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Abstract—We characterize the capacity of Rayleigh block-  Forfrequency-flatfading channels, a simple model to captur
fading multiple-input multiple-output (MIMO) channels in the channel variations in time is the Rayleigh block-fading m@od
noncoherent setting where transmitter and receiver have no according to which the channel remains constant over a labck

a priori knowledge of the realizations of the fading channel. .
We prove that unitary space-time modulation (USTM) is not T > 1 symbols and changes independently from block to block.

capacity-achieving in the high signal-to-noise ratio (SNRregime ~ The parametef’ can be thought of as the channel's coherence
when the total number of antennas exceeds the coherence timetime. Even if the capacity of the Rayleigh block-fading MIMO
of the fading channel (expressed in multiples of the symbol channel has been studied extensively in the literature[§3],
duration), a situation that is relevant for MIMO systems with [4], [9], no closed-form capacity expression is availablelate.

large antenna arrays (large-MIMO systems). This result sdtes . . .
a conjecture by Zheng & Tse (2002) in the affirmative. The Zheng and Tse [4] showed that capacity behaves in the high

capacity-achieving input signal, which we refer to aBeta-variate ~ Signal-to-noise ratio (SNR) regime'as
space-time modulation (BSTM), turns out to be the product M
of a unitary isotropically distributed random matrix, and a C(p) = M* (1 —
diagonal matrix whose nonzero entries are distributed as th T
square-root of the eigenvalues of a Beta-distributed randm

matrix of appropriate size. Numerical results illustrate that using Here, p denotes the SNRY/* £ min{M, N, |T/2]} with M
BSTM instead of USTM in large-MIMO systems yields a rate andN standing for the number of transmit and receive antennas,

*

)log<p>+0<1>, oo (1)

gain as large asl3% for SNR values of practical interest. respectively, and)(1) indicates a bounded function pf(for
sufficiently largep). The high-SNR capacity expression given
. INTRODUCTION in (1) is insightful as it allows one to determine the capacit

The use of multiple antennas increases tremendously 1R&S (at high SNR) due to lack af priori channel knowledge.
throughput of wireless systems operating over fading chdrgcalling that in the coherent case
nels [1], [2]. Specifically, when a genie provides the reeeiv o
with perfect channel state information (the so caltzgher- Ceon(p) = min{M, N}log(p) + O(1),  p— oo
ent setting, the capacity of a multiple-input multiple-outputone sees that this loss is pronounced when the channel's-cohe
(MIMO) fading channel grows linearly in the minimum betweernce timel" is small. The capacity expression (1) also implies
the number of transmit and receive antennas [2]. In practitieat, for a given coherence timieéand number of receive anten-
however, the fading channel is not knowpriori at the receiver nasNN, the capacitypre-log(i.e., the asymptotic ratio between
and must be estimated, for example through the transmissibe capacity in (1) antbg(p) asp — oc) is maximized by using
of pilot symbols. Lack ofa priori channel knowledge at the M = min{N, [T/2]} transmit antennas.
receiver determines a capacity loss compared to the cahererwwhenT > M + N (channel's coherence time larger or equal
case. This loss, which depends on the rate at which the fadioghe total number of antennas) the high-SNR expression (1)
channel varies in time, frequency, and space [3]-[6], can ban be tightened as follows [4, Sec. IV.B]:
characterized in a fundamental way by studying capacity in e
the noncoherent settingvhere neither the transmitter nor the ¢(p) = M* (1 — ) log(p) +c+o(1), p—o0. (2)
receiver are assumed to hav@riori knowledge of the realiza- T
tions of the fading channel (but both are assumed to know {re ¢, whichis given in [4, Eq. (24)], depends @h M, andN
statistics perfectly). In the remainder of the paper, wénefler  put not onp, ando(1) — 0 asp — oc. Differently from (1), the
to capacity in the noncoherent setting simply as capacigy. Wigh-SNR expression (2) describes capacity accuratebadjr
emphasize thatin the noncoherentsetting the receivdois@d  at moderate SNR values [11], because it captures the first two
to try and gain channel knowledge. Channel estimation iplsim terms in the asymptotic expansion 6fp) for p — oc. The

viewed as a specific form of coding [7]. key element exploited in [4] to establish (2) is the optirtyali
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USTM and do not require the explicit estimation of the fading Parameter] __ Definition |

channel have been recently proposed in [13]. L max{N,T — M}
In this paper, we focus on the céBe< M + N (channel’s co- L min{N,T — M}

herence time smaller than the total number of antennasghwhi P max{N, T}

is of interest for point-to-point communication systemings P min{N, T’}

large antenna arrays. The use of large antenna arrays in MIMO

systemslérge-MIMO systems) has been recently advocated to TABLE

P : FOUR PARAMETERS RELATED TO THE CHANNELS COHERENCE TIMET’,
reduce energy consumption in wireless networks, to conhieatt "~ " o T TRANSMIT ANTENNASAM, AND THE NUMBER OF

effect of small-scale fading, and to release multi-user @M RECEIVE ANTENNASN.

gains with limited co-operation among base stations and low

complexity channel estimation algorithms [14]-[16].
Contributions: We prove that in the large-MIMO setting

whereT < M + N, USTM is not capacity-achieving at high

function [17, Eq. (6.1.1)], and,,(a) designates theomplex
multivariate Gamma function [18, Eq. (44)]

SNR. The capacity-achieving input signal turns out to cstresi m(m—1)/2 m
the product of a unitary isotropically distributed randoratrix [m(a) =7 H Ila—k+1). 3
and a diagonal matrix whose nonzero entries are distributed k=1

as the square-root of the eigenvalues of a Beta-distrinated
dom matrix of appropriate size. Utilizing this input distuk
tion, which we refer to aBeta-variate space-time modulationA. System Model

(BSTM), we extend (2) to the case < M + N. We show  \ye consider a point-to-point Rayleigh block-fading MIMO

that using BSTM instead of USTM yields a rate gain of abohannel withAs transmit antennasy receive antennas, and

13% when SNR is30dB and N' > T. Note that our result channel's coherence timi& > 1. The channel input-output

holds for allT’, M, and N values satisfying < T < M + N. g|ation within a coherence interval can be compactly emitt

In other words, differently from most of the literature onde- ;, matrix notation as follows [41, [8], [9]:

MIMO systems, our analysis is not asymptotic in the number of

antennas. Y =+p/M-XH+W. 4)
Our proof technique exploits the geometric structure in the

_ o T x M ; ; o
MIMO block-fading channel input-output relation first ologed H((ajr(:,X _h[xl xu] €C ithi Cﬁntalnhs the S|g_nal t:%r]\smn
in [4]. The set of tools used to establish our main resultasy-h ted from thel antennas within the coherence intendl, €

MXxN ; ’ H TxN
ever, different from the one used in [4]. In particular, diffntly C*> " is the channel's propagation marWy € C* % is the

. . TR N . . .
from [4], our proof is based on the duality approach [10], and additive noise, and& € C***¥ contains the signal received at

a novel closed-form characterization of the probabilitpsity tEeN f;l]ntenrrl]as within :]he cgherence interval. V\r/]e will gssume
function (pdf) of the MIMO block-fading channel output, wehi  throughout the paper thatl < min{N, |T'/2]}. The random

generalizes a previous result obtained in [9]. These thBtO(;natricesH andW are independentof each other and have inde-

allow us to simplify the derivation of (2) for the cae> M-+N pend_ent and identically distribgted (i.i.dl.)\/(o_, 1) entries. We _
compared to the derivation provided in [4], and to geneed®) consider the_ noncohere_nt _settmg where neither the t_raanl
to the large-MIMO setting” < M + N. nor the receiver hava priori k_nowlgd_ge of the realizations of
Notation: Uppercase boldface letters denote matrices aHj andW, but both know their statistics perfectly. )
lowercase boldface letters designate vectors. Uppercase S . We assume thaH and W take on independent re_allza-
serif letters (e.g.Q) denote probability distributions, while ions over successive coherence _mtervals_. Under ltiosk-
lowercase sans-serif letters (e.9.are reserved for pdfs. The MeMorylessassumption, the ergodic capacity of the channel
superscriptd and" stand for transposition and Hermitian trand? (4) 1S given by
position, respectively. We denote the identity matrix ahdn-
sion M x M by I,;; diag{a} is the diagonal square matrix
whose main diagonal contains the entries of the vest@nd

A\ {A} stands for thejth largest eigenvalue of the Hermitian™ere, /(X; Y) denotes the mutual information [19, Sec. 8.5]
positive-semidefinite matriA. For a random matri® with Petween the input matriX and the output matri%’, and the

probability distributionQx, we write X ~ Qx. We denote supremum is over all probability Qistributior@x on X that
expectation byE[], and use the notatioBx || or Eq, [] to Saisfy the average-power constraint

str_ess that expectation is taken With respecKto~ Qx. We E[tr (xxH H < TM. (6)
write D(Qvy () || Ry (-)) for the relative entropy between the

probability distributionsQy andRy. FurthermoreC N (0,3) Since the variance of the entries Hf and W is normalized
stands for the distribution of a circularly-symmetric cdexyp to one,p in (4) can be interpreted as the SNR at each receive
Gaussian random vector with covariance mafflx For two antenna.

functions f (x) andg(z), the notationf(z) = O(g(x)), = — Throughout the paper, we will often make use of four param-
oo, means thatimsup,_, | f(z)/g(z)| < oo, and f(z) = eters {, L, P, P) related to the coherence tirfig the number
o(g(z)),z — oo, meansthaim,_,.|f(z)/g(z)| = 0.Finally, of transmitantennas/, and the number of receiver anteniés
log(-) indicates the natural logarith{-) denotes the GammaThese parameters are listed in Table | for future reference.

Il. SYSTEM MODEL AND KNOWN RESULTS

Clp) = %S&lp I(X;Y). (5)



B. Properties of the Capacity-Achieving Input Distributio  in that it holds also in the large-MIMO settig < M + N.3

Even if no closed-form expression is available to date for 1heorem 4:The capacity(p) of the Rayleigh block-fading
C(p), the structure of the capacity-achieving input distribd/MO channel (4) withV receive antennas, coherence tiife
tion is partially known. We next review two properties of th@ndM < min{N, |T//2]} transmit antennas is given by
capacity-achieving input distribution that will revealefisl for M
our analysis. Clp)=M (1 - ?) log(p) +c+o(l), p—o0 (8)

Lemma 1 ([3, Thm. 2]):The capacity-achieving input ma-
trix X is the product of & x M isotropically distributed unitary where
matrix & and an independert/ x M nonnegative diagonal

matrix D = diag{[dy --- da]"}. cl 1 1og<M) +M (1 — %) log(z)
For the case€l’ > M + N, takingD deterministic with T Car(N)T (Z) T M

diagonal entries equal t¢'T" turns out to be optimal at high ML N L H

SNR. In this case, the resulting input mati¥ is a scaled + Tlog L + T(E [log det(HH")] — M)‘ ©)

isotropically distributed unitary matrix. This input digtution, _
which is known as USTM [12], [9], [13], is the one used in [4Here,L and L are defined in Table I, and
to establish (2).

WhenT' < M + N, USTM is not optimal at high SNR, as we
shall illustrate in Section Ill. Nevertheless, the optimistribu-
tion of X = ®D shares the following property with USTM: p
the probability distribution i.nduce(.:i oy/pd, = .\/?meH, = —M~y+ Z 1
m =1,..., M, by the capacity-achieving input distributies- i=1 k=1 k
capes to infinityf10, Def. 4.11] ap — oo. Namely, it allocates _ _
vanishing probability to every interval of the forf#, /po] with ~ Wherey(-) denotes Euler's digamma function [17, Eq. (6.3.1)]
po > 0. This property is formalized in the following lemma: andy ~ 0.577 is Euler’s constant.

M
E[log det (HH")] =Y " ¢(N —i+1)
i=1

(10)

Lemma 2:Fix an arbitrarypy > 0 and let Proof: See Section IV. A sketch of the proof for the single-
input multiple-output case, which is simpler to analyzenttiee
K(po) 2 {A =[a; ---ay] € CT*M . MIMO case, is given in [20]. [ ]

) 5 In Section IlI-B below we compar€(p) in (8) with the
m:I{{I_I_{M{pHamH 3 < po}- (7)  capacity lower bound obtained using USTM. The input distrib
tion that achieves (8) is described in Section IlI-C. Nurcari
Let {ng),p > 0} be a family of input distributions results illustrating the lack of tightness of the USTM-lsse
(parametrized with respect to the SI¥Rsatisfying (6) and the capacity lower bound in the large-MIMO setting are provided

following additional property in Section II-D.
im L&Y x QP
p=oo C(p) B. Rates Achievable with USTM
Then,lim, ,. P(X € K(pg), X ~ ng) =0. For the casd’ > M + N, the high-SNR capacity expres-
Proof: The proof follows along the same lines of the proof§ion (8) coincides with the one reported in [4, Sec. IV'B].
of [5, Thm. 8] and [4, Lem 8. m [n this case, USTM, i.e.X = VT'®, with & unitary and

An important consequence of the escape-to-infinity prgpetgotropically distributed, achieves (8). Whéh< M + N, the
of the capacity-achieving input distribution is that thgrap- NoVvel capacity characterization provided in Theorem 4 iespl
totic behavior ofC/(p) asp — oo does not change if we con-that USTM s not capacity-achieving at high SNR, as fornealiz
strain the probability distribution of/pd,,, (m = 1,2,...,M) N the following corollary.
to be supported outside the interval ,/po], po > 0. More Corollary 5: The rate achievable using USTM over the
precisely, we have the following result. Rayleigh block-fading MIMO channel (4) witiV receive an-
Lemma 3:Fix an arbitraryp, > 0 and letK(po) as in (7). tennas, coherence tin®e andM < min{N, |T'/2]} transmit
Denote byCi (p) the capacity of the channel (4) when théntennasis

inputX is subject to the average-power constraint (6) and to the M
additional constraint tha&X ¢ K(po) with probability 1 (w.p.1). Custm(p) = M <1 - ?) log(p) + custm + o(1), p — 00
Then,C(p) = Ck(p) + o(1), p — oc. (11)
Proof: The proof follows from [10, Thm. 4.12]. |
3Because of the constrainY < min{N, |T/2]}, large-MIMO settingin
IIl. CAPACITY IN THE HIGH-SNR REGIME this paper indicates a point-to-point MIMO uplink with adarantenna array at
the receiver.
A. Asymptotic Characterization of Capacity “4The expression for given in [4, Eq. (24)] contains a typo: the argument of

. . . . the logarithm in the second addend should be divided/bgs one can verify
The main result of this paper is Theorem 4 below, which PRy comparing [4, Eq. (24)] with the result given in [4, Thm. 8] the case

vides a high-SNR characterization©fp) that generalizes (2), M = N.



where If 0 <n < m,then\; =--- = \,,_,, = 1 wp.1, and
1> A—nt1 > - > A\ > 0w.p.1. Moreover, the joint

a1 Ty (M) M T n -
=51 M(1-——)log| — pdf of A\ —ni1s- .., A iS given by
CUSTM T Og( FM(T) —+ T og eM
M
+ (1 - _) E [10g det(HHH)] . FX e A (@m—n+t1s- -+, am)
T B 7.‘.n(nfl) Fn(p—l—n)
Note thatcystm = ¢ whenT > M + N; howevercustv < anln) Lp(m)Thn(p+n — ZL)

cwhenT < M + N. p—m m—n 2
. ; 1—a; . i—aj)”. (13
Proof: The proof follows by repeating the same steps as H @ "(-a) H (@i ;)" (13)

in Section IV-B after having replaced the capacity-achigvi
input distribution (to be described in Section [1I-C) wittSTM. Proof: Part 1 and (12) in part 2 follow by extending to the
u complex case [23, Lem. 3.11] and [24, Thm. 3.3.4], respelstiv
to prove (13) it is sufficient to note th&t = (I, — C) ~
Beta,, (n, p) (see [24, Def. 3.3.2]), that has rank: < m, and
C. The Capacity-Achieving Input Distribution at High SNR  that itsn nonzero eigenvalues are distributed as the eigenvalues

1) Matrix-variate distributions:To describe the input proba-Cf @Betan (. p +n —m)-distributed random matrix.
bility distribution that achieves (8), we shall need thédaing Ve shall also need the following result relating Wishart-
preliminary results from multivariate statistics. distributed and Beta-distributed matrices.

Definition 6: An m x m random matrixA is said to have a ~ Lemma9:LetS ~ Wy (p + n, %) with m > 0, n > 0,
complex Wishart distributiowith n > 0 degrees of freedom @ndp > m. Furthermore, le€ ~ Beta,,,(p, ) be independent
and covariance matri if A = BBH, where the columns of Of S. Finally, putS = T"T, whereT is upper-triangular with
them x n matrix B are independent ar@\'(0, )-distributed. POsitive diagonal elements. The, = T"CT ~ Wy, (p, ).

In this case, we shall writd ~ W,,(n, X). Proof: The lemma follows from a generalization to the

Note that whenn > n, the matrixA is singular and, hence'complex case of [24, Thm. 3.3.1] for the nonsingular case
does not admit a pdf. In this case, the probability distidmut 7 = ™. and of [25, Thm. 1] for the singular cage< n < m.
of A is sometimes referred to gseudo-Wisharor singular u
Wishart Note that Lemma 8 (part 1) implies that the eigenvalueA of

Definition 7: An m x m random matrixC is said to have a and ofCS in Lemma 9 have the same distribution.
complex matrix-variate Beta distributiosf parameterg > 0 2) The Optimal Input Distribution\We are now ready to de-
andn > 0 if C can be written asxC = (TH)’lATfl, scribe the input distribution that achieves (8). This disttion
whereA ~ W,,(p, %) andB ~ W,,(n, X) are independent, takes on two different forms according to the relation befwe
and A + B = T"T, with T upper-triangular with positive 7', M andN. Specifically, one should tak€ = ®D where®
diagonal elements [21, p. 406]. In this case, we shall writg unitary and isotropically distributed, addl = \/T'N/L - D

i=m—n-+1 m—n<i<j

C ~ Betan,(p, n). with L defined in Table I, and witl) being a diagonal matrix
For the case when < m or p < m, the probability distri- Whoseorderedpositive entriegd;, ..., dys} are distributed as
bution of C is usually referred to as singular complex matrixollows:
variate Beta distribution because it involves singular hli$ a) CaseT < M + N: The squared nonzero entries
distributions. In the next lemma, we state two propertiethef {d2,...,d%,} of D have the same joint pdf as the ordered
complex matrix-variate Beta distribution that will be usethe eigenvalues of a positive-definife’ x A random matrixz ~
proof of Theorem 4. Betay (T — M, M~+N —T). The resulting pdf of d, . . ., d3,}
Lemma 8:Let C ~ Beta,,(p,n) with p > m > 0 andn > is obtained by setting =7 — M andn = M + N —T'in (12)
0. The following properties hold: if T <N,andin(13)ifN <T <M + N.
1) C is unitarily invariant [22, Def. 2.6], i.eC ~ UCU" _b) Casel' > M + N: The nonzero entriegd, . ..., das }
of D should be taken so thdf = --- = dj; = 1 w.p.1. This

for everym x m unitary matrixU independent o€C. : >U Hidd .
2) The joint pdf of the ordered eigenvalugs > - - > A, results in the QSTM distribution used in [4]. t
of C takes on two different forms according to the value !N the remainder of the paper, we shall denoteQf’ the

of n. If n > m, thenl > A\; > --- > \,, > 0w.p.1, and Probability distribution ofD = \/TN/L-D we have just intro-
the joint pdf of A1, ..., A, is given by duced. Furthermore, we shall refer to the probability thstion

of X = ®D resulting by choosin@ unitary and isotropically
g, (@1, ) distributed andD ~ Q' as BSTM. Note that BSTM reduces
=1 T (p+n) to USTM whenT > M + N.
=7 ) T ()T (1) As shown in [4, p. 369], USTM is optimal for the cage>
" s mA M + N because it maximizes

.m P_ml_in_m' i_j2- 12
£[1 a1 a) g(a W) (12 h(UDH)+ (I — M — N)E [logdet(Dz)] (14)




whereU € CM*M js an isotropically distributed unitary matrix
independent of botld andH, andh(-) denotes the differential whereC(p) and Custm(p) are given in (8) and (11), respec-
entropy. In fact, the average-power constraint (6) imptled  tively, and

h(UDH) < MN log(reT); El[logdet(D*)] < Mlog(T) & %log(FM(T— M)) L M(T - M) log( e >

T T—-M
and under USTM, which yield® = /T -1, both inequalities M
hold with equality. 57 [M log(me) + log(2 )}

In the large-MIMO settingl’ < M + N, however, the
second term in (14) turns negative and USTM does no longe
maximize (14). As we shall now illustrate, the maximizin
distribution of D turns out to beQ", which results in BSTM.
Through algebraic manipulations similar to the ones leguttin
(46) and (47) in Section 1V, it is possible to show that lim (C(p) — Cyst™ (P)) =cC—CusTM = Co + CN

p—00
h(UDH) + (T — M — N)E[logdet(D?)] = h(G) + k. wherecy andey are defined as follows:

Here,k is a constant that does not dependenipymandG < e
CMx(T=M) is a random matrix with singular values jointly T-c= log(rM(T - M)) +M(T —- M) log(T _ M)
distributed as the singular valuesloH, and with isotropically . ex=(N-T+M)E [bg det(HHH)} _ log(l“M(N))
distributed singular vectors. Lemma 10 below implies that t
choiceD ~ QP induces a matrixG that is Gaussian with — MN + M(T — M)log(N). (16)
1.i.d.CN(0,TN/(T — M)) entries. Buta Gaussigi with i.i.d.  Note thatcy is a function of N, while ¢, is not. Consequently,
entries maximize4(G), and, hence, (14). to establish (15) it is sufficient to study the linit — oo of
Lemma 10:Let D ~ Q}" and letH be an independent the first two terms on the right-hand side (RHS) of (16). Fer th
M x N random matrix with i..dCA/(0, 1) entries. The singular first term, we use (10) and the following asymptotic expamsio
values ofDH are distributed as the singular values ofldrx L of the Euler’s digamma function [17, Eq. (6.3.18))(m) =

Proof: As we are interested in the limi¥ — oo, we shall
Y%sume without loss of generality that= 7' — M andL =
9. Since the first term in the high-SNR expansiorCgp) and
Custm(p) is the same,

matrix G with i.i.d. CN' (0, TN/L) entries. log(m) — 1/(2m) + o(1/m), m — oo, which yields
Proof: For the cas@ > M + N, we have thal. = N and, H
henceD = /T -I,,. ConsequentyDH = (VT - H) ~ G, (N =T + M) E[log det(HH")]
from which the statement in the lemma follows. M
For the casel’ < M + N (and, henceL = T — M) =(N-T+M)Y $(N-i+1)
we shall proceed as follows. L& = /TN/(T — M) - D, =1

and letU be an)M x M unitary and isotropically distributed
random matrix independent & andH. SinceHH" is uni-

tary invariant, we have thafH" ~ U"HH"U, and hence M
DHH"D ~ DUHHH"UD. Now note thaDU"HHHUD ——+0o(1), N — 0. a7)

and UD2UYHH" have the same eigenvalues; furthermore, 2
UD2UH ~ Betay (T — M,M + N — T), which fol- For the second term on the RHS of (16) we proceed as follows:

—M(T — M)log(N —i—NZlog —i+1)

lows fromHLemma 8 (part 1), and from [22, Lem. 2.6]; f"log(FM(N))
nally, HH" ~ Wy (N,I5). Hence, by Lemmas 8 and 9

the eigenvalues cdID?U"HH"—and consequently also the M(M —

eigenvalues oDHH"D—have the same distribution as the = f 1Og )+ Zlog( )
eigenvalues of &V, (T — M, I,,)-distributed random matrix.

[ | a)z( — i) log(N -)+W+i)—MN

D. Gain of BSTM over USTM

The use of USTM is motivated by several practical consider-
ations [8], [9], [13]. Is it then worth to replace USTM by the [il
_ og

M M?
+ > log(2) + =B log(m) + o(1), N — o0
M? 1 e M low(2
capacity-achieving BSTM in the large-MIMO setting? In this T los (W) T og(2e)
section, we shall investigate the rate gain that resulis fitee MN N 18
use of BSTM instead of USTM. B +o(1), N = co. (18)
Asymptotic Analysisin Corollary 11 below we show that Here, (a) follows from Stirling’s formula n! =
the rate gain resulting from the use of BSTM instead of USTM"e~"+/27n (1 + o(1)), n — co. We complete the proof by
grows logarithmically in the number of receive antennas.  substituting (17) and (18) into (16), and using that
Corollary 11: LetT andM < |T/2] be fixed. Then ;
. N —i+1
lim Nlog{ ———— | = 1. [ |
N —oc0 N

—1

M2
lim lim (C(p) — Cystm(p) — o log(N)) = cur,r (15)

N —00 p—00
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Fig. 1. Rate gain resulting from the use of BSTM instead of MI%E a function
of the number of receive antennaé and the channel’s coherence tirfie in
the figure,p = 30dB, andM = min{|7T'/2], N'}.

Numerical Resultsiet C(p) be the high-SNR approxi-
mation of C(p) obtained by neglecting the(1) term in (8).

Similarly, let 5USTM(p) be the high-SNR approximation of

Custum(p) obtained by neglecting the(1) term in (11). As can
be inferred from the results reported in [4], [9], [1C}ysTMm(p)
is a good approximation faf'usTm(p) atp 2 30 dB. Numeri-
cal evidence suggests that the same holds for the’{air and
C(p). To illustrate the gain resulting from the use of BST

instead of USTM for a finite (but large) number of receive ante

nas, we plot in Fig. 1 the rati@ (p) — Custu(p)]/Custm(p)
for different values ofl’ and N, whenp = 30dB and M =

min{|7T/2|,N}.

Here, (a) follows from Topsge’s identity [27], and (b) is ase-
guence of the nonnegativity of relative entropy [19, Thr.3].
The conditional differential entropy(Y | X) in (19) is given by

12
%)} + NTlog(me).(20)

M
h(Y | X) = NZE{IQg(l%—
=1
To evaluate the first term on the RHS of (19), we need to choose
a specific output pdfy . Let us expres¥ in terms of its singular
value decomposition (SVD)

Y =UzVv" (21)
where U € C™£ and V e CN*E (P is defined
in Table I) are (truncated) unitary matrices, andl
diag{[o1(Y) --- op(Y)]"} contains the singular values df
arranged in decreasing order. To make the SVD unique, we
shall assume that the diagonal entrieslbfare real and non-
negative. HenceV is an element of the complestiefel man-
ifold S(N, P) [18], [4], while U belongs to asubmanifold
S(T, P) of S(T, P). We put forward the following result about
he volume ofS(n, m) andS(n, m) for the caser > m (see[18,

ec. V])

2mﬂ.mn

() :

7.‘.m(n—l)

< IStm)
Tp(n)

)| = 8tn.m)| = S

|S(n,m

We observe from Fig. 1 that the rate gain resulting from ti&henQx is capacity-achieving, Lemma 1 and the Gaussianity
use of BSTM instead of USTM becomes significant when tha§ H andW, imply thatU andV are uniformly distributed on
number of receive antennagis much larger than the channel’sS(T, P) and S(N, P), respectively, and independent of each

coherence timd’. For example, whev = 100 andT = 10,
the rate gain amounts t3%. However, wherl’ = N = 100
the rate gain is below%.

IV. PROOF OFTHEOREM4

other and ofX. We shall take an output pdf for which this
property holds. Furthermore, we take the fivésingular values

of Y distributed as the ordered singular values of the noiseless
channel output matrix/p/M - XH = /p/M - ®DH, with

® unitary and isotropically distributed, arld ~ Q‘]’Dpt. By
Lemma 10, this implies that the fir8f singular values ok are

The proof is effected by exhibiting capacity upper and lowslistributed as the singular values of &hx L matrix with i.i.d.

bounds that agree up toddl) term.

A. Upper Bound

CN (0, \) entries, where. & NTp/(ML). We take the remain-
ing P — M singular values distributed as the singular values of
an independer{tV — M) x (T'— M) matrix with i.i.d.CA/(0,1)
entries. The intuition behind this choice is the followimythe

Fix po > 0 and letK(po) as in (7); as a consequencé‘bsence of the additive noi3¥ in (4), the output matriX has
of Lemma 3, we can restrict—without loss of generality—thEaNKA; this suggests that, in the high-SNR regime, the smallest

supremum in (5) to input distribution@x satisfying the con-

P — M singular values ol carry information abouW only.

straintX ¢ K(po) w.p.1. Our capacity upper bound is base@ummarizing, we take the pef, .., of the ordered singular
on duality [10], [26], which is a technique that allows one to/@lues ofY as follows

obtain tight upper bounds oA(X;Y) by carefully choosing
a probability distribution ofy. Specifically, letPy | x denote
the conditional probability distribution 6Y givenX, andQvy

denote the distribution induced &hby Qx through (4). Finally,
let Ry be an arbitrary distribution oY with pdfry . We use du-
ality to upper-bound (X;Y) in (5) as follows [10, Thm. 5.1]:

I(X;Y) = Ex[D(Py x| Qv)]
@ Ex[D(Py|x ||Ry)] = D(Qy || Ry)
)
]

Ex[D(Py x || Ry)]
— Eqy [log(ry (Y))] — (Y | X).

—
IN=

(19)

rUly»»»-,UP(ala : 7a£) = rUl,"'ﬂM(ala"' 7aM)
Tonrgr, ,UE(GM-Ha T 7a£)
where
lo1, - om (ala T 7aM)
M 2 M M
. 272\
B kie i=1 %i HGQ(L,I\,{HJ ) H (a2 _ a2)2
\ML i i i) o

i=1 i<j

ar > >ay  (22)

SWe shall indicater; (Y') simply aso; whenever no ambiguity occurs.



with ky £ 2M7MMM=1 /(D) (L)L (M)) and For the second-last term, the power constraint (6) and tisno
variance normalization imply that

lonrgn, UP(al\erlv ; P)
= = 2 1 NT(p+1
= kye™ Timan H T (e - ad)?, 12 Elo7] g#:m“m, p— o0 (30)
i=M+ M<i<j i=1

apm+41 > >ap (23)
where we used that = NT'p/(M L). Finally, to upper-bound

with P defined in Table I, and the last term in (28) we proceed as in [4, p. 377] and obtain

9P —M_(P~M)(P~M-1)

ko 2 _ . -
Tp (P — M)Tp_ (P — M) =
Here, both (22) and (23) follow from [22, Thm. 2.17] and the E L_%:H oi| = (= M)(N = M). (31)
change of variable theorem. We are now ready to evaluate the
first term on the RHS of (19). Let Substituting (29), (30), and (31) into (28), and then (28) €20)
P P into (19), we get
Jp plor,--op) = [[oi 2 [T (07 - 02)° (29)
i=1 i<j I(X,Y)

be the Jacobian of the SVD transformation [4, App. A]. The < MLlog(p) — M (N +T — M — L)
change of variables theorem yields

—E[log(ry (Y))] = — E[log(ru,z,v(U, X, V))] op (L (M) ar (L) ol ML
+ E[log(Jp plor,- o)) o g(I‘M(M)FM(JA;)) A g(M )
= - E[log(rU(U))] - [log(fv(v))] + (T —M-L)E 1og(az-2)
- IE[log(rgM+1 _____ 2(01,...,01\4))] i=1
-E [1Og(rUM+1 ~~~~~ UE(UM'H’ ) UE))} £e1(p)

e ) =] o)

where the second equality follows from the independence be-
tweenU, V, andX. Becaus&J andV are uniformly distributed

on the corresponding manifolds, o) . Lea(p) 2
~ o(1), p— 0.
~Ellog(ru(U))] = log|§(7, 2)| (26) )
— E[log(rv(V))] = log |S(N, P)|. 27) To conclude the proof, we boung(p) andc;(p) by exploiting

o _ 7 thatX ¢ K(po) w.p.1. LetZ be a(T' — M) x N random
Substituting (22), (23), (24), (26) and (27) into (25) weabt matrix, independent of the channel matiik and with i.i.d.
after simple algebraic manipulations CN(0,1) entries. GiverX = ®D, the matrixY"Y has the

T (M (L same conditional distribution as [4, p. 377

~ Ellog(ry(Y))] = MLlog(3) +log(M> 14, p. 377]
far V) H" (1, + 2D2) H +2ZH7
( M+ M ) + .

+ NTlog(m) + ks E

£A
M P
Z Z log((07 — 03))] This property allows us to use Weyl's theorem [21, Thm. 4.3.1
i=1 to boundc, (p) as follows:
M P )
EZ E| > o7|. (28) o ]
)\ i=1 i=M+1 ' c(p) = Ex IEY|x leog (M{Y"Y}) X

Here,ks & P — P + M — L. We next upper-bound the last
three terms on the RHS of (28). Using that the singular values < Ex |Enz
are arranged in decreasing order we obtain

M
> log(M{A} + Al{B})‘ XH

i=1

M
[log (02 — 02)? <Ex |Eu | Y log(\{A}+Ez[\{B}])|X| | .(33)
;sz:ﬂ g(( )] 2 2

L =n
M

2(P — M)Z]E[log(af)} . (29) Here, in the last step we used Jensen’s inequality. We next
i=1 rewrite the argument in the expectation on the RHS of (33) in a



more convenient form: B. Lower Bound

M To obtain a capacity lower bound that matches the upper
> log(Ai{A} +n) bound derived in Section IV-A, we evalualéX;Y) for the
i=1 BSTM input distribution introduced in Section 1lI-C. More
@ 10 det((IM n %]ﬁ) HH + 771M) specifically, we proceed as follows. Fix > 0 and let
~ logdet (Ly + +-D?) K(po) 2 {A = diag{[n - A"} -

0 in {2 }
< min {A} < po/p

Starting fromQ‘]’Dpt (see Section 111-C), we define the following

P 9\ 1 i family of probability distributions parameterized withspect
] (1 + M”XMH )

H : P 2\ !
—|—1ogdet<HH —|—d1ag{ {n (1+ MHXIH )

to® p
Y ) AT
< logdet (IM + %Dz) Q%PLP(A) — ! 1-P(D€EK(po), D~QY')’ it A ¢ ’S(po) (40)
po\ ! 0, if A e K(po).
+log det (HHH +1 (1 + —) IM) . (34) -
M Note that Q%’”’(A) is supported outsidéC(py) and that
24(H,p0) lim,, 00 QU7 (A) = QRY(A) for all A.

1) Preliminary Results:in Lemma 12 below, we establish
Here, (a) follows because" (I + (p/M)D?)H and thatwherX — D with D ~ QY*” and® unitary and isotropi-
(IM +(p/M)D*)HH" have the same M nonzero cally distributed, the joint pdf of the largesf singular values of
eigenvalues [21, Thm. 1.3.20], and (b) follows becausge output matri®y in (4) converges pointwise to the pdf of the
X ¢ K(po) w.p.1 and because for two matricsandB, if - nonzero singular values gf p/M - ®DH. Furthermore, the pdf
A — B is positive semidefinite thedet(A) > det(B) [21, of the remaining? — M singular values converge pointwise to

Cor. 7.7.4]. Substituting (34) into (33) we obtain the pdf of the singular values of an independent Gaussiarxmat
P 2 We remark that we implicitly used this property to constithet
< E|logdet(I + -—D E[x(H 35 AR )
cilp) < [Og ¢ ( Mt 7 )} +E[=(H, po)] (35) output distribution in Section IV-A.
Tp Lemma 12:Let X = ®D where® is unitary and isotrop-
< -
=M log<1 + M) + E[=(H, po)] ically distributed andD ~ Qon”’; let Y as in (4). Denote by

Tp o1 > --- > op the singular values oY and let
=M log<ﬁ) +E[k(H, po)] + 0o(1), p = co. (36) -

6':|:( M/p)01( M/p)a'M UA,{+1..-0-£T' (41)

The pdf of & converges pointwise gs — oo to the pdf of a
c2(p) < E[x(H, po)] . (37)  vectoru e C2 whose firstM entries are distributed as the or-

Finally, substituting (36) and (37) into (32) we get dered nonzero singular valuesloH, with D ~ Q%pt andH as

in (4), and whose remaining — M entries are distributed as the
I(X5Y) < M (T — M)log(p) + T - ¢py +0(1), p— 00  nonzero singular values of an independ@ht- M) x (N — M)
(38)  random matrix with i.i.dCN(0,1) entries.
where Proof: See Appendix A. [ ]
L1 T (M)Tas(L) M T Note tha_lt by_ Scheffé’s Theore_zm [_29]_, pqintsze convergenc
Cpo = Og<m> M (1 — ?> log(ﬁ) of pdfs implies convergence in d|§tr|butlon 0f to u. Th|s
VL M N M - weaker convergence result (which is not sufficient to establ
ML NV L _ our capacity lower bound) has been already pointed out Quith
S 1Og<L> T (E[H(H’poﬂ M)' (39) proof) in [4, Lem. 16].
Note that the RHS of (38) does not depend on the choice of thdn Leémma 13 below we collect four asymptotic results regard-
input distribution. Hence, (38) is an upper bound on cagac#d the differential entropy and the expected logarithmhef t
as well. Becaus#I has i.i.d. Gaussian entries, and, hence, i@tries ofg in (41) that we shall need in the proof of the lower
singular values have finite differential entropy, we cang D, bound.
Lem. 6.7(b)] combined with the dominated convergence theolemma 13:Lets = (51 -+ Gp|" andu = [uy -+ up]" as

To boundes(p) we use (35) and obtain

rem [28, p. 180] and obtain in Lemma 12. Then
1) h(g) = h(u)+ o(1), p = 0
lim E[x(H, po)] = E[ lim Ii(H,pO):| 2) Ellog(a;)] = Ellog(u;)] + o(1), p > 00,1 <i< P
PO >0 PO —>00

3) E[log(c7 — 57)] = E[log(uf —uf)] + o(1), p — oo,

= E[log det(HH")] . 1<i<j<P

Hence_*cpo in (39) can be made arbitrar”y close ¢dn (9) by 6Although Q‘])DPL'” depends on both andpg, the choice of in the proof of
choosingp, sufficiently large. the lower bound will turn out to be immaterial.



4) Eflog (67 — M5} /p)] = E[log(uf)] + o(1), p = oo, + ZE: E [log( (52 - 52)°)]

1<i<j<P.
Proof: See Appendix B. - ]\4<i<jp
2) The Actual BoundWe evaluate the mutual information Z i {1Og( M&?/p)z)} (45)
I(X;Y) = MY) - h(Y | X) (42) iy

in (5) for X = ®D with ® unitary and isotropically distributed Whereks = (P+ P — M —1/2). Substituting (45) into (44),
andD ~ Q¥*”. The second term on the RHS of (42) is giveNd using Lemma 13, we obtain

by h(Y) = log |S(T, P)| + log |S(N, P),

M P O, Uy, U
WY |X) = NTlog(re) + NS E[log (1 + pllx|2/M)] +M(P+P M)log(p/M) +hlua, .. unr)

i;l +ZE[log( (P+P— 2M)+1ﬂ

= NTlog(we) + N ZIE [log(pd3 /M)]
i=1 +ZE[log((uf —uf)QH + h(urr41, - up)

M .
1<]

+ N> E[log(1+ M/(pd}))]

oo - 3 Bt

= NTlog(me) + MN log(p/M) i=M+

+NE [1ogdet(D2)} o(1), p—oo. (43) = 9
+ Z E[log((uf —u?) )} +o(1), p— oo. (46)
Here, (a) follows becaused? > po w.p.1, and hence) < M<i<j
log(1 + M/(pd?)) < log(1 + M/po) w.p.1, which implies

that We next evaluate the terms on the RHS of (46) by proceeding

as follows. By Lemmas 12 and 1Qu4,...,uas} are jointly

lim E[log(l—i— M )} E[hm 10g<1+ M )} —0 distributed as the singular values of @hx L Gaussian random
p—r00 pd? d? matrix G with i.i.d. CAV'(0, \/NT/L) entries. Evaluating(G)

as a consequence of the dominated convergence theorem i[2#1€ SVD coordinate system, we get

p. 180]. We shall compute(Y') in SVD coordinates [cf., (21)]  ;(G) = log |§(M M)| + log |S(L, M)| + h(u, ..., unr)
as follows: N

hy) < MUY+ V) h(nop) +ZE[103( e M)Hﬂ
=log |S(T,P)| =log|S(N,P)|
+ IgE|:1Og(Jp7P(0'1,...,U£))} +;E[log((u?—u?)2)] ’ (47)

Y 10g |S(T, P)| +log [S(N, P)| + %bg(%) Similarly, by Lemma 12,{upi1,...,us} are jointly dis-

tributed as the singular values of & — M) x (N — M) random
+h(e) +E {10g(J plo1, . -70’3))} . (44)  Gaussian matri®V with i.i.d. CA’(0, 1) entries. Thus,

Here, (a) follows because the isotropic distributiond®fand h(W) = 1og’§(T —M,P— M)’ +1og|S(N — M, P — M)|
the Gaussianity oH and W imply that U and V are uni-

formly distributed 0I‘L§(T, P) andS(N, P), respectively, and — 2(P-P)+1
independent of; In (b), we used (41) and thdt(Ax) = +h(uarsss - u Z [IOg( )]
h(x) + logdet(A) for a random vectok and a deterministic M
matrix A [19, Eq. (8.71)]. It is convenient to express also the
Jacobian]FP in (44) in terms ofé. Using (24) and (41) we + Z E log( uj = u )} (48)
obtain - M<i<y
Substituting (47) and (48) into (46), and then (43) and (4&) i
E[log(J plo,.. -703))} (42), we obtain
~ ke log( ) ZE[log( (P— P)+1)} I(X;Y) , B
= M(T = M)log(£-) +h(G) + h(W)
M M
2 M
+> E|log( (67 - 57) 2(P+p-M-L)\] _ 2
- Jlog( D)) +;E[log(ui )| - NE[logdet(D?)]

S E[log(27 0] 4

i=M+1 +log(ks) — NT'log(me) + o(1), p— o0 (49)
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whereks £ |S(T, P)||S(N, £)|/[|§(T—M, P—M)|-|S(N- special case oD being a scaled identity matrix) to ar-
M,P—M)|-|S(M, M)|-|S(L, M)@'Theterm denoted by bitrary diagonal matrices. This result is of independent

. L | interest.
in (49) can be simplified as follows: 2) We then calculatéf}"‘)D from fy | p and show thafé”‘)D
M converges pointwise t, | p asp — oo.
«@IE|Y 1og(ug)] ~ NE[logdet(D?)] 3) Finally, we show that
i=1
— (p) . OPtp
© TE [log det (D*HH)] — N E [log det (D?)] foip@lA)-ap(A)] < k D
= (L — N)E[logdet(D?)] + LE[log det(HH")] wherek is a finite constant that does not depenchcand

A, i.e., the bound is uniform in both and A. AsD ~

) 7 T H
= (L= N)Mlog(T) + LE [1Og det (HH )] ' (50) QODPL” implies thatD has compact support, we can invoke

Here, in (a) we used that = P + P — M — L, (b) follows the dominated convergence theorem [30, Thm. 1.34] and
from Lemma 12, and (c) holds because wHer M + N we conclude that
have thaD = /T - I,;, and wherll’ < M + N we have that . ) . ) optp
L — N = 0. Finally, substituting (50) into (49), we get after pli{{)lo fe'(a) = pli{{)lo foip(@lAap "(A)dA
straightforward algebraic manipulations . = optp

_ / lim [f&ID(a |A) (A)} dA

IX;Y)=M(T—-M)log(p)+T-c+o(1), p— oo

_ opt _
wherec is given in (9). This concludes the proof. o /f“ ip(al A)dp (A)dA = fu(a).

V. CONCLUSIONS A. Step 1

It was shown in [4] that USTM achieves the high-SNR ca- Setj £ p/M. SinceY is conditionally Gaussian giveX,
pacity of a Rayleigh block-fading MIMO channel in the regime
where the channel’s coherence tirfieis larger or equal to 1 exp[— tr(YH (pxXXH +IT)_1Y)}
the sum of the number of transmit antenigsand receive fy|x(Y [X) = —F - Je— N .
antennasV. In the same paper, it was also conjectured that T det(pXX" + 1)
whenT < M + N, a situation relevant for large-MIMO 1o optainfy |, from fy |x, it is convenient to consider the
systems, USTM is no longer optimal. In this paper, we prov§genvalue decomposition &Y
this conjecture. Specifically, we establish that USTM is not
capacity-achievingwheh < M + N by determining the input vyt - T ( 2 Opx(T—p) ) o
distribution (which we refer to as BSTM) that achieves cétyac O(r—p)xP Or_p ’
at high SNR. The corresponding capacity-achieving inmurtai
is the product of a unitary isotropically distributed mataind
a diagonal matrix whose nonzero entries are distributetias Here, UisaT x T unitary matrix, ands, defined in (21),
square-root of the eigenvalues of a Beta-distributed mafri ,ntains the singular values > --- > op of Y. Set now
appropriate size. The analytical and numerical resulterted 4 & (5~'D~2 4+ I,,)~! and recall thaix — &D, where®

in Section 111-D illustrate that the rate gain determinedising g unitary and isotropically distributed, and, hence, arifly
BSTM instead USTM grows logarithmically in the number ojictributed onS(T, M). Proceeding as in [9, Sec. I1I]

receive antennad’, and can be as large 48% for practically

(52)

EYN

relevant SNR values, wheN > T andM = |T/2]. 1 /
f YD)=—+—- | f Y |®D)d®
v|p(Y|D) ST, )] v |x(Y [®D)
APPENDIX A _ 1 exp[— tr(Y"Y)] . 1
PROOF OFLEMMA 12 T det(pD? + I)N  |S(T, M)
Throughout this appendix, we shall focus for simplicity on . / exp[tr(A®A®")] d®.  (53)
the casd’ < N. We shall, however, outline the additional steps S(T,M)

i opt,p

ngp?ded o generalize the prqofto the case N. I__.etq[., .and_ The integral on the RHS of (53) is computed in closed-form
qp be the pdfs corresponding to the probability distributions 9 Sec. IIIAT for th il B — JT.1 hich
QY and QY', respectively (such pdfs exist whah < N). n [9, Sec. Ill.A] for the special cas®) = M Whic

Let fy |p denote the conditional pdf f givenD. Denote by corresponds to USTM. We shall next evaluate this integrad (a

(0) - _ _ hencefy | p) in closed-form for an arbitrary diagonal matrix
?p) andf, the pdf ofo andu, respectively. Finally, denote by iy \we start by observing that the integral under examination r

& |p andfy|p the conditional pdf o andu givenD. The  semples the well-known Itzykson-Zuber integral [31, EQR(B

proof consists of the following three steps: with the crucial differences that, in our case, the intdgrais
1) We first obtain a closed-form expression fer|p, thus performed over the Stiefel manifolf(7', M) instead of the

generalizing the result obtained in [9, Sec. lll.A] (for theunitary groupl/(T') = S(T,T). Let® = [® ® | where® | is
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aT x (T— M) matrix chosen so thak is unitary,i.e.® € U(T). expression for the conditional pé§ D
Then [32, Eq. (5)]

fy (Y |D)
/etr(M’A‘i’”)d@ = 7|U(T1_M)| /etr(MM’”)d@.(M) _ ﬁ rgp). S oY)
S(T,M) u(T) alNT T M1 det(pD2 + IM)N

M-T
The assumptiorf” < N entails that the nonzero entries of det(M) det (A )

the diagonal matriXD are distinct (see Section IlI-C); hence, ﬁ (02 — o2)- ﬁ N — \))
the nonzero entries of the diagonal matfAxare distinct as i< " Y ’
well. Furthermore, whefl” < N we have that? = T (and < M(M—1)/2 T d 2 T-M
hid = t D2 +1
P = N) and, henceA = X? [see (52)]. Starting from = pT_ H ¢ ( 5 + fy)MH
A = diag{[A\; --- Ay]T}, we next define the following full- T i=T—M+1 det(pD? + L)
rankT x T diagonal matrix: P
g exp(— st 12) det(M) (58)
Y NIET / 1T T M :
A = diag{[A1 - A €y o eq] ) (o202 TI(d2—d2)
i<j 1<J
Here, ¢}, 1, ..., e are nonnegative real numbers chosen so
that the nonzero entries &, are distinct. As the unitary group W& remark that (58) hOIdS under the assumption fhat N,
U(T) is compact, which ensures that th@;ll 1 are all distinct.
WhenT > N, we have thatt, = --- = d;, = /TN/L,
~ SA M) o~ herel = T—L = min{M,T— N} (see Section [11-C). Hence,
tr(22‘1>A‘1>H)d¢ — 1 / tr(22‘I’Ae‘i’H)d¢ W ) B - N X
/ ‘ P P A ==X =A2[L/(TNj)+ 1] Letin this case
Uu(r) U(T)
(85) Ac=diag{[A+e) At AN A gy €]}
The argument of théim operator on the RHS of (55) is thewheree’, ..., ¢ andey, ., ..., ey are positive real numbers
ltzykson-Zuber integral. Hence, by [31, Eq. (3.4)] we’get ~ chosen so that the diagonal elementAofare distinct. Let also
A, 2 diag{[o} -+ 0% ens1 - er]T}, whereen 1, ..., er
r are positive real numbers chosen so that the diagonal etsmen
tr(S2 @A) 13 (T il;ll T(@)- det(A) of A, are distinct. To obtaify | p, we need to replace (55) with
/ e AP = — 7 (96) (59)on the top of next page, and then follow the same stegls lea
u(T) [T(c? — 032-) STT G =) ing to (58). The corresponding steps are omitted. For saitpli
i<y i<y in the remainder of the proof we shall focus exclusively om th
casel’ < N.

Here,{\; } _, are the diagonal entries &f., andA isal x T’

matrix defined as followsiA]; ; = exp(o J)\ ). We next com-
pute the limitey, ., — 0,...,¢ — 0 of the RHS of (56) B. Step 2
using I'Hopital's Theorem, substitute the final resultoir{4),

(p)
and obtain [33, Lem. 5] 1) Computing,/,: To obtainf'”) 51D fromfy | p, we express

Y in terms of its SVD [see (21)], wh|ch yields

/ etr(Aq’A@H)d@ fU,E,V|D(U7 E,V | D)
T,M
(A0 , = fy | p(USVH D) - Jyr(or,-- ,or)  (60)
det(M) det (AM T) IT T®) , . . .
U i=T—M+1 57 where Jy 1 is the Jacobian of the SVD transformation given
T U(T — M) ' T M (57) in (24) (recall that we assumé&d< N, and, henceP = 7" and
W .H.(U _U) [T =) P=N).
=IS(@a0)] = < Next, we integrate the RHS of (60) over andV and then
with M being aT’ x T matrix defined as follows: operate the change of varialde— & defined in (41). These
two steps yield
N 1<i<M,1<j<T .
Mlij =19 21— . == fc(}p\)D(U | D)
o , M<i<T 1<j53<T. - N M
2T6_2i7M+10-1' det( -1D- 2+Iz\ )
Substituting (52 into (53) and using thah = 1117[ 1:[ 0 det(D2 + 5,V M
(p7'D2+15) , we obtain the following closed-form N L) AL I
M T M T ~2
"Note that—differently from our setup—in [31, Eq. (3.4)] tHaar measure : H H U - CT H H 51-2 - —f
on the unitary group is normalized. i<j M<i< i=1j=M+1 p
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/ etr(aeae’) 5 lim lim lim / (8 2AY) 15 (59)
eN4+1—0,...,e7—0 €1 —0,...,e,—0 EGWJFI—)O,...,e’TﬁO
Uu(r) Uu(r)
ﬁ 2(N-T)+1 ¢ € (0,1), there exists @, > 0 such thalP{D € K(pp), D
opt

e PSR det(M) - z:]\14 (61) QR'} < ¢forall p > py,. Hence, forp > py,

a ~ H( ) opt D opt D

Zc,(6) i< q(])Dpr(D) _ qD ( ) < qD ( ) (65)

1-P{DeK(p),D~Q¥} ~ 1-¢
) .
2) Convergence Oﬁ:fgle 10 fujp @sp — oo: We start by Since we are interested in the limit — oo, we will assume

characterizing the limip — oo of ¢,(&) in (61). LetL be a throughout thap > pu, so that (65) holds. Lef? £ TN/L. It

IxT matandefmed asin (62) onthe top Of_ nextpage. ObserYc?llows from (12) and from the change of variable theorent tha
now thatc,(6) = det(L) and thatL,; vanishes ap — oc.

These two facts imply that 22 &2 M oo
qp'(D) = fAl,...,)\M< : M) : -
=1

lim ¢,(6) = lim det(L) a2’ 7 d? d
e pree Mo\ 2AT—2M)+1 02 -7
= pli>nolo (det(Lu) det(LQQ)) =k 1_]1: (E) (1 — E)
T =
~ 2
=det(L)- [] (67 -7 (63) M (d? - d?
M<i<j ’ H 2 : (66)
1<J
_52
with L being aM x M matrix defined by{L ] = e/ Here, the second equality follows by settimg= M, p = T —

Substituting (63) into (61), we get after some algebralcmanM andn = M + N — T in (12). Substituting (66) into (65) we
ulations

obtain
lim f
pi{go |D( o |D) ”|D(0'|D) OPLP(D)
M T—M
~2(N—M)+1 ~—1 2
2M det (L ) 11 U?, AR 52 _ 52 <k- det(5 "D~ +IAJ4V) T - det(M)e™ Pty 5
_ - 115 S det(D2 + 51T, ) " M
det(D)*" . @) i<i b M M 52
( ) z‘:Nl:[MJrl () H JnH H H H < _j
Ap - - =1 1<J i=1j=M+1 p
ifl(dl,...,dj\[)
ﬁ 61_2(N7T)+1. ﬁ (32 - &72)2 Sﬁ FAN =D+
LoT-M =Tt ZMHL L A .
- — T2ii= g . 7 - . 5.2 _ 5.2
mre- 1 1 K Y [ -7
i=1 i=N—-T+1 i=M+1 M<i<j
A60(Gars1,e,0T) < x G2V =i+
(64) i=M+1
. ) M M
The proof of part 2 is concluded by noting that . H(dz —d?). H dz(Tf2M)+1(d2 _@)N-T
4 J 7 7
Tim (@ D) =fi(51,....6u)  FaGrrir, -, 67) = !
= fu/p(&|D) <efi o
where the last equality follows from [22, Thms. 2.17 and .18 " det(M) ﬁ 5 2(N—i)+1
<k-JI[1+v@a)] =
C. Step 3 i=1 [1(5 !+ d2)N-M+1/2
i=1
We next establish that thefuncu@?ﬁ’ (6| D)-q¥**(D)is S(14M/po)M (T =M=k
bounded. By (40), this is obviously true for the case whea M d; T
K(po). We analyze next the cad® ¢ K(p). Throughout this Hm - exp PZU - Z j
appendix, we shall ugeto indicate a constant term that does not =1 ! i=M+1
depend o, D, andp. Note thatt can take on different values <1

at each appearance. We start by observing that for an agbitra < & - det(N) (67)
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A . _x=2 2
L2 M- diag{[e 771 ... e 1 ... 1T}
——
T—M
__h 52 __ P 52 . N
e 1+ﬁd%01 e 1+5d§UM e)\laif(+1 e}qo’%
2 52 —— P 5 ~2 ~2
o e 1+pd2, "1 e 14+5d2, M e)\MUMJrl e)‘MUT
S ONT—M—1 | —p62 ~~2 \T—M—1_ ,—p52, | =2(T—M-T1) ~2(T—M-1)
(p5i) e (PGis) e PIM Gy or
e~ Pt e~ P 1 1
_( Li1 Lo
= . (62)
Ly Loy

where thel’ x T matrix N is defined as follows:

N 2 diag{ {(ﬁfl + d2)~(N-M+1/2)

.

(5l 2 - (N=M1/2) }

(p™" +dy) . 1 }
T—M

T

-M - diag{ [eiﬁ&% AT s VIR 8*5%} }
T

-diag{[&fw‘”“ S }

Next, we upper-boundet(N) by bounding the entries; ; of
N, which are given by

2 =112
eXp{_(dier ) 03} ~2(N—j)+1

(@ + p1) M2 "

)

l<i<M, 1<j<M

eXP[—(l + ﬁdzz)_layz] L2(N—j)+1
(@ + ﬁ_l)N—M+1/2 J

)
N =

1<i<M, M<j<T
(ﬁ&?)Tﬁi-e_ﬁ&? .5?(N—j)+1’
M<i<T,1<j<M

i ~2
Gy NI om0 M < i <T, M<j<T.

In the following, we shall repeatedly make use of the fact tha

Here, (a) follows from (68) by setting = 2(N — j) + 1, 8 =
(d? + p~1)~!, andz = 5;; (b) follows because; < d and
J< M.
2) Casel <i< M, M<j<T:
nj = exp[—(l + ﬁd?)fl&ﬂ . &?(N_j)—kl
<1
(& + ﬁ,l)—(N—MH/z)

(@) 5
S(1+,30/M
~2(N—j)+1 N—]

Uj( i)+ N M+1/2

)N—A{+1/2
<k- (69)

Here, (a) follows becaus&p > po.
3) CaseM <i<T, 1<j<M:

Nij =

(a) ) TJrN*’L'fjJrl/Q
< k-pr—t. <1)

~T—i 552 ~2(T+N—i—j)+1
T—i, pojaj( +N—i—j)+

p
- k. ﬁ*(N*jJrl/Q)
S k . p;](N_j+l/2) — k

Here, (a) follows from (68) by setting = 2(T+ N —i—j) +1,
8 =p,andz = &;.
4) CaseM < i < T, M < j < T: We haven; ; < k,

the functionf(z) = e—B7% pa with a, B,z > 0is maximized vyhich follows directly fr9m (68) by setting =2(T+ N —i —
for z = o = /a/(25), and that the corresponding maximund) + 1, 5 = 1, andz = d;.

values isf(z*) = [a/(28¢)] /2 This implies that

2 « /2
flz)=e Pz < (2—Be> , x>0. (68)

1) Casel <i< M, 1<j< M:

a

—~
=

ni; < k- (dl2 +ﬁ—1)ij+1/2 (df +ﬁ_1)7(N7M+1/2)
= k. (dl2 +ﬁ71)]\4—j
(b) M\M-I
<k (d2 + —) = k.
Pth

To show thatdet(N) is bounded, it remains to further ana-
lyze case 2, where; ; is not bounded. Lefiy, ..., ir} be an
arbitrary permutation of1,...,T}. Then [21, Sec. 0.3]

det(N) = Z sgn(i, ...

(41,000s8)

7iT) SNy 1t e M T (70)

Here, the sum is over all thg"!) permutations of 1,...,T'}

andsgn(-) denotes the sign of the permutation [21, p. 8]. We

observe that for each; ; (1 < i < M,M < j < T) that

appears in the product on the RHS of (70), there exists arfacto
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nir g+ in the same product with/ < i’ <T,1 < j° < M (case To show thaff, is bounded, we first prove thé | p - q;’)pt is

3). Note now that bounded by using (64) and (66):
opt
Mij - M g fuip(u|D) - g5 (D)
(@) 2(N—j = M M
L 22N+l AN-M41/2 det(L -0
<k o p — . — (L) .Huf(N M>+1~H(u?—u§)
JPIN-MAD) Gy i<j
O, \N-i+1/2 H 3 J
< (PUj/) =1 M
o T =1 552 i < u?(Nﬂ'Hl
: (PUJQ-/) YT Poy -0']2-,(N I+t JINE
T T T
CSONAT—MA1—j—i'  ~22N+T+1—j—i'—j") —p52, T 2 — 2
<k-p o e i Lo Xi=M1 Ui, H u?(N T)+1 H (uf _ u?)
(e) i=M+1 M<i<j
<k-p=@N+TH1I—j—i'—j')
< k. p~—(M—j/) < ﬁ W2V T =200+
- i i=M+1
< k- p;( I—j")

h =k. M Moo NoT
2(T—2MN 1 —
Lt -y (T7 0 -

Here, (a) follows from (69), in (b) we used that}, = o7, > P Pl
o7 = a7 for j' < M < j, and (c) follows from (68) by setting

a=22N+T+1-j—i—3"),3=p andz =5;. <k 11 ds
Summarizing, we showed that y =t y
= —(2(N—=M)+1) 2(N—j)+1
f),(6]D) - ¥ (D)| < k- det(N) < k <k-det(L)- [ ] d, e
i=1 j=1
which concludes the proof of the lemma. It
<k
T
APPENDIXB . H ol 2INFT=20)+1
PROOF OFLEMMA 13 By -
()
Throughout this appendix, we shall st /NT/L, and <k

p 2 p/M, and denote by®"*” andq®" the pdfs corresponding < /-
to the probability distributionQ%"” andQ", respectively, by
fé”) andf, the pdf ofé andu, respectively, and bf/épl)D and
fu| p the conditional pdf o& andu givenD, respectively. We
shall usek to denote a finite constant; its value might change _ 2 42 - EI=M)4D) 2N+
at every appearance. Since the lemma only addresses Qmitine ’ i Y }

behaviors ag — oo, we shall assume throughout that> <k -d2MD <20 =
pen > 0. Finally, for simplicity we shall focus exclusively on
the casel’ < N; the proof for the cas& > N follows from
analogous steps.

Here, (a) follows from (68) with the choice = 2(N — j) + 1,
B =d;? andx = u;, as detailed below

forall 1 <i,j < M; (b) follows again from (68). Thus
fulw) = /fum(ulD) -qp'(D)dD < k- d™ = k.

A. Proof of Part 1 2) fép) andf, have finite second momernive takex = 2,
The proof is based on the following theorem. and obtain

Theorem 14 ([34, Thm. 1])Let {x; € C™} be a sequence

of random vectors with pdf§; and letx € C™ be a ran- ~n2e(p) ran g~ L =z 2 S 2

dom vector with pdff. Assume thaf; converges td point- /HUH fo ()do = 521[3[01'} + _7; 1E[0i]

wise. If there exist i) a finite constanf > 0 such that @ 1 - S

max{sup, f;(x), sup, f(x)} < F for all 4, and ii) a finite con- < —NT(p+1)+ (N — M)(T — M)

stantL > 0 such thatmax{ [ ||x|"f;(x)dx, [ ||x[|"f(x)dx} < P

L for somer > 1 and alli, thenh(x;) — h(x). < (1+1/pn) MNT + (N — M)(T — M)
Since we established in Appendix A thgt’ converges td, = k. (71)

pointwise as — oo, we just need to verify that bolﬁf,”) and
fu satisfy the conditions i) and ii) in Theorem 14.

1) féfﬁ andf, are bounded:Because of (51), and sinfe< /Hu||2f (w)du = E[tr(DHH"D)] + (N — M)(T — M)
d; < d, we have that v

Here, (a) follows from (30) and (31). Furthermore,

£9) (& :/f@ &|D)qX"(D)dD < k- d™ = k.
- (@) 71p(@D)ap " (D)dD < This concludes the proof.
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B. Proof of Part 2 The RHS of this equality can be made arbitrarily close to
Let0 < & < 1 and letr be a positive integer satisfying>  Er., [log(x)] by choosings sufficiently small and- sufficiently

1. Denote byf(p) the pdf of5; and byf,, the pdf ofu;. The large. This concludes the proof.

expectation on Lemma 13—-Part-2 can be rewritten as follows:

C. Proof of Part 3
lim E_, [log(2)] = lim {E,., [log(z) - [{x < §
P00 féz)[ 5(@)] fHOO{ féﬁ)[ B(@)- It J To establish the desired result, it is sufficient to show that
+ B [log(z) - I{d <z < r}]

+ Eg [log(z) - I{z > M2 e

wherel{-} is the indicator function. We analyze the three terms
on the RHS of (72) separately. For the first term, [10, Lemma
6.7(a)] and Lemma 13—Part 1 imply that Lemma 13—Part 1 implies that, for sufficiently largeh(c; —
. . - Gj) > —oc andh(a; + ;) > —oo; We can now establish (74)
Jm Efé’j) [log(x) - H{z < 0}] = e1(9) and (75) through steps similar to the ones in Part 2.

Ellog(6; — 7;)] = Eflog(u; — uy)] +o(1), p— 00 (74)

Ellog(c; + ;)] = E[log(u; + u;)] + o(1), p — oo. (75)

wheree; (§) — 0 asé — 0. For the second term, we have that
D. Proof of Part 4

i . <z<
plggo Efé’j) [log(x) - I{0 < = < r}] The proof is analogous to the proof of part 2 and part 3.

= K, [log(z) - I{0 <z <r}]
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