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Abstract

In this paper, the problem of opportunistic channel sensing access in cognitive radio networks
when the sensing is imperfect and a secondary user hasditnéffic to send at a time is investigated.
Primary users’ statistical information is assumed to benamkn, and therefore, a secondary user needs to
learn the information online during channel sensing an@&s&@rocess, which means learning loss, also
referred to as regret, is inevitable. In this research, e avhen all potential channels can be sensed
simultaneously is investigated first. The channel accessess is modeled as a multi-armed bandit
problem with side observation. And channel access ruleslareed and theoretically proved to have
asymptotically finite regret. Then the case when the seggnaser can sense only a limited number of
channels at a time is investigated. The channel sensingaes$sprocess is modeled as a bi-level multi-
armed bandit problem. It is shown that any adaptive rule h#saat logarithmic regret. Then we derive
channel sensing and access rules and theoretically preyehtive logarithmic regret asymptotically and
with finite time. The effectiveness of the derived rules ifidated by computer simulation.

Keywords— Cognitive radio; opportunistic channel access; bandiblem; channel exploration; channel

exploitation.

. INTRODUCTION

Cognitive radio has emerged as an effective solution twialle the spectrum shortage problem and
improve spectrum efficiency. It has received tremendousares attentions recently [1]-[6]. In a cognitive
radio network, opportunistic spectrum access (OSA) is usedhich the unlicensed users, referred to as
secondary userssearch forspectrum holeshrough sensing, and utilize the observed spectrum opportu
nities for their data transmission. Optimal OSA when theoséary users have statistical information of
licensed users (referred to psmary user$, such as information of free probabilities of primary chals,
has been addressed in [7]-[11], to maximize transmissipaaity, optimize transmission power efficiency,
etc. However, research on the optimal OSA withaupriori statistical knowledge of primary channels
is still in its infancy. The research challenge is how to aghithe optimal tradeoff between channel
exploration (the process to sense the channels so as to tlearstatistical information) and channel
exploitation (the process to utilize observed channel dppdies). If statistical information of primary
channels is known in advance, a secondary user can selemptingal channels to sense and subsequently
access sensed-free channels. However, without such iafamm a learning process is needed, and the
secondary user should also explore suboptimal channelaghrsensing to learn statistical information
of those channels. Therefore, learning loss is expectedpaced to the case that the secondary user

always selects the optimal channels. In the literature,cti@nnel sensing and access process has been
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modeled as a multi-armed bandit problem (MABP) [12]. For afBW, the loss due to learning until time
instantt is represented by theegret R(t), the difference between the actual reward of an arm-setecti
rule and the reward of a genie-aided rule that has knownsstai information of the arms [13]. It is
proved in [14] that for anyadaptive allocation ru@the regret is at leagtInt whent — oo, where the
factor i is determined by the statistical information of arms. A rtiat achieves the lower bound pf
is calledefficiently optimaland a rule with regreD(Int) is calledorder optimal For OSA in cognitive
radio networks, reference [12] derives order optimal ritewell coordinate the balance between channel
exploration and exploitation, with the assumption of perfehannel sensing. Although not efficiently
optimal, the rules arsample mean based index rulgs$], and their implementation is much simpler
than the efficiently optimal rules given in [14]. Moreoverregret bound is also observed with finiﬁtg
in rules in [12], while no such bound is observed for finite the efficiently optimal rules in [14]. A
distributed cognitive sensing problem is investigated forchulated as amdversary bandit problenm
[16], where no statistical assumption is made on channtdsstdulti-user OSA in distributed manner is
investigated in [17], modeled as an MABP with multiple plesteln the above existing research efforts
for OSA in cognitive radio, perfect channel sensing is assdjnand each secondary user can utilize all
observed spectrum opportunities (i.e., infinitely baclled traffic is assumed at the secondary user).

Unlike existing research efforts, this work explores OSAewl) imperfect channel sensing is assumed
and ii) a secondary user has only limited “access demanel; (. may not use all observed spectrum
opportunities at a time period). Our motivation for i) is thdannel sensing is always imperfect in a
real network. And our motivation for ii) is that a user may dawnly limited traffic to send at a time
period (for example, for a voice conversatiEn$imiIar setup with limited access demand is adopted
in [18]-[20]. Therefore, unlike existing OSA research wdéhnere is only one decision (i.e., to decide
which channels to sense, and subsequently access all sie@sezhannels), we have two decisions in
the OSA in our work: to decide which channels to sense; andnifiraber of channels are sensed free,
to decide which channels to access. Two cases are consideoed work:

o Case |: when a secondary user can sense all potential csasinalltaneously, referred to &sll

channel sensing
« Case Il: when a secondary user can sense a subset of theigdatbahnels simultaneously, referred
to aspartial channel sensing

Case | is investigate in Secti@n Il, in which we derive OSAesiaind theoretically prove that they have

asymptotically finite regrets. Case Il is investigated irct®m [} in which we derive OSA rules and

IThis means the decisions of the rule are only based on oliggrsdn the history [14].
2In this paper, when we say “finit&, it means sufficiently large and finite

3Actually the case when a secondary user has unlimited acegsand can be viewed as a special case of our work.
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theoretically prove that they have regré¥$ln ¢) with ¢ — oo and with finitet. Performance evaluation
of the derived OSA rules is given in Sectibn] IV, followed bynctusion remarks in Sectidn] V.

II. CASEIl: wiTH FuLL CHANNEL SENSING

Consider a slotted system, where time is partitioned imtssbnd the duration of each slots For

a secondary user, there aké potential primary channels, denoted as Chaniels..., N, respectively.
In each slot, Channél(i € {1,2,..., N}) is free (i.e., without primary activities) with probaltlif;, and
0; is unknown by the secondary user. L&{j) = 1 and .S;(j) = 0 denote Channel is free and busy,
respectively, at Sloj. For each channel, the channel states (busy or free) vagpardiently from a slot

to another. And theV channels have independent channel states.

Each slot consists of a sensing period with duratiand data transmission period with duratiBr-7.

For each slot, during the sensing period the secondary eseses all theV channels. Among all the
sensed-free channels, the secondary user can accessgnsmit its data over) up t& channels in the
data transmission period. For each accessed channelatigriission rate is denotédsl

During the sensing in Slot, denoteX(j) = (X1(j), X2(j), ..., Xn(j)) as the sensing result of thé
channels, whereX;(j) = 1 and X;(j) = 0 mean Channel is sensed to be free and busy, respectively.
Since sensing errors are inevitable, we &t denote the detection probability of Chanriei.e., the
probability of detecting the primary user activity if theie primary user activity), andj} denote the
false-alarm probability of Channel(i.e., the probability of mistakenly estimating that thénparry user
is active when there is actually no primary user activity).

Since the secondary user senses allXhehannels, the only decision of the secondary user to make is
on which channel(s) to access based on its sensing resysrotect primary users, only channels sensed
free can be accessed. Since primary users’ statisticahiafiion © = (01,0, ...,0N) is unknown, online
learning is needed for the secondary user to esti®atin the following, we first investigate the situation
of single channel access (i.€¢ = 1, the secondary user can or need to access only one channel at a
slot), and subsequently extend the research result to tiltisn of multiple channel access (i.&, > 2,
the secondary user can or need to access more than one chamuakdneously at a slot).

A. Single Channel Access at a Slét & 1)

To evaluate the performance of a channel access rule, wéegeetformance of a genie-aided rule (in
which the channel statistical informati@ is known) as a benchmark for comparison. Until Siothe
expected reward, defined as the total number of bits tratesirity the secondary user, of the genie-aided
rule is given asjile(T —1)E iréqzag)E[Si(jﬂXi(j) =1]|, whereZ(j) denotes the set of channels
sensed free at Slgt and E[-] denotes expectation. In the reward expression, the oufercgation is for
Z(j), and the inner expectation is féf;(j).



For any adaptive allocation rule denotedwherey)(j) = i means Channélis decided to be accessed
at Slotj, the expected reward until Slotis th (T —71) ]zvj(l - P})HiProtiz/z(j) = 1), where Prob)
means probability of an event. = =

The regret (also the learning loss) of ruteuntil Slot ¢, defined as the difference between the expected

rewards ofy) and the genie-aided rule, is given as

t t N
Rit,) = 32 BI-0E | s B[S()1X,(0) = 1| -3 BE—1) Y (1-Popronu() = . @)
j=1 1€L() j=1 i=1

Since the secondary user can sense all the channels befecérgea channel to access, the channel
access process can be modeled ad/&BP with side observatiof21]. For an MABP, it is extremely
hard to derive an optimal channel access strategy suchhibaegret is minimized. Therefore, researchers
instead focus on regret bound in asymptotic sense. For deaimp[12], asymptotically order optimal
rules are derived such that the regrefint) whent — co. In our research, we also focus on channel
access rule with good asymptotic performance such as asejingily finite regret. Note that fotwo-
armedbandit problem with side observation, reference [21] gaeasle with asymptotically finite regret
underdirect informationsetting. In our work, we derive a rule with asymptoticallyiténregret for our
multi-armedbandit problem with side observation, as follows.

For sensing of theV channels, we have" possible combinations of the sensing result. Dedbtas
the set of the2" possible combinations. For eaehe U/, at each slot (say Sla) we keep a record of
L., which denotes the rate af as the sensing result, given as the ratio of the number of slotvhich
u is the sensing result to. Also defineRfaT as the probability that is the sensing result at a slot,
which is numerically calculated assuming tht is the vector of free probabilities of th& channels.

Our proposed channel access rule is shown in Algorthm 1.

Algorithm 1 Single Channel Access with Full Channel Sensing at Slot

1: SenseN channels, obtain sensing resil{¢), and update.,,, v € U.
2: Construct candidate s€it) of the form

Ct)y=< e § (P®" — L,)? < o i%fl] E (P® — L,)? +%
e , N
uel uel

3: Arbitrarily pick up © € C(t), and calculate conditionally expected rewal(T —
T)E [Si(t)|X;(t) = 1] (i € Z(t)) by using® as the vector of channel free probabilities. Héie)
denotes the set of channels sensed free attSlot

4: if Z(t) is emptythen

5. Do not access any channel at Siot

6: else

7:  Access Channel* = arg max E'[S;(t)| X;(t) = 1].

i€Z(t)




Theorem 1:Algorithm [ achieves asymptotically finite regret; thatlisy sup R(t) < co.

Proof: See AppendiX]|. e [ |
Theorem 1L indicates that the performance of Algorifiim 1 igpssingly good through full channel
sensing prior to channel access. As a comparison, in the ddeved in [12] where the secondary user
senses one channel with perfect sensing, performand&©f~ O(Int) is achieved, which means the

regret goes to infinity wheh — oc.

Algorithm [1 suffers from high complexity in the constructiof candidate se€(¢) in each slot. To
reduce complexity, an alternative channel access rule km#ar complexity is introduced, as given in
Algorithm [2.

Algorithm 2 Single Channel Access with Full Channel Sensing at Slot
1: SenseN channels, and obtain sensing resXit).

) LY XiG) P

2: Estimate the free probability of Channe(i € {1,2,..., N}) to bef;(t) = F}m—P}

3: Calculate conditionally expected rewar8§7 — 7)E [S;(¢)|X;(t) = 1], i € Z(t), by using®(t) =
(01(t),05(t),...,0n(t)) as the vector of channel free probabiliies. H&rg) denotes the set of
channels sensed free at Stot

4: if Z(t) is emptythen

5. Do not access any channel at Siot

6: else

7. Access Channel* = argmax E' [S;(t)| X;(t) = 1].

1€Z(t)

o~

Theorem 2:Algorithm [2 achieves asymptotically finite regret.
Proof: See Appendix]l. [ |

B. Multiple Channel Access at a Sldk (> 1)

Assume the secondary user can simultaneously access Hfj>tol) channels at a slot. Therefore,
if the number of channels sensed free at a slot is less thamual ¢o K, then all those sensed-free
channels are accessed by the secondary user; othefwiskannels are selected among the sensed-free
channels to be accessed by the secondary user.

We still use the performance of a genie-aided rule vthknown as a benchmark for comparison.

Until Slot ¢, the expected reward of the genie-aided rule is given as

B(T—7)E max E[S;(H)]X;(j) =1
Z [/qj)czw,uc(j)gfcz. S:0)1%:07) = 1]
i€KC(5)
whereZ(j) denotes the set of channels sensed free at;Séotd IC(j) denotes the set of channels to be
accessed at Slgt

For any adaptive allocation rul& for multiply channel access wheig(j) denotes the set of channels

)
N

to be accessed at Slgt the expected reward until Sletis Z B(T — ) Z( P})HiProt(z' € ¥(j)).
j=1 i=1



t
The regret of rulel is given asR(t, V) = > B(T — T)E[ E[S:())|Xi(j) =
j=1

K(j)czgl)?i)’(c(j)‘gi(ie%j)
1]| — Et: B(T — 1) gj(l — P})6;Prob(i € ¥(j)).

For]r:nlultiple cha:1:r11el access, we modify Step 7 in Algorifirmil Algorithm[2 as follows: ifZ(t)| <
K, then access all channels 1r{t); otherwise, among all the channelsZiit), access thd{ channels
with the largestK values of E [S;(t)|X;(¢t) = 1]. It can be proved that the resulted algorithms have

asymptotically finite regret. The proofs are similar to thad Theorem§&ll anld 2, and are omitted here.

IIl. CASEIl: wiTH PARTIAL CHANNEL SENSING

Still consider N channels. At a slot, the secondary user can séri¢ée N) of them and can access
up to K (< M) channels among the sensed-free channels. Therefore, wealievel MABP the first
level is to decide which\/ channels to sense; and the second level is to decide, amerggiised-free
channels, which up t& channels to access. The arms played in the two levels asretiff, which makes
the problem much more challenging than classical MABP. ohibst of our knowledge, a general bi-
level MABP is still an open problem. In the following, we pide solutions to our particular bi-level
MABP. Possible extension of our solutions to a more gendrbvel MABP is to be investigated in our
future work.

Unlike Case | where we have common channel access rules foogeneous sensing (i.€2; = Py,
P} = Py, Vi € {1,2,...,N}) and heterogeneous sensing (i.e., for each channel, sayn€hawe have
distinct setting{P;,P}}), the homogeneous sensing and heterogeneous sensingmeedtreated in
different ways in Case I, as discussed in SecfionII-A respectively.

A. Homogeneous Sensing

Consideer = Py, P} = Py, Vi € {1,2,...,N}. Without loss of generality, we assurmig > 6, >
o> 0.

We still use the performance of a genie-aided rule as a beadhior comparison. It can be proved that
the genie-aided rule should always sengé = {1,2,..., M}. So until Slott, the expected reward of the

t
enie-aided rule is given as*(t) = E|\B(T—-r71 max ES;()X:(5) =1
d 9 ) J; ( )/C(j)CIM*(j)vllC(j)\SKie%j) SiiIX() =1
whereZ - (j) denotes the set of sensed-free channels at Sibthe channels inM* are sensed, and

K(j) denotes the set of channels to access at Slot
In the following, we investigate single channel access=t 1) and multiple channel accesk (> 1),

respectively.
1) Single Channel Access at a sldt (= 1): The expected reward of the genie-aided rule until Slot
tis:

1€L px ()

U*(t>=ZE[B(T—T> max B[S, X:() = 1]| . @
=1



Compared with the genie-aided rule, regret of a single chlaaccess rul@, in which ¢(j) denotes the
channel to be accessed at Sjotis given as

t

N
R(t,¢) =U*(t) = Y _B(T —7) > (1 — P})6:Prob(¢(j) = i). (3)
=1

j=1

Unlike Case | in Sectio]ll, we cannot expect asymptoticdilyjte regret R(¢). The reason is as
follows. For partial channel sensing, considepexfect scenaridn which all sensed-free channels are
to be accessed and all sensings are perfect. It is shown iardime3.1 in [14] and Lemma 2 in [12]
that the perfect scenario has a lower boundoh t) on R(t) ast — oco. It can be proved (the proof is
omitted due to space limit) that, if the perfect scenario teagetC Int¢ whereC' is a constant, then our
research problem has regret at leasin ¢ where D is a constant.

Note that references [14] and [15] give rules with regiéin ¢) whent — co. However, performance
of the rules with finitet is still unclear. In the following, using the UCB1 (here UCtsds for Upper
Confidence Bound) in [22], we derive a channel sensing andsacaile that has regréi(t) ~ O(Int)
with ¢ — oo and with finitet. Note that the original UCB1 cannot be directly applied to cesearch
problem, because, if it is directly applied, there is onleatecision, i.e., which channels to sense at a
slot. Since in our research problem there are two decisioh&f channels to sense, and which channel
to access among the sensed-free channels), we have ngoegeaisions to the original UCBL1.

At each slot (say Slaf), the secondary user keeps recoltl$) = (71(t), T2(t), ..., Tn (t)) andY (¢) =
(Y1(t),Ya(t), ..., YN (t)), whereT;(t) is the number of slots in which Channehas been sensed until
Slot ¢, andY; is the number of slots in which Channehas been sensed free until SiofThe proposed

channel sensing and access rule is given in Algorithm 3.

Algorithm 3 Single Channel Access with Homogeneous Sensing in CasattigPChannel Sensing)

1. Sense allN channels by usin@%} slots (where[-] is a ceiling function). At each slot, randomly
select one sensed-free channel to access. UpdatedY at each slot.
2: for each subsequent Slotdo

: 5 o tPa1 :
3. Estimatet; (i = 1,2,...,N) by 0;(t) = % and determine channel sgt(t) to sense,

which includes channels with thef largest indexed; (1) + 515 \/

4. Sense channels iM(t). Let Z(¢) denote the set of sensed-free channels. Up@iagteandY (¢).
. if Z(t) is nonemptythen

Access Channel* = arg max {éi(t) + 515 2;‘((;_‘11)) }
i€T(t) o '

7.  dse
Do not access any channel at Siot

©

Theorem 3:The regretR(t) of Algorithm[3 is O(Int) with ¢ — oo and with finitet.
Proof: See AppendixTll. [



2) Multiple Channel Access at a sloik’(> 1): When the secondary user can simultaneously access

K channels at a slot, we modify Algorithih 3 as follows: in Stepn8tead of accessing a single channel,

21In(t—1)
T;(t-1)

Similar to proof of Theorerfil3, it can be proved that the regfethe resulted rule i©(Int) for finite ¢

the secondary user selects upKochannels inZ(t) with the largest values of;(t) + Pdin

and fort — oo.

B. Heterogenous Sensing

Consider that Channel(i = 1, ..., N) has distinct settiniPé, P}} The genie-aided rule with known
channel statistic® is still used as a benchmark of performance.

When channel statistio® is unknown, it is desired to find a rule of good performanceegretR(t)
under heterogenous sensing. Then a question is raised: edin@va similar rule to those in Section
M=A] with R(t) ~ O(Int) for finite ¢t and fort — co? To answer this question, we first look into the
insights in the rules in Sectidn IIlHA.

As aforementioned, in Case Il (partial channel sensingyettare two levels of MABP : the first level
is to select which channels to sense, i.e., to select chamal to maximize

E |\B(T—-T1 max E[S;(1)|X;(j) =1
( )/cu)czMu),K(j>|<Ki€;(j) X =1

while the second level is to select which channels to acdess,to select sensed-free channels with
the largestE [S;(7)|X:(j) = 1]. With homogeneous sensing, the criterion in the first lesedimplified

to finding the M channels withM/ largestd;’s, while the criterion in the second level is simplified to,
among sensed-free channels, finding upstachannels with the large#t’s. Therefore, in Algorithm 13,

in both levels we use sample mean of sensing results of eaamneh which can be used to estimate
;. On the other hand, with heterogeneous sensing, the ariteithe two levels cannot be simplified to
finding channels with the large8t’s. Therefore, it is not feasible to use sample mean of sgn&sults
as Algorithm[B does. Rather, we need samples to reflect reafagdch arm in each level, as shown in
the following.

1) Single Channel Access at a Sléf & 1): Since the secondary user can sehsehannels at a slot,
the secondary user can sense one fl(éj:) possible sets oM channels, denoted;, Mo, ..., M(Z)' In
setM; (i = 1,2, ..., (1)), letm;; (j = 1,2,..., M) denote thejth channel inM;. If the secondary user
senses seM; at Slott, let Z,4, (¢) represent the sensing result, which is the set of sensed:fr@nnels.
Until Slot ¢, let T;(¢t) denote the number of time slots in whicht; is sensed, and;(¢) denote the
cumulative reward of the slots in which; is sensed. Until Slot, let 7; ;(¢) (j = 1,2,..., M) denote
the number of slots in which\; is sensed and subsequently Channgl; is accessed, and; ;(t)
denote the cumulative reward of Chanme] ; in time slots in whichM; is sensed and subsequently



Channeln; ; is accessed. Note that when we say “reward”, it means thendacy user transmits over a

channel, and receives ACK for the transmission. If no ACKeiseived, the reward of the corresponding
transmission is 0. The proposed channel sensing and aedess given in Algorithn#. The secondary

user keeps records df;(t), Yi(t), T;;(t), andY; ;(t). In the sequel, for simplicity of presentation, the
index (t) may be omitted fofT;(t), Yi(t), T; ;(t), andY; ;(t).

Algorithm 4 Single Channel Access with Heterogeneous Sensing in Cg&aitial Channel Sensing)

1: for i =1:(})) do

2. Keep sensing\; in continuous slots, and at each slot access one free chifnah@las not accessed
before whenM; is sensed. This procedure is repeated until each chanul;ihas been accessed
at least once. For each slot, upddte Y;, 7; ;, andY; ;, j = 1,2..., M.

3: for each subsequent Slotdo

4 Calculate indexes: + % (i € {1,2,..,(3)}), and choose! = arg ma>(< ){% +
‘ ‘ i=L...,(x ‘

21n(t—1)
T

5: ense channels iM;;

6: if Ty, (1), the set of sensed-free channels at $Jas nonemptythen

7: Calculate indexegyﬂ—zj + 4 /%ﬁ:l) mit j € Ta, (1).

8: Selectj’ = argmax {% + %} access Channeh;: ;i, and check whether the

mﬁ,jEZMﬁ (t) it it

transmission is successful.

9: UpdateT;:, Y, Tjt jt, Yit ji.

10: €else

11: UpdateT;:.

Theorem 4:The regretR(t) of Algorithm[4 is O(Int) with ¢ — oo and with finitet.
Proof: See Appendix1V. [ |
2) Multiple Channel Access at a Slgt' (> 1): When the secondary user can simultaneously access up
to K channels at a slot, we modify Algorithih 4 as follows: In St&pand 9, the secondary user selects
to access up td< sensed-idle channels with the largest values%ﬁj:L + Zl;fle), mit j € I, (1),

and updated;: ; andY;: ; accordingly if Channein;: ; is accessed. Similarly, it can be proved that the

regret of the resulted rule i©(Int¢) with finite ¢ and witht — oo.
V. PERFORMANCE EVALUATION

We use Monte-Carlo simulation to validate our analysis. <laer a cognitive radio network with
N = 8 primary channels whose free probabilities are givet.a.8,0.657,0.564, 0.5, 0.456, 0.404, 0.34
for the 8 channels in our simulation. For homogenous sensiaghave P; = 0.8 and Py = 0.3,
while in heterogenous sensing we h&\e!, P, ..., P$) = (0.8,0.8,0.7,0.75,0.9,0.67,0.85, 0.8), and
(P}, P, ..., P}) = (0.3,0.3,0.2,0.25,0.36,0.15,0.32,0.3). We also normalize3(T — 1) = 1,

Case | with full channel sensing is evaluated first. Higs. d[Ashow the average regret of Algorithm

@ with homogeneous sensing and heterogeneous sensinggtiesly, while Figs[B andl4 show the
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average regret of Algorithfa 2 with homogeneous sensing aterbgeneous sensing, respectively. From
the figures it can be seen that wheis large, R(¢) tends to be finitely bounded, which is consistent
with our analysis in Sectionlll. Note that, due to complexfyAlgorithm [1, Figs[1 and2 are average
over only 100 simulation runs, and thus, the regiét) does not always increase in the two figures.
Interestingly, in Figs[13 arld 4, thg(¢) increases whei changes froni to 3, and R(¢) decreases when
K further changes t& and 7. This can be explained as follows. Whén = 1, the false access (i.e.,
the proposed rule does not access the same channel as teeaghad rule does) is only on one single
channel. WhenK changes t®3, the false access is on up to 3 channels, and thus, the reassdd
likely to be larger than that with = 1. When K further increases, the up t& channels selected by
the proposed rule and the up 6 channels selected by the genie-aided rule are likely to Ibke mvinor
difference, and thus, the reward loss is reduced. WRer= 8 in our example, there is no difference
between the channels selected by our proposed rule and #mnels selected by the genie-aided rule,
which means the reward loss is 0.

Case Il with partial channel sensing is then evaluated.. Bgsd & show averagg(t)/Int in homo-
geneous sensing with the proposed single channel accesaudtiple channel access rules, respectively,
while Figs.[T and18 show averade(t)/Int in heterogeneous sensing with the proposed single channel
access and multiple channel access rules, respectivaldgnibe seen from the four figures that when
is large, averagé(t)/Int tends to be finitely bounded, which is consistent with ouimelan Sectior1Il
that R(¢) ~ O(Int).

V. CONCLUSION

In this paper, the problem of dynamic channel sensing andsascloy a secondary user in a cognitive
radio network is investigated. In the case with full chansehsing, with side information through
sensing all the channels, the regret due to unknown primseyst statistical information is proved to be
asymptotically finite. On the other hand, for the case withtiglhchannel sensing, asymptotically finite
regret cannot be achieved since it is proved that the regegtleasO(In t). Therefore, in our research we
derive channel sensing and access rules with regfkt¢), for homogeneous sensing and heterogeneous
sensing, respectively. This research should provide ltsigo the design of OSA in cognitive radio
networks with unknown statistical information of primarpannels. Further research may include the
case with competition among multiple secondary users amdémeralization of our solutions in Case I
to a more general bi-level MABP.

APPENDIX |
PrROOF OFTHEOREM[]

Recall that® is the vector of real channel free probabilities, and in Sef Algorithm[d, © is used
to estimate®. With sensing resulX(t) at Slot¢, denoteke (X(t)) and kg (X(t)) as the best channel

10



which has the largest reward whéh and © are used as channel availability statistics, respectively
By following Algorithm [, the probability of false accessg(i access a suboptimal channel) is

Prob(kg (X(t)) # ke(X(t))) < Prob(Ju e U, kg(u) # ko (u)) . (4)
Define a set, = {®’ : Ju € U, ke (u) # ko(u)}. Then [@) is equivalent to

Prob(ke (X(t)) # ke(X(1))) < Prob(@ € ce) . (5)

Definee 2 @in{é \/Zueu(Pf’ — P®)2. Then we have > 0 (the proof for this is omitted due to space
'eCe
limit).

We first consider an ever{ S(P® —L,)?% < g} happens. From Algorithrial 1, we have
ueld

D (PP - L)< inf ZPG/ W)? + > (P2 — L) +—<3+l 6)

€(0,1]~
uel ]

Whent is large enough such the}t from (8) we have

_3!

S (P —-pPO2< N (PO —L,)2+ > (P - L) (7)

ueld ueUd ueld

which meangd(t) ¢ C, from the definition ofz. It also means that, i©(t) € C., then we should have

> (P® - L,)? > 5. Then we have
uel

ueld

A —t inf Y L, In(L,/P®)
Prob(@ € Ce) < Prob( Z (P® —L,) ;) a(t) 2 (t+1) (L, YueusB el (8)

where the second inequality comes from the Sanov TheoremTheorem 2.1.10) in [23], arel denotes

a vector space {L; }uc = | > (P® —L))? > 5 ¢, which is closed.
uel
For the exponent in the expressiondf), we have

ZL/ln ' /P®) = Z(nge) (L’u/p@> (Zupg> (pr}%):o 9)

uel uel uel uel u

where the inequality comes from the Jensen’s inequality thedfact thatz In x is a convex function.
In addition, >" L’ In(L!,/P®) is continuous and strictly convex, which, together with> 0 and [9),

ueU
leads to{ inf ST L In(L),/P®) > 0. And thus, from the definition ofi(t) given in [8), we have
weu€B yeyy
- a(t41)
A <L

11



From [3) and[(B), we have Prdbg, (X(t)) # ke (X(t))) < a(t) whenl < £

+ < 5. So for regretR(t) of
Algorithm [, we have
limsup (1) < coZProb X (7)) # ke (X(7)) + co lim Z Prob(kg (X()) # ke (X(4)))

J [2]+1

t
3
- 3 . .
< ¢ LJ +CO}H& | E a(j) < oo (10)

where [-] is a floor function,cy denotes the largest possible reward loss due to false attesslot

which is finite, and the last inequality comes frolim “(j(t)l) < 1.

Therefore, by following Algorithni]1, asymptotically finitegret is achieved.

APPENDIX Il
PROOF OFTHEOREM[Z

For Algorithm[2, the probability of false access is calcethts

Prob(k:(;)(t) (X(t)) # ke (X ) 3 Prob( w) % ko (u )) Prob(X () = u) (11)
ueU
in which
(1 Phdi(t) (1= Ppo
Prob( kg, (u) # ke(u) ) = Prob| arg max ——————— # arg max —————
(ko) # ko) ( T ) SR
(1= PfNieiy(t) (1= PF")0 00 (0)
< > Prob > (12)
>k i€T,,keT, ( (3 (t)> ( k) (t ))
whereZ, is the set of sensed-free channels when the sensing rest(t)is= u, f(6;) = (1 — Pi)HZ- +
(1—PH(1—6;), and (7(1),7(2),...,m(N)) is a permutation of1,2,..., N) such that%
0P 0P )
f(Or2) f(Or))

First consider homogeneous sensing wiin= P, and P} =Pr,ie{l
generality, assuméd, > 0y > ... > fx}. Then [I2) is simplified as

Prob(ké(t) (u) # k@(u)> < ¥ Prob(é,-(t) > ék(t)). (13)

i>ki€l, k€T,

2,..., N}. Without loss of

A LY X +Pa1
According to Algorithm[2, we havé;(t) = ——

B 7 to estimatef;. We denote the sum of
t
sensing samples until Sletfor Channeli (i = 1,2,...,N) as X! £ Y X;(j). So X!, X%, ..., X&; are

j=1
independent binomial random variables with parameféés), f(02), ..., f(fn), respectively. When is

large enough (say > t;), the binomial distribution ofX! can be approximated as a normal distribution

12



with meant f(0;) and variance f(6;)(1— f(6;)). We usegy: to denote the probability density function
of Xit, which follows a normal distribution. Then for the term iretsummation in[(13), we have

. . 400 400
Prob(@,-(t) > Qk(t)) = Prob(X! > X}) = / ax: (1) / gx: (z) dady
oo y
tf(0s) +o0 +o0o 400
= / gx: (y) / gx:(z)dzdy + / 9x:(y) / g9x:(z) dady. (14)
—00 Y tf(0:) Y

The two terms on the right hand side bf{14) have the followipger bounds.

t£(0:) +o0 tf(0:) B t(f(0r) — f(6:)) l ,2(f<99:>(1f<e 9)}32)t
/700 gx,g(y)/y gx;(w)dwdy</m gx,g(y)dy—Q<\/tf(6k) ) < 5 200 (1-7(00)) )(15)

where the second inequality comes from the Chernoff bourete)(-) is the @-function given as
Qx) = \/—foo e dv.
+00 +00
/ 9x:(y) / g9x:(x) dzdy
tf(6:) Y

+oo 1 - fpn? __ w—fen?
</ e 2f0p)A—FO)t e 2f<91;)(1—f(9i))tdy

16 2V2m\/ F(0) (1 — f(Or))t
R =£(6: )(( —f (0

=f(0)(1—-f(0 ))))t 1 o 1 Ry F 002+ R (y—F(0)1)
/ e 2R, Ry, dy
t£(0:) /2 f (01) (1 — f(6k))t

Ri(f(ek)f)2+Rk(f(9i)t)2 _(RidOR)+ R 190))° ¢

11 Rl S 0 tf(6;) — ¢ 2L Gt R (60)
_ R+ Ry i
— 9 VR,V R; + Rk RRlRﬁ

R: (6;—05)%¢2 (05052 t
L T amt Ry — 2(F(0) (1= (0, )+ F (05) (1— £ (05))) (16)
R; + Ry 4 R —|— Rk

where the two inequalities are from the Chernoff bound.
From [11) and[(13)E(16), we can bound the false access pitipator Slot ¢ whent > ¢, as

Prob(ké(t)( (1)) # ke (X ) D Prob(éi(t)>ék(t)) Prob(X (1) = u)

weld i>kji€l, keT,

1 (O -100)2 | 1 R; (0;—6;)2 .
< Z Z <§e 2700 (1-F(0)) " + 1 7 +Rke ~ AT TS AT @) Prob(X(t) = u)

weld i>k,i€L, k€T,

o (N ] ) - £0)° (6 — 61)?
= ’Wherel‘(2)’ 2‘m{2f<9k><1—f<9k>>’2<f<oz-><1— FO)) + FO(— wkm}
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Then for regretR(¢) of Algorithm[2, we have

i sup R(1) < hmsupZCOProb( o) (X)) # ke (X())
—00 t—o00 =1

t

< 3" eoProb (kg (X() # ko (X(7)) +limsup 3> coProb (ke (X(1) # ke (X(7))

j=1 t—o0 j=to+1
00
< cotp + Z Cocl€_c2j < 00
Jj=to+1

wherec, denotes the largest possible reward loss by accessingeactadgnel (i.e., a suboptimal channel)
at a slot.

Then consider heterogenous sensing when we do not Rave P; and Pi = Py, i € {1,2,...,N}.
1-P})6, (1-PN )0y
[ I (Jo N

A (1-P))0i(t) _ (1=PF)d(t)
Pmb(k@(t)(u) 7 k@(u)) = i>k, ZE%: kET, Prob< fa.w) f(éj;(t)) )

- i>k,i€%,kel Prob(Xth ( T ];; Pl’“ % ) =1 <(1 ii)(llp )Xk (1_];?_(;]3?))(5))

Without loss of generality, assu . Then [12) is rewritten as

(17)

. - = 1X!+Pi—1
_ _J=1 —
where the second line comes fran(t) = PP Sl

, A (1=PH(1-P)) 1-P} 1—Pk (1-P¥)(1-PE) 1—P; 1—Pk
Define d; £ 72 /(p;_é; - p;_zi;;) and d, P /(p;_z% - p;_zﬁ;c>- Then

(172) can be rewritten as

(1>

Prob( o (1) # ke(u )) < > Prob(X! X} > td; X} — tdy X})
i1>ki€l, ke, o (18)
= n (e [ ) e+ [ o) [ axy () duie)
1>k,i€L, k€T, tdy —=
In order to get a bound of Prc(l:k u) # ke (u )) next we derive the bounds for the two terms in
the summation in the last line if_(18). Without loss of gefigrave assumbpflji Plk PPk > 0, while
scenario W|th - Ij; Plk Pf < 0 can be similarly proved. Note that thﬁ—f; - Plgk =0, similar

way to that in the homogenous sensing can be used to deriversd luf Prob(ké(t)( ) # k@(u)).

+o0 +00 +o0 tdy —tf(0;) 1 sy
gxt(z / gx:(y dydz < / gxt(z)dr = Q < —e 27(0)A-1(0:)
R L R v e A

td]—x

where the last inequality comes from the Chernoff bound, fiictv the following fact is used:

(1—P;)(1—P;)/ 1P 1— P} (1-PpH(1 - By
: - - - — > - - -
(P;— P}) P;—P; Pj— P} 1— P} —(Pj—P})

1= =1—P}2f(9i)-
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The second term in the summation in the last linelid (18) isodgmsed into two sub-terms:

td, tfidl2—za:
/ gx: () / gx: (y) dydz

— 00 o0
tds tdow tf(0)dy tdow
tdy] —x do+f(6y) tdy] —x
= QXf(w)/ 9x: (y) dyder/ 9X§(9€)/ 9x; (y) dydz. (19)
tfff()t%ﬁ) - - -
da k

The first sub-term in[(19) is bounded as

tdl t;izjz tdl +o0
gx: (96)/ gx: (y) dydz </ gx:(z)dx < gx:(v)dz

tf(0p)d1 o £ (0))ds tf(0p)d1
do+£(0y) do+f(0) do+f(03)
05)d
(#5t —1@)\ 1 G,
=Q < —e 2f(0,)(1=£(0;)) (20)
V(61— f(8:)t 2

where the last inequality comes from the Chernoff boundhinderivation of the last inequality ib_(20),
we should havef(6;) < dff}%Z;) for i > k. This is satisfied from the following fact

1- P 1 — Pf 1- P B
J(0:)(d2 + f(Or)) Pé—P} ~ pF_ pk = f(0:) f(ek)w — (1 _Pf)
d !

<f(9)f(9-)<1_P} ei“_P})>—f<e><1_P} “Pf)d
A VR TR T I A VS S T A

where the first equality comes from the definitiondaf the inequality comes fronfﬁ.lj_c(];;))eq‘ < (1;(1;;3%
for i > k, and the last equality comes from the definitiondef

The second sub-term i0_(119) is bounded as

tf(0),)d1 tdow

do+f(0) td] —a
gx:(x) gxt (y) dyda
— 00 — 00
Ri=f(0:)(1—f(0:))t tf(0,,)d 2
. . L f(0))d tdoz
Rk—j(ek)élj(ek))t/d2+f(9k) 1  (@—f0)0)2 7(”1,1 £(0r)1) .
S —F€ 2R e 2Ry x
— 00 2\/ 27T\/ Ri
tf(0,)d do+f(0) 2
(a)/d2+]’§(9k1) 1 _(a:—f(ei)t)z 7( a1 f(9k)t) .
< — e T x
— 00 2\/ 271'\/ Rl
A=(da2+f(0x))?/d3 tf(0y)d1 9 R
H=tf(01)dy/(d2+f(0x)) /d2+f<9k> 1 1 T
= —_—e ik X
—o0 2\/ 27‘1’\/ Rl
tf(0;.)d Ry tf(0,)+R;AH\2
B (Rk+RiA)(Rkt2f(ei)2+RiAH2)—(Rktf(ei)JrRiAH)2 —d2+]l"c(9kl) 1 B (R;ﬁRM)(rfi’“ R TR A )
=e (R +R; A)2R; Ry, [ — 2R; R}, dz
—o0 2\/ 27T\/ Ri
1 R (R + R A) (Rt £ 02+ Ry AH? ) = (Ry, 0 £(05)+ Ry AH)? Rptf(0)+RiAH t£(6;)
= 7196_ (RL+R;A)2R,; Ry, Q Ri+Ri A
2V R, + R;A RiRy
(O ) 2
1 Ry Ryt R A (Rt 1007 4 B AR )~ (Rigtd (00)+ R AH)* 4 t7(0)— PEGOOEBAR ) () 4Ry )2
Z 7 7 Ae (R, T R; A)2R; Ry,
k1
(®) 1 R t2(£(0,0)2 (R +R;A) 1 R GO (F0) A= F (O D+ F(05) (21— £(8;))A)
< - 7]61487 2R; Ry, == 7’“146 27 (0,0 (1—7(0;))J (05, ) (T— T (07,)) ¢ (21)
~— 4\ R, + R; 4V Ry + Ry
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where (a) comes from the fact that for € (—oo, ;ff;();l)] we hava tar < LA Oy < 11 (G), (b)
comes from the fact that sincg6;) < d; we havetf(0;) < 2 tf(ek)dl/(dg + f(6x)), and other
inequalities come from the Chernoff bound.
From [11) and[(IB)E(21), we can bound the false access pitipator Slot ¢ whent > ¢, as
Prob(k:@(t) (X(t)) # ke (X ) >y Prob(k@(t) (1) # k@(u)> Prob(X (t) = u)

ueU i>k,i€L, k€L,
£(05)dy
(1 (d1—£(04))> 1 _(d2+f(9k) (0 )) ‘

S E g —e 2f(0;)(—-f(0; ))t + —e 2f(0;)(1—£(0;))

ueld i>k,i€Z, ke,

1 Ry _ f(ei>2(f(ek)u—f(ek)wf(ei)(l—fwmfx)t
+ = e 27(0)(1—F(0; )7 (0% )(1—F(05)) Prob(X(t) = u
4V R+ R;A (X(®) )

S 036—C4t
wherecs =3 (U1, ¢y =min { ;LB=SO)" (855 -10)" pourooa=renreaa-rena | -
8= 1(2) =TI @I "2 @) —T0) T 2700070 [O)(1-T0n) '

Therefore, for regreR(¢) of Algorithm[2, we have

lim sup R(t) < hmsupzcoprob( o) (X() # ke (X(7)))

t—o00 t—o0

< 3" wProb(ke (X(1)) % ke (X)) +msup S coProb(keyy) (XU3) # ke (X(1)))

j=1 t=oo

o0
< cpto + Z cocze ™ < . (22)
Jj=to+1

APPENDIX I
PROOF OFTHEOREM[3

Recall that we assum&, > 60, > ... > 6Oy, and for the genie-aided rule\t* = {1,2,...,M}
is the optimal set of channels to sense. Then for any ruleettpected reward loss in a slot (say
Slot j) is bounded by the maximal expected reward of the geniedaidke in the slot, given ag\ 2
B(T — 7)E[ max BUGHLX(7)], where £(6;) = (1 — P§)6; + (1 — Pi)(1 — 6;) is the probability that
Channeli is sensed free. Throughout our proofsy, is an indicator function for an evemt.

Recall that in AlgorithmB,M(j) denotes the set of channels to sense at §l&o until Slott, the

regretR(t) of Algorithm[3 is bounded as

t
R(t) < AY B [Iimgzar]
j=1

t
+AY E[I{M(j):M*}I

| @3
- D.( 1 21n(j— 1) 1 2In(j—1)
=1 {i<k,i61M*<LaJ'>,kezM*<j>{97'(j)+ Py—Pp\ Ti(G- <0k( )+ a=Pp V TpG=1) }}
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whereZ,-(j) denotes sensed-free channels in Slovhen channels inM* are sensed. On the right
hand side of[(23), the first term is the regret bound when therstary user does not select exacthy*
to sense (i.e.M(j) # M™), and the second term is the regret bound when the secondarysanses
channels inM* but does not select the best sensed-free channel to access.

In the sequel of this proof, for Slgt denoteég(Tk(j— 1)) as the estimated free probability of Channel
k, as described in Algorithinl 3, when Chanriehas been sensed By, (j — 1) slots until Slotj — 1.

Now we derive a bound for the first term on the right hand sid@8j. Recall thafl;(¢) is the number

of slots in which Channel is sensed until Slot. Then we have

t N
Y E[lmgzm] £ Y EIL(0): (24)
j=1 i=M+1

Further, forM + 1 <i < N and any positive integdr we have

t t t
Tit) =1+ > ITgemuy =1+ > luem), ng-v=n+ > Liemi), ng-n<p

i=[3r]+1 i=[3r]+1 i=[3r1+1
t
it 2 liempmg-nzn
i=[3r]+1
t
<l+ I ) , A .
_[%:] 1 {Jé&? {ekT(Tk(j—l))-i-Pdin1/%}§9?(ﬂ(j—1))+?1pf 2;:(37:11)>,Ti(j—1)21}
M t—1

+ Z I AT . 1 21n 4 T . 1 21nj .
F=1 =[N ] {ek (Tt 525, B <OT (T O+ 525, it Ti(nzz}

M t-1

I >
k_ly_%1 {Og'lig {0 (E)+ Pa— Pf \/m}<zgza)éj{w(t2 Pf \/?}}
M t J j
LI

k=1j=1t1=1t,—1 {GT(tl

F<9T(t2 2;;]' }
(25)

Similar to analysis in [22], we have the fact that if evéﬁ(tl +Pd - 21nj < QT(t2)+Pd - /2an

happens, then at least one of the following three events Mubpen.eT(tl) < O — Pdfpf 2;”,

0F (t2) > 0; + 25/ 5L, andby, < 0+ 5251/ 2L, In other words, we have

E|I
{QT t] /21nJ <6T(t2 /2 }
<E|I, NI +HE | N|+HE|T :
(s P} |7 [ {oreznmm T 77 | {ocosmn
26)

Using Chernoff-Hoeffding bound, the first two terms on thghtihand side of (26) are bounded as

I{HT(t2)>9 + 21nj }] <i 27)

P —Pf to

E I

4
07 (t1)<Or— p2pr /2222 =i B
kAL =VR TR Py t
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We note that ifty > (QM_QEJ?]%_PHQ, then we always havé, > 0; + PdEPf 21“ for any k € M*

} = 0. Therefore, by setting = {(GM_GSJ?I%_PHJ, from

andj < t, which means/ _
{9k<9i+PdEPf,/%
(24)-(21) we have
¢ N Qint N M oo j J 4
31t [
Y E[Imgiemy] <02 {(GM_e»z(pd_pf)J + > Z Z Z > 2j
_1 — — p— f—
j= i=M-+1 =M+1k=1j= _1t—’7 Slnt —‘
27| (Oar—0)%(Pg—Pyp)?
g: 8lnt ( )
< S +(N-M ( )
iy 0 (Pa=Py)?
(28)
To bound the second term on the right hand sidd_of (23), we have
t
Z Iipmy=m I ) ___ :
i=1 {Myiezw ket o) (67 (T2 (=) pipr /T <OT (T (= D)+ pipr /TR }
<1+ Z Topm=my I i [T '
j:(%}-’—l {i<k,i,kgIM*(]‘){ef(Ti(‘j_l))-’_IDLi%Pf 2Tln((JJ 11))<0T(T"(7 1))+Pd+Pf 27"1;:((;:11))}}
t
<1 I N d (s :
=< +1<k ZZIEEM* ‘ %{:]H {M@G)=M"} {eiT(Ti(j—l))+Pd+Pf Tty <OF (Te(G=D)+ prtp; ey
t
< > lig+ > (I{M(j)—M*,Tk(j—l)Zli,k}
i<k, i,ke M* jZI_%]_’_l
I )T (T ( 1 2ln(j—1) _47 ; 1 2In(j—1) )
{9' Ti(ﬂ*l)HPdfPf TR <OF (Te (=) + w0y |
< %, + I n n
T i<k, %:CGM* { k letlzl tzz {0T(t )+ ,/2‘ L<O7 (t2)+ prtpr —7; \/21/}}
(29)

wherel; ;. can be an arbitrary positive integer.
Similar to the treatments in_(P6)-(28), the second term anrihht hand side of(23) is bounded as

(IR 52, O <UL~ D)+ 52 ?;;;J;;}}

U
i<k,i,kET g x (5)

t
A ZlE I{M(j):./\/l*}[{
]:

<At Y gy A% M (= +1).
i<keM*

Then, from [(2B),[(28) and_(30), the regret until SiptR(¢), is bounded as

(30)

8

8
)< Alnt + Alnt
i %:H O — 0:)*(Py — Py)? i<§/\/t* (05 — 0k)*(Pa — Py)?

+ AN - M) <M37T2 + 1> +A<A2/[> <%2 +1) . (31)

In other words,R(t) ~ O(Int) for finite ¢ and fort — oo.
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APPENDIX IV
PROOF OFTHEOREMM

DenoteM;- as the optimal set of channels to sense (i.e., the set of elmtmnsense in the genie-aided
rule). DenoteM(t) as the channel set decided by Algorithin 4 to be sensed att S8imilar to proof
of TheorenlB, the regre®(¢) until Slot ¢ is bounded as

t t
R(t) < A" E [Igyemey] + A B Ipugy=aty
j=1 J=1

T . (32)

U Yix (G- 1) 21n(j—1) Yix (5= 1) 2In(j—1)
e e €Tan s () Tor kG- TN Tye g G0 Ty p G- T\ Tpe G- D
% i *

E[Smi*,k ‘Xmi*,k:1]>E[s7”1ﬂ*,r \Xmi*m:l

Next we derived bounds for the two terms on the right hand efd@2), respectively.
SinceT;(t) is the number of slots that channel get; is sensed until Slot, the first term on the right

t
hand side of[(32) is\ Z E [Timyemy) = A 3 E[T;(1)].
j i#i*,1e{1,2,.. ,( )}
For eachi € {1,2, ..., (3})}, it can be proved that the reward sequel@)|r, 1, Yi(t)|z, ) "

Yi(t)|7,(1)=n Satisfy a so-calledirift COﬂdItIOI’H The proof is omltted due to space I|m|t

Similar to the treatments il (PS)=(28), we hai#T; (¢)] < 5L + I + 1 where

g2 (E[len%ii (51X = 1] —E[lgg Blsix =1]])’

andZy,, is the set of sensed-free channels\f; is sensed. Therefore, the first term on the right hand
side of [32) is bounded as

! 8 N 2
AN E[Ipugiemy] <At > E+A<<M>—1> <§+1>. (33)
j=1 ie{1,2, (X))
1F£0*

Similar to the treatments in_(29)-(80), we have a bound fergacond term on the right hand side of
(2) asAlnt Y - >+ AN (% +1).

k<r<M (I’Pf ’)emi&k__(lfp:L ) om
FOmn ) FOmn )

It can be seen that, the two terms on the right hand sidé_of§82pounded by)(Int). Therefore,
the regret until Slot, R(t), is O(Int).
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Fig. 1. Average regref(t) of Algorithm [ with homogeneous sensing in Case | (full clelrsensing)
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Fig. 2. Average regrefz(t) of Algorithm [ with heterogeneous sensing in Case | (fullrofel sensing)
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Fig. 3. Average regref:(t) of Algorithm[2 with homogeneous sensing in Case | (full clelrsensing)
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Fig. 4. Average regrefz(t) of Algorithm[2 with heterogeneous sensing in Case | (fullrofel sensing)
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sensing)
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