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On Capacity of Large-Scale MIMO Multiple Access Channels with

Distributed Sets of Correlated Antennas ∗

Jun Zhang†, Chao-Kai Wen‡, Shi Jin†, Xiqi Gao†, and Kai-Kit Wong§

Abstract

In this paper, a deterministic equivalent of ergodic sum rate and an algorithm for evaluating the

capacity-achieving input covariance matrices for the uplink large-scale multiple-input multiple-output

(MIMO) antenna channels are proposed. We consider a large-scale MIMO system consisting of multiple

users and one base station with several distributed antenna sets. Each link between a user and an

antenna set forms a two-sided spatially correlated MIMO channel with line-of-sight (LOS) components.

Our derivations are based on novel techniques from large dimensional random matrix theory (RMT)

under the assumption that the numbers of antennas at the terminals approach to infinity with a fixed

ratio. The deterministic equivalent results (the deterministic equivalent of ergodic sum rate and the

capacity-achieving input covariance matrices) are easy to compute and shown to be accurate for realistic

system dimensions. In addition, they are shown to be invariant to several types of fading distribution.

Index Terms—Deterministic equivalent, large dimensional RMT, large-scale MIMO, Stieltjes trans-

form.

1 Introduction

To achieve higher rates, much efforts have been put to improving the spectral efficiency and data throughput

of wireless communication systems. The multi-antenna technology is one key technology for wireless

communication and is envisaged to be adopted ubiquitously. With the number of antennas at the base

stations (BSs) and user equipments (UEs) being increased, communications systems will have better rate

and link reliability [1, 2]. However, the actual achievable spectral efficiency could be greatly compromised

by interference arising from simultaneous communications in neighboring areas.
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Figure 1: A vision for a possible large-scale MIMO system.

A promising solution to interference management is the large-scale multiple-input multiple-output

(MIMO) technology, e.g., [3–7]. Figure 1 illustrates a possible scenario where the antenna array of a BS

is composed of multiple geographically distributed low-power antenna sets, installed onto a ring of high-

speed fibre-bus, and this BS is communicating with several multi-antenna UEs. The large-scale MIMO

setting is beneficial not only in terms of communication performances (such as better coverage and efficient

radio resource utilization) but also in terms of energy-saving.1 In this complex system model, a number of

practical factors such as correlation effects and line-of-sight (LOS) components need to be included, which

occur due to the space limitation of UEs and the densification of the antenna arrays resulting in a visible

propagation path from the UEs, respectively. For typical systems of tens of distributed antenna sets and

hundreds of UEs, even computer simulations become challenging [9], which makes performance analysis of

such large-scale MIMO systems an important and a new subject of research.

When a system is large, exact performance analysis is no longer suitable because an exact analytical

expression would be too complex to appreciate. Hence, alternatives have emerged and the large dimensional

random matrix theory (RMT) [6, 10–19] provides a powerful tool in dealing with large-scale MIMO systems.

Utilizing the large dimensional RMT, this paper aims to derive information-theoretic results of the large-

scale MIMO systems. In particular, our focus is on the uplink large-scale MIMO systems consisting of K

UEs and a BS with L distributed sets of multiple antennas. Let nk andNl denote, respectively, the numbers

of antennas at the k-th UE and the l-th antenna set of the BS receiver. The channel between the k-th

UE and the l-th antenna set is modeled as the Nl × nk complex matrix Hl,k = R
1
2
l,kXl,kT

1
2
l,k + H̄l,k, where

Xl,k’s are statistically independent random matrices of independent and identically distributed (i.i.d.)

entries (but not necessary Gaussian2), H̄l,k is a deterministic matrix reflecting the LOS components of the

1Using the setting, the number of BS can be greatly reduced. Note that the energy consumption for air conditioning for
each BS is consuming up to 20,000 kWh each year on average which is sometimes higher than other equipments in a BS [8].

2Despite the Rayleigh or Rician distribution being the most popular distributions for small-scale amplitude fading, there
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channel, and Rl,k and Tl,k, respectively, characterize the spatial correlation structures at the receiver and

transmitter sides separatively. Since the signals from multiple antenna sets are collected into a BS, the

corresponding channel matrix of UE k can be expressed as Hk , [HT
1,k · · ·HT

L,k]
T . An important objective

of this study is to obtain a deterministic equivalent of the ergodic sum rate for the distributed uplink

MIMO channel
∑K

k=1HkH
H
k so that the system sum rate can be efficiently and accurately computed.

Although there have been quite many such results on MIMO capacity analysis utilizing large dimen-

sional RMT [10, 12–16], the general model studied in this paper has not been addressed. To appreciate the

objective of this paper, it is important to understand the limitations of the existing results. First, previous

works in the large-scale MIMO systems usually assumed nk = 1 and Nl = 1 for all k, l. That is, the UEs

have only one antenna each and the BS is equipped with completely distributed antennas (i.e., one antenna

in each antenna set). The elements of this channel matrix merely reflect the path loss differences between

the links. Regarding the channel model (the channel with a variance profile), the most relevant work is

[12] (or [11, Theorem 3.8] without the LOS components). In [12], a deterministic equivalent of the mutual

information3 was derived based on the Bai-and-Silverstein method [22] (or [17, Chapter 6.2.1]). In fact,

the results of [12] can be easily extended to the case with nk ≥ 1 and Nl ≥ 1 but those spatial correlation

matrices Tl,k’s and Rl,k’s are required to be diagonal.

The deterministic approximations of [11, 12] have found many applications in various system optimiza-

tion designs such as scheduling [9, 23], training length designs [24], cell planning [25], and many others

[11, 17]. This is because the designs based on the deterministic approximations not only can provide an

efficient computation method but also give insight into what the optimal strategies look like. However,

inheriting from the limitations of [11, 12], these results do not allow the UEs or each antenna set of the

BS to be equipped with multiple spatially correlated antennas. Because of the potential applicability of

deterministic equivalent results to system designs, there is a strong desire to deriving new deterministic

equivalents as those given in [12] for the general model of our interest. However, even for an extension to the

one-sided spatially correlated case, there will be several obstacles when one intends to get the deterministic

equivalent of mutual information by using the Bai-and-Silverstein method and alike.4

To date, there are only very few results dealing with random matrix models where the entries are

correlated across both rows and columns. Most studies only considered random matrices with independent

are other classes of fading distributions which serve as better models under certain circumstances [20, 21].
3Formally, it should be read as the mutual information between the input and output over the channel with a variance

profile. In this paper, we often simply refer to it as “the mutual information” if no confusion would occur.
4If H̄l,k = 0 ∀l, k, a partial generalization is possible by the Bai-and-Silverstein method. Specifically, with minor modifi-

cations for the case in [16, 26], the asymptotic mutual information can be obtained for the case that Rl,k’s were permitted to
be nonnegative definite, while H̄l,k = 0 and Tl,k’s are diagonal. If Tl,k’s are generally nonnegative definite, difficulties arise.
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complex Gaussian random variables and used the fact that the correlated Gaussian random matrix can be

transformed to an uncorrelated one with non-identically distributed entries without changing the concerned

objects (e.g., the eigenvalue distribution and the mutual information). For convenience, we will refer to this

transformation as the decorrelation procedure. Because of the assumption of Gaussianity the entries are in

fact uncorrelated, and so the Bai-and-Silverstein method can be used. For the latest results using this trick,

refer to, e.g., [16]. Unfortunately, the channel model of our interest (i.e., Hk) cannot be transformed to a

Gaussian random matrix with uncorrelated columns even if Xl,k’s are assumed to be Gaussian. For this

to be possible, it would require that T1,k, . . . ,TL,k be simultaneously unitarily diagonalizable for every k.

Clearly, this restriction in the model does not permit UEs to have multiple spatially correlated antennas,

which is unrealistic and greatly limits the significance of the model.

If the entries of the random matrices are Gaussian, then an alternative method, known as the Gaussian

method [27] (the integration by part formula and Poincaré-Nash inequality), is much more useful. In

this context, Hachem et al. [13, 15] have succeeded in obtaining the deterministic equivalent of mutual

information for Kronecker (or separately) correlated Rayleigh and Rician MIMO channels. Compared to

the Bai-and-Silverstein method, the Gaussian method is only suited to random matrices with Gaussian

entries. However, one may extend the results obtained for matrices with Gaussian entries to any random

matrices with independent entries following two recent developments, the Lindeberg principle [28] and the

interpolation trick [29]. For the latest results, see, e.g., [19], where the Lindeberg principle is applied.

Early analyses using the Gaussian method were only for the typical Kronecker MIMO channel [13, 15].5

In that case, the correlated Gaussian random matrix was transformed into an uncorrelated one, and

the decorrelation procedure was employed. As such, the Gaussian method was merely an alternative

tool to study large dimensional random matrices. Its superiority in dealing with random matrices with

correlated pattern is largely unexplored until most recently, Dupuy and Loubaton in [18] derived the

deterministic equivalent of average mutual information for a frequency selective MIMO channel, in which

the decorrelation procedure could not be applied. We believe that the Gaussian method can be useful to

treat other random matrices with involved correlation. With the aid of the Lindeberg principle, one may

further extend the results obtained for matrices with Gaussian entries to any random matrices. Following

this approach, this paper combines the two techniques to get the deterministic equivalents for the concerned

channel model.

In particular, we first use the Gaussian method to derive the deterministic equivalent of ergodic sum

rate for the large-scale MIMO multiple access channel (MAC) when Xl,k’s are Gaussian distributed. Our

5In this paper, the typical Kronecker MIMO channel means that K = L = 1.
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results are much more general and can cope with several complex applications. As a special case, this

contribution complements the results of [18] by extending the analysis to the case with LOS components.

This extension is non-trivial.6 Next, by the generalized Lindeberg principle [28, 30], we generalize the

deterministic equivalent for random matrices with Gaussian entries to those with non-Gaussian entries.

Simulation results reveal that even for systems with realistic system dimensions, the deterministic approx-

imation of ergodic sum rate provides reliable estimates to those obtained by Monte-Carlo simulations.

Then, we apply the approximation to design the input covariances that tend to maximize the ergodic sum

rate of the large-scale MIMO MAC, and provide an iterative water-filling optimization algorithm when

only the statistical CSI at the transmitter (precisely, Tl,k’s, Rl,k’s, and H̄l,k’s) is available. Finally, we

conduct several simulations to confirm the comparability between results by our approach and those by

the true (but time-consuming) optimization procedure under several types of fading distribution.

Notations—We use uppercase and lowercase boldface letters to denote matrices and vectors, respec-

tively. IN denotes an N×N identity matrix while an all-zero matrix is denoted by 0, and an all-one matrix

is denoted by 1. The matrix inequality � shows the positive semi-definiteness. The superscripts (·)H , (·)T ,

and (·)∗ represent the conjugate-transpose, transpose, and conjugate operations, respectively. Also, we use

E{·} to denote expectation with respect to all random variables within the brackets; log(·) is the natural

logarithm; ρ(·) denotes the spectral radius (i.e., the largest absolute value of the eigenvalues) of a matrix.

‖ · ‖ represents the Euclidean norm of an input vector or the spectral norm of an input matrix, while ‖ · ‖F
denotes the Frobenius norm of a matrix, and ||| · |||∞ represents the maximum row sum matrix norm. The

complex number field is denoted by C. For any matrix A ∈ CN×n, we use [A]lk, [A]l,k or Akl to denote the

(l,k)-th entry, and ak denotes the k-th entry of the column vector a. The operators (·) 1
2 , (·)−1, tr(·) and

det(·) represent the matrix principal square root, inverse, trace and determinant, respectively. In addition,

diag(x) denotes a diagonal matrix with an input vector x representing its diagonal elements.

2 Channel Model and Problem Statement

2.1 Uplink Large MIMO

As shown in Figure 1, we consider the large-scale MIMO MAC with K UEs, labeled as UE1, . . . ,UEK ,

which are equipped with n1, . . . , nK antennas, respectively. The K UEs transmit simultaneously to a

central coordinator with L distributed antenna sets, labeled as BS1, . . . ,BSL, which are equipped with

6Using the Gaussian tools, the asymptotic mutual information expressions for Rayleigh fading Kronecker MIMO channels
were first proved by [13]. Two years later, the authors in the same group generalized the results to Rician fading channels
[15]. This in some ways reflects the difficulty of such extension even for the typical Kronecker MIMO channel.
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N1, . . . , NL antennas, respectively. In this paper, we use the Kronecker model to characterize the spatial

correlation of the MIMO channel for each MIMO link so that the correlation at an antenna set and a UE

is modeled separately, as in [31]. Specifically, the channel from UEk to BSl, Hl,k ∈ CNl×nk , can be written

as

Hl,k = H̃l,k + H̄l,k ≡ R
1
2
l,kXl,kT

1
2
l,k + H̄l,k, (1)

where Rl,k ∈ CNl×Nl and Tl,k ∈ Cnk×nk are deterministic nonnegative definite matrices, characterizing the

spatial correlation of the received signals across the antenna elements of BSl and that of the transmitted

signals across the antenna elements of UEk, respectively; Xl,k ≡ [ 1√
nk

X
(l,k)
ij ] ∈ CNl×nk consists of the

random components of the channel in which the elements are i.i.d. complex random variables with zero

mean and unit variance; and H̄l,k ∈ CNl×nk is a deterministic matrix corresponding to the channel LOS.

With the channel given above, we define the Rician factor between UEk and BSl as

κl,k =
‖H̄l,k‖2F

E{‖H̃l,k‖2F}
. (2)

We also denote the distance-dependent pathloss of the (l, k)-th pair by gl,k = E
{
‖Hl,k‖2F

}
/Nl given by

E
{
‖Hl,k‖2F

}
=

1

nk
tr(Rl,k)tr(Tl,k) + tr

(
H̄l,kH̄

H
l,k

)
. (3)

Following the standard conventions [14], Rl,k, Tl,k, and H̄l,k are normalized such that







tr(Rl,k) =
1

κl,k + 1
gl,kNl,

tr(Tl,k) = nk,

tr
(
H̄l,kH̄

H
l,k

)
=

κl,k
κl,k + 1

gl,kNl.

(4)

It is noted that κl,k and gl,k are independent from the matrix dimensions. Therefore, the normalization is

valid for all possible correlation patterns and imposes no restriction on practical applications. Although

for convenience purpose we will simply set the same noise level (i.e., σ2) at all the receivers, it imposes no

restriction since one can adjust gl,k to get an arbitrary signal-to-noise ratio (SNR) of the (l, k)-th pair. In

addition, the setting implies that the LOS components of some link pairs are allowed to be absent.
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2.2 Problem Formulation

The sum rate has been a key metric for performance analysis of a MAC. We begin with the sum rate

formulation of the large-scale MIMO system and then explain its relation to RMT. For ease of exposition,

we define N ,
∑L

l=1Nl, n ,
∑K

k=1 nk, Hk ,

[

HT
1,k · · ·HT

L,k

]T
∈ CN×nk , H̄k ,

[

H̄T
1,k · · · H̄T

L,k

]T
∈ CN×nk ,

H , [H1 · · ·HK ] ∈ CN×n, and H̄ ,
[
H̄1 · · · H̄K

]
∈ CN×n. The channel Hk represents the joint channel

between UEk and the L distributed antenna sets interconnected at the BS. Then, the ergodic sum rate of

the MIMO MAC can be expressed as [32]

VBN
(σ2) ≡ 1

N
E

{

log det

(

IN +
1

σ2
BN

)}

(5)

where σ2 is the noise variance at the receivers and

BN ,

K∑

k=1

HkH
H
k ∈ CN×N . (6)

Specifically, VBN
(σ2) provides a performance metric regarding the total number of nats (or bits if in base

2 of logarithm) per antenna that can be transmitted reliably over the channel matrices {Hk}k=1,...,K .

The derivative of VBN
(σ2) with respect to σ2 is given by

∂VBN
(σ2)

∂σ2
=

1

N
E

{

tr

[(

IN +
1

σ2
BN

)−1
]}

− 1

σ2
. (7)

By Fubini’s theorem, we have [12, page 891]

VBN
(σ2) =

∫ ∞

σ2

(
1

ω
− E{mBN

(ω)}
)

dω, (8)

where

mBN
(ω) ,

1

N
tr (BN + ωIN )−1 . (9)

In RMT, mBN
is referred to as the Stieltjes transform of BN at point −ω, which provides a convenient

tool to study the behavior of large dimensional random matrices. The relationship by which the mutual

information is expressed as a functional of the Stieltjes transform is called the Shannon transform [11,

Section 2.2.3].

In this paper, we are interested in understanding the ergodic sum capacity of the MIMO MAC by using

large dimensional RMT. In particular, we consider that L, K are fixed but N1, . . . , NL, n1, . . . , nK all go
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to infinity with ratios {βl,k(N) ≡ Nl

nk
} such that

0 < min
l,k

lim inf
N

βl,k(N) < max
l,k

lim sup
N

βl,k(N) < ∞. (10)

For convenience, we refer to this large dimensional regime simply as N → ∞ in the sequel. To this end,

in the next section, we first find a deterministic matrix-valued function Ψ(ω) ∈ CN×N (to be done later)

such that

E {mBN
(ω)} − 1

N
tr(Ψ(ω))

N→∞−−−−→ 0 for ω ∈ R+. (11)

Following [12] (or [17, Definition 6.1]), we refer to 1
N tr(Ψ(ω)) as the deterministic equivalent of E {mBN

(ω)}.

To appreciate the contributions of this paper, it is worth emphasizing thatHk, in general, cannot be written

in the form (1) using the separable correlation model, because different antenna sets have different spatial

correlations, and this is the main obstacle of this class of random matrices – otherwise, there are some

existing results [6, 10–16, 18, 19]. Next, using the Shannon transform (8), we will find VN (σ2) so that

E{VBN
(σ2)}−VN (σ2) → 0 as N → ∞. Finally, we will use VN (σ2) to obtain the optimal input covariance

matrices that maximize the deterministic approximation of the ergodic sum rate.

3 Deterministic Equivalents and Ergodic Capacity

3.1 Deterministic Equivalents

We first state the assumptions imposed in our system model.

Assumption 1 Let Xl,k ≡ [ 1√
nk

X
(l,k)
ij ] ∈ CNl×nk , where X

(l,k)
ij ’s are i.i.d. complex random variables with

independent real and imaginary parts such that

E{X(l,k)
11 } = 0, and E{|X(l,k)

11 |2} = 1, (12)

and have finite 6-th order moment.

Assumption 2 The family of deterministic matrices {Tl,k,Rl,k}∀l,k is nonnegative definite. In addition,

the spectral norms of Rl,k, Tl,k, and H̄l,kH̄
H
l,k are bounded by a constant, i.e.,

max
k,l

max{‖Rl,k‖, ‖Tl,k‖, ‖H̄l,kH̄
H
l,k‖} ≤ Cmax. (13)
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To facilitate our expressions, we define the notation 〈A〉k that returns the submatrix of A obtained by

extracting the elements of the rows and columns with indices from
∑k−1

i=1 ni + 1 to
∑k

i=1 ni. Similarly, the

notation 〈〈A〉〉l returns the submatrix of A obtained by extracting the elements of the rows and columns

with indices from
∑l−1

j=1Nj + 1 to
∑l

j=1Nj . Also, for convenience, in the paper, we often omit ω when

writing mBN
,Ψ, Ψ̃,Φ, Φ̃,Φl, Φ̃k, el,k, ẽl,k, and denote

∑

l,k ≡∑L
l=1

∑K
k=1.

Theorem 1 Let βl,k = Nl

nk
. Under Assumption 2, the deterministic system of the L×K equations

el,k =
1

Nl
tr(Rl,k〈〈Ψ〉〉l), (14a)

ẽl,k =
1

nk
tr
(

Tl,k〈Ψ̃〉k
)

, (14b)

for 1 ≤ l ≤ L and 1 ≤ k ≤ K, where

Ψ =
(

Φ−1 + ωH̄Φ̃H̄H
)−1

, (15a)

Ψ̃ =
(

Φ̃
−1

+ ωH̄HΦH̄
)−1

, (15b)

Φ = diag(Φ1, . . . ,ΦL), (15c)

Φ̃ = diag(Φ̃1, . . . , Φ̃K), (15d)

Φl =

(

ωINl
+ ω

K∑

k=1

ẽl,kRl,k

)−1

, (15e)

Φ̃k =

(

ωInk
+ ω

L∑

l=1

βl,kel,kTl,k

)−1

(15f)

have a unique solution for ω ∈ R+.

Under Assumptions 1 and 2, as N → ∞, we then have

E {mBN
} − 1

N
tr(Ψ) = O

(
1√
N

)

, for ω ∈ R+. (16)

Furthermore, if Xl,k’s are Gaussian, we have

E {mBN
} − 1

N
tr(Ψ) = O

(
1

N2

)

, for ω ∈ R+. (17)

Proof: Here, for ease of understanding, we give an outline of the proof. Our strategy is to show that

the deterministic equivalent of E {mBN
} [i.e. 1

N tr(Ψ)] can be found for the Gaussian random matrices and

9



then we prove that the result is also applied for the non-Gaussian distributions.

Let BN be an N ×N matrix obtained from BN in (6) with all Xl,k’s replaced by X l,k’s, where X l,k’s

are matrices with entries being independent standard Gaussian. Using the Gaussian method [27] (the

integration by part formula and Poincaré-Nash inequality), we can show that the error term E{mBN
} −

1
N tr(Ψ) is of order O

(
1
N2

)
. The detailed derivation is given in Appendix A.

Next, applying the Lindeberg principle [30, Theorem 2], we prove that E{mBN
}−E{mBN

} = O
(

1√
N

)

.

The detailed derivation using the Lindeberg principle is provided in Appendix B. Together with the result

for the Gaussian case, the proof of (16) can be accomplished by noting that

E {mBN
} − 1

N
tr (Ψ) =

(

E {mBN
} − E {mBN

}
)

︸ ︷︷ ︸

=O
(

1√
N

)

+
(

E {mBN
} − 1

N
tr (Ψ)

)

︸ ︷︷ ︸

=O
(

1
N2

)

.

Finally, we consider the existence and uniqueness of the solution to (14) in Appendix C. �

Remark 1 If X
(l,k)
ij ’s are Gaussian, the assumption that X

(l,k)
ij ’s have finite 6-th order moment is naturally

satisfied. When the amplitudes of the channel fading coefficients follow the Nakagami and log-normal

distributions, Theorem 1 is applicable since these distributions have finite 6-th order moment. In Appendix

B, the proof of E {mBN
}− 1

N tr(Ψ) = O
(

1√
N

)

was given under the assumption that X
(l,k)
ij ’s have finite 6-th

order moment. In fact, with additional arguments, the more general case can be obtained. Specifically, if

X
(l,k)
ij ’s have only finite second moment, we can prove that E {mBN

(ω)}− 1
N tr(Ψ(ω)) = O (εn), where εn is

a positive sequence converging to zero. However, it should be noted that with the finite 6-th order moment

assumption, the proof of E {mBN
} − 1

N tr(Ψ) = O
(

1√
N

)

is much simpler than the latter general case.

The proof of the general case requires some additional truncation, centralization, and rescaling techniques

together with some careful derivations as those in [19]. Since these are beyond the scope of this paper, we

do not show the detail proof regarding this general case. Interested readers can refer to [19].

Remark 2 Theorem 1 is developed under the asymptotic regime where L, K are fixed but {Nl, nk}’s all

grow to infinity with fixed ratios. For other applications, we might be interested in the cases with fixed

{Nl, nk}’s while L and K grow to infinity. In this case, the entries of Xl,k’s will be normalized by
√
n

rather than
√
nk and a similar deterministic equivalent result as that of Theorem 1 can be obtained.7

We then derive a deterministic equivalent of the ergodic sum rate of the large-scale MIMO MAC in the

following theorem.

7Only different in some scalar adjustment.
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Theorem 2 Assuming that BN follows the hypotheses of Theorem 1, as N → ∞, the Shannon transform

of BN satisfies

E{VBN
(σ2)} − VN (σ2) = O

(
1√
N

)

, (18)

where

VN (σ2) =
1

N
log det

(
Ψ(σ2)−1

σ2

)

+
1

N

K∑

k=1

log det

(

Φ̃k(σ
2)−1

σ2

)

− σ2

N

∑

l,k

Nlel,k(σ
2)ẽl,k(σ

2), (19a)

=
1

N
log det

(

Ψ̃(σ2)−1

σ2

)

+
1

N

L∑

l=1

log det

(
Φl(σ

2)−1

σ2

)

− σ2

N

∑

l,k

Nlel,k(σ
2)ẽl,k(σ

2). (19b)

Furthermore, if Xl,k’s are Gaussian, we have, as N → ∞,

N
(
E{VBN

(σ2)} − VN (σ2)
)
= O

(
1

N

)

. (20)

Proof: By (16) in Theorem 1 together with the dominated convergence theorem, (18) is obtained.

Then, we show that
∫∞
σ2

(
1
ω − 1

N tr(Ψ(ω))
)
dω can be written more explicitly as (19a). The details of the

proof are similar to those in [19, Theorem 3], and thus omitted. Since det (I+AB) = det (I+BA), we

then have (19b). On the other hand, (20) can be obtained by (17) in Theorem 1. �

Remark 3 With (18), we can get the deterministic equivalent of the ergodic sum rate regarding the number

of nats per antenna. However, (20) shows the convergence regarding the total ergodic sum rate and as a

consequence has a wider range of applications for the performance evaluation criteria.

Over the last few years, there have been quite many deterministic equivalent results obtained by using

large dimensional RMT (e.g., [6, 10–16, 18, 19]). Since our model is fairly general, Theorem 2 may be

interpreted as a unified formula that encompasses many such results. For the case with K = 1 and H̄ = 0,

VN (σ2) agrees with that in [18, Theorem 2], in which {Xl,1}∀l are assumed to be Gaussian. Theorem 2

thus extends its application to the non-Gaussian scenarios in this sense. Indeed, if H̄ = 0, (19) was first

presented in [33, (23)], where the replica method was used. Also, for the case with K = 2, L = 1, and

{Rl,k = R}∀k, Theorem 2 is consistent with the results in [34] by the replica method which is however

mathematically incomplete. In contrast, Theorem 2 is not only mathematically rigorous but also more

general than the proposition in [33] in the sense that H̄ 6= 0 and there is no requirement on the Gaussian

distribution on the entries of Xl,k. Finally, if nk = 1 and Nl = 1 for all k, l, then Theorem 2 degenerates

to that in [12] (or [11] without the LOS components). Clearly, in contrast with [11, 12], Theorem 2 allows
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the UEs and each antenna set of the BS to be equipped with multiple spatially correlated antennas.

As mentioned before, deterministic equivalent results together with optimization approaches have found

numerous applications in system optimization designs [9, 23–25]. For example, based on the deterministic

equivalent result of [11], the authors of [9] devised an algorithm to compute the ergodic sum rate subject to a

general fairness criterion. Also, based on [11], the authors of [23] derived an analytical expression of a system

spectral efficiency when multiple BSs employ joint transmission with linear zero-forcing beamforming.

They also developed a downlink scheduling scheme under a fairness criterion. Our deterministic equivalent

results provide a promising foundation to these applications while under the more general large-scale MIMO

system. In addition, a deterministic equivalent for the SINR at the output of the MMSE receiver can be

derived using our deterministic equivalent results. Due to space limitations, such applications through

Theorems 1–2 are left out. In the next subsection, our aim is to answer one of the fundamental questions:

How should the input covariances be designed so that the ergodic sum rate can be maximized?

3.2 Ergodic Capacity

It is well known that the ergodic sum capacity of a MIMO MAC is achieved by selecting proper input

covariance matrices so that the ergodic sum rate is maximized [35]. In this subsection, we aim to design the

optimal covariance matrices using the deterministic equivalent results. Firstly, we state that the covariance

matrices maximizing the deterministic equivalent of the ergodic sum rate yield a result which converges

to the ergodic capacity. After that, these optimal covariance matrices will be shown to be structurally

equivalent to an iterative waterfilling procedure over a deterministic channel. Finally, we propose an

iterative waterfilling algorithm for finding the capacity-achieving input covariance matrices.

Let Qk be the input covariance matrix of UEk which satisfies tr(Qk) ≤ nk.
8 With the input covariance

matrices Q , diag (Q1, . . . ,QK), we thus write the ergodic sum rate of the large-scale MIMO MAC as

E
{
VBN

(σ2,Q1, . . . ,QK)
}
=

1

N
E

{

log det

(

IN +
1

σ2
HQHH

)}

. (21)

Then, the ergodic capacity under the power constraint is given by

max
Qk∈Qk,∀k

E
{
VBN

(σ2,Q1, . . . ,QK)
}
, (22)

8The power constraint can be replaced by tr(Qk) ≤ Pknk with Pk being any finite positive value independent from the
matrix dimension. Note that the current setting tr(Qk) ≤ nk is for notational brevity only.
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where

Qk ,

{

Qk

∣
∣
∣ tr(Qk) ≤ nk and Qk � 0

}

is the feasible set of Qk. The problem (22) is convex and can be solved using stochastic programming

based on convex optimization with Monte-Carlo methods [36]. Specifically, we can apply the method in

[37] (called the Vu-Paulraj algorithm), which was developed based on the barrier method [36, Chap. 11]

where the related gradient and Hessian are approximated by Monte-Carlo methods. SinceQk is a Hermitian

matrix of size nk ×nk, the optimization involves nk real entries on the diagonal and nk(nk − 1)/2 complex

entries in the upper triangle. The complexity of such algorithm is high and requires long execution time.

We thus propose an approximate approach using the deterministic equivalent results in Theorem 2.

In Theorem 2, we have shown that the deterministic equivalent results are invariant to the type of

fading distribution. As a result, the asymptotic optimal input covariances, which are designed based

on the deterministic equivalent results, are also invariant to the type of fading distribution. To get the

deterministic equivalent of E
{
VBN

(σ2,Q1, . . . ,QK)
}
, the effect of Qk has to be included in VN (σ2). With

Theorem 2, this can be easily accomplished by the following replacements: for 1 ≤ l ≤ L,

Tl,k := Q
1
2
kTl,kQ

1
2
k , and H̄l,k := H̄l,kQ

1
2
k . (23)

Now, let VN (σ2,Q1, . . . ,QK) be the result obtained from VN (σ2) with Tl,k and H̄l,k based on the above

replacements. Then, (19b) becomes

VN (σ2,Q1, . . . ,QK) =
1

N
log det (In + FQ)+

1

N

L∑

l=1

log det

(
Φl(σ

2)−1

σ2

)

− σ2

N

∑

l,k

Nlel,k(σ
2)ẽl,k(σ

2), (24)

where

F = diag

({
L∑

l=1

βl,kel,k(σ
2)Tl,k

}

∀k

)

+ H̄HΦ(σ2)H̄. (25)

Note that Qk’s appear in ẽl,k(σ
2)’s, i.e., ẽl,k(ω) =

1
nk

tr(Q
1
2
kTl,kQ

1
2
k 〈Ψ̃(ω)〉k) and thus are involved in all the

three terms of (24). Using the deterministic equivalent result, we have the optimization problem:

max
Qk∈Qk,∀k

VN (σ2,Q1, . . . ,QK). (26)

Before solving the above problem, two important issues must be resolved. One is to establish the

concavity of VN (σ2,Q1, . . . ,QK) with respect to (Q1, . . . ,QK), and the other one is to ensure that

13



E{VBN
(σ2,Q◦

1, . . . ,Q
◦
K)} − VN (σ2,Q⋆

1, . . . ,Q
⋆
K) goes asymptotically to zero, where, (Q◦

1, . . . ,Q
◦
K) and

(Q⋆
1, . . . ,Q

⋆
K) are the maximizers of (22) and (26), respectively. The required results are described by the

following proposition.

Proposition 1 We have:

1. The function (Q1, . . . ,QK) 7→ VN (σ2,Q1, . . . ,QK) is strictly concave on (Q1, . . . ,QK).

2. In addition to Assumption 2, suppose that Q◦
k’s and Q⋆

k’s lay within a set of positive semi-definite

matrices with bounded spectral norm. The, we have

E{VBN
(σ2,Q◦

1, . . . ,Q
◦
K)} − VN (σ2,Q⋆

1, . . . ,Q
⋆
K) = O

(
1√
N

)

. (27)

Furthermore, if Xl,k’s are Gaussian, then (27) becomes O
(

1
N2

)
.

Proof: The proof is similar to that in [15, Theorem 4 and Proposition 3] and [18, Theorem 3 and

Proposition 4], and therefore omitted. �

So far, we have stated that (Q⋆
1, . . . ,Q

⋆
K) yield a result which converges to the ergodic capacity. Next,

by using tools from convex optimization [36], we will gain a better understanding on the structure of

(Q⋆
1, . . . ,Q

⋆
K). In particular, our next proposition will state that the optimal covariance matrices are

structurally equivalent to an iterative waterfilling procedure over a deterministic equivalent channel.

To that end, we start with defining the Lagrangians of the optimization problem (26) as

L (Q,Υ,µ) = −VN (σ2,Q1, . . . ,QK) +

K∑

k=1

tr(ΥkQk) +

K∑

k=1

µk (nk − tr(Qk)), (28)

where Υ , {Υk}∀k and µ , {µk}∀k are the Lagrange multipliers associated with the problem constraints.

In order to express the partial derivative of VN (σ2,Q1, . . . ,QK) with respect to Qk, i.e.
∂VN

∂Qk
, we define

I(σ2,Q1, . . . ,QK) = 1
N log det (In + FQ). From (24), it is noted that the parameters affected by the

perturbation of Qk are I(σ2,Q1, . . . ,QK), {el,k}∀l,k, and {ẽl,k}∀l,k. As a result, we have

∂VN

∂Qk
=

∂VN

∂I
∂I
∂Qk

+
∑

l,k

∂VN

∂el,k

∂el,k
∂Qk

+
∑

l,k

∂VN

∂ẽl,k

∂ẽl,k
∂Qk

. (29)

It can be checked that ∂VN

∂el,k
= 0 and ∂VN

∂ẽl,k
= 0,∀l, k. Therefore, the Karush-Kuhn-Tucker (KKT) conditions
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of (26) are






− 1

N
〈(In + FQ)−1

F〉k +Υk − µkInk
= 0,

tr (ΥkQk) = 0, Υk � 0, Qk � 0,

µk (nk − tr(Qk)) = 0, µk ≥ 0,

(30)

for k = 1, . . . ,K.

Since (26) is a convex optimization problem with constraints satisfying Slater’s condition, the optimal

Qk’s can be found by solving the KKT conditions [36]. Using Lemma 14, the first line of (30) can be

rewritten as

− 1

N
(Ink

+PkQk)
−1

Pk +Υk − µkInk
= 0, (31)

where

Pk ,〈
(
In + FQ\k

)−1
F〉

k
, (32)

Q\k ,diag (Q1, . . . ,Qk−1,0,Qk+1, . . . ,QK) . (33)

Note that Pk is a function of (Q1, . . . ,QK) rather than only Q\k, as F defined in (25) includes the whole

Qk’s. For brevity, we have omitted its argument when writing Pk. Substituting (31) for the first line of

(30), the KKT conditions (30) are now equivalent to those of the following optimization problem:

max
Qk∈Qk

1

N
log det (Ink

+PkQk), (34)

which can be solved by a standard iterative waterfilling procedure. Thus, we get the next proposition.

Proposition 2 Let P⋆
k be the matrix in (32) by replacing (Q1, . . . ,Qk, . . .QK) with (Q1, . . . ,Q

⋆
k, . . .QK)

and P⋆
k = VPk

ΛPk
UH

Pk
. The eigenvectors of Q⋆

k coincide with the right singular vectors of matrix P⋆
k, i.e.,

Q⋆
k = UPk

Λ⋆
Qk

UH
Pk
, (35)

and the eigenvalues are given by

Λ⋆
Qk

=

(
1

µk
Ink

−Λ−1
Pk

)+

, (36)

where (a)+ = max{0, a} and µk is chosen to satisfy the power constraints tr(Q⋆
k) = nk.

Using Proposition 2, we have the following observations:
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• H̄ = 0 — In this case, Pk =
∑L

l=1 βl,kel,k(σ
2)Tl,k. Therefore, the optimal transmit directions align

with the eigenvectors of some weighted sum of Tl,k’s. As such, βl,kel,k(σ
2) can be understood as the

equivalent channel gain contributed by BSl.

• H = H̄ — This implies that the channels are deterministic. In this case,

Pk = H̄H
k



σ2IN +
∑

j 6=k

H̄jQjH̄
H
j





−1

H̄k. (37)

It shows that the optimal input covariance matrix of each user follows the water-filling principle that

treats the other users as noise. This characteristics agrees with that for finite-size systems [35].

• K = 1 — In this case, we have

P1 =

L∑

l=1

(

βl,1el,1Tl,1 +
1

σ2
H̄H

l,1 (ẽl,1Rl,1 + INl
)−1

H̄l,1

)

.

If {Rl,1 = INl
}∀l, the optimal transmit directions thus align with the eigenvectors of some weighted

sum of Tl,1’s and H̄H
l,1H̄l,1’s. While ifRl,1 6= INl

, the impact ofRl,1 on the optimal transmit directions

is involved by H̄l,1 via H̄H
l,1 (ẽl,1Rl,1 + INl

)−1
H̄l,1. It appears that if the link pair does not have LOS,

the corresponding correlation pattern at the receiver side does not provide a “direct” impact on the

structure of the optimal transmit directions. Nevertheless, this inference is not entirely true, since

the optimal transmit directions still can be changed by the correlation pattern at the receiver side

through βl,1el,1. We will illustrate this phenomenon by an example in the simulation results.

Through the observations above, Proposition 2 shows its potential in understanding the impact of

antenna correlations and LOS components on the structure of the optimal transmit directions. We

now introduce an iterative algorithm for optimizing VN (σ2,Q1, . . . ,QK) which adapts parameters Q and

{el,k}∀l,k, {ẽl,k}∀l,k separately.

Algorithm 1 (Optimization for Q)

• Initialization: Q
(0)
k = Ink

, e
(0)
l,k = 1 and ẽ

(0)
l,k = 1 for k = 1, . . . ,K and k = 1, . . . ,K.

• Iteration t:

– Given that Q
(t−1)
k , e

(t−1)
l,k and ẽ

(t−1)
l,k are available, for l = 1, . . . , L and k = 1, . . . ,K;
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– Calculate Tl,k and H̄l,k by the replacements of (23) for l = 1, . . . , L and k = 1, . . . ,K. Then,

{e(t)l,k}∀l,k, {ẽ
(t)
l,k}∀l,k are obtained by

e
(t)
l,k =

1

Nl
tr
(

Rl,k〈〈Ψ(t−1)〉〉l
)

,

ẽ
(t)
l,k =

1

nk
tr
(

Tl,k〈Ψ̃
(t−1)〉k

)

,

where

Ψ(t−1) =

((

Φ(t−1)
)−1

+ σ2H̄Φ̃
(t−1)

H̄H

)−1

,

Ψ̃
(t−1)

=

((

Φ̃
(t−1)

)−1
+ σ2H̄HΦ(t−1)H̄

)−1

,

Φ(t−1) = diag











(

σ2INl
+ σ2

K∑

k=1

ẽ
(t−1)
l,k Rl,k

)−1






∀l



 ,

Φ̃
(t−1)

= diag











(

σ2Ink
+ σ2

L∑

l=1

βl,ke
(t−1)
l,k Tl,k

)−1






∀k



 ;

– Calculate P
(t)
k based on (32), for k = 1, . . . ,K;

– Calculate Q
(t)
k based on Proposition 2, for k = 1, . . . ,K.

• Update t := t+ 1 until
∣
∣
∣VN (σ2,Q

(t)
1 , . . . ,Q

(t)
K )− VN (σ2,Q

(t−1)
1 , . . . ,Q

(t−1)
K )

∣
∣
∣ is small enough.

A similar iteration procedure was adopted by [34]. For the case with K = L = 1 and H̄ = 0, the

convergence of Algorithm 1 has been proved in [34]. Note that Algorithm 1 is slightly different from those

in [15, 16, 18, 38, 39], named the frozen water-filling. For the frozen water-filling, {e(t)l,k}∀l,k, {ẽ
(t)
l,k}∀l,k are

defined as the unique solutions of (14) at every iteration step t, while in Algorithm 1, {e(t)l,k}∀l,k, {ẽ
(t)
l,k}∀l,k

are obtained by performing a single update. It was pointed out in [34] that the frozen water-filling algorithm

does not always converge.9 The convergence proof of Algorithm 1 is still an open challenge now.

4 Simulation Results

In this section, computer simulations are conducted to evaluate the accuracy of the approximation VN (σ2)

in Theorem 2, and the effectiveness of the iterative algorithm developed in Algorithm 1. In particular, we

are interested in their performances when the numbers of antennas are not so large. The simulation settings

9Note that an example of oscillating behavior of the frozen water-filling algorithm is artificially constructed in [34]. However,
there is no known condition (e.g., spatial correlation pattern) to exclude such behavior of the frozen water-filling algorithm.
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Figure 2: Ergodic sum rate versus SNRs with N1 = N2 = n1 = n2 = 2 and N1 = N2 = n1 = n2 = 8 for
a) {κl,k = 0, ∀l, k} and b) {κl,k = 1, ∀l, k}. The solid lines plot the deterministic equivalent results, while
the markers plot the Monte-Carlo simulation results under different different fading distributions.
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Table 1: Angular parameters.

θR1,1 θR2,1 θR1,2 θR2,2 θT1,1 θT2,1 θT1,2 θT2,2
10◦ 20◦ 30◦ 40◦ 15◦ 25◦ 35◦ 45◦

δT1,1 δT2,1 δT1,2 δT2,2 δT1,1 δT2,1 δT1,2 δT2,2
0.01 0.02 0.03 0.04 0.04 0.03 0.02 0.01

θ̄R1,1 θ̄R2,1 θ̄R1,2 θ̄R2,2 θ̄T1,1 θ̄T2,1 θ̄T1,2 θ̄T2,2
10◦ 20◦ 30◦ 40◦ 40◦ 30◦ 20◦ 10◦

are based on the propagation model introduced in [40], in which the spatial correlation is generated from

a uniform linear array with half wavelength spacing in a wireless scenario where there is one propagation

path cluster with Gaussian power azimuthal distribution having mean angle of θk,l and root-mean-square

spread of δk,l. Specifically, we take the correlation matrix with elements [10]

[Tl,k]m,n (or [Rl,k]m,n) =

∫ 180

−180

dφ
√

2πδ2k

e
jπ(m−n) sin( πφ

180)−
(φ−θl,k)2

2δ2
l,k (38)

with m,n being the indices of antennas. In addition, we use the superscripts T and R, respectively, to refer

to the corresponding values at the transmit and receive sides. The LOS matrix H̄l,k is generated according

to H̄l,k = aR,l(θ̄
R
l,k)aT,k(θ̄

T
l,k)

H where

aR,l(θ̄
R
l,k) =




1 e

jπ sin

(

θ̄R
l,k
180

π

)

· · · e
jπ(Nl−1) sin

(

θ̄R
l,k
180

π

)





T

,

aT,k(θ̄
T
l,k) =




1 e

−jπ sin

(

θ̄T
l,k
180

π

)

· · · e
−jπ(nk−1) sin

(

θ̄T
l,k
180

π

)





T

.

Regarding the fading distribution, we assume that X
(l,k)
ij is of the form W

(l,k)
R,ij cos(θ

(l,k)
R,ij )+ jW

(l,k)
I,ij sin(θ

(l,k)
I,ij )

[41], where θ
(l,k)
R,ij ’s (and θ

(l,k)
I,ij ’s) are the phases modeled as i.i.d. uniform random variables over [0, 2π], and

thoseW
(l,k)
R,ij ’s (andW

(l,k)
I,ij ’s) are the amplitude fading drawn from a distribution with E{(W (l,k)

R,ij )
2} = 1. The

typical probability distributions of W
(l,k)
R,ij include the Rayleigh, Nakagami, and log-normal distributions

[20, 21]. Throughout this section, all the expected values (e.g., E{VBN
(σ2)}) are obtained by the Monte-

Carlo method in which 10, 000 independent realizations of H are used for averaging.

In Theorem 2, we have shown that in the large-system limit the ergodic sum rate is invariant in

distribution and can be well approximated by VN (σ2). Therefore, it is important to see how well VN (σ2)
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Table 2: Average execution time in seconds.

L = 10, K = 20 L = 20, K = 40 L = 30, K = 60

Monte-Carlo simulation 490 1941 4541

Deterministic approximation 0.5 3.2 8.2

in (19) approximates to the ergodic sum rate E{VBN
(σ2)} when the dimensions of the system are not

so large. For this purpose, Figure 2 compares the results of E
{
VBN

(σ2)
}

with VN (σ2) for K = 2 and

L = 2 under different fading distributions. Their mean arrival/departure angles and angular spreads are

given in Table 1 and their distance-dependent pathlosses are g1,1 = g2,2 = 1 and g1,2 = g2,1 = 0.25. We

see that VN (σ2) produces very good estimates for E
{
VBN

(σ2)
}
even when only a few antenna elements

(e.g., N1 = N2 = n1 = n2 = 2) are located at each UE and antenna set. As expected, when the number

of antennas grows large (e.g., N1 = N2 = n1 = n2 = 8) all curves tend to overlap regardless of the

distributions. In addition, we notice that for the Nakagami-m distribution, the difference between the case

m = 0.5 and m = 10 is small even when there are only a few antenna elements.

In the above experiments, we have shown that VN (σ2) provides a very good approximation for the sum

rate of finite-dimensional systems. Before proceeding, it it useful to discuss the computational efficiency

of evaluating E
{
VBN

(σ2)
}

through VN (σ2). For the considered scenarios in Figure 2 with K = 2 and

L = 2, the execution time for evaluating E
{
VBN

(σ2)
}
is at the order of decasecond (i.e., 101 seconds).

Although the execution time for VN (σ2) is only at the order of centisecond (i.e., 10−2 seconds), one may

not be convinced to use VN (σ2) since writing a program to perform E
{
VBN

(σ2)
}
is much easier than that

for VN (σ2). However, when the numbers of K and L grow, the Monte-Carlo simulations will become very

demanding. Table 2 gives the average execution times on a 2.93 GHz Intel CPU with 4 GB of RAM under

various system sizes. Here, we set {Nl = nk = 2}∀l,k, and the spatial correlation and LOS are generated

from an arbitrary pattern. For typical systems with twenties of distributed antenna sets and forties of

users, the simulations become prohibitive, ruling out the possibility for other system optimization designs

such as scheduling [9, 23]. Clearly, the proposed deterministic equivalent result is much more efficient in

this sense and provides a promising foundation to further applications of system optimization.

Next, we examine if the input covariance design based on the deterministic equivalent results performs

well under different fading distributions when the numbers of antennas are not so large. Recall that

{Q◦
1, . . . ,Q

◦
K} denote the optimal solutions of (22) that maximize the ergodic sum rate; and {Q⋆

1, . . . ,Q
⋆
K}

denote the optimal solutions of (26) that maximize the deterministic equivalent of the ergodic sum rate.

Algorithm 1 is used for solving {Q⋆
1, . . . ,Q

⋆
K}, while, {Q◦

1, . . . ,Q
◦
K} is solved by the Vu-Paulraj algorithm
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Figure 3: Achievable rates versus SNRs with N1 = N2 = n1 = n2 = 2 for a) {κl,k = 0, ∀l, k} and b)
{κl,k = 1, ∀l, k}. The lines plot the results based on the deterministic equivalent, while the markers on
dotted line plot the results for the Vu-Paulraj algorithm.
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Figure 4: Antenna radiation patterns.

[37] which is based on the barrier method where the ergodic sum rate and their first and second derivatives

are calculated by the Monte-Carlo method. In contrast to {Q◦
1, . . . ,Q

◦
K}, {Q⋆

1, . . . ,Q
⋆
K} is independent

from the true distributions of Xl,k’s. In Figure 3, we depict E{VBN
(σ2,Q1, . . . ,QK)} when the input

covariance matrices are {Q◦
1, . . . ,Q

◦
K}, {Q⋆

1, . . . ,Q
⋆
K}, and identity matrices, when the amplitude fading

distributions are either Rayleigh or log-normal. The reason for considering the two distributions is because,

from Figure 2, the values of E
{
VBN

(σ2)
}
for the two distributions are significantly different and VN (σ2)

does not get very good estimation on E
{
VBN

(σ2)
}
when the amplitude fading distribution is log-normal.

However, regardless of Rayleigh or log-normal distributions, the ergodic sum rate based on {Q⋆
1, . . . ,Q

⋆
K}

provides indistinguishable results to that based on {Q◦
1, . . . ,Q

◦
K}. In addition to its ability of providing

good performance, Algorithm 1 is computationally much more efficient than the Vu-Paulraj algorithm.

Finally, we discuss the fact mentioned in Section 3.2 that the optimal transmit directions can be changed

by the correlation pattern at the receiver side through βl,1el,1. To understand this better, we consider two

scenarios with K = 1, L = 2 and H̄ = 0. The two scenarios use the same parameters except that the

radiation patterns at the receiver of the second antenna set have different beam-widthes. Specifically, the

radiation patterns at the receiver of the second antenna set have δR2,1 = 0.01 for scenario 1 and δR2,1 = 0.1

for scenario 2. We find it useful to observe the array patterns by plotting its array factor10 in all directions.

10Consider a uniform linear array with half wavelength spacing. Given a vector a ∈ Cn×1, we can get its array factor in
direction φ by

f(φ) =
n∑

l=1

aie
−jπl sin( πφ

180
).
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The array patterns of T1,1 and T2,1 are depicted in Figure 4(a), where θT1,1 = 30◦, θT2,1 = 60◦, δT1,1 = 0.04,

and δT2,1 = 0.03. The array patterns of the optimal input covariance Q1 for the two scenarios are given in

Figure 4(b) and (c), respectively. Figure 4(c) corresponds to the setting with the broader beamwidth of

R2,1. In this case, the optimal covariance is shown to feed the signal largely according to T2,1, showing

that the optimal transmit directions can be changed by the correlation pattern at the receiver side.

5 Conclusion

By using the large dimensional RMT, this paper investigated the deterministic equivalents for the large-

scale MIMO MAC. The considered model includes the large-scale MIMO channel such as the general

spatial correlation, the LOS components, and the channel entries being non-Gaussian. In particular, we

derived the deterministic equivalent of the ergodic sum rate of the large-scale MIMO MAC. In addition,

through the deterministic equivalent of the ergodic sum rate, we investigated the capacity-achieving input

covariance matrices for the the large-scale MIMO MAC and proposed the iterative waterfilling algorithm

for finding them. Finally, computer simulations were conducted to conclude the following three facts:

First, the deterministic equivalent of the ergodic sum rate provides a very good approximation even when

the numbers of antennas are of practical size. Second, calculating the ergodic sum rate by using the

deterministic equivalent result is much more efficient than that by using the Monte-Carlo method when

the system sizes are large. Hence, the deterministic equivalent result is of interest to addressing complex

system optimization problems. Third, the optimal input covariance matrices predicted by the deterministic

equivalent result are indeed remarkably close to those obtained by the corresponding finite-dimensional

optimization approach, but in a much more efficient manner.

Investigation of the central limit theorem of the sum rate for the large-scale MIMO MAC by using the

mathematical framework in [13], as well as application of the deterministic equivalent results to system-level

designs [9, 23–25], are promising topics for future research.
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Appendix

A Proof of E{mBN
} − 1

N tr (Ψ) = O
(

1
N2

)
in Theorem 1

We start the proof by reformulating the channel model so that the derivation can be performed systemat-

ically. To this end, we denote

Rl,k , diag
(
0N1 , . . . ,0Nl−1

,Rl,k,0Nl+1
, . . . ,0NL

)
, (39)

Tl,k , diag
(
0n1 , . . . ,0nk−1

,Tl,k,0nk+1
, . . . ,0nK

)
. (40)

Also, let H̄l,k be the all-zero N × n matrix except that Hl,k is used for its (
∑l−1

i=1Ni + 1) to (
∑l

i=1Ni)-th

row and (
∑k−1

j=1 nj + 1) to (
∑k

j=1 nj)-th column. As a result, H is statistically equivalent to

H =
∑

l,k

Hl,k =
∑

l,k

(

H̃l,k + H̄l,k

)

, (41)

where H̃l,k = R
1
2
l,kXl,kT

1
2
l,k ∈ CN×n, and Xl,k ≡

[
1√
nk

X
(l,k)
ij

]

∈ CN×n consists of the random components

of the channel. Here, Xl,k’s are assumed to be mutually independent. From (6), we have

BN =




∑

l,k

(

R
1
2
l,kXl,kT

1
2
l,k + H̄l,k

)







∑

l,k

(

R
1
2
l,kXl,kT

1
2
l,k + H̄l,k

)




H

(42)

and

BN =




∑

l,k

(

R
1
2
l,kX l,kT

1
2
l,k + H̄l,k

)







∑

l,k

(

R
1
2
l,kX l,kT

1
2
l,k + H̄l,k

)




H

, (43)

where Xl,k’s and X l,k’s are matrices with entries satisfying Assumption 1 but X l,k’s are Gaussian.

Let S and S̃ be the resolvents of matrices HHH and HHH, respectively, given by

S ,
(
HHH + ωIN

)−1
, (44)

S̃ ,
(
HHH+ ωIn

)−1
. (45)

These resolvents clearly satisfy the following useful properties:

S � 1

ω
IN , and S̃ � 1

ω
In. (46)

To facilitate our notations, we use
◦
a to denote the zero-mean random variable a − E{a}, where a is a

random variable. To accomplish the proof, the following two lemmas are useful.

Lemma 1 (Integration by Parts Formula for Gaussian Functionals) (see, e.g., [27, Proposition 2.4]) Let

ξ = [ξ1, . . . , ξM ]T be a complex Gaussian random vector such that E{ξ} = 0 and E{ξξH} = Ω. Denoting
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by Γ(ξ) a complex function polynomially bounded with its derivatives, we have

E {ξpΓ(ξ)} =
M∑

m=1

ΩpmE

{
Γ(ξ)

∂ξ∗m

}

. (47)

Lemma 2 (The Poincaré-Nash Inequality) (see, e.g., [27, Proposition 2.5]) Let ξ = [ξ1, . . . , ξM ]T be a

complex Gaussian random vector such that E{ξ} = 0 and E{ξξH} = Ω. Denoting by Γ(ξ) a complex

function polynomially bounded with its derivatives, the following inequality holds true:

Var (Γ(ξ)) ≤ E
{

(▽ξΓ(ξ))
T
Ω (▽ξΓ(ξ))

∗
}

+ E
{

(▽ξ∗Γ(ξ))
H
Ω (▽ξ∗Γ(ξ))

}

, (48)

where ▽ξΓ(ξ) =
[
∂Γ
∂ξ1

, . . . , ∂Γ
∂ξM

]T
and ▽ξ∗Γ(ξ) =

[
∂Γ
∂ξ∗1

, . . . , ∂Γ
∂ξ∗

M

]T
.

The rigorous proof of Theorem 1 is rather complex. Although a standard procedure for the MIMO

channel without the LOS components [18] is used, several additional manipulations for the LOS components

to our present argument are required. To show this, we split the proof into two steps: First, we prove that

tr (E{S} −Ψ) → 0; secondly, we refine the convergence rate that 1
N (tr (E{S} −Ψ)) = O

(
1
N2

)
. However,

it is difficult to prove directly that tr (E{S} −Ψ) → 0. To that end, we employ an intermediate quantity

between E{S} and Ψ and establish the following two propositions.

Proposition 3 As N → ∞, we have

tr(E{S} −Ξ) −→ 0, (49a)

tr(E{S̃} − Ξ̃) −→ 0, (49b)

where

Ξ ,

[

ω

(

IN + diag

({
K∑

k=1

α̃l,kRl,k

}

∀l

)

+ H̄Θ̃H̄H

)]−1

, (50a)

Ξ̃ ,

[

ω

(

In + diag

({
L∑

l=1

αl,kTl,k

}

∀k

)

+ H̄HΘH̄

)]−1

, (50b)

Θ , diag (Θ1, . . . ,ΘL) , (50c)

Θ̃ , diag(Θ̃1, . . . , Θ̃K), (50d)

Θl ,

[

ω

(

I+

K∑

k=1

α̃l,kRl,k

)]−1

, for l = 1, . . . , L, (50e)

Θ̃k ,

[

ω

(

I+

L∑

l=1

αl,kTl,k

)]−1

, for k = 1, . . . ,K, (50f)

αl,k ,
1

nk
tr(Rl,kE{〈〈S〉〉l}), (50g)

α̃l,k ,
1

nk
tr(Tl,kE{〈S̃〉k}). (50h)
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Proof: See Appendix A.1. �

Proposition 4 As N → ∞, we have

tr(Ξ −Ψ) −→ 0, (51a)

tr(Ξ̃ − Ψ̃) −→ 0. (51b)

Proof: See Appendix A.2. �

From (49a) to (51a), the proof of E{mBN
} − 1

N tr (Ψ) → 0 can be accomplished.

Proposition 5 As N → ∞, we have

1

N
tr(E{S} −Ξ) = O

(
1

N2

)

, (52a)

1

N
tr(E{S̃} − Ξ̃) = O

(
1

N2

)

, (52b)

1

N
tr(Ξ−Ψ) = O

(
1

N2

)

, (52c)

1

N
tr(Ξ̃− Ψ̃) = O

(
1

N2

)

. (52d)

Proof: See Appendix A.3. �

Consequently, (17) then follows from (52a) and (52c). The proof is complete.

A.1 Proof of Proposition 3

From (41) and (44), we have

S =
1

ω
IN − 1

ω
SHHH =

1

ω
IN − 1

ω

∑

l1,k1

∑

l,k

SHl1,k1H
H
l,k, (53)

and

E{Spq} =
1

ω
δpq −

1

ω
E
{
[SHHH ]pq

}
(54)

=
1

ω
δpq −

1

ω

∑

l,k

E
{
[SHl,kH

H
l,k]pq

}
− 1

ω

L∑

l 6=l1

K∑

k 6=k1

E
{
[SHl,kH

H
l1,k1 ]pq

}
. (55)

We first calculate E
{
[SHHH ]pq

}
. Using the integration by parts formula (47), we write

E
{

SpiH
(l,k)
ij H(l,k)∗

qr

}

=E
{

SpiH̃
(l,k)
ij H(l,k)∗

qr

}

+ E
{

SpiH̃
(l,k)∗
qr

}

H̄
(l,k)
ij + E{Spi}H̄(l,k)

ij H̄
(l,k)∗
qr

=
1

nk

∑

m,n

R
(l,k)
im T

(l,k)∗
jn E

{

∂SpiH
(l,k)∗
qr

∂H̃
(l,k)∗
mn

}

+
1

nk

∑

m,n

R(l,k)∗
qm T (l,k)

rn E

{

∂Spi

∂H̃
(l,k)
mn

}

H̄
(l,k)
ij

+ E{Spi}H̄(l,k)
ij H̄

(l,k)∗
qr , (56)
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and similarly,

E
{

SpiH
(l,k)
ij H(l1,k1)∗

qr

}

=
1

nk

∑

m,n

R
(l,k)
im T

(l,k)∗
jn E

{

∂Spi

∂H̃
(l,k)∗
mn

}

H(l1,k1)∗
qr

+
1

nk1

∑

m,n

R(l1,k1)∗
qm T (l1,k1)

rn E

{

∂Spi

∂H̃
(l1,k1)
mn

}

H̄
(l,k)
ij + E{Spi}H̄(l,k)

ij H̄
(l1,k1)∗
qr . (57)

Now, using the fact that

E

{

∂Spi

∂H̃
(l,k)
mn

}

= −E
{
Spm[HH

S]ni
}
, (58a)

E

{

∂Spi

∂H̃
(l,k)∗
mn

}

= −E {Smi[SH]pn} , (58b)

E

{

∂SpiH
(l,k)∗
qr

∂H̃
(l,k)∗
mn

}

= E
{

Spiδqmδrn − Smi[SH]pnH
(l,k)∗
qr

}

, (58c)

we have

E
{

SpiH
(l,k)
ij H(l,k)∗

qr

}

=
1

nk
R

(l,k)
iq T

(l,k)∗
jr E{Spi} −

1

nk
E
{

[Rl,kS]ii[SHTl,k]pjH
(l,k)∗
qr

}

− 1

nk
E
{
[SRl,k]pq[Tl,kH

H
S]ri

}
H̄

(l,k)
ij + E{Spi}H̄(l,k)

ij H̄
(l,k)∗
qr , (59)

and

E
{

SpiH
(l,k)
ij H(l1,k1)∗

qr

}

= − 1

nk
E
{

[Rl,kS]ii[SHTl,k]pjH
(l1,k1)∗
qr

}

− 1

nk1

E
{
[SRl1,k1 ]pq[Tl1,k1H

H
S]ri

}
H̄

(l,k)
ij + E{Spi}H̄(l,k)

ij H̄
(l1,k1)∗
qr . (60)

Then, summing over i, we have

E
{

[SHl,k]pjH
(l,k)∗
qr

}

=
1

nk
T
(l,k)∗
jr E{[SRl,k]pq} −

1

nk
E
{

tr(Rl,kS)[SHTl,k]pjH
(l,k)∗
qr

}

− 1

nk
E
{
[SRl,k]pq[Tl,kH

H
SH̄l,k]rj

}
+ E{[SH̄l,k]pj}H̄ (l,k)∗

qr , (61)

and

E
{

[SHl,k]pjH
(l1,k1)∗
qr

}

= − 1

nk
E
{

tr(Rl,kS)[SHTl,k]pjH
(l1,k1)∗
qr

}

− 1

nk1

E
{
[SRl1,k1 ]pq[Tl1,k1H

H
SH̄l,k]rjSpm

}
+ E

{
[SH̄l,k]pj

}
H̄

(l1,k1)∗
qr . (62)
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Let αl,k , 1
nk

tr
(
Rl,kE{S}

)
= 1

nk
tr(Rl,kE{〈〈S〉〉l}) and

◦
ηl,k,

1
nk

tr
(
Rl,kS

)
− αl,k. Then, we get

E
{

[SHl,k]pjH
(l,k)∗
qr

}

=
1

nk
T
(l,k)∗
jr E{[SRl,k]pq} − αl,kE

{

[SHTl,k]pjH
(l,k)∗
qr

}

− E
{◦
ηl,k [SHTl,k]pjH

(l,k)∗
qr

}

− 1

nk
E
{
[SRl,k]pq[Tl,kH

H
SH̄l,k]rj

}
+ E{[SH̄l,k]pj}H̄ (l,k)∗

qr , (63)

and

E
{

[SHl,k]pjH
(l1,k1)∗
qr

}

= −αl,kE
{

[SHTl,k]pjH
(l1,k1)∗
qr

}

− E
{◦
ηl,k [SHTl,k]pjH

(l1,k1)∗
qr

}

− 1

nk1

E
{
[SRl1,k1 ]pq[Tl1,k1H

H
SH̄l,k]rj

}
+ E{[SH̄l,k]pj}H̄(l1,k1)∗

qr . (64)

From (63) and (64), we obtain

E
{
[SH]pjH

∗
qr

}
=
∑

l,k

1

nk
T
(l,k)∗
jr E{[SRl,k]pq} −

∑

l,k

αl,kE
{
[SHTl,k]pjH

∗
qr

}

−
∑

l,k

E
{◦
ηl,k [SHTl,k]pjH

∗
qr

}

−
∑

l1,k1

1

nk1

E
{
[SRl1,k1 ]pq[Tl1,k1H

H
SH̄]rj

}
+ E{[SH̄]pj}H̄∗

qr. (65)

Defining

Θ̃ ,



ω



In +
∑

l,k

αl,kTl,k









−1

= diag
(

Θ̃1, . . . , Θ̃K

)

, (66)

where Θ̃k is given by (50f). Multiplying both sides of (65) by [Θ̃k]jr and summing over j and r, we get

E
{
[SHHH ]pq

}
= ω

∑

l,k

1

nk
tr(Tl,kΘ̃)E{[SRl,k]pq} − ω

∑

l,k

E
{◦
ηl,k [SHTl,kΘ̃HH ]pq

}

− ω
∑

l,k

1

nk
E
{

tr(Tl,kH
H
SH̄Θ̃)[SRl,k]pq

}

+ ωE
{

[SH̄Θ̃H̄H ]pq

}

. (67)
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This, together with (54), yields

E {S} =
1

ω
IN −

∑

l,k

1

nk
tr(Tl,kΘ̃)E{SRl,k}+

∑

l,k

E
{◦
ηl,k SHTl,kΘ̃HH

}

+
∑

l,k

1

nk
E
{

tr(Tl,kH
H
SH̄Θ̃)SRl,k

}

− E
{

SH̄Θ̃H̄H
}

=
1

ω
IN −

∑

l,k

1

nk
tr(Tl,kΘ̃)E{SRl,k}+

∑

l,k

E
{◦
ηl,k SHTl,kΘ̃HH

}

+
∑

l,k

1

nk
E
{

tr(SH̄Θ̃Tl,k(H̃+ H̄)H)SRl,k

}

− E
{

SH̄Θ̃H̄H
}

=
1

ω
IN −

∑

l,k

1

nk
tr(Tl,kΘ̃)E{SRl,k}+

∑

l,k

E
{◦
ηl,k SHTl,kΘ̃HH

}

+
∑

l,k

E

{
1

nk
tr
(

SH̄Θ̃Tl,kH̃
H
)}

E
{
SRl,k

}
+
∑

l,k

E

{
◦
ρ
(1)

l,k SRl,k

}

+
∑

l,k

E

{
1

nk
tr
(

SH̄Θ̃Tl,kH̄
H
)}

E
{
SRl,k

}
+
∑

l,k

E

{
◦
ρ
(2)

l,k SRl,k

}

− E
{

SH̄Θ̃H̄H
}

, (68)

where the third equality follows from the following definitions

ρ
(1)
l,k ,

1

nk
tr
(

SH̄Θ̃Tl,kH̃
H
)

, ρ
(2)
l,k ,

1

nk
tr
(

SH̄Θ̃Tl,kH̄
H
)

. (69a)

Before proceeding, we establish the following lemma.

Lemma 3

E

{
1

nk
tr
(

SH̄Θ̃Tl,kH̃
H
)}

=− ω
∑

l1,k1

αl1,k1E

{
1

nk
tr
(

SH̄Θ̃Tl,kΘ̃Tl1,k1H̄
H
)}

− ω
∑

l1,k1

E

{
◦
ηl1,k1

◦
ρ
(3)

lk,l1k1

}

,

(70)

where

ρ
(3)
lk,l1k1

,
1

nk
tr
(

SH̄Θ̃Tl,kΘ̃Tl1,k1H
H
)

. (71)

Proof: Using the integration by parts formula (47), we write

E
{

Spi[H̄Θ̃Tl,k]ijH̃
∗
pr

}

=
∑

l1,k1

E
{

SpiH̃
(l1,k1)∗
pr

}

[H̄Θ̃Tl,k]ij

=
∑

l1,k1

1

nk1

∑

m,n

R(l1,k1)∗
pm T (l1,k1)

rn E

{

∂Spi

∂H̃
(l1,k1)
mn

}

[H̄Θ̃Tl,k]ij

= −
∑

l1,k1

1

nk1

E
{
[SRl1,k1 ]pp[Tl1,k1H

H
S]ri

}
[H̄Θ̃Tl,k]ij . (72)
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Summing over p, we have

E
{

[H̄Θ̃Tl,k]ij[H̃
H
S]ri

}

=−
∑

l1,k1

1

nk1

[H̄Θ̃Tl,k]ijE
{
tr(SRl1,k1)[Tl1,k1H

H
S]ri

}

=−
∑

l1,k1

αl1,k1 [H̄Θ̃Tl,k]ijE
{

[Rl1,k1H̃
H
S]ri

}

−
∑

l1,k1

E
{◦
ηl1,k1 [H̄Θ̃Tl,k]ij [Tl1,k1H̃

H
S]ri

}

−
∑

l1,k1

1

nk1

[H̄Θ̃Tl,k]ijE
{
tr(SRl1,k1)[Tl1,k1H̄

H
S]ri

}
. (73)

After simple algebraic operations and summing over i, j and l, we then get

E
{

tr
(

SH̄Θ̃Tl,kH̃
H
)}

= −ω
∑

l1,k1

E
{◦
ηl1,k1 tr

(

SH̄Θ̃Tl,kΘ̃Tl1,k1H̃
H
)}

− ω
∑

l1,k1

1

nk1

E
{

tr
(
STl1,k1

)
tr
(

SH̄Θ̃Tl,kΘ̃Tl1,k1H̄
H
)}

. (74)

Therefore, we have

E

{
1

nk
tr
(

SH̄Θ̃Tl,kH̃
H
)}

= −ω
∑

l1,k1

αl1,k1E

{
1

nk
tr
(

SH̄Θ̃Tl,kΘ̃Tl1,k1H̄
H
)}

− ω
∑

l1,k1

E
{◦
ηl1,k1 ρ

(3)
lk,l1k1

}

,

(75)

where ρ
(3)
lk,l1k1

is given by (71). Using the fact that E
{◦
ηl1,k1 ρ

(3)
lk,l1k1

}

= E

{
◦
ηl1,k1

◦
ρ
(3)

lk,l1k1

}

, we obtain (70). �

Applying this lemma to (68), we get

E {S} =
1

ω
IN −

∑

l,k

1

nk
tr(Tl,kΘ̃)E{SRl,k}+

∑

l,k

E
{◦
ηl,k SHTl,kΘ̃HH

}

+
∑

l,k

E

{
1

nk
tr
(

SH̄Θ̃Tl,kH̄
H
)}

E
{
SRl,k

}
− ω

L∑

l,l1

K∑

k,k1

E

{
◦
ηl1,k1

◦
ρ
(3)

lk,l1k1

}

E
{
SRl,k

}

− ω

L∑

l,l1

K∑

k,k1

αl1,k1E

{
1

nk
tr
(

SH̄Θ̃Tl,kΘ̃Tl1,k1H̄
H
)}

E
{
SRl,k

}

+
∑

l,k

E

{
◦
ρ
(1)

l,k SRl,k

}

+
∑

l,k

E

{
◦
ρ
(2)

l,k SRl,k

}

− E
{

SH̄Θ̃H̄H
}

. (76)

Define

∆ ,
∑

l,k

E
{◦
ηl,k SHTl,kΘ̃HH

}

− ω

L∑

l,l1

K∑

k,k1

E

{
◦
ηl1,k1

◦
ρ
(3)

lk,l1k1

}

E
{
SRl,k

}

+
∑

l,k

E

{
◦
ρ
(1)

l,k SRl,k

}

+
∑

l,k

E

{
◦
ρ
(2)

l,k SRl,k

}

. (77)
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Noting that

ω

L∑

l,l1

K∑

k,k1

αl1,k1E

{
1

nk
tr
(

SH̄Θ̃Tl,kΘ̃Tl1,k1H̄
H
)}

E
{
SRl,k

}

=
∑

l,k

E

{
1

nk
tr
(

SH̄Θ̃Tl,kH̄
H
)}

E
{
SRl,k

}
− ω

∑

l,k

E

{
1

nk
tr
(

SH̄Θ̃Tl,kΘ̃H̄H
)}

E
{
SRl,k

}
, (78)

we therefore get

E {S} =
1

ω
IN −

∑

l,k

1

nk
tr(Tl,kΘ̃)E{SRl,k}+ ω

∑

l,k

E

{
1

nk
tr
(

SH̄Θ̃Tl,kΘ̃H̄H
)}

E
{
SRl,k

}

− E
{

SH̄Θ̃H̄H
}

+∆. (79)

Writing

τ̃l,k ,
1

nk
tr(Tl,kΘ̃)− ω

1

nk
tr
(

E{S}H̄Θ̃Tl,kΘ̃H̄H
)

=
1

nk
tr
(

Tl,kΘ̃
(

In − ωH̄HE{S}H̄Θ̃
))

, (80)

we have

E{S}
(

IN + H̄Θ̃H̄H
)

=
1

ω
IN −

∑

l,k

τ̃kE{S}Rl,k +∆, (81)

and then

E{S}



IN +
∑

l,k

α̃l,kRl,k + H̄Θ̃H̄H



 =
1

ω
IN +

∑

l,k

(α̃l,k − τ̃l,k)E {S}Rl,k +∆. (82)

As a result, we then get

E{S} = Ξ+ ω
∑

l,k

(α̃l,k − τ̃l,k)E {S}Rl,kΞ+ ω∆Ξ, (83)

where

Ξ =



IN +
∑

l,k

α̃l,kRl,k + H̄Θ̃H̄H





−1

(84)

and

α̃l,k ,
1

nk
tr
(

Tl,kE{S̃}
)

=
1

nk
tr
(

Tl,kE{〈〈S̃〉〉l}
)

. (85)

To get Proposition 3, it remains to show that α̃l,k − τ̃l,k → 0 and tr(∆Ξ) → 0. To that end, we have to get

a similar expression of E{S̃} as that of (83). Following the same derivation of (83) from the beginning, we

can get

E{S̃} = Ξ̃+ ω
∑

l,k

(αl,k − τl,k)E{S̃}Tl,kΞ̃+ ω∆̃Ξ̃, (86)
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where

∆̃ ,
∑

l,k

E

{◦
η̃l,k S̃HHRl,kΘH

}

− ω

L∑

l,l1

K∑

k,k1

E

{◦
η̃l1,k1

◦
ρ̃
(3)

lk,l1k1

}

E
{

S̃Tl,k

}

+
∑

l,k

E

{◦
ρ̃
(1)

l,k S̃Tl,k

}

+
∑

l,k

E

{◦
ρ̃
(2)

l,k S̃Tl,k

}

, (87a)

τl,k ,
1

nk
tr
(

Rl,kΘ
(

IN − ωH̄E{S̃}H̄HΘ
))

, (87b)

◦
η̃l,k ,

1

nk
tr
(

Tl,kS̃

)

− α̃l,k, (87c)

ρ̃
(1)
l,k ,

1

nk
tr
(

S̃H̄HΘRl,kH̄
)

, ρ̃
(2)
l,k ,

1

nk
tr
(

S̃H̄HΘRl,kH̃
)

, (87d)

ρ̃
(3)
lk,l1k1

,
1

nk
tr
(

S̃H̄HΘRl,kΘRl1,k1H
)

, (87e)

and those Ξ̃ and Θ are given by (50b) and (50c) respectively.

From (50h), (80), (83) and (86), write

α̃l,k =
1

nk
tr
(

Tl,kΞ̃
)

+
ω

nk

∑

i,j

(αi,j − τi,j)tr
(

Tl,kE{S̃}Ti,jΞ̃
)

+
ω

nk
tr
(

Tl,k∆̃Ξ̃
)

(88)

and

τ̃l,k =
1

nk
tr
(

Tl,kΘ̃
(

In − ωH̄HΞH̄Θ̃
))

− ω2

nk

∑

i,j

(α̃i,j − τ̃i,j)tr
(

Tl,kΘ̃H̄HE {S}Ri,jΞH̄Θ̃
)

− ω2

nk
tr
(

Tl,kΘ̃H̄H∆ΞH̄Θ̃
)

=
1

nk
tr
(

Tl,kΞ̃
)

− ω2

nk

∑

i,j

(α̃i,j − τ̃i,j)tr
(

Tl,kΘ̃H̄HE {S}Ri,jΞH̄Θ̃
)

− ω2

nk
tr
(

Tl,kΘ̃H̄H∆ΞH̄Θ̃
)

=α̃l,k −
ω

nk

∑

i,j

(αi,j − τi,j)tr
(

Tl,kE{S̃}Ti,jΞ̃
)

− ω

nk
tr
(

Tl,k∆̃Ξ̃
)

− ω2

nk

∑

i,j

(α̃i,j − τ̃i,j)tr
(

Tl,kΘ̃H̄HE {S}Ri,jΞH̄Θ̃
)

− ω2

nk
tr
(

Tl,kΘ̃H̄H∆ΞH̄Θ̃
)

. (89)

Similarly,

αl,k =
1

nk
tr
(
Rl,kΞ

)
+

ω

nk

∑

i,j

(α̃i,j − τ̃i,j)tr
(
Rl,kE{S}Ri,jΞ

)
+

ω

nk
tr
(
Rl,k∆Ξ

)
, (90)
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and

τl,k = αl,k −
ω

nk

∑

i,j

(α̃i,j − τ̃i,j)tr
(
Rl,kE{S}Ri,jΞ

)
− ω

nk
tr
(
Rl,k∆Ξ

)

− ω2

nk

∑

i,j

(αi,j − τi,j)tr
(

Rl,kΘH̄E{S̃}Ti,jΞ̃H̄HΘ
)

− ω2

nk
tr
(

Rl,kΘH̄∆̃Ξ̃H̃HΘ
)

. (91)

Let η ,
[
vec(A1)

T , vec(A2)
T
]T

, ǫ ,
[
vec(C1)

T , vec(C2)
T
]T

, Γ ,




Γ11 Γ12

Γ21 Γ22



, whereA1,A2,C1,C2 ∈

CL×K ,Γ11,Γ12,Γ21,Γ22 ∈ CLK×LK, with

[A1]l,k = α̃l,k − τ̃l,k, [A2]l,k = αl,k − τl,k, (92a)

[C1]l,k =
ω

nk
tr
(

Tl,k∆̃Ξ̃
)

+
ω2

nk
tr
(

Tl,kΘ̃H̄H∆ΞH̄Θ̃
)

, (92b)

[C2]l,k =
ω

nk
tr
(
Rl,k∆Ξ

)
+

ω2

nk
tr
(

Rl,kΘH̄∆̃Ξ̃H̄HΘ
)

, (92c)

[Γ11]lk,ij =







−ω2

nk
tr
(

Tl,kΘ̃H̄HE {S}Ri,jΞH̄Θ̃
)

, (i, j) 6= (l, k);

1− ω2

nk
tr
(

Tl,kΘ̃H̄HE {S}Rl,kΞH̄Θ̃
)

, (i, j) = (l, k),
(92d)

[Γ12]lk,ij = − ω

nk
tr
(

Tl,kE{S̃}Ti,jΞ̃
)

, [Γ21]lk,ij = − ω

nk
tr
(
Rl,kE{S}Ri,jΞ

)
, (92e)

[Γ22]lk,ij =







−ω2

nk
tr
(

Rl,kΘH̄E{S̃}Ti,jΞ̃H̄HΘ
)

, (i, j) 6= (l, k);

1− ω2

nk
tr
(

Rl,kΘH̄E{S̃}Tl,kΞ̃H̄HΘ
)

, (i, j) = (l, k).
(92f)

From (89) and (91), we get

Γη = ǫ. (93)

If we can show that ǫ → 0 and Γ is invertible, we then get our desired result η → 0. To show that ǫ → 0,

we establish the following lemma.

Lemma 4 For any uniformly bounded matrices Q and Q̃, we have

1

nk
tr(∆Q) = O

(
1

N2

)

, (94a)

1

nk
tr(∆̃Q̃) = O

(
1

N2

)

. (94b)
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Proof: From (77), we write

1

nk
tr (∆Q) =

∑

l,k

E

{
◦
ηl,k

◦
ρ
(4)

l,k

}

− ω
L∑

l,l1

K∑

k,k1

E

{
◦
ηl1,k1

◦
ρ
(3)

lk,l1k1

}
1

nk
tr
(
E{S}Rl,kQ

)

+
∑

l,k

E

{

(
◦
ρ
(1)

l,k +
◦
ρ
(2)

l,k )
1

nk
tr
(
SRl,kQ

)
}

, (95)

where

ρ
(4)
l,k =

1

nk
tr
(

SHTl,kΘ̃HHQ
)

. (96)

We first prove the following facts for any uniformly bounded matrices M,

Var

(
1

nk
tr (SM)

)

= O

(
1

N2

)

. (97)

For this, we let Γ (H) , 1
nk

tr (SM) which gives

∂Γ (H)

∂H̃
(l,k)
mn

=
1

nk

∑

p,q

Mpq
∂Spq

∂H̃
(l,k)
mn

= − 1

nk
[HH

SMS]nm, (98a)

∂Γ (H)

∂H̃
(l,k)∗
mn

=
1

nk

∑

p,q

Mpq
∂Spq

∂H̃
(l,k)∗
mn

= − 1

nk
[SMSH]mn. (98b)

Using Lemma 2 (the Poincaré-Nash inequality), we obtain

Var

(
1

nk
tr (SM)

)

≤
∑

l,k

1

nk

∑

m,n

∑

m′,n′

R
(l,k)
mm′T

(l,k)∗
nn′ E

{
1

nk
[HH

SMS]nm
1

nk
[HH

SMS]∗n′m′

}

+
∑

l,k

1

nk

∑

m,n

∑

m′,n′

R
(l,k)∗
mm′ T

(l,k)
nn′ E

{
1

nk
[SMSH]∗mn

1

nk
[SMSH]n′m′

}

=
∑

l,k

1

n3
k

E
{
tr
(
HH

SMSRl,kSMH
SHTl,k

)}

+
∑

l,k

1

n3
k

E
{
tr
(
HH

SMH
SRl,kSMSHTl,k

)}
. (99)

Noting the fact that (using ‖S‖ ≤ 1
ω , Lemma 8, and Lemma 11)

E
{
tr
(
HH

SMSRl,kSMH
SHTl,k

)}
≤ 2LK‖M‖2C2

maxN

ω4
, (100)

we get

Var

(
1

nk
tr (SM)

)

≤ 4L2K2‖M‖2C2
maxN

ω4n3
k

= O

(
1

N2

)

. (101)

It turns out that (97) holds and thus implies that E
{◦
η
2

l,k

}

= O
(

1
N2

)
. Similarly, based on the Poincaré-

Nash inequality, we have E

{
◦
ρ
(4)

l,k

2
}

= O
(

1
N2

)
. The Cauchy-Schwarz inequality provides the first term of
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the right-hand side of (95) which is a O
(

1
N2

)
term. Similar calculations allow to show the second and

third terms of the right-hand side of (95) giving the O
(

1
N2

)
terms. Therefore, we obtain (94a). Similarly,

(94b) can be proved and the proof is omitted. �

From this lemma, it can be shown that ǫ = O
(

1
N2

)
1. In addition, we note that

‖S‖, ‖S̃‖, ‖Ξ‖, ‖Ξ̃‖, ‖Θl‖, ‖Θ̃k‖ ≤ 1

ω
. (102)

Using (13), Lemma 8 and Lemma 11, we have

[Γ11]lk,ij ≥







−Nl

nk

LKC3
max

ω2 , (i, j) 6= (l, k),

1− Nl

nk

LKC3
max

ω2 , (i, j) = (l, k),
(103a)

[Γ12]lk,ij ≥ −C2
max

ω
, [Γ21]lk,ij ≥ −Nl

nk

C2
max

ω
, (103b)

[Γ22]lk,ij ≥







−Nl

nk

LKC3
max

ω2 , (i, j) 6= (l, k),

1− Nl

nk

LKC3
max

ω2 , (i, j) = (l, k).
(103c)

It is possible to choose ω0 such that ω > ω0 and Γ is a strictly diagonally dominant. Thus the eigenvalues

of Γ are bounded away from 0 [42, Theorem 6.1.10]. It implies that if ω > ω0, then (αl,k − τl,k)’s and

(α̃l,k − τ̃l,k)’s are of the same order of magnitude as O
(

1
N2

)
, and therefore converge to 0 when N → ∞.

In the remaining part, we aim to prove that this convergence still holds for 0 < ω ≤ ω0. Firstly,

considering αl,k and τl,k as functions of the parameter z = −ω ∈ R−, we extend their domain of validity

from R− to C− R+. Similarly to [18, Proposition 11], we have the following lemma.

Lemma 5 αl,k and τl,k are analytic over C−R+ and belong to S(R+) with |αl,k| ≤
1
nk

trRl,k

d(z,R+)
=

NlPl,k

nk(κl,k+1)d(z,R+)

and |τl,k| ≤ NlPl,k

nk(κl,k+1)d(z,R+)

(

1 + |z|LKCmax

(d(z,R+))2

)

, where S(R+) is the class of all Stieltjes transforms of finite

positive measures carried by R+.

Proof: We only prove the results for αl,k since the proof of results of τl,k is similar. From the definition

of S, S is invertible for every z ∈ C − R+ and E{S} is analytic over C − R+. Thus αl,k is analytic over

C− R+. Using the fact that S � 1
d(z,R+)In and Lemma 8, we have

|αl,k| =
∣
∣
∣
∣

1

nk
tr(Rl,kE{S})

∣
∣
∣
∣
≤ 1

nk
‖E{S}‖trRl,k ≤

1
nk

trRl,k

d(z,R+)
=

NlPl,k

nk(κl,k + 1)d(z,R+)
,

where the last equality is obtained by (4). In order to state αl,k ∈ S(R+), we only check the following

three conditions by [18, Proposition 10]: 1) ℑ{αl,k(z)} > 0 if ℑ{z} > 0; 2) ℑ{zαl,k(z)} > 0 if ℑ{z} > 0;

3) limy→∞ |jyαl,k(jy)| < ∞.
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Let us first compute ℑ{αl,k(z)}: For every z ∈ C+,

ℑ{αl,k(z)} =ℑ
{

1

nk
tr
(
Rl,kE

{
S
(
HHH− z∗IN

)
S

H
})
}

=ℑ
{

1

nk
tr
(
Rl,kE

{
SHHHS

H
})
}

−ℑ
{

1

nk
z∗tr

(
Rl,kE

{
SS

H
})
}

=− 1

nk
ℑ{z∗} tr

(
Rl,kE

{
SS

H
})

> 0.

By similar arguments above, we can prove that ℑ{zαl,k(z)} > 0 if ℑ{z} > 0. Next, we calculate

lim
y→∞

|jyαl,k(jy)| = lim
y→∞

∣
∣
∣
∣
∣

1

nk
tr

(

Rl,kE

{(
1

jy
HHH − IN

)−1
})∣

∣
∣
∣
∣

=
1

nk
trRl,k < ∞.

Since the three sufficient conditions have been verified, we have αl,k ∈ S(R+). �

Using this lemma, |αl,k − τl,k| ≤ NlPl,k

nk(κl,k+1)d(z,R+)

(

2 + |z|LKCmax

(d(z,R+))2

)

. Moreover, {αl,k − τl,k}∀l,k is a family

of analytic functions. By Montel’s theorem [43], this convergence still holds for 0 < ω ≤ ω0, and that (49a)

and (49b) hold true.

A.2 Proof of Proposition 4

Using the resolvent identity (Lemma 12) Ξ−Ψ = Ξ
(
Ψ−1 −Ξ−1

)
Ψ, we have

Ξ−Ψ = ωΞdiag

({
K∑

k=1

(ẽl,k − α̃l,k)Rl,k

}

∀l

)

Ψ+ ω2ΞH̄diag

({
L∑

l=1

(αl,k − βl,kel,k)Φ̃kTl,kΘ̃k

}

∀k

)

H̄HΨ.

(104)

Similarly,

Ξ̃− Ψ̃ = ωΞ̃diag

({
L∑

l=1

(βl,kel,k − αl,k)Tl,k

}

∀k

)

Ψ̃+ ω2Ξ̃H̄Hdiag

({
K∑

k=1

(α̃l,k − ẽl,k)ΦlRl,kΘl

}

∀l

)

H̄Ψ̃.

(105)

Taking the trace, we get

tr (Ξ−Ψ) =ω
∑

l,k

(ẽl,k − α̃l,k)tr
(
ΞRl,kΨ

)
+ ω2

∑

l,k

(αl,k − βl,kel,k)tr
(

ΞH̄Φ̃Tl,kΘ̃H̄HΨ
)

, (106a)

tr
(

Ξ̃− Ψ̃
)

=ω
∑

l,k

(βl,kel,k − αl,k)tr
(

Ξ̃Tl,kΨ̃
)

+ ω2
∑

l,k

(α̃l,k − ẽl,k)tr
(

Ξ̃H̄HΦRl,kΘH̄Ψ̃
)

. (106b)
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From Proposition 3, we have

αl,k =
1

nk
tr(Rl,k〈〈Ξ〉〉l) + εl,k, (107a)

α̃l,k =
1

nk
tr(Tl,k〈Ξ̃〉k) + ε̃l,k, (107b)

where εl,k and ε̃l,k converge towards 0. Therefore,

αl,k−βl,kel,k =
1

nk
tr (Rl,k〈〈Ξ −Ψ〉〉l) + εl,k

=
ω

nk

∑

i,j

(ẽi,j − α̃i,j)tr
(
Rl,kΞRi,jΨ

)
+

ω2

nk

∑

i,j

(αi,j − βi,jei,j)tr
(

Rl,kΞH̄Φ̃Ti,jΘ̃H̄HΨ
)

+ εl,k, (108a)

α̃l,k−ẽl,k =
1

nk
tr
(

Tl,k〈Ξ̃− Ψ̃〉k
)

+ ε̃l,k

=
ω

nk

∑

i,j

(βi,jei,j − αi,j)tr
(

Tl,kΞ̃Ti,jΨ̃
)

+
ω2

nk

∑

i,j

(α̃i,j − ẽi,j)tr
(

Tl,kΞ̃H̄HΦRi,jΘH̄Ψ̃
)

+ ε̃l,k. (108b)

Using the same approach as in the proof in Proposition 3, we prove that (αl,k−βl,kel,k)’s and (α̃l,k− ẽl,k)’s

converge towards 0. From (106a) and (106b), we complete the proof of Proposition 4.

A.3 Proof of Proposition 5

We first establish (52a) and (52b). The equations (89) and (91) can be rewritten as

α̃l,k − τ̃l,k =
ω

nk

∑

i,j

(αi,j − τi,j) tr
(

Tl,kE{S̃}Ti,jΞ̃
)

+
ω

nk
tr
(

Tl,k∆̃Ξ̃
)

+
ω2

nk

∑

i,j

(α̃i,j − τ̃i,j) tr
(

Tl,kΘ̃H̄HE {S}Ri,jΞH̄Θ̃
)

+
ω2

nk
tr
(

Tl,kΘ̃H̄H∆ΞH̄Θ̃
)

, (109a)

αl,k − τl,k =
ω

nk

∑

i,j

(α̃i,j − τ̃i,j) tr
(
Rl,kE {S}Ri,jΞ

)
+

ω

nk
tr
(
Rl,k∆Ξ

)

+
ω2

nk

∑

i,j

(αi,j − τi,j) tr
(

Rl,kΘH̄E{S̃}Ti,jΞ̃H̄HΘ
)

+
ω2

nk
tr
(

Rl,kΘH̄∆̃Ξ̃H̄HΘ
)

. (109b)

We can write these two equations in matrix form:

η = Γ′η + ǫ′, (110)
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where ǫ′ ,
[
vec(C′

1)
T , vec(C′

2)
T
]T

,Γ′ ,




Γ′
11 Γ′

12

Γ′
21 Γ′

22



, withC′
1,C

′
2 ∈ CL×K ,Γ′

11,Γ
′
12,Γ

′
21,Γ

′
22 ∈ CLK×LK,

and

[C′
1]l,k =

ω
nk
tr
(

Tl,k∆̃Ξ̃
)

+ ω2

nk
tr
(

Tl,kΘ̃H̄H∆ΞH̄Θ̃
)

1− ω2

nk
tr
(

Tl,kΘ̃H̄HE {S}Rl,kΞH̄Θ̃
) , (111a)

[C′
2]l,k =

ω
nk
tr
(
Rl,k∆Ξ

)
+ ω2

nk
tr
(

Rl,kΘH̄∆̃Ξ̃H̄HΘ
)

1− ω2

nk
tr
(

Rl,kΘH̄E{S̃}Tl,kΞ̃H̄HΘ
) , (111b)

[Γ′
11]lk,ij =







0, for (i, j) 6= (l, k);

ω2

nk
tr
(

Tl,kΘ̃H̄HE {S}Ri,jΞH̄Θ̃
)

1− ω2

nk
tr
(

Tl,kΘ̃H̄HE {S}Rl,kΞH̄Θ̃
) , for (i, j) = (l, k),

(111c)

[Γ′
12]lk,ij =

ω
nk

tr
(

Tl,kE{S̃}Ti,jΞ̃
)

1− ω2

nk
tr
(

Tl,kΘ̃H̄HE {S}Rl,kΞH̄Θ̃
) , (111d)

[Γ′
21]lk,ij =

ω
nk

tr
(
Rl,kE {S}Ri,jΞ

)

1− ω2

nk
tr
(

Rl,kΘH̄E{S̃}Tl,kΞ̃H̄HΘ
) , (111e)

[Γ′
22]lk,ij =







0, for (i, j) 6= (l, k);

ω2

nk
tr
(

Rl,kΘH̄E{S̃}Ti,jΞ̃H̄HΘ
)

1− ω2

nk
tr
(

Rl,kΘH̄E{S̃}Tl,kΞ̃H̄HΘ
) , for (i, j) = (l, k).

(111f)

Let Γ′′ be the matrix by replacing E{S},E{S̃},Ξ, Ξ̃,Θ and Θ̃ in Γ′ with Ψ, Ψ̃,Ψ, Ψ̃,Φ and Φ̃, re-

spectively. Using Propositions 3 and 4, we immediately obtain

Γ′ = Γ′′ + δ, (112)

where all entries of δ converge to 0 as N → ∞, and Γ′′ is given by

Γ′′ =




Γ′′
11 Γ′′

12

Γ′′
21 Γ′′

22



 , (113)
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with Γ′′
11,Γ

′′
12,Γ

′′
21,Γ

′′
22 ∈ CLK×LK, and

[Γ′′
11]lk,ij =







0, for (i, j) 6= (l, k);

u
(2)
lk,ij

1− u
(2)
lk,lk

, for (i, j) = (l, k),
[Γ′′

12]lk,ij =
v
(1)
lk,ij

1− u
(2)
lk,lk

, (114a)

[Γ′′
21]lk,ij =

u
(1)
lk,ij

1− v
(2)
lk,lk

, [Γ′′
22]lk,ij =







0, for (i, j) 6= (l, k);

v
(2)
lk,ij

1− v
(2)
lk,lk

, for (i, j) = (l, k),
(114b)

u
(1)
lk,ij =

ω

nk
tr
(
Rl,kΨRi,jΨ

)
, u

(2)
lk,ij =

ω2

nk
tr
(

Tl,kΦ̃H̄HΨRi,jΨH̄Φ̃
)

, (114c)

v
(1)
lk,ij =

ω

nk
tr
(

Tl,kΨ̃Ti,jΨ̃
)

, v
(2)
lk,ij =

ω2

nk
tr
(

Rl,kΦH̄Ψ̃Ti,jΨ̃H̄HΦ
)

. (114d)

Lemma 6 Let Γ′′ be the matrix defined by (113). Then, we have

sup
N

[
ρ
(
Γ′′)] ≤ 1− λ0ω

2

(ω + λ′
0)

2 < 1, (115a)

sup
N

[∣
∣
∣

∣
∣
∣

∣
∣
∣ (I− Γ′′)−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
∞

]

≤ (ω + λ′
0)

2

λ0ω2
, (115b)

for some constants λ0, λ
′
0.

Proof: From (14), a direct calculation yields

βl,kel,k =
1

nk
tr
(
Rl,kΨΨ−1Ψ

)

(i)
=

1

nk
tr



Rl,kΨ



ωIN + ω
∑

i,j

ẽi,jRi,j + ωH̄Φ̃H̄H



Ψ





=
1

nk
tr



Rl,kΨ



ωIN + ω
∑

i,j

ẽi,jRi,j + ωH̄Φ̃Φ̃
−1

Φ̃H̄H



Ψ





(ii)
=

ω

nk

∑

i,j

ẽi,jtr
(
Rl,kΨRi,jΨ

)
+

ω

nk
tr
(
Rl,kΨΨ

)

+
ω2

nk

∑

i,j

βi,jei,jtr
(

Rl,kΨH̄Φ̃Ti,jΦ̃H̄HΨ
)

+
ω2

nk
tr
(

Rl,kΨH̄Φ̃Φ̃H̄HΨ
)

, (116)

where (i) and (ii) are obtained by expanding Ψ−1 and Φ̃
−1

, respectively. Similarly, we can get

ẽl,k =
ω

nk

∑

i,j

βi,jei,jtr
(

Tl,kΨ̃Ti,jΨ̃
)

+
ω

nk
tr
(

Tl,kΨ̃Ψ̃
)

+
ω2

nk

∑

i,j

ẽi,jtr
(

Tl,kΨ̃H̄HΦRi,jΦH̄Ψ̃
)

+
ω2

nk
tr
(

Tl,kΨ̃H̄HΦΦH̄Ψ̃
)

. (117)
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The equations (116) and (117) can be rewritten as

nk

n
βl,kel,k =

∑

i,j

nj

n
ẽi,j

ω

nj
tr
(
Ri,jΨRl,kΨ

)
+

ω

n
tr
(
Rl,kΨΨ

)

+
∑

i,j

nj

n
βi,jei,j

ω2

nj
tr
(

Ti,jΦ̃H̄HΨRl,kΨH̄Φ̃
)

+
ω2

n
tr
(

Rl,kΨH̄Φ̃Φ̃H̄HΨ
)

=
∑

i,j

nj

n
ẽi,ju

(1)
ij,lk +

∑

i,j

nj

n
βi,jei,ju

(2)
ij,lk +

ω

n
tr
(
Rl,kΨΨ

)
+

ω2

n
tr
(

Rl,kΨH̄Φ̃Φ̃H̄HΨ
)

(118)

and

nk

n
ẽl,k =

∑

i,j

nj

n
βi,jei,j

ω

nj
tr
(

Ti,jΨ̃Tl,kΨ̃
)

+
ω

n
tr
(

Tl,kΨ̃Ψ̃
)

+
∑

i,j

nj

n
ẽi,j

ω2

nj
tr
(

Ri,jΦH̄Ψ̃Tl,kΨ̃H̄HΦ
)

+
ω2

n
tr
(

Tl,kΨ̃H̄HΦΦH̄Ψ̃
)

=
∑

i,j

nj

n
βi,jei,jv

(1)
ij,lk +

∑

i,j

nj

n
ẽi,jv

(2)
ij,lk +

ω

n
tr
(

Tl,kΨ̃Ψ̃
)

+
ω2

n
tr
(

Tl,kΨ̃H̄HΦΦH̄Ψ̃
)

. (119)

Now, let ξ ,
[
vec(A3)

T , vec(A4)
T
]T

, b ,
[
vec(C3)

T , vec(C4)
T
]T

, Γ′′′ ,




Γ′′′
11 Γ′′′

12

Γ′′′
21 Γ′′′

22



, where A3,A4,

C3,C4 ∈ CL×K ,Γ′′′
11,Γ

′′′
12,Γ

′′′
21,Γ

′′′
22 ∈ CLK×LK with

[A3]l,k =
nk

n
βl,kel,k, [A4]l,k =

nk

n
ẽl,k, (120a)

[C3]l,k =

ω
n tr
(
Rl,kΨΨ

)
+ ω2

n tr
(

Rl,kΨH̄Φ̃Φ̃H̄HΨ
)

1− u
(2)
ij,ij

, (120b)

[C4]l,k =

ω
n tr
(

Tl,kΨ̃Ψ̃
)

+ ω2

n tr
(

Tl,kΨ̃H̄HΦΦH̄Ψ̃
)

1− v
(2)
ij,ij

, (120c)

[Γ′′′
11]lk,ij =







0, (i, j) 6= (l, k);

u
(2)
ij,lk

1− u
(2)
ij,ij

,(i, j) = (l, k),
[Γ′′′

12]lk,ij =
u
(1)
ij,lk

1− u
(2)
ij,ij

, (120d)

[Γ′′′
21]lk,ij =

v
(1)
ij,lk

1− v
(2)
ij,ij

, [Γ′′′
22]lk,ij =







0, (i, j) 6= (l, k);

v
(2)
ij,lk

1− v
(2)
ij,ij

,(i, j) = (l, k).
(120e)

Thus, from (118) and (119), we have

ξ = Γ′′′ξ + b. (121)

Using the matrix inversion lemma (Lemma 13), we obtain Φ̃H̄HΨ = Ψ̃H̄HΦ. This implies that u
(2)
ij,ij =
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v
(2)
ij,ij, for ∀i, j. We immediately get

Γ′′′ =
(
Γ′′)T . (122)

Now, define

Λ = diag
(

1− u
(2)
11,11, . . . , 1− u

(2)
LK,LK, 1− v

(2)
11,11, . . . , 1 − v

(2)
LK,LK

)

. (123)

Multiplying both sides of (121) by Λ gives

Λξ = ΛΓ′′′ξ +Λb. (124)

For ω ∈ R+, the entries of ξ, ΛΓ′′′ and Λb are positive. Thus, the entries of Λξ are positive. Since the

entries of ξ are positive, we conclude that 1− u
(2)
ij,ij > 0 and 1− v

(2)
ij,ij > 0, for ∀l, k. From (121), we obtain

that the entries of Γ′′′ and b are positive, for ω ∈ R+. Lemma 15 implies ρ (Γ′′′) ≤ 1− minbl

max ξl
.

Using Lemma 8, (13), and the fact that ‖Ψ‖, ‖Ψ̃‖ ≤ 1
ω , we have

nk

n
βl,kel,k ≤ NlCmax

nω
≤ β0Cmax

ω
(125)

and

nk

n
ẽl,k ≤ nkCmax

nω
≤ Cmax

ω
, (126)

where β0 , maxk,l {βl,k(N)}. From (10), we have

sup
N

max ξl ≤ sup
N

max {1, β0}
Cmax

ω
< +∞. (127)

For bl, we have

bl,k ≥ω

n
tr
(
Rl,kΨΨ

) (i)

≥ ω

n

(
tr
(
Rl,kΨ

))2

tr
(
Rl,k

)

(ii)

≥ ω

n

(
tr
(
Rl,k

))3

(
tr
(
Rl,kΨ

−1
))2

(iii)

≥ ω

n

tr
(
Rl,k

)

‖Ψ−1‖2

≥ω

n

tr (Rl,k)

(ω +max{1, β0}LKC2
max + LKCmax)

2 . (128)

where (i) and (ii) follow from 1) − a) of Lemma 8, i.e., (tr(AB))2 ≤ tr(AAH)tr(BBH), (iii) is due to 2)

of Lemma 8. Similarly,

b̃l,k ≥ ω

n

tr (Tl,k)

(ω +max{1, β0}LKC2
max + LKCmax)

2 . (129)

As a consequence, we have

inf
N

minbl ≥
ωC5

(ω + supN max{1, β0}LKC2
max + LKCmax)

2 , (130)

where C5 = infN max{ 1
n tr (Tl,k) ,

1
n tr (Tl,k)} > 0.
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Combining (127) and (130), we obtain

sup
N

[
ρ
(
Γ′′′)] ≤ 1− λ0ω

2

(ω + λ′
0)

2 < 1. (131)

According to (122), (115a) holds true. It is easy to get (115b) by ρ (Γ′′) < 1. A similar proof can be found

in [18, 44], and is therefore omitted. �

Applying this lemma and (112), there exists N0 such that (I− Γ′) is invertible, for each N > N0, and

supN>N0

[∣
∣
∣
∣
∣
∣ (I − Γ′)−1

∣
∣
∣
∣
∣
∣
∞
]
≤ (ω+λ′

0)
2

λ0ω2 . Note that ǫ′ = O
(

1
N2

)
1. Hence, from (110), we obtain (αl,k−τl,k)’s

and (α̃l,k − τ̃l,k)’s are of O
(

1
N2

)
. This establishes (52a) and (52b).

From (52a), (52b), (107a), and (107b), we have εl,k = O
(

1
N2

)
and ε̃l,k = O

(
1
N2

)
. (108a) and (108b)

can be rewritten as a matrix form similar to (110). Using the same approach as in the proof of (52a) and

(52b), we prove that (αl,k − βl,kel,k)’s and (α̃l,k − ẽl,k)’s are of O
(

1
N2

)
. This shows that (52c) and (52d)

are established and the proof is completed.

B Proof of E{mBN
} − E{mBN

} = O

(
1√
N

)

in Theorem 1

The aim of this appendix is to prove

|E{mBN
(ω)} − E{mBN

(ω)}| = O

(
1√
N

)

. (132)

We mainly make use of the generalized Lindeberg principle given below.

Lemma 7 (Generalized Lindeberg Principle [30]) Let v = [vi] ∈ Rn and ṽ = [ṽi] ∈ Rn be two random

vectors with mutually independent components. Define {ai}1≤i≤n and {bi}1≤i≤n with

ai , |E{vi} − E{ṽi}|, and bi , |E{v2i } − E{ṽ2i }|. (133)

Then, given a twice continuously differentiable function f : Rn → R, we have

|E {f(v)} − E {f(ṽ)}| ≤
n∑

i=1

[

aiE
{
|∂if

(
vi−1
1 , 0, ṽn

i+1

)
|
}
+

1

2
biE
{
|∂2

i f
(
vi−1
1 , 0, ṽn

i+1

)
|
}

+
1

2
E

{∫ vi

0
|∂3

i f
(
vi−1
1 , s, ṽn

i+1

)
| (vi − s)2 ds

}

+
1

2
E

{∫ ṽi

0
|∂3

i f
(
vi−1
1 , s, ṽn

i+1

)
| (ṽi − s)2 ds

}]

, (134)

where ∂p
i is the p-fold derivative in the i-th coordinate, vi−1

1 = (v1, . . . , vi−1), and ṽn
i+1 = (ṽi+1, . . . , ṽn).

As Xl,k’s and X l,k’s are matrices with entries satisfying (12), we have a
(l,k)
i,j = b

(l,k)
i,j = 0 for i = 1, . . . , N

and j = 1, . . . , n. Therefore, the remaining challenge is to evaluate the third and fourth terms of the
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right-hand side of inequality (134). Since the real and imaginary parts of X
(l,k)
ij are independent, all the

results established in the real case can be directly applied for the complex case. Thus, without loss of

generality, we only take the derivative with respect to the real part of X
(l,k)
ij in (134). Before proceeding,

we remark that because of the finite 6-th order moment assumption of X
(l,k)
ij ’s, the following proof is much

simpler than that in [19].

Let

f
(

{Al,k}∀l,k
)

=
1

N
tr (G+ ωIN )−1 (135)

where

G =




∑

l,k

(

R
1
2
l,kAl,kT

1
2
l,k + H̄l,k

)







∑

l,k

(

R
1
2
l,kAl,kT

1
2
l,k + H̄l,k

)




H

, (136)

for any Al,k ∈ RN×n, for l = 1, . . . , L and k = 1, . . . ,K. As such, we have mBN
(ω) = f

(

{Xl,k}∀l,k
)

and

mBN
(ω) = f

(

{X l,k}∀l,k
)

. To use (134), {Al,k}∀l,k will take the form
{

Al,k = [A
(l,k)
ij (l0, k0, r, c, s)]

}

∀l,k
with

A
(l,k)
i,j (l0, k0, r, c, s) =







X
(l,k)
ij√
nk

, if l < l0, or l = l0, k < k0, or l = l0, k = k0, i < r,

or l = l0, k = k0, i = r, j < c;

s, if (l, k) = (l0, k0) and (i, j) = (r, c);

X (l,k)
ij√
nk

, otherwise.

(137)

Taking the third-fold partial derivative of (135) with respect to A
(l,k)
i,j , denoted by ∂

(l,k)3
ij , we have

∂
(l,k)3
ij f = − 6

N
tr
(

(∂
(l,k)
ij G) (G+ ωIN )−1 (∂

(l,k)
ij G) (G+ ωIN )−1 (∂

(l,k)
ij G) (G+ ωIN)−2

)

+
3

N
tr
(

(∂
(l,k)2
ij G) (G+ ωIN )−1 (∂

(l,k)
ij G) (G+ ωIN )−2

)

+
3

N
tr
(

(∂
(l,k)
ij G) (G+ ωIN )−1 (∂

(l,k)2
ij G) (G+ ωIN )−2

)

, (138)

where

∂
(l,k)
ij G =

(

R
1
2
l,kEijT

1
2
l,k

)
∑

l1,k1

(

R
1
2
l1,k1

Al1,k1T
1
2
l1,k1

+ H̄l1,k1

)H

+




∑

l1,k1

(

R
1
2
l1,k1

Al1,k1T
1
2
l1,k1

+ H̄l1,k1

)




(

T
1
2
l,kEjiR

1
2
l,k

)

, (139a)

∂
(l,k)2
ij G =2T

(l,k)
jj R

1
2
l,kEiiR

1
2
l,k. (139b)

Here, Eij denotes the matrix which has its entries being all 0’s except for the (i, j)-th entry as 1.
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Using Lemma 8, the first term of ∂
(l,k)3
ij f can be bounded by

∣
∣
∣tr
(

(∂
(l,k)
ij G) (G+ ωIN )−1 (∂

(l,k)
ij G) (G+ ωIN )−1 (∂

(l,k)
ij G) (G+ ωIN)−2

)∣
∣
∣ ≤ 1

ω4
‖(∂(l,k)

ij G)‖3F, (140)

and the second and third terms of ∂
(l,k)3
ij f can be bounded by

∣
∣
∣tr
(

(∂
(l,k)2
ij G) (G+ ωIN )−1 (∂

(l,k)
ij G) (G+ ωIN)−2

)∣
∣
∣ ≤ 1

ω3
‖(∂(l,k)2

ij G)‖F‖(∂(l,k)
ij G)‖F. (141)

From (139a) and (139b), using Lemma 8 and (13), we obtain

‖(∂(l,k)
ij G)‖F

(i)

≤2
∑

l1,k1

(

‖R
1
2
l,kEijT

1
2
l,kT

1
2
l1,k1

AH
l1,k1R

1
2
l1,k1

‖F + ‖R
1
2
l,kEijT

1
2
l,kH̄

H
l1,k1‖F

)

(ii)

≤ 2
∑

l1,k1

(

Cmax‖EijT
1
2
l,kT

1
2
l1,k1

AH
l1,k1‖F + ‖R

1
2
l,kEijT

1
2
l,kH̄

H
l1,k1‖F

)

=2Cmax

∑

l1,k1

[

tr

(

EijT
1
2
l,kT

1
2
l1,k1

AH
l1,k1Al1,k1T

1
2
l1,k1

T
1
2
l,kEji

)] 1
2

+ 2
∑

l1,k1

[

tr

(

R
1
2
l,kEijT

1
2
l,kH̄

H
l1,k1H̄l1,k1T

1
2
l,kEjiR

1
2
l,k

)] 1
2

(iii)

≤ 2C2
max

∑

l,k

(
N∑

i=1

(

A
(l,k)
ij

)2
)1

2

+ 2LKC
3
2
max (142)

and

‖(∂(l,k)2
ij G)‖F = 2T

(l,k)
jj R

(l,k)
ii ≤ 2‖Tl,k‖‖Rl,k‖ ≤ 2Cmax, (143)

where (i) is obtained by the triangle inequality of the Frobenius norm, (ii) follows from 1(b) of Lemma 8

and (13), and (iii) follows from 2 of Lemma 8 and (13). Combining everything together, we get

E
{

∂(l0,k0)3
rc f

}

≤C1

N
E










∑

l,k

(
N∑

i=1

(

A
(l,k)
ic

)2
) 1

2

+ C2





3






(i)

≤C1(LK + 1)2

N
E







∑

l,k

(
N∑

i=1

(

A
(l,k)
ic

)2
) 3

2

+ C3
2







(ii)

≤ C3

N




|s|3 + E











N∑

i 6=r

(

A
(l0,k0)
ic

)2





3
2







+ E







L∑

l 6=l0

K∑

k 6=k0

(
N∑

i=1

(

A
(l,k)
ic

)2
) 3

2






+ C3

2






(iii)
=

C3

N

(
|s|3 + C4

)
, (144)
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where C1, C2, C3, C4 denote constants, (i) is obtained by Lemma 9, (ii) follows from the definition of A
(l,k)
ij

(137), and (iii) is due to the fact that X
(l,k)
ij and X (l,k)

ij have finite 6-th order moment, thus giving the

second and third terms of third line of (144) as O(1).

Finally, using (134) and (144), we obtain

|E {ℜ {mBN
(ω)}} − E {ℜ {mBN

(ω)}}| ≤ C3

2N

∑

l,k

N∑

r=1

n∑

c=1



E







∫ |X(l,k)
rc |/√nk

0

(
|s|3 +C4

)

(

X
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rc√
nk

− s

)2

ds







+E







∫ |X (l,k)
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0

(
|s|3 + C4

)
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rc√
nk

− s

)2

ds











≤ C3

2N

∑
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N∑
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n∑
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1

6
E







(

|X(l,k)
rc |√
nk

)6





+

C4

3
E







(

|X(l,k)
rc |√
nk

)3






+
1

6
E







(

|X (l,k)
rc |√
nk

)6





+

C4

3
E







(

|X (l,k)
rc |√
nk

)3










=O

(
1√
N

)

. (145)

The quantity |E {ℑ {mBN
(ω)}} − E {ℑ {mBN

(ω)}}| also admits the same upper bound. Thus, (132) is true.

C Existence and Uniqueness

C.1 Existence

Following [16] and using Proposition 3 the existence of (el,k, ẽl,k)∀l,k can be shown.

C.2 Uniqueness

Let (el,k, ẽl,k) and (e◦l,k, ẽ
◦
l,k) be two solutions satisfying (14), and Ψ◦, Ψ̃

◦
,Φ◦, Φ̃

◦
be the matrices obtained

by replacing el,k(ω)’s and ẽl,k(ω)’s in Ψ, Ψ̃,Φ, Φ̃ with e◦l,k(ω)’s and ẽ◦l,k(ω)’s respectively. To prove the

uniqueness, we need to show that el,k − e◦l,k = 0 and ẽl,k − ẽ◦l,k = 0, for any l and k. Our proof is inspired

by [18].
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A standard calculation involving Lemma 11 yields

βl,k(el,k − e◦l,k) =− ω

nk

∑

i,j

(ẽi,j − ẽ◦i,j)tr
(
Rl,kΨRi,jΨ

◦)

+
ω2

nk

∑

i,j

βi,j(ei,j − e◦i,j)tr
(

Rl,kΨH̄Φ̃Ti,jΦ̃
◦
H̄HΨ◦

)

, (146a)

ẽl,k − ẽ◦l,k =− ω

nk

∑

i,j

βi,j(ei,j − e◦i,j)tr
(

Tl,kΨ̃Ti,jΨ̃
◦)

+
ω2

nk

∑

i,j

(ẽi,j − ẽ◦i,j)tr
(

Tl,kΨ̃H̄HΦRi,jΦ
◦H̄Ψ̃

◦)
. (146b)

Now, let ζ ,
[
vec(A5)

T , vec(A6)
T
]T

, Π ,




Π11 Π12

Π21 Π22



, where A5,A6 ∈ CL×K ,Π11,Π12,Π21,Π22 ∈

CLK×LK with

[A5]l,k = βl,k(el,k − e◦l,k), [A6]l,k = ẽl,k − ẽ◦l,k, (147a)

[Π11]lk,ij =







0, for (i, j) 6= (l, k);

ω2

nk
tr
(

Rl,kΨH̄Φ̃Ti,jΦ̃
◦
H̄HΨ◦

)

1− ω2

nk
tr
(

Rl,kΨH̄Φ̃Tl,kΦ̃
◦
H̄HΨ◦

) , for (i, j) = (l, k),
(147b)

[Π12]lk,ij =
− ω

nk
tr
(
Rl,kΨRi,jΨ

◦)

1− ω2

nk
tr
(

Rl,kΨH̄Φ̃Tl,kΦ̃
◦
H̄HΨ◦

) , (147c)

[Π21]lk,ij =
− ω

nk
tr
(

Tl,kΨ̃Ti,jΨ̃
◦)

1− ω2

nk
tr
(

Tl,kΨ̃H̄HΦRl,kΦ
◦H̄Ψ̃

◦) , (147d)

[Π22]lk,ij =







0, for (i, j) 6= (l, k);

ω2

nk
tr
(

Tl,kΨ̃H̄HΦRi,jΦ
◦H̄Ψ̃

◦)

1− ω2

nk
tr
(

Tl,kΨ̃H̄HΦRl,kΦ
◦H̄Ψ̃

◦) , for (i, j) = (l, k).
(147e)

Thus, (146a) and (146b) can be written together as

ζ = Πζ. (148)

To complete the proof, it remains to prove that ρ(Π) < 1. To do so, we first write (116) and (117) in

matrix form as follows:

ξ′ = Kξ′ + b′, (149)

where ξ′ =
[
vec(A7)

T , vec(A8)
T
]T

,b′ =
[
vec(C7)

T , vec(C8)
T
]T

,K =




K11 K12

K21 K22



, andA7,A8,C7,C8 ∈
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CL×K ,K11,K12,K21,K22 ∈ CLK×LK with

[A7]l,k = βl,kel,k, [A8]l,k = ẽl,k, (150a)

[C7]l,k =

ω
nk

tr
(
Rl,kΨΨ

)
+ ω2

nk
tr
(

Rl,kΨH̄Φ̃Φ̃H̄HΨ
)

1− u
′(2)
lk,lk

, (150b)

[C8]l,k =

ω
nk

tr
(

Tl,kΨ̃Ψ̃
)

+ ω2

nk
tr
(

Tl,kΨ̃H̄HΦΦH̄Ψ̃
)

1− v
′(2)
lk,lk

, (150c)

[K11]lk,ij =







0, for (i, j) 6= (l, k);

u
′(2)
lk,ij

1− u
′(2)
lk,lk

, for (i, j) = (l, k),
[K12]lk,ij =

u
′(1)
lk,ij

1− u
′(2)
lk,lk

, (150d)

[K21]lk,ij =
v
′(1)
lk,ij

1− v
′(2)
lk,lk

, [K22]lk,ij =







0, for (i, j) 6= (l, k);

v
′(2)
lk,ij

1− v
′(2)
lk,lk

, for (i, j) = (l, k),
(150e)

u
′(1)
lk,ij =

ω

nk
tr
(
Rl,kΨRi,jΨ

)
, u

′(2)
lk,ij =

ω2

nk
tr
(

Rl,kΨH̄Φ̃Ti,jΦ̃H̄HΨ
)

, (150f)

v
′(1)
lk,ij =

ω

nk
tr
(

Tl,kΨ̃Ti,jΨ̃
)

, v
′(2)
lk,ij =

ω2

nk
tr
(

Tl,kΨ̃H̄HΦRi,jΦH̄Ψ̃
)

. (150g)

Using a similar approach of (121), we get that 1−u
′(2)
lk,lk > 0, 1− v

′(2)
lk,lk > 0,∀l, k, and the entries of ξ′,K

and b′ are positive, for ω ∈ R+. Therefore, from (149) and Lemma 16, we have ρ(K) < 1. Similarly, we

also have ρ(K◦) < 1, where K◦ as well as K◦
11,K

◦
12,K

◦
21, and K◦

22 are the matrices by replacing Ψ, Ψ̃,Φ,

and Φ̃ with Ψ◦, Ψ̃
◦
,Φ◦, and Φ̃

◦
, respectively.

For the denominator of [Π11]lk,ij, applying Lemma 17 with A = ω
√

1
nk

R
1
2
l,kΨH̄Φ̃T

1
2
l,k and B =

ω
√

1
nk

T
1
2
l,kΦ̃

◦
H̄HΨ◦R

1
2
l,k satisfying tr(AAH) = u

′(2)
lk,lk < 1 and tr(BBH) = v

′(2)
lk,lk < 1, we have

1− ω2

nk
tr
(

Rl,kΨH̄Φ̃Tl,kΦ̃
◦
H̄HΨ◦

)

≥
(

1− ω2

nk
tr
(

Rl,kΨH̄Φ̃Tl,kΦ̃H̄HΨ
))

1
2
(

1− ω2

nk
tr
(

Rl,kΨ
◦H̄Φ̃

◦
Tl,kΦ̃

◦
H̄HΨ◦

))
1
2

. (151)

Applying the Cauchy-Schwarz inequality to the numerator of [Π11]lk,ij and from (151), we obtain

|[Π11]lk,ij| ≤





ω2

nk
tr
(

Rl,kΨH̄Φ̃Ti,jΦ̃H̄HΨ
)

1− ω2

nk
tr
(

Rl,kΨH̄Φ̃Tl,kΦ̃H̄HΨ
)





1
2




ω2

nk
tr
(

Rl,kΨ
◦H̄Φ̃

◦
Ti,jΦ̃

◦
H̄HΨ◦

)

1− ω2

nk
tr
(

Rl,kΨ
◦H̄Φ̃

◦
Tl,kΦ̃

◦
H̄HΨ◦

)





1
2

=

∣
∣
∣
∣
∣
∣

u
′(2)
lk,ij

1− u
′(2)
lk,lk

∣
∣
∣
∣
∣
∣

1
2
∣
∣
∣
∣
∣
∣

u
′◦(2)
lk,ij

1− u
′◦(2)
lk,lk

∣
∣
∣
∣
∣
∣

1
2

= |[K11]lk,ij|
1
2 |[K◦

11]lk,ij|
1
2 . (152)
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Likewise, we have

|[Π12]lk,ij| ≤ |[K12]lk,ij|
1
2 |[K◦

12]lk,ij|
1
2 , (153a)

|[Π21]lk,ij| ≤ |[K21]lk,ij|
1
2 |[K◦

21]lk,ij|
1
2 , (153b)

|[Π22]lk,ij| ≤ |[K22]lk,ij|
1
2 |[K◦

22]lk,ij|
1
2 . (153c)

Using Lemma 18 and Lemma 19, we obtain

ρ(Π) ≤ ρ(|Π|) ≤ ρ(K)
1
2ρ(K◦)

1
2 < 1. (154)

This contradicts to the statement that Π has an eigenvalue equal to 1. Therefore, we have el,k − e◦l,k = 0

and ẽl,k − ẽ◦l,k = 0, for any l, k and ω ∈ R+.

D Mathematical Tools

In this appendix, we provide some mathematical tools used in the proof of the appendices.

Lemma 8 [45]

1. Let A = [Aij ] and B be any matrices such that the product is a square matrix. Then,

(a) |tr(AB)| ≤ ‖A‖F‖B‖F,
(b) ‖AB‖F ≤ ‖A‖F‖B‖,
(c) ‖AB‖F ≤ ‖A‖F‖B‖F,
(d) |Aij | ≤ ‖A‖.

2. If A is nonnegative definite, we have |tr(AB)| ≤ ‖B‖tr(A).

3. Let A be any matrix such that the product AB exists. Then, ‖AB‖ ≤ ‖A‖‖B‖.

Lemma 9 For any p ≥ 1 and real numbers ai’s, we have

∣
∣
∣
∣
∣

n∑

i=1

ai

∣
∣
∣
∣
∣

p

≤ np−1
n∑

i=1

|ai|p. (155)

Lemma 10 [42, Theorem 4.3.1] Let A and B be Hermitian matrix and let the eigenvalues λi(A), λi(B),

and λi(A+B) be arranged in decreasing order. For each k = 1, 2, . . . , n, we have

λk(A) + λn(B) ≤ λk(A+B) ≤ λk(A) + λ1(B). (156)

Lemma 11 Let matrix Al,k ∈ CNl×nk for l = 1, . . . , L, k = 1, . . . ,K, and let Ak =
[

AT
1,k · · ·AT

L,k

]T
∈

CN×nk ,A = [A1, · · · ,AK ] ∈ CN×n, with N =
∑L

l=1Nl and n =
∑K

k=1 nk. If ‖Al,kA
H
l,k‖ ≤ C, then we

have ‖AAH‖ ≤ LKC.
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Proof: Notice that AAH and Al,kA
H
l,k are Hermitian matrices. Therefore, a standard computation

involving Lemma 10 yields

‖AAH‖ = λ1

(
AAH

)
= λ1

(
K∑

k=1

AkA
H
k

)

≤
K∑

k=1

λ1

(
AkA

H
k

)
=

K∑

k=1

λ1

(
AH

k Ak

)

=
K∑

k=1

λ1

(
L∑

l=1

AH
l,kAl,k

)

≤
∑

l,k

λ1

(
AH

l,kAl,k

)

=
∑

l,k

‖AH
l,kAl,k‖ ≤ LKC. (157)

�

Lemma 12 (Resolvent Identity) For invertible A and B matrices, we have the identity

A−1 −B−1 = A−1(B−A)B−1. (158)

Lemma 13 (Matrix Inversion) For invertible A,B and R matrices, suppose that B = A+XRY, then

B−1 = A−1 −A−1X(R−1 +YA−1X)−1YA−1.

Lemma 14 Assume that A is a positive seme-definite M × M matrix and B = diag(B1, . . . ,BK) is a

block-diagonal matrix, where Bk is a positive seme-definite Mk × Mk matrix and M =
∑K

k=1Mk. Let

Ck = 〈(I +AB\k)
−1A〉

k
, where B\k = diag(B1, . . . ,Bk−1,0,Bk+1, . . . ,BK). Then, we have

〈(I +AB)−1A〉k = (I+CkBk)
−1Ck. (159)

Proof: Letting Bk = diag(0, . . . ,0,Bk ,0, . . . ,0), we have

(I+AB)−1
A =

(
I+AB\k +ABk

)−1
A

(i)
=C−C (I+BkC)−1

BkC = C
(

I−
(
(BkC)−1 + I

)−1
)

(ii)
=C

(

(BkC)−1
(
(BkC)−1 + I

)−1
)

= (I+CBk)
−1

C (160)

where (i) follows from Lemma 13 and defining C =
(
I+AB\k

)−1
A, (ii) is due to Lemma 12. Substituting

(160) into (159), we obtain

〈(I+AB)−1A〉k = 〈(I+CBk)
−1

C〉k = (I+CkBk)
−1Ck,

where the last step is obtained by calculating the inverse of (I +CBk)
−1. �
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Lemma 15 [42, Corollary 8.1.29] Let A ∈ Rn×n, x ∈ Rn, for A ≥ 0 and x > 0. If α, β ≥ 0 are such that

αx ≤ Ax ≤ βx, then α ≤ ρ(A) ≤ β. If αx < Ax, then α < ρ(A). If Ax < βx, then ρ(A) < β.

Lemma 16 [16, Lemma 9] If the components of C,x, and b are all positive, then x = Cx + b implies

ρ(C) < 1.

Lemma 17 [19, Lemma 16] Let A and B be any matrices such that ABH exists and is a squared matrix.

If tr(AAH) ≤ 1 and tr(BBH) ≤ 1, then

|1− tr(ABH)| ≥
(
1− tr(AAH)

) 1
2
(
1− tr(BBH)

) 1
2 . (161)

Lemma 18 [42, Theorem 8.1.18] Let A = [Aij ] and B = [Bij] be square matrices. If |Aij | ≤ Bij ,∀i, j,
then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Lemma 19 [45, Lemma 5.7.9] Let A = [Aij ] and B = [Bij ] be matrices with nonnegative elements. Then

ρ([A
1
2
ijB

1
2
ij ]) ≤ ρ(A)

1
2 ρ(B)

1
2 .
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