Tech-
nology, Cambridge, MA.

Mr. Yang is the recipient of a Student Paper Award at the 2012 IEEE Interna-
tional Symposium on Information Theory (ISIT), Cambridge,MA. His research
interests are in the areas of information and communicationtheory.

Giuseppe Durisi (S’02–M’06–SM’12) received the
Laurea degree summa cum laude and the Doctor de-
gree both from Politecnico di Torino, Italy, in 2001
and 2006, respectively. From 2002 to 2006, he was
with Istituto Superiore Mario Boella, Torino, Italy.
From 2006 to 2010 he was a postdoctoral researcher
at ETH Zurich, Zurich, Switzerland. Since 2010 he
has been an assistant professor at Chalmers University
of Technology, Gothenburg, Sweden. He held visiting
researcher positions at IMST (Germany), University
of Pisa (Italy), and Vienna University of Technology

(Austria).
Dr. Durisi is co-author of a paper that won a student paper award at the

International Symposium on Information Theory (ISIT 2012). He served as TPC
member in several IEEE conferences, and is currently publications editor of the
IEEE Transactions on Information Theory. His research interests are in the areas
of information theory, communication theory, and compressive sensing.

Erwin Riegler (M’07) received the Dipl-Ing. degree
in Technical Physics (with distinction) in 2001 and the
Dr. techn. degree in Technical Physics (with distinc-
tion) in 2004 from Vienna University of Technology.

He was a visiting researcher at the Max Planck
Institute for Mathematics in the Sciences in Leipzig,
Germany (Sep. 2004 – Feb. 2005), the Communi-
cation Theory Group at ETH Zürich, Switzerland
(Sep. 2010 – Feb. 2011 and Jun. 2012 – Nov. 2012),
and the Department of Electrical and Computer En-
gineering at The Ohio State University in Columbus,

Ohio (Mar. 2012). From 2005 to 2006, he was a post-doctoral fellow at the
Institute for Analysis and Scientific Computing, Vienna University of Technol-
ogy. From 2007 to 2010, he was a senior researcher at the Telecommunications
Research Center Vienna (FTW). Since 2010, he has been a post-doctoral fellow
at the Institute of Telecommunications at Vienna University of Technology.

His research interests include noncoherent communications, machine learn-
ing, interference management, large system analysis, and transceiver design.


