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Diversity Limits of Compact Broadband
Multi-Antenna Systems

Pawandeep S. Taluja,Member, IEEE,and Brian L. Hughes,Member, IEEE

Abstract—In order to support multiple antennas on compact
wireless devices, transceivers are often designed with matching
networks that compensate for mutual coupling. Some works have
suggested that when optimal matching is applied to such a system,
performance at the center frequency can be improved at the
expense of an apparent reduction in the system bandwidth. This
paper addresses the question of how coupling impacts bandwidth
in the context of circular arrays. It will be shown that mutua l
coupling creates eigen-modes (virtual antennas) with diverse
frequency responses, using the standard matching techniques. We
shall also demonstrate how common communications techniques
such as Diversity-OFDM would need to be optimized in order to
compensate for these effects.

Index Terms—multiple antennas, mutual coupling, broadband
matching, MIMO, OFDM.

I. I NTRODUCTION

M ULTIPLE-antenna systems have been shown to alle-
viate the problem of signal fading, and promise high

spectral efficiencies in wireless propagation environments rich
in multipath [1], [2]. However, most of these advantages from
multiple-input multiple-output (MIMO) systems can only be
realized for large antenna spacings. As the form-factor of
current handheld and portable devices continues to shrink,and
the demand for high data rate systems continues to grow, it is
becoming increasingly necessary to deploy multiple antennas
in a small space. Several wireless standards, including 4G LTE,
IEEE 802.11n, provide support for multi-antenna devices such
as mobile phones, laptops, tablets or access points – some of
which offer a great fit for two dimensional arrays, popularly
circular.

With closely spaced antennas, impairments such as fading
correlation and mutual coupling become increasingly domi-
nant. Transceivers designed for compact antenna arrays often
employ special radio-frequency (RF) networks called matching
networks that are embedded between the antenna array and
the rest of the RF chain designed for optimized performance.
Several studies have proposed optimal transceiver design for
MIMO systems in the presence of mutual coupling by the
use of multiport matching networks [3]–[8]. However, the
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focus of these studies has largely been narrowband systems;
the effects of mutual coupling on the bandwidth of MIMO
systems has received little attention. These results suggest that
when optimal matching is applied to a system with strong
mutual coupling, performance at the center frequency can be
improved at the expense of an apparent reduction in the system
bandwidth [9], [10]. This raises fundamental questions about
the physical realizability of these networks and the bandwidth
assumptions.

The study of matching networks for wideband systems
falls under the purview of broadband matching theory – a
field rich in multiport broadband matching network design,
albeit, limited to systems not involving coupled sources or
loads. However, there exist techniques in antenna/microwave
circuit design that deal with coupled systems by use of
orthogonal beam-forming networks [11], and apply matching
to the decoupled ports of the antenna array.

In this paper, we investigate optimal transceiver design
for compact arrays from a communication theory perspec-
tive. Specifically, we focus on the impact coupling has on
the bandwidth of coupled circular arrays and derive optimal
broadband matching networks. It will be shown that for
broadband systems with uniform circular arrays, mutual cou-
pling decomposes the coupled array with spectrally-identical
spatial modes into spectrally non-identical eigen-modes –with
differing bandwidths and resonant-frequencies. Similar results
have appeared for specialized cases recently [12], [13]. These
studies treat the problem in detail from a microwave theory
standpoint, including many of the implementation aspects.Our
findings and analysis help generalize how coupling impacts the
RF bandwidth in the context of circular arrays. By combining
concepts from antenna/microwave theory, Fano’s broadband
matching and Shannon’s information theory, we present a
unified communication-theoretic framework and evaluate the
diversity limits of coupled broadband systems – utilizing
orthogonal frequency division multiplexing (OFDM) – with
varying antenna spacing.

The organization of the paper is as follows. Sec. II presents
an overview of the basic microwave theory tools necessary to
analyze the problem of coupled MIMO systems. Sec. III illus-
trates how coupling impacts the RF bandwidth of a compact
circular array and introduces the concept of virtual antennas. It
also discusses the applicability of Fano’s broadband matching
theory to characterize the optimal broadband matching net-
work. Sec. IV supports these findings with numerical data. In
Sec. V, we present a transceiver model for a broadband coupled
array, and employ it in Sec. VI to develop a system model for
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Diversity-OFDM in the presence of mutual coupling. Sec. VII
presents results for the outage capacity as a function of antenna
separation. We conclude by summarizing the main findings of
the paper in Sec. VIII.

II. COUPLED TRANSCEIVERS

As the antennas in an array are brought closer, currents
flowing in one element induce voltage across the other. This is
commonly referred to as mutual coupling. This phenomenon is
usually modeled using the circuit (or network) representation
of the antenna array. For anN element antenna array, the
currentsi flowing through the antenna ports, and voltagesv

induced across them can be modeled byN × 1 vectors and
N ×N matrices as:

v = ZAi+ vo .

Here, ZA denotes theN × N antenna array impedance
matrix andvo the N × 1 open-circuit voltage induced by
the incident electro-magnetic field (EM). The diagonal entries
of ZA denote self-impedance and the non-diagonal ones
mutual-impedance, such that in the absence of coupling, the
antenna impedance matrix is diagonal. It has been shown
that optimal performance can be achieved by transforming
the coupled antenna array to an uncoupled one by use of
a 2N -port impedance-transforming network called matching
network ZM , inserted between the array and the rest of
the transceiver [4], [7]. The choice of the matching network
depends on the antenna separation (essentially the extent of
coupling) and is usually chosen as a fixed passive network. The
optimal networks are generally non-diagonal in nature, while
the more practical, but sub-optimal, are diagonal. However,
these studies have essentially focused on narrowband models
and in order to incorporate bandwidth considerations, the
analysis must be extended to using matching networks that
perform well over a given bandwidth. As will be shown
later, the system analysis of broadband systems with mutual
coupling is eased by the use of scattering-parameter or S-
matrix representation, instead of the impedance matrix.

To begin, we introduce the basic elements of broadband
matching theory for a single antenna (or 2-port network)
system. Consider a broadband2-port network (shown in
Fig. 1), with impedance matrixZ(s) terminated into reference
impedancesz1(s) andz2(s) on either side. Here,s = σ + jω
is the Laplace variable andω = 2πf denotes frequency
in radians/sec. For this simple (assuming reciprocal)2-port
network, the elements of S-matrix represent the reflection and
transmission coefficientsΓ1, Γ2 andT , respectively, as shown
in Fig. 1:

S(s) =

[
Γ1(s) T (s)
T (s) Γ2(s)

]
.

It relates the voltages across and currents through the ports to
the incident and reflected normalizedwave vectorsa andb,
respectively, via [14]

b(s) = S(s)a(s) , (1)

Network N

1( )fΓ 2( )fΓ

1( )z s

2( )a s

2( )b s

1( )a s

1( )b s

,1( )ov s

1( )i s

1( )v s
+

−
+
−

2( )z s

,2( )ov s

2( )i s

2( )v s
+

−
+
−

( )

( )

s

s

S

Z

Fig. 1. Input and output wave vectors for a two-port network

where,

a(s) =

[
a1(s)
a2(s)

]
, b(s) =

[
b1(s)
b2(s)

]
.

For impedancesz1(s) = z2(s) = 1 Ω, the S-matrix is readily
computed using the impedance matrix

S(s) = (Z(s) + I)−1(Z(s) − I) , (2)

whereI denotes the identity matrix. For a lossless and recip-
rocal network,S satisfies

S(jω)SH(jω) = I , S(jω) = ST (jω) .

In the next section, we discuss a very special but practical class
of planar antenna arrays – uniform circular arrays (UCA). We
shall use the circulant nature of a UCA to ease the analysis and
gain rich insights into the impact of coupling on the bandwidth
of compact arrays.

III. V IRTUAL ANTENNAS

We begin with characterization of the broadband antenna
array S-matrixSA. In order to establishSA, it is convenient
to look at the impedance matrixZA. For example, an antenna
array withN = 2 identical elements placed a distanced apart,1

has a symmetric impedance matrix of the form (cf. Fig. 2)

ZA(jω) =

[
z11(jω) z12(jω)
z12(jω) z11(jω)

]
.

The symmetric nature ofZA above enables us to express it in
terms of its eigen-value decomposition (EVD)

ZA(jω) = QΛA(jω)Q
H , (3)

where the set of unitary eigen-vectors is given by

Q =
1√
2

[
1 1
1 −1

]
,

and the eigen-values by

λ(jω) = {z11(jω) + z12(jω), z11(jω)− z12(jω)} , (4)

henceforth referred to aseigen-impedances. It is important
to point out that the unitary transformationQ above is
frequency-independent. This makes the analysis of the broad-
band matching problem applicable to coupled arrays, and the

1The antenna separationd is specified in terms ofλc – wavelength
corresponding to the center frequencyfc.
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implementation of matching network considerably easier. As
will be discussed later, the matching network can be realized
as a cascade of a frequency-independent decoupling network
followed by a diagonal broadband matching network.

A. Uniform Circular Arrays

A careful observation of the structure ofZA and the unitary
transformationQ reveals that it is straightforward to extend the
entire theory to uniform circular arrays. A uniform circular ar-
ray has a circulant impedance matrix. For a circulantZA with
N elements, the eigen-vectors forZA(jω) = QΛA(jω)Q

H ,
are given by the columns of the unitary matrix

Q =
1√
N




1 1 . . . 1
1 α . . . αN−1

1 α2 . . . α2(N−1)

...
...

...
1 αN−1 . . . α(N−1)(N−1)




whereα = e−2πj/N . The eigen-values (ΛA) are given by the
discrete Fourier transform (DFT) of the first row ofZA.

For example, the spatial unitary transformation that decou-
ples anN = 3 UCA, is given by

Q =
1√
3




1 1 1

1 −1
2 − j

√
3
2 −1

2 + j

√
3
2

1 −1
2 + j

√
3
2 −1

2 − j

√
3
2




and the eigen-impedances by

λ1(jω) = z11(jω) + 2z12(jω) , (5a)

λ2(jω) = z11(jω)− z12(jω) , (5b)

λ3(jω) = λ2(jω) . (5c)

Similarly for N = 4 antennas, we have

Q =
1

2




1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j




and eigen-impedances as

λ1(jω) = z11(jω) + 2z12(jω) + z13(jω) , (6a)

λ2(jω) = z11(jω)− z13(jω) , (6b)

λ3(jω) = z11(jω)− 2z12(jω) + z13(jω) , (6c)

λ4(jω) = λ2(jω) . (6d)

The unitary transformationQ, is essentially an orthogonal
beam-forming matrix implemented using RF networks called
beam-formers [11]. These beam-formers are capable of pro-
ducing N spatially orthogonal beams, hence the operation
represents a spatial DFT.2 In terms of the antenna radiation
patterns, this operation can be thought of as decomposing
the composite array pattern into overlapping, but mutually
orthogonal patterns at the output of the beam-former. For

2One of the well known and widely used matrix for arrays with2n number
of antennas is the Butler matrix [15], representing spatialFFT operations.
However, our case necessitates a more general decoupling matrix.
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Fig. 2. Impedance matrix representation of a2-element array

an illustration of such pattern decomposition, see [12], [13].
Similar analysis, however, can not be extended to uniform
linear arrays for which the array impedance matrix is complex-
symmetric.3

Although the antenna array is anN -port network, it can be
appropriately extended to a2N -port network for mathematical
convenience [4], such that

SA(jω) =

[
S22a(jω) S21a(jω)
S21a(jω) S22a(jω)

]
,

where the originalN -port representation of the antenna array
is represented byS22a block, computed using

S22a(jω) = (ZA(jω) + I)−1(ZA(jω)− I) .

The other blocks must be evaluated based on the lossless
(SH

ASA = I) and reciprocal (SA = ST
A) properties of the

antenna array. The symmetry of the system under considera-
tion and that of the individual blocks constitutingSA, further
allows us to write (using EVD)

SA(jω) =[
Q 0

0 Q

] [
Λ22a(jω) Λ21a(jω)
Λ21a(jω) Λ22a(jω)

] [
QH 0

0 QH

]
,

where

Λ22a(jω) = (ΛA(jω) + I)−1(ΛA(jω)− I) . (7)

B. Impedance Characterization

Next, we characterize the individual entries of antenna
impedance matrixZA over a broad range of frequencies.
Fano’s broadband matching theory requires an impedance to
be analytic over the entires-plane. In order words, the resistive
part must be an even function ofω and the reactive part an
odd function ofω. Since the eigen-impedances are a linear
function of self and mutual-impedances, it suffices to consider
an impedance model fit for the eigen-values of the antenna
impedance matrix.

Although the resistive part of the eigen-impedances is, in
general, frequency-dependent, for reasons outlined next,we
assume that it is fairly constant over the frequency range
of interest (say,10% relative bandwidth). First, the resistive

3Although a unitary transformation for such matrices existsfor each data-
point over the frequency range, it is, in general, frequency-dependent.
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part variation over frequency – as obtained from numerical
EM code (NEC) simulations – will be shown to be much
slower than the reactive part. Second, the system analysis
is greatly simplified by such as assumption. The system
transfer function, which is essentially governed by the antenna
reflection coefficients (magnitude-squared), will be shownto
closely approximate that of a series RLC model.4 Thus, eigen-
impedances assume the formλ(jω) = R + jX(ω), whereR
andX represent the real and imaginary parts, respectively.

The eigen-impedances can essentially be regarded asvirtual
antennascomprising an uncoupled antenna array. In order to
analyze their frequency responses, we must first characterize
the eigen-impedances. Consider an array of two ideal and
identicalλ/2 resonant dipole antennas placed sufficiently far
apart. Such a resonant antenna can be well modeled by a series
RLC circuit within a 10% relative bandwidth [16], [17]. For
such an array,ZA is diagonal. A resonant antenna with a series
RLC equivalent, can alternatively be expressed in terms of its
resonant frequencyω0 andquality factorQ, where:

ω0 =
1√
LC

, Q =
1

R

√
L

C
.

As the spacing between the antennas decreases, EM inter-
actions start to alter the spectral responses of the individual
antennas. Numerical simulations using NEC suggest that the
eigen-impedances also conform to that of a resonant antenna.
Hence, we model them using a series RLC equivalent, or
resonance parameters(Q,ω0) as

λn(s) = Rn + Lns+
1

Cns
, Rn, Ln, Cn > 0 ,

λn(jω) = Rn

[
1 + jQn

(
ω

ω0n
− ω0n

ω

)]
,

whereLn = RnQn/ω0n , Cn = 1/QnRnω0n. The corre-
sponding reflection and transmission coefficients

Λ11a(s) =

[
Γ′

1(s) 0
0 Γ′

2(s)

]
,

Λ21a(s) =

[
T ′

1(s) 0
0 T ′

2(s)

]
,

4Without loss of generality, more rigorous impedance modelscan be
employed to analyze such coupled MIMO systems using the approach outlined
in this paper.

normalized toRn Ω impedances are given by

Γ′

n(s) =
1 + (s/ω0n)

2

1 + (s/ω0n)2 + 2(s/Qnω0n)
, (8)

T ′

n(s) =

(
1 +

Qn

2

(
ω0n

s
+

s

ω0n

))
−1

. (9)

We refer to the frequency response of these virtual antennas,
denoted by

|T ′

n(f)|2 = 1− |Γ′

n(f)|2 =
4f2

4f2 +Q2
n(f

2 − f2
0n)

2
(10)

aseigen-modesof the coupled array.

C. Broadband Matching Constraints

The broadband matching network design for this uncoupled
system is rather straight-forward. The proposed matching
network implementation is illustrated in Fig. 3. The purpose of
matching is essentially shaping these spectral responses such
that the overall system has a frequency-flat response over the
bandwidth of interest. Ideally, one would expect to choose a
matching network that ensures

|Tn(f)|2 = 1− |Γn(f)|2, f ∈ B ,

is unity. Here,Tn, Γn correspond to the transmission and
reflection coefficient of thecascadeof the antenna array and
the matching network. However, Fano’s broadband matching
theory [18] reveals that there exist gain-bandwidth trade-
offs for physically realizable matching networks, built using
lumped passive elements. It imposes certain integral bounds –
determined by the source and load impedances connecting the
matching network – on the matching efficiency of the network.

For the series RLC model considered in our work, the set
of broadband matching constraints are given by

(a)

∫

B

log
1

|Γn(f)|2
df =

ω0n

Qn
−
∑

i

zn,ri , (11a)

(b)

∫

B

f−2 log
1

|Γn(f)|2
df =

4π2

ω0nQn
−
∑

i

z−1
n,ri , (11b)

wherezr represent additional zeros inΓn, that may sometimes
be necessary to introduce in the right-half complex plane
(Re(zr) > 0) in order to satisfy all of these constraints.5

5zr must occur in conjugate pair if they are complex. The authorswould
like to point out a typo in [19], Eq. (14b); the correct bound is as stated above.
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Fig. 4. Impedance:N = 2, d = 0.25λc

Observe how the bound is inversely proportional to the antenna
Q. Clearly, an antenna with a broader frequency response
(lower Q) offers better gain-bandwidth trade-offs.

IV. E IGEN-MODE ILLUSTRATIONS

Next we present numerical results forN = 2, 3, 4 element
array of dipole antennas with length6 0.475λc and radius
10−3λc for a variety of antenna spacingsd.

A. Impedance Parameters

Fig. 4 shows the broadband eigen-impedances calculated
using NEC forN = 2 and d = 0.25λc. The resistive and
reactive parts of the impedance are in general, non-linear
functions of frequency. The figure also shows the imaginary
part of eigen-impedances obtained by series RLC-fit which
evidently, is in close agreement for bandwidths on the order
of 10%. Although we consider a series RLC model for ease of
analysis, the main results and ideas conveyed in this work can
be applied to more rigorous models, as long as these models
are analytic over the entire complex plane, in order to apply
Fano’s matching theory.

Fig. 5 shows the corresponding eigen-modes found by
curve-fitting the resonance parameters(Q,ω0) for the same
setting. It clearly shows the impact coupling has on the
bandwidth of the two virtual antennas. Mutual coupling is
seen to decompose a two antenna coupled array with identical
spatial modes into two spectrally non-identical eigen-modes –
one broadbandand the othernarrowband. At much smaller
spacings (e.g.,d = 0.1λc), the narrower mode is essentially
non-existent. The shrinking bandwidth of certain eigen-modes
with increasing coupling is a manifestation of array super-
directivity [20]. Table I summarizes this data forN = 2,
d = 0.25λc.

Similar results have appeared in [12], where the common
and difference modes (essentially, the eigen-modes) of a2-
antenna coupled array have been illustrated ford = 0.1λc,

6The length is chosen such that each antenna in isolation, hasa relative
resonance frequency of1.
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Fig. 5. Antenna eigen-modes:N = 2, d = 0.25λc

along with the orthogonal radiation patterns and a simulation
test-bed to realize the system. [13] further extends the findings
and implementation results to a4-antenna circular array. It also
proposes equivalent circuit models for each of the four eigen-
modes using ladder LC networks, as opposed to the series
RLC fit assumed in this paper.

B. Usable Bandwidths

Microwave/RF bandwidths are usually parameterized by
voltage standing-wave ratio(VSWR): a metric based on
matching efficiency, indicative of the range of voltage fluctu-
ations in the standing wave formed due to reflections arising
from an impedance-mismatch [21],

VSWR=
1 + |Γ(ω)|
1− |Γ(ω)| .

The higher this ratio, the larger the mismatch and smaller the
bandwidth. Note that0 < |Γ(ω)| < 1, implies VSWR≥ 1.
A convenient measure of the RF bandwidth is defined as the

TABLE I
EIGEN-IMPEDANCE PARAMETERS:N = 2, d = 0.25λc

Parameter Value

Antenna type Dipole
Antenna length 0.475λc

Antenna radius 0.001λc

Quality factor (Q1) 3.75
Resonant frequency (f01) 1.0425fc
R1 118.76 Ω
L1 = Q1R1/ω01 67.99/fc H
C1 = 1/Q1R1ω01 342.78/fc µF
Quality factor (Q2) 16
Resonant frequency (f02) 0.9675fc
R2 28.31 Ω
L2 = Q2R2/ω02 74.53/fc H
C2 = 1/Q2R2ω02 1.4/fc mF
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frequency range such that [21], [16],1 ≤ VSWR≤ 2, i.e.,

|Γ(ω)| ≤ 1/3 =⇒ 1− |Γ(ω)|2 ≥ 8/9 .

Fig. 6 shows the VSWR and usable bandwidth for eigen-
impedances calculated using NEC with terminationR1 and
R2, respectively.

C. Discussion

These results shed substantial light on the impact coupling
has in governing the RF bandwidth of compact arrays. It
offers intuitively-coherent interpretations – as the spacing goes
to zero, in limit, the narrowband mode must vanish, leaving
behind a system that behaves like a single antenna system.
The other key observation – that the two modes are centered
at different resonant frequencies – explains that a multiport
matching network designed with narrowband assumptions is
sub-optimal and that physically realizable optimal networks
ought to be optimized over the bandwidth. It also highlightsthe
importance of antenna design that can exploit this phenomenon
by trimming the antenna lengths and centering these modes so
as to maximize the diversity gains.

Fig. 7–9 illustrate eigen-mode behaviors for different uni-
form circular array sizesN = 2, 3, 4, and antenna separa-
tions.7 As expected, the impact of coupling at smaller spacings
becomes profound as the array size grows. An analogy for
the asymmetric behavior of eigen-modes can be drawn from
quarter-wave transformers, a well known matching technique
in microwave literature [22]. Each virtual antenna can be
thought of as a transformer with a different length and
impedance, thereby matching the other virtual antenna at a
different frequency with a different bandwidth efficiency.

V. D IVERSITY-OFDM FOR COMPACT ARRAYS

Having analyzed how coupling impacts the RF bandwidth
in the context of circular arrays, next, we evaluate the capacity
of broadband diversity systems for variable antenna spacing.
We choose OFDM as the broadband transmission scheme for
our system. But first, we introduce the basic elements of
multiport networks useful in modeling the coupled channel
vector, followed by a system model.

A. Broadband Coupled Array Model

To that end, consider the receive diversity system with
N antennas, as shown in Fig. 10 in its S-matrix network
representation. It shows the cascade of two2N -port networks
– Na, representing a coupled lossless and reciprocal antenna
array , andNm representing the lossless and reciprocal
matching network – terminated into a bank of uncoupled
load impedanceszL. The load here is indicative of low
noise amplifiers and other downstream components of an RF
chain, primarily, mixers and A/D converters. The EM field
incident on the receive antenna array induces an open-circuit
voltage across the antenna terminals, which acts as thesource
excitation, represented by the input wave vectora1 toward the
left of the antenna array.

7In the context of a UCA,d is defined as the separation between adjacent
antennas.
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Fig. 6. VSWR of a2-element array ford = 0.25λc

The2N×2N S-matrices for the antenna array and matching
network (in N × N block-matrix format) normalized with
respect to1 Ω reference impedances are given by

SA =

[
S11a S12a

S21a S22a

]
,

SM =

[
S11m S12m

S21m S22m

]
,

where we have omitted the frequency-dependence by sup-
pressing(s) for aesthetic reasons. We shall henceforth assume
it implied, unless stated otherwise. The cascaded2N -port
network has an S-matrix

SC = SA ⊗ SM =

[
S11c S12c

S21c S22c

]
,

where,⊗ represents the cascading operation and

S11c = S11a + S12a(I− S11mS22a)
−1S11mS21a , (12a)

S12c = S12a(I− S11mS22a)
−1S12m , (12b)

S21c = S21m(I− S22aS11m)−1S21a , (12c)

S22c = S22m + S21m(I− S22aS11m)−1S22aS12m . (12d)

The inward and outward traveling wave vectors are related by
(1), except that, the input and output wave-vectors at the left
are now vectors, denoted bya1 andb1, respectively. Those
on the right side are denoted bya2 andb2, such that

[
b1

b2

]
=

[
S11c S12c

S21c S22c

] [
a1
a2

]
. (13)

It can be easily shown that optimal matching combined with
the decoupling network (spatial-DFT) can be realized by

SM =

[
Q 0

0 I

] [
Λ11m Λ12m

Λ21m Λ22m

] [
QH 0

0 I

]
,

such that from (12), the overall cascaded network can be
rewritten in block-matrix format as

SC =

[
Q 0

0 Q

] [
Γ T

T Γ

] [
QH 0

0 QH

]
,
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Fig. 7. Antenna eigen-modes:N = 2
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Fig. 8. Antenna eigen-modes:N = 3
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Fig. 10. S-matrix representation of RF front-end

where,

Γ = Λ11a +Λ12a(I−Λ11mΛ22a)
−1Λ11mΛ21a .

From a broadband matching perspective, it suffices to analyze
the constraints on the eigen-values ofS11c given above. This is
once again equivalent to saying that the problem of matching
the coupled identical antenna arrayZA has been replaced by
that of a uncoupled non-identicalvirtual antenna arrayΛA.
The entries of

Γ(s) =

[
Γ1(s) 0
0 Γ2(s)

]
,

represent the reflection coefficients at the output of the match-
ing network.

B. Signal Model

We begin by presenting the signal model of a traditional
Diversity-OFDM system with1 transmit andN receive an-
tennas, which we shall later extend to incorporate coupling. It
is assumed that the separation between the antennas is such
that coupling between them is negligible.

It is well known that the use of orthogonal sub-carriers
in OFDM with a cyclic prefix converts a frequency-selective
MIMO channel into a set of parallel frequency-flat MIMO
channels [23]. A Diversity-OFDM system withK sub-carriers
(spanning bandwidthB) modulated by symbolssk wherek
represents thek-th sub-carrier, is well modeled by

rk = hksk + nk , k = 1, . . . ,K. (14)

Here, rk is the N × 1 received vector symbol on thek-th
sub-carrier andnk is theN × 1 additive white Gaussian noise
(AWGN) vector at the receiver with zero mean and covariance8

Rnk
= E[nkn

H
k ], denoted bynk ∼ CN (0,Rnk

). The channel
vector for thek-th sub-carrier is given by

hk =




h1[k]
...

hN [k]


 , k = 1, . . . ,K.

8
E[·] represents the expectation operator.

The transmit and receive spatial fading-correlation is modeled
using the Kronecker model [24] such that thel-th tap time-
domain channel vector (obtained via inverse-Fourier trans-
form) can be expressed as

h̃l = R
1/2
h

h̃wl (15)

whereh̃wl represents the1×N white channel vector having
i.i.d. complex Gaussian entries with zero mean and unit
varianceh̃wl ∼ CN (0, I), andRh = (1/N)E[h̃lh̃

H
l ] denotes

the receiver correlation.
Owing to the orthogonal decomposition of the frequency

selective channel, the cumulative Diversity-OFDM system can
be represented in matrix notation by

r = Hs+ n , (16)

where,H is aKN ×K block diagonal matrix given by

H =




h1

. . .
hK


 .

TheKN × 1 received vectorr, K × 1 transmit vectors and
KN × 1 noise vectorn are given by

r =




r1
...
rK


 , s =




s1
...
sK


 , n =




n1

...
nK


 .

The Shannon capacity for such a system (in nats/s/Hz) is given
by [25]

C =
1

K
max
Rs

{
log det

(
I +R

−1
n

HRsH
H
)}

(17)

where,I is anNK ×NK identity matrix, andRs andRn

are the transmit-signal and noise covariances:

Rs = E[ssH ] , Rn = E[nnH ] . (18)

There have been numerous extensions to the above model in
order to account for some of the channel non-idealities, such
as fading correlation at the transmitter and/or the receiver,
either due to smaller antenna separation or non-richness of
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the multipath fading environment. The broadband antenna
behavior, however, has mostly been assumed ideal. In the
next section, we introduce a channel model that incorporates
antenna coupling into the signal-model outlined in (14).

C. Coupled Signal Model

To model the impact of coupling,hk must be modified
to include thetransmission matrixor transmissivityof the
cascaded network (of antenna array and matching network)
modeled byS21c(fk). We skip the tedious network analysis
and present the effective channel vector at thek-th sub-carrier
directly9:

h′

k = S21m,k(I− S22a,kS11m,k)
−1S21a,khk

= S21c,khk . (19)

In the presence of mutual coupling, the signal model can thus
be expressed for thek-th sub-carrier as

rk = Skhksk + nk , (20)

whereSk , S21c,k = S21c(fk).

D. Receiver Noise Model

The additive noisenk is usually modeled as a combination
of noise from various sources in the RF chain [7]. In general,
the noise sources can be categorized into three types: (a)sky
noiseor antenna noise, consisting of thermal radiation, cosmic
background, and interference from other devices, (b)amplifier
noise, and (c)downstream noise, consisting of noise from the
rest of the RF chain components.

Alternatively, we classify the noise as antenna noise, and
load noise – a combination of amplifier and downstream noise
[27]. Furthermore, the load noise in general can be considered
to be a combination offorward travelingnoisenf , andreverse
traveling noisenr. Thus, the total noise atk-th sub-carrier
referenced to the load, is given by

nk = S21c,kns,k + nf,k + S22c,knr,k . (21)

The sky noise and load noise can be well modeled as statisti-
cally independent, zero-mean, circularly symmetric, complex
Gaussian (ZMCSCG) and spectrally white:

ns ∼ CN (0, 4kBTABRA) , nf ∼ CN (0, 4kBTfBI) ,

nr ∼ CN (0, 4kBTrBI) ,

a reasonable assumption for bandwidths less than10%. Here,
TA denotes the antenna temperature in Kelvin, whileTf and
Tr are theeffective noise temperatureswhich can be computed
from the amplifier noise parameters (cf. [28, Chap. 1]).

The reverse and forward traveling noise waves are in
general, correlated to an extent determined by exact amplifier
models (cf. [28, Chap. 1]). and the noise covariance by

Rnk
= 4kBB

[
TASkRAS

H
k + TfI+ . . .

. . .+ Tr(I− SkS
H
k )− 2Re (T ∗

c Sk)
]

9Interested reader is referred to [26].

where,kB is Boltzmann constant,B is the system bandwidth,
RA = Re(ZA) is frequency independent (by assumption),
andTc represents the correlation between forward and reverse
traveling noise. Due to the limited scope of this paper, we
assumeTc is negligible compared toTf andTr, and restrict
the impact of various noise sources by varyingTA, Tf andTr

relative to the standard temperatureT0.
Observe thatSk andRA admit the familiar EVD

Sk = QTkQ
H , RA = QRe(ΛA)Q

H . (22)

This allows us to diagonalize the noise covariance byQ, i.e.,

Rnk
= QΣnk

QH ,

such that,

Σnk
= 4kBB

[
(TA − Tr)Re(ΛA)(I − ΓkΓ

H
k ) + . . .

. . .+ (Tf + Tr)I
]
, (23)

where we have used the lossless property of the network, i.e.,
TkT

H
k = I−ΓkΓ

H
k . We normalize the noise covariance such

that for i.i.d. case,Σnk
= N0I :

N0 = 4kBB
(
TA Re(zA)(1− |Γiid|2) + Tf + Tr|Γiid|2

)
.

E. Capacity

The cumulative Diversity-OFDM system in the presence of
mutual coupling can be written in matrix format (similar to
(16)), as

r = SHs+ n (24)

whereS is theKN ×KN block-diagonal matrix given by

S =




S1

. . .
SK


 .

The Shannon capacity that incorporates the impact of mutual
coupling can thus be represented by

C =
1

K
max
Rs,S

{
log det

(
I +

1

N
R

−1
n

SHRsH
H
S

H

)}

where the optimization space now also includes the matching
network design. A recent study has analyzed information-
theoretic limits of such a system in the presence of channel
state information (CSI) that jointly optimizes transmit power
allocation and receiver broadband matching [29] – such that
the optimal solution follows a mutual space-frequency water-
pouring characteristic.

In this work, we address a receiver design that operates
fairly well over the entire signal bandwidth and is indepen-
dent of the power allocation and channel fading conditions.
By employing appropriate decoupling networks, the capacity
subject to uniform power allocation acrossK sub-carriers
(Rs = EsI), can be expressed as

C =
1

K
max
S

log det

(
I +

Es
N0

R
−1
n

SHH
H
S

H

)

=
1

K
max
S

log det

(
I +

Es
N0

H
H
QΣ−1

n
TT

H
Q

H
H

)
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where we have expressedS andRn as:

S = QTQ
H , Rn = QΣnQ

H ,

usingKN ×KN block-diagonal matrices

Q =




Q

. . .
Q


 , T =




T1

. . .
TK


 ,

Σn =




Σn1

. . .
ΣnK


 .

The capacity can thus be simplified to

C =
1

K

K∑

k=1

max
Γk

log

(
1 +

Es
N0

ĥH
k Σ−1

nk
(I− ΓkΓ

H
k )ĥk

)

where,ĥk = QHhk represents the effective fading path-gains.
A simple and practical solution to the problem at hand is a

box-carmatching characteristic at the receiver, defined as:

Γ(f) =

{
Γ0, f ∈ B
1, elsewhere

such that

C =
1

K

K∑

k=1

log

(
1 +

Es
N0

ĥH
k Σ−1

nk
(I− ΓkΓ

H
k )ĥk

)
.

VI. RESULTS

Monte-Carlo simulations are carried out for100, 000 chan-
nel realizations. We assume a quasi-static (or block) fad-
ing channel, i.e., the channel remains constant during each
OFDM symbol. The fading paths gains are modeled as i.i.d.
complex Gaussian entries with zero mean and unit variance,
h̃wl ∼ CN (0, I). For anN -antenna uniform circular array, the
incident electric field is modeled in NEC as a superposition
of K ′ = 32 vertically polarized plane waves with i.i.d. phases
uniformly distributed on[0, 2π). The angles-of-arrival (AOA)
of the plane waves,φ0, . . . , φK′

−1, are uniformly spaced in
azimuth from0 to 2π. Under these conditions, the open-circuit
fading path gains form-th andn-th antenna separated bydmn

are approximately Gaussian with correlation matrix (cf. (15))

[Rh]nm =

K′
−1∑

k=0

gn(φk)g
∗

m(φk)e
j2πdnm cos(φk)/λ ,

where gn(φ) is the open-circuit voltage induced in thenth
antenna by a zero-phase plane wave with AOAφ, normalized
so that

∑
k |gn(φk)|2 = 1 for an isolated dipole.

For each virtual antennaΓk, we consider a box-car match-
ing profile over a relative bandwidthW = B/fc, such that
the matching constraints (11) manifest themselves as

(a) W log
1

|Γ0|2
=

2π

Q
− 1

f0

∑

i

zri , (25a)

(b)
W

(1−W 2/4)
log

1

|Γ0|2
=

2π

Q
− 1

f0

∑

i

z−1
ri . (25b)
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Fig. 11. Diversity-OFDM: Outage capacity vs. spacing,N = 2

It suffices to consider a pair of complex zeros in the right-half
complex planezr1 = z∗r2 [17] (see Appendix), such that10

W log
1

|Γ0|2
≤

(
1−W 2/4

) 2π
Q

,

and
|Γ0|2 = e−2π(1−W 2/4)/QW .

The usable eigen-modes are determined based on the VSWR
< 2 criteria. By adjusting the antenna lengths, the two eigen-
mode resonant frequencies can be altered to maximize the
overlap aroundfc, so as to increase the diversity order of the
system. The OFDM parameters for simulation are inspired by
IEEE 802.11a standard, withK = 64 sub-carriers spanning a
bandwidth ofB = 20 MHz. The results are presented for a
load-noise dominant scenario:(TA : Tf : Tr) = (1 : 2 : 0), for
W = 2% andEs/N0 = 10 dB SNR. We measure the system
performance in terms of the outage capacity – probability that
the capacity falls below a certain thresholdC0:

Cout = Pr(C < C0) .

Fig. 11 shows1% outage capacity for different antenna
spacings for two element arrays. The performance predictedby
these simulations shows that with increasing antenna spacing,
the capacity increases for small spacings and starts to saturate
around a quarter of a wave-length spacing. This behavior
is in stark contrast to some of the studies which (assuming
narrowband models) predict that, in theory, it is possible to
achieve IID performance using optimal multiport matching
networks even at very small spacings [7]. The answer clearly
lies in bringing the bandwidth variable into the equation
and re-visiting the communication-theoretic formulationfor
MIMO systems with mutual coupling. The results also suggest
that in order to exploit diversity, practical arrays can be built
with a separation of less than half-a-wavelength spacing – an
oft-cited assumption in MIMO literature.

10Strictly speaking, considering only the first constraint yields an upper
bound on capacity via|Γ0|2 = e−2π/QW , while only the second constraint
yields a lower bound via|Γ0|2 = e−2π(1−W2/4)/QW . For smallW , the
upper and lower bounds are quite tight.
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Fig. 12 shows1% outage capacity vs. antenna spacing for
a four element UCA atEs/N0 = 10 dB SNR, for the same
settings. The impact of relative noise level from various noise
sources, can be studied in a similar manner by varyingTA, Tf ,
andTr relative toT0; the capacity still grows with increasing
antenna separation and eventually saturates to i.i.d. case.

VII. C ONCLUSION

In this paper, we primarily investigated the relationship
between coupling and the bandwidth of compact multi-antenna
systems, and derived the capacity limits of a diversity system
with box-car matching. We analyzed the spatial modes of a
compact antenna array and demonstrated that they exhibit dif-
ferent bandwidths and resonant frequencies; a phenomenon not
observed in arrays with large antenna separation. Furthermore,
we showed that traditional broadband matching theory can be
applied to these eigen-modes in a straight-forward manner for
uniform circular arrays. Although we considered equal band-
widths for all of the eigen-modes, a differentiated approach
with respect to the mode bandwidths can be applied to further
optimize the performance of Diversity-OFDM systems.

We discussed, how, in limit as the spacing between the
antenna elements goes to zero, the most narrowband mode
vanishes under strong coupling, leaving behind a system with
a lower diversity order. The other key observation that the
these modes are centered at different resonant frequencies
– explains that a multiport matching network designed with
narrowband assumptions is sub-optimal and that physically
realizable optimal networks ought to be optimized over the
bandwidth.

We also presented a communication-theoretic framework for
Diversity-OFDM systems with mutual coupling and broadband
matching. The results show that capacity increases with an-
tenna spacing and that a quarter of a wavelength separation
might suffice for most practical applications. An information-
theoretic approach unifying the transceiver design with the
overall system design, including signal processing aspects can
lead to a new theory of compact MIMO communications.

APPENDIX

MATCHING CONSTRAINTS

Let us consider a pair of complex zeros in the right-half
complex planezr1 = z∗r2 = α + jβ. Substituting normalized
frequencyfn = f/f0 in (11), the matching constraints are
given by

∫
log

1

|Γ(f)|2 df =
ω0

Q
− (zr1 + zr2)

∫
log

1

|Γ(f)|2 df =
2πf0
Q

− 2α
∫

log
1

|Γ(fn)|2
dfn =

2π

Q
− 2α

f0
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Fig. 12. Diversity-OFDM: Outage capacity vs. spacing,N = 4

and
∫

1

f2
log

1

|Γ(f)|2 df =
4π2

ω0Q
−
(
z−1
r1 + z−1

r2

)

∫
1

f2
log

1

|Γ(f)|2 df =
2π

f0Q
− 2α

|zr1|2∫
1

f2
n

log
1

|Γ(fn)|2
dfn =

2π

Q
− 2αf0

|zr1|2

For a box-car reflection coefficient,Γ(fn) = Γ0 over the
frequency-range

1−W/2 ≤ fn ≤ 1 +W/2 ,

the two constraints yield:

WG0 =
2π

Q
− 2α

f0(
W

1−W 2/4

)
G0 =

2π

Q
− 2αf0

|zr1|2

whereG0 , − log |Γ0|2. By choosing|zr1|2 = f2
0 , we get the

least upper bound
(

W

1−W 2/4

)
G0 ≤ 2π

Q
− 2α

f0
.

Choosingα ≫ β (such thatα ≈ √
f0 andα/f0 ≪ 1), we

have
G0 ≤

(
1−W 2/4

) 2π

QW
.
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