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Channel Exploration and Exploitation with Imperfect Spectrum
Sensing in Cognitive Radio Networks

Zhou Zhang, Hai Jiang, Peng Tan, and Jim Slevinsky

Abstract

In this paper, the problem of opportunistic channel sensingand access in cognitive radio networks
when the sensing is imperfect and a secondary user has limited traffic to send at a time is investigated.
Primary users’ statistical information is assumed to be unknown, and therefore, a secondary user needs to
learn the information online during channel sensing and access process, which means learning loss, also
referred to as regret, is inevitable. In this research, the case when all potential channels can be sensed
simultaneously is investigated first. The channel access process is modeled as a multi-armed bandit
problem with side observation. And channel access rules arederived and theoretically proved to have
asymptotically finite regret. Then the case when the secondary user can sense only a limited number of
channels at a time is investigated. The channel sensing and access process is modeled as a bi-level multi-
armed bandit problem. It is shown that any adaptive rule has at least logarithmic regret. Then we derive
channel sensing and access rules and theoretically prove they have logarithmic regret asymptotically and
with finite time. The effectiveness of the derived rules is validated by computer simulation.

Keywords– Cognitive radio; opportunistic channel access; bandit problem; channel exploration; channel

exploitation.

I. INTRODUCTION

Cognitive radio has emerged as an effective solution to alleviate the spectrum shortage problem and

improve spectrum efficiency. It has received tremendous research attentions recently [1]–[6]. In a cognitive

radio network, opportunistic spectrum access (OSA) is used, in which the unlicensed users, referred to as

secondary users, search forspectrum holesthrough sensing, and utilize the observed spectrum opportu-

nities for their data transmission. Optimal OSA when the secondary users have statistical information of

licensed users (referred to asprimary users), such as information of free probabilities of primary channels,

has been addressed in [7]–[11], to maximize transmission capacity, optimize transmission power efficiency,

etc. However, research on the optimal OSA withouta priori statistical knowledge of primary channels

is still in its infancy. The research challenge is how to achieve the optimal tradeoff between channel

exploration (the process to sense the channels so as to learnthe statistical information) and channel

exploitation (the process to utilize observed channel opportunities). If statistical information of primary

channels is known in advance, a secondary user can select theoptimal channels to sense and subsequently

access sensed-free channels. However, without such information, a learning process is needed, and the

secondary user should also explore suboptimal channels through sensing to learn statistical information

of those channels. Therefore, learning loss is expected, compared to the case that the secondary user

always selects the optimal channels. In the literature, thechannel sensing and access process has been
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modeled as a multi-armed bandit problem (MABP) [12]. For an MABP, the loss due to learning until time

instantt is represented by theregretR(t), the difference between the actual reward of an arm-selection

rule and the reward of a genie-aided rule that has known statistical information of the arms [13]. It is

proved in [14] that for anyadaptive allocation rule1 the regret is at leastµ ln t whent→ ∞, where the

factorµ is determined by the statistical information of arms. A rulethat achieves the lower bound ofµ

is calledefficiently optimal, and a rule with regretO(ln t) is calledorder optimal. For OSA in cognitive

radio networks, reference [12] derives order optimal rulesto well coordinate the balance between channel

exploration and exploitation, with the assumption of perfect channel sensing. Although not efficiently

optimal, the rules aresample mean based index rules[15], and their implementation is much simpler

than the efficiently optimal rules given in [14]. Moreover, aregret bound is also observed with finitet 2

in rules in [12], while no such bound is observed for finitet in the efficiently optimal rules in [14]. A

distributed cognitive sensing problem is investigated andformulated as anadversary bandit problemin

[16], where no statistical assumption is made on channel states. Multi-user OSA in distributed manner is

investigated in [17], modeled as an MABP with multiple players. In the above existing research efforts

for OSA in cognitive radio, perfect channel sensing is assumed, and each secondary user can utilize all

observed spectrum opportunities (i.e., infinitely backlogged traffic is assumed at the secondary user).

Unlike existing research efforts, this work explores OSA when i) imperfect channel sensing is assumed

and ii) a secondary user has only limited “access demand” (i.e., it may not use all observed spectrum

opportunities at a time period). Our motivation for i) is that channel sensing is always imperfect in a

real network. And our motivation for ii) is that a user may have only limited traffic to send at a time

period (for example, for a voice conversation).3 Similar setup with limited access demand is adopted

in [18]–[20]. Therefore, unlike existing OSA research where there is only one decision (i.e., to decide

which channels to sense, and subsequently access all sensed-free channels), we have two decisions in

the OSA in our work: to decide which channels to sense; and if anumber of channels are sensed free,

to decide which channels to access. Two cases are consideredin our work:

• Case I: when a secondary user can sense all potential channels simultaneously, referred to asfull

channel sensing;

• Case II: when a secondary user can sense a subset of the potential channels simultaneously, referred

to aspartial channel sensing.

Case I is investigate in Section II, in which we derive OSA rules and theoretically prove that they have

asymptotically finite regrets. Case II is investigated in Section III, in which we derive OSA rules and

1This means the decisions of the rule are only based on observations in the history [14].
2In this paper, when we say “finitet”, it means sufficiently large and finitet.
3Actually the case when a secondary user has unlimited accessdemand can be viewed as a special case of our work.
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theoretically prove that they have regretsO(ln t) with t → ∞ and with finitet. Performance evaluation

of the derived OSA rules is given in Section IV, followed by conclusion remarks in Section V.

II. CASE I: WITH FULL CHANNEL SENSING

Consider a slotted system, where time is partitioned into slots, and the duration of each slot isT . For

a secondary user, there areN potential primary channels, denoted as Channels1, 2, ..., N , respectively.

In each slot, Channeli (i ∈ {1, 2, ..., N}) is free (i.e., without primary activities) with probability θi, and

θi is unknown by the secondary user. LetSi(j) = 1 andSi(j) = 0 denote Channeli is free and busy,

respectively, at Slotj. For each channel, the channel states (busy or free) vary independently from a slot

to another. And theN channels have independent channel states.

Each slot consists of a sensing period with durationτ and data transmission period with durationT−τ .

For each slot, during the sensing period the secondary user senses all theN channels. Among all the

sensed-free channels, the secondary user can access (i.e.,transmit its data over) up toK channels in the

data transmission period. For each accessed channel, the transmission rate is denotedB.

During the sensing in Slotj, denoteX(j) = (X1(j),X2(j), ...,XN (j)) as the sensing result of theN

channels, whereXi(j) = 1 andXi(j) = 0 mean Channeli is sensed to be free and busy, respectively.

Since sensing errors are inevitable, we letP i
d denote the detection probability of Channeli (i.e., the

probability of detecting the primary user activity if thereis primary user activity), andP i
f denote the

false-alarm probability of Channeli (i.e., the probability of mistakenly estimating that the primary user

is active when there is actually no primary user activity).

Since the secondary user senses all theN channels, the only decision of the secondary user to make is

on which channel(s) to access based on its sensing result. Toprotect primary users, only channels sensed

free can be accessed. Since primary users’ statistical informationΘ
△
= (θ1, θ2, ..., θN ) is unknown, online

learning is needed for the secondary user to estimateΘ. In the following, we first investigate the situation

of single channel access (i.e.,K = 1, the secondary user can or need to access only one channel at a

slot), and subsequently extend the research result to the situation of multiple channel access (i.e.,K ≥ 2,

the secondary user can or need to access more than one channelsimultaneously at a slot).

A. Single Channel Access at a Slot (K = 1)

To evaluate the performance of a channel access rule, we use the performance of a genie-aided rule (in

which the channel statistical informationΘ is known) as a benchmark for comparison. Until Slott, the

expected reward, defined as the total number of bits transmitted by the secondary user, of the genie-aided

rule is given as
t
∑

j=1
B(T − τ)E

[

max
i∈I(j)

E [Si(j)|Xi(j) = 1]

]

, whereI(j) denotes the set of channels

sensed free at Slotj, andE[·] denotes expectation. In the reward expression, the outer expectation is for

I(j), and the inner expectation is forSi(j).

3



For any adaptive allocation rule denotedψ, whereψ(j) = i means Channeli is decided to be accessed

at Slot j, the expected reward until Slott is
t
∑

j=1
B(T − τ)

N
∑

i=1
(1 − P i

f )θiProb(ψ(j) = i), where Prob(·)
means probability of an event.

The regret (also the learning loss) of ruleψ until Slot t, defined as the difference between the expected

rewards ofψ and the genie-aided rule, is given as

R(t, ψ) =

t
∑

j=1

B(T−τ)E
[

max
i∈I(j)

E [Si(j)|Xi(j) = 1]

]

−
t
∑

j=1

B(T−τ)
N
∑

i=1

(1−P i
f )θiProb(ψ(j) = i). (1)

Since the secondary user can sense all the channels before selecting a channel to access, the channel

access process can be modeled as anMABP with side observation[21]. For an MABP, it is extremely

hard to derive an optimal channel access strategy such that the regret is minimized. Therefore, researchers

instead focus on regret bound in asymptotic sense. For example, in [12], asymptotically order optimal

rules are derived such that the regret isO(ln t) whent→ ∞. In our research, we also focus on channel

access rule with good asymptotic performance such as asymptotically finite regret. Note that fortwo-

armedbandit problem with side observation, reference [21] givesa rule with asymptotically finite regret

underdirect informationsetting. In our work, we derive a rule with asymptotically finite regret for our

multi-armedbandit problem with side observation, as follows.

For sensing of theN channels, we have2N possible combinations of the sensing result. DenoteU as

the set of the2N possible combinations. For eachu ∈ U , at each slot (say Slott) we keep a record of

Lu, which denotes the rate ofu as the sensing result, given as the ratio of the number of slots in which

u is the sensing result tot. Also definePΘ
†

u as the probability thatu is the sensing result at a slot,

which is numerically calculated assuming thatΘ
† is the vector of free probabilities of theN channels.

Our proposed channel access rule is shown in Algorithm 1.

Algorithm 1 Single Channel Access with Full Channel Sensing at Slott

1: SenseN channels, obtain sensing resultX(t), and updateLu, u ∈ U .
2: Construct candidate setC(t) of the form

C(t) =







Θ
† :

√

∑

u∈U
(PΘ†

u − Lu)2 ≤ inf
Θ′∈(0,1]N

√

∑

u∈U
(PΘ′

u − Lu)2 +
1

t







.

3: Arbitrarily pick up Θ̂ ∈ C(t), and calculate conditionally expected rewardB(T −
τ)E [Si(t)|Xi(t) = 1] (i ∈ I(t)) by usingΘ̂ as the vector of channel free probabilities. HereI(t)
denotes the set of channels sensed free at Slott.

4: if I(t) is emptythen
5: Do not access any channel at Slott.
6: else
7: Access Channeli∗ = argmax

i∈I(t)
E [Si(t)|Xi(t) = 1].
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Theorem 1:Algorithm 1 achieves asymptotically finite regret; that is,lim sup
t→∞

R(t) <∞.

Proof: See Appendix I.

Theorem 1 indicates that the performance of Algorithm 1 is surprisingly good through full channel

sensing prior to channel access. As a comparison, in the rules derived in [12] where the secondary user

senses one channel with perfect sensing, performance ofR(t) ∼ O(ln t) is achieved, which means the

regret goes to infinity whent→ ∞.

Algorithm 1 suffers from high complexity in the construction of candidate setC(t) in each slot. To

reduce complexity, an alternative channel access rule withlinear complexity is introduced, as given in

Algorithm 2.

Algorithm 2 Single Channel Access with Full Channel Sensing at Slott

1: SenseN channels, and obtain sensing resultX(t).

2: Estimate the free probability of Channeli (i ∈ {1, 2, ..., N}) to be θ̂i(t) =
1

t

t
∑

j=1

Xi(j)+P i
d−1

P i
d−P i

f

.

3: Calculate conditionally expected rewardsB(T − τ)E [Si(t)|Xi(t) = 1], i ∈ I(t), by usingΘ̂(t) =
(θ̂1(t), θ̂2(t), ..., θ̂N (t)) as the vector of channel free probabilities. HereI(t) denotes the set of
channels sensed free at Slott.

4: if I(t) is emptythen
5: Do not access any channel at Slott.
6: else
7: Access Channeli∗ = argmax

i∈I(t)
E [Si(t)|Xi(t) = 1].

Theorem 2:Algorithm 2 achieves asymptotically finite regret.

Proof: See Appendix II.

B. Multiple Channel Access at a Slot (K > 1)

Assume the secondary user can simultaneously access up toK(> 1) channels at a slot. Therefore,

if the number of channels sensed free at a slot is less than or equal toK, then all those sensed-free

channels are accessed by the secondary user; otherwise,K channels are selected among the sensed-free

channels to be accessed by the secondary user.

We still use the performance of a genie-aided rule withΘ known as a benchmark for comparison.

Until Slot t, the expected reward of the genie-aided rule is given as
t
∑

j=1

B(T − τ)E
[

max
K(j)⊂I(j),|K(j)|≤K

∑

i∈K(j)

E[Si(j)|Xi(j) = 1]
]

whereI(j) denotes the set of channels sensed free at Slotj andK(j) denotes the set of channels to be

accessed at Slotj.

For any adaptive allocation ruleΨ for multiply channel access, whereΨ(j) denotes the set of channels

to be accessed at Slotj, the expected reward until Slott is
t
∑

j=1
B(T − τ)

N
∑

i=1
(1− P i

f )θiProb(i ∈ Ψ(j)).
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The regret of ruleΨ is given asR(t,Ψ) =
t
∑

j=1
B(T − τ)E

[

max
K(j)⊂I(j),|K(j)|≤K

∑

i∈K(j)

E[Si(j)|Xi(j) =

1]
]

−
t
∑

j=1
B(T − τ)

N
∑

i=1
(1− P i

f )θiProb(i ∈ Ψ(j)).

For multiple channel access, we modify Step 7 in Algorithm 1 and Algorithm 2 as follows: if|I(t)| ≤
K, then access all channels inI(t); otherwise, among all the channels inI(t), access theK channels

with the largestK values ofE [Si(t)|Xi(t) = 1]. It can be proved that the resulted algorithms have

asymptotically finite regret. The proofs are similar to those of Theorems 1 and 2, and are omitted here.

III. C ASE II: WITH PARTIAL CHANNEL SENSING

Still considerN channels. At a slot, the secondary user can senseM(< N) of them and can access

up toK(≤M) channels among the sensed-free channels. Therefore, we have abi-level MABP: the first

level is to decide whichM channels to sense; and the second level is to decide, among the sensed-free

channels, which up toK channels to access. The arms played in the two levels are different, which makes

the problem much more challenging than classical MABP. To the best of our knowledge, a general bi-

level MABP is still an open problem. In the following, we provide solutions to our particular bi-level

MABP. Possible extension of our solutions to a more general bi-level MABP is to be investigated in our

future work.

Unlike Case I where we have common channel access rules for homogeneous sensing (i.e.,P i
d = Pd,

P i
f = Pf , ∀i ∈ {1, 2, ..., N}) and heterogeneous sensing (i.e., for each channel, say Channel i, we have

distinct setting{P i
d, P

i
f}), the homogeneous sensing and heterogeneous sensing need to be treated in

different ways in Case II, as discussed in Section III-A and III-B, respectively.

A. Homogeneous Sensing

ConsiderP i
d = Pd, P i

f = Pf , ∀i ∈ {1, 2, ..., N}. Without loss of generality, we assumeθ1 > θ2 >

... > θN .

We still use the performance of a genie-aided rule as a benchmark for comparison. It can be proved that

the genie-aided rule should always senseM∗ = {1, 2, ...,M}. So until Slott, the expected reward of the

genie-aided rule is given asU∗(t) =
t
∑

j=1
E

[

B(T − τ) max
K(j)⊂IM∗ (j),|K(j)|≤K

∑

i∈K(j)

E [Si(j)|Xi(j) = 1]

]

whereIM∗(j) denotes the set of sensed-free channels at Slotj if the channels inM∗ are sensed, and

K(j) denotes the set of channels to access at Slotj.

In the following, we investigate single channel access (K = 1) and multiple channel access (K > 1),

respectively.
1) Single Channel Access at a slot (K = 1): The expected reward of the genie-aided rule until Slot

t is:

U∗(t) =
t
∑

j=1

E

[

B(T − τ) max
i∈IM∗ (j)

E [Si(j)|Xi(j) = 1]

]

. (2)
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Compared with the genie-aided rule, regret of a single channel access ruleφ, in whichφ(j) denotes the

channel to be accessed at Slotj, is given as

R(t, φ) = U∗(t)−
t
∑

j=1

B(T − τ)

N
∑

i=1

(1− P i
f )θiProb(φ(j) = i). (3)

Unlike Case I in Section II, we cannot expect asymptoticallyfinite regretR(t). The reason is as

follows. For partial channel sensing, consider aperfect scenarioin which all sensed-free channels are

to be accessed and all sensings are perfect. It is shown in Theorem 3.1 in [14] and Lemma 2 in [12]

that the perfect scenario has a lower bound ofO(ln t) onR(t) as t→ ∞. It can be proved (the proof is

omitted due to space limit) that, if the perfect scenario hasregretC ln t whereC is a constant, then our

research problem has regret at leastD ln t whereD is a constant.

Note that references [14] and [15] give rules with regretO(ln t) whent→ ∞. However, performance

of the rules with finitet is still unclear. In the following, using the UCB1 (here UCB stands for Upper

Confidence Bound) in [22], we derive a channel sensing and access rule that has regretR(t) ∼ O(ln t)

with t → ∞ and with finitet. Note that the original UCB1 cannot be directly applied to our research

problem, because, if it is directly applied, there is only one decision, i.e., which channels to sense at a

slot. Since in our research problem there are two decisions (which channels to sense, and which channel

to access among the sensed-free channels), we have necessary extensions to the original UCB1.

At each slot (say Slott), the secondary user keeps recordsT(t) = (T1(t), T2(t), ..., TN (t)) andY(t) =

(Y1(t), Y2(t), ..., YN (t)), whereTi(t) is the number of slots in which Channeli has been sensed until

Slot t, andYi is the number of slots in which Channeli has been sensed free until Slott. The proposed

channel sensing and access rule is given in Algorithm 3.

Algorithm 3 Single Channel Access with Homogeneous Sensing in Case II (Partial Channel Sensing)

1: Sense allN channels by using
⌈

N
M

⌉

slots (where⌈·⌉ is a ceiling function). At each slot, randomly
select one sensed-free channel to access. UpdateT andY at each slot.

2: for each subsequent Slott do

3: Estimateθi (i = 1, 2, ..., N ) by θ̂i(t) =
Yi(t−1)

Ti(t−1)
+Pd−1

Pd−Pf
, and determine channel setM(t) to sense,

which includes channels with theM largest indexeŝθi(t) + 1
Pd−Pf

√

2 ln(t−1)
Ti(t−1) .

4: Sense channels inM(t). Let I(t) denote the set of sensed-free channels. UpdateT(t) andY(t).
5: if I(t) is nonemptythen

6: Access Channeli∗ = argmax
i∈I(t)

{

θ̂i(t) +
1

Pd−Pf

√

2 ln(t−1)
Ti(t−1)

}

.

7: else
8: Do not access any channel at Slott.

Theorem 3:The regretR(t) of Algorithm 3 isO(ln t) with t→ ∞ and with finitet.

Proof: See Appendix III.
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2) Multiple Channel Access at a slot (K > 1): When the secondary user can simultaneously access

K channels at a slot, we modify Algorithm 3 as follows: in Step 6, instead of accessing a single channel,

the secondary user selects up toK channels inI(t) with the largest values of̂θi(t) + 1
Pd−Pf

√

2 ln(t−1)
Ti(t−1) .

Similar to proof of Theorem 3, it can be proved that the regretof the resulted rule isO(ln t) for finite t

and for t→ ∞.

B. Heterogenous Sensing

Consider that Channeli (i = 1, ..., N ) has distinct setting
{

P i
d, P

i
f

}

. The genie-aided rule with known

channel statisticsΘ is still used as a benchmark of performance.

When channel statisticsΘ is unknown, it is desired to find a rule of good performance on regretR(t)

under heterogenous sensing. Then a question is raised: can we find a similar rule to those in Section

III-A, with R(t) ∼ O(ln t) for finite t and for t → ∞? To answer this question, we first look into the

insights in the rules in Section III-A.

As aforementioned, in Case II (partial channel sensing), there are two levels of MABP : the first level

is to select which channels to sense, i.e., to select channelsetM to maximize

E



B(T − τ) max
K(j)⊂IM(j),|K(j)|≤K

∑

i∈K(j)

E [Si(j)|Xi(j) = 1]





while the second level is to select which channels to access,i.e., to select sensed-free channels with

the largestE [Si(j)|Xi(j) = 1]. With homogeneous sensing, the criterion in the first level is simplified

to finding theM channels withM largestθi’s, while the criterion in the second level is simplified to,

among sensed-free channels, finding up toK channels with the largestθi’s. Therefore, in Algorithm 3,

in both levels we use sample mean of sensing results of each channel, which can be used to estimate

θi. On the other hand, with heterogeneous sensing, the criteria in the two levels cannot be simplified to

finding channels with the largestθi’s. Therefore, it is not feasible to use sample mean of sensing results

as Algorithm 3 does. Rather, we need samples to reflect rewardof each arm in each level, as shown in

the following.

1) Single Channel Access at a Slot (K = 1): Since the secondary user can senseM channels at a slot,

the secondary user can sense one from
(

N
M

)

possible sets ofM channels, denotedM1,M2, ...,M(N

M
). In

setMi (i = 1, 2, ...,
(N
M

)

), let mi,j (j = 1, 2, ...,M ) denote thejth channel inMi. If the secondary user

senses setMi at Slott, let IMi
(t) represent the sensing result, which is the set of sensed-free channels.

Until Slot t, let Ti(t) denote the number of time slots in whichMi is sensed, andYi(t) denote the

cumulative reward of the slots in whichMi is sensed. Until Slott, let Ti,j(t) (j = 1, 2, ...,M ) denote

the number of slots in whichMi is sensed and subsequently Channelmi,j is accessed, andYi,j(t)

denote the cumulative reward of Channelmi,j in time slots in whichMi is sensed and subsequently

8



Channelmi,j is accessed. Note that when we say “reward”, it means the secondary user transmits over a

channel, and receives ACK for the transmission. If no ACK is received, the reward of the corresponding

transmission is 0. The proposed channel sensing and access rule is given in Algorithm 4. The secondary

user keeps records ofTi(t), Yi(t), Ti,j(t), andYi,j(t). In the sequel, for simplicity of presentation, the

index (t) may be omitted forTi(t), Yi(t), Ti,j(t), andYi,j(t).

Algorithm 4 Single Channel Access with Heterogeneous Sensing in Case II(Partial Channel Sensing)

1: for i = 1 :
(N
M

)

do
2: Keep sensingMi in continuous slots, and at each slot access one free channelthat was not accessed

before whenMi is sensed. This procedure is repeated until each channel inMi has been accessed
at least once. For each slot, updateTi, Yi, Ti,j, andYi,j, j = 1, 2...,M .

3: for each subsequent Slott do

4: Calculate indexesYi

Ti
+
√

2 ln(t−1)
Ti

(i ∈ {1, 2, ...,
(N
M

)

}), and choosei† = arg max
i=1,...,(N

M
)

{

Yi

Ti
+

√

2 ln(t−1)
Ti

}

.
5: Sense channels inMi†

6: if IMi†
(t), the set of sensed-free channels at Slott, is nonemptythen

7: Calculate indexes
Yi†,j

Ti†,j

+
√

2 ln(t−1)
Ti†,j

, mi†,j ∈ IMi†
(t).

8: Selectj† = argmax
mi†,j∈IM

i†
(t)

{

Yi†,j

Ti†,j

+
√

2 ln(t−1)
Ti†,j

}

, access Channelmi†,j†, and check whether the

transmission is successful.
9: UpdateTi† , Yi†, Ti†,j†, Yi†,j†.

10: else
11: UpdateTi† .

Theorem 4:The regretR(t) of Algorithm 4 isO(ln t) with t→ ∞ and with finitet.

Proof: See Appendix IV.

2) Multiple Channel Access at a Slot (K > 1): When the secondary user can simultaneously access up

to K channels at a slot, we modify Algorithm 4 as follows: In Steps8 and 9, the secondary user selects

to access up toK sensed-idle channels with the largest values of
Yi†,j

Ti†,j

+
√

2 ln(t−1)
Ti†,j

, mi†,j ∈ IMi†
(t),

and updatesTi†,j andYi†,j accordingly if Channelmi†,j is accessed. Similarly, it can be proved that the

regret of the resulted rule isO(ln t) with finite t and with t→ ∞.

IV. PERFORMANCEEVALUATION

We use Monte-Carlo simulation to validate our analysis. Consider a cognitive radio network with

N = 8 primary channels whose free probabilities are given as0.9, 0.8, 0.657, 0.564, 0.5, 0.456, 0.404, 0.34

for the 8 channels in our simulation. For homogenous sensingwe havePd = 0.8 and Pf = 0.3,

while in heterogenous sensing we have(P 1
d , P

2
d , ..., P

8
d ) = (0.8, 0.8, 0.7, 0.75, 0.9, 0.67, 0.85, 0.8), and

(P 1
f , P

2
f , ..., P

8
f ) = (0.3, 0.3, 0.2, 0.25, 0.36, 0.15, 0.32, 0.3). We also normalizeB(T − τ) = 1.

Case I with full channel sensing is evaluated first. Figs. 1 and 2 show the average regret of Algorithm

1 with homogeneous sensing and heterogeneous sensing, respectively, while Figs. 3 and 4 show the
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average regret of Algorithm 2 with homogeneous sensing and heterogeneous sensing, respectively. From

the figures it can be seen that whent is large,R(t) tends to be finitely bounded, which is consistent

with our analysis in Section II. Note that, due to complexityof Algorithm 1, Figs. 1 and 2 are average

over only 100 simulation runs, and thus, the regretR(t) does not always increase in the two figures.

Interestingly, in Figs. 3 and 4, theR(t) increases whenK changes from1 to 3, andR(t) decreases when

K further changes to5 and 7. This can be explained as follows. WhenK = 1, the false access (i.e.,

the proposed rule does not access the same channel as the genie-aided rule does) is only on one single

channel. WhenK changes to3, the false access is on up to 3 channels, and thus, the reward loss is

likely to be larger than that withK = 1. WhenK further increases, the up toK channels selected by

the proposed rule and the up toK channels selected by the genie-aided rule are likely to be with minor

difference, and thus, the reward loss is reduced. WhenK = 8 in our example, there is no difference

between the channels selected by our proposed rule and the channels selected by the genie-aided rule,

which means the reward loss is 0.

Case II with partial channel sensing is then evaluated. Figs. 5 and 6 show averageR(t)/ln t in homo-

geneous sensing with the proposed single channel access andmultiple channel access rules, respectively,

while Figs. 7 and 8 show averageR(t)/ln t in heterogeneous sensing with the proposed single channel

access and multiple channel access rules, respectively. Itcan be seen from the four figures that whent

is large, averageR(t)/ln t tends to be finitely bounded, which is consistent with our claim in Section III

thatR(t) ∼ O(ln t).

V. CONCLUSION

In this paper, the problem of dynamic channel sensing and access by a secondary user in a cognitive

radio network is investigated. In the case with full channelsensing, with side information through

sensing all the channels, the regret due to unknown primary users’ statistical information is proved to be

asymptotically finite. On the other hand, for the case with partial channel sensing, asymptotically finite

regret cannot be achieved since it is proved that the regret is at leastO(ln t). Therefore, in our research we

derive channel sensing and access rules with regretO(ln t), for homogeneous sensing and heterogeneous

sensing, respectively. This research should provide insights to the design of OSA in cognitive radio

networks with unknown statistical information of primary channels. Further research may include the

case with competition among multiple secondary users and the generalization of our solutions in Case II

to a more general bi-level MABP.

APPENDIX I
PROOF OFTHEOREM 1

Recall thatΘ is the vector of real channel free probabilities, and in Step3 of Algorithm 1,Θ̂ is used

to estimateΘ. With sensing resultX(t) at Slot t, denotekΘ(X(t)) andk
Θ̂
(X(t)) as the best channel

10



which has the largest reward whenΘ andΘ̂ are used as channel availability statistics, respectively.

By following Algorithm 1, the probability of false access (i.e. access a suboptimal channel) is

Prob
(

k
Θ̂
(X(t)) 6= kΘ(X(t))

)

≤ Prob
(

∃u ∈ U , k
Θ̂
(u) 6= kΘ(u)

)

. (4)

Define a setCe , {Θ′ : ∃u ∈ U , kΘ′(u) 6= kΘ(u)}. Then (4) is equivalent to

Prob
(

k
Θ̂
(X(t)) 6= kΘ(X(t))

)

≤ Prob
(

Θ̂ ∈ Ce
)

. (5)

Defineε
△
= inf

Θ′∈Ce

√

∑

u∈U (P
Θ′

u − PΘ
u )2. Then we haveε > 0 (the proof for this is omitted due to space

limit).

We first consider an event

{

√

∑

u∈U
(PΘ

u − Lu)2 <
ε
3

}

happens. From Algorithm 1, we have

√

∑

u∈U
(P Θ̂

u − Lu)2 ≤ inf
Θ′∈(0,1]N

√

∑

u∈U
(PΘ′

u − Lu)2 +
1

t
≤
√

∑

u∈U
(PΘ

u − Lu)2 +
1

t
<
ε

3
+

1

t
. (6)

When t is large enough such that1t ≤ ε
3 , from (6) we have

√

∑

u∈U
(PΘ

u − P Θ̂
u )2 ≤

√

∑

u∈U
(PΘ

u − Lu)2 +

√

∑

u∈U
(P Θ̂

u − Lu)2 < ε (7)

which meansΘ̂(t) /∈ Ce from the definition ofε. It also means that, if̂Θ(t) ∈ Ce, then we should have
√

∑

u∈U
(PΘ

u − Lu)2 ≥ ε
3 . Then we have

Prob
(

Θ̂ ∈ Ce
)

≤ Prob





√

∑

u∈U
(PΘ

u − Lu)2 ≥
ε

3



 ≤ a(t)
△
= (t+1)2

N

e
−t inf

{L′
u}u∈U∈B

∑

u∈U

L′
u ln(L′

u/P
Θ

u )
(8)

where the second inequality comes from the Sanov Theorem (i.e., Theorem 2.1.10) in [23], andB denotes

a vector space

{

{L′
u}u∈U :

√

∑

u∈U
(PΘ

u − L′
u)

2 ≥ ε
3

}

, which is closed.

For the exponent in the expression ofa(t), we have

∑

u∈U
L′
u ln(L

′
u/P

Θ

u ) =
∑

u∈U

(

PΘ

u

L′
u

PΘ
u

ln(L′
u/P

Θ

u )

)

≥
(

∑

u∈U
PΘ

u

L′
u

PΘ
u

)

ln

(

∑

u∈U
PΘ

u

L′
u

PΘ
u

)

= 0 (9)

where the inequality comes from the Jensen’s inequality andthe fact thatx lnx is a convex function.

In addition,
∑

u∈U
L′
u ln(L

′
u/P

Θ
u ) is continuous and strictly convex, which, together withε > 0 and (9),

leads to inf
{L′

u}u∈U∈B

∑

u∈U
L′
u ln(L

′
u/P

Θ
u ) > 0. And thus, from the definition ofa(t) given in (8), we have

lim
t→∞

a(t+1)
a(t) < 1.

11



From (5) and (8), we have Prob
(

k
Θ̂
(X(t)) 6= kΘ(X(t))

)

≤ a(t) when 1
t ≤ ε

3 . So for regretR(t) of

Algorithm 1, we have

lim sup
t→∞

R(t) ≤ c0

⌊ 3

ε
⌋

∑

j=1

Prob
(

k
Θ̂
(X(j)) 6= kΘ(X(j))

)

+ c0 lim
t→∞

t
∑

j=⌊ 3

ε
⌋+1

Prob
(

k
Θ̂
(X(j)) 6= kΘ(X(j))

)

≤ c0

⌊

3

ε

⌋

+ c0 lim
t→∞

t
∑

j=⌊ 3

ε
⌋+1

a(j) <∞ (10)

where⌊·⌋ is a floor function,c0 denotes the largest possible reward loss due to false accessin a slot,

which is finite, and the last inequality comes fromlim
t→∞

a(t+1)
a(t) < 1.

Therefore, by following Algorithm 1, asymptotically finiteregret is achieved.

APPENDIX II
PROOF OFTHEOREM 2

For Algorithm 2, the probability of false access is calculated as

Prob
(

k
Θ̂(t) (X(t)) 6= kΘ (X(t))

)

=
∑

u∈U
Prob

(

k
Θ̂(t)(u) 6= kΘ(u)

)

Prob(X(t) = u) (11)

in which

Prob
(

k
Θ̂(t)(u) 6= kΘ(u)

)

= Prob



argmax
i∈Iu

(1− P i
f )θ̂i(t)

f
(

θ̂i(t)
) 6= argmax

i∈Iu

(1− P i
f )θi

f(θi)





≤
∑

i>k,i∈Iu,k∈Iu

Prob





(1− P
π(i)
f )θ̂π(i)(t)

f
(

θ̂π(i)(t)
) >

(1− P
π(k)
f )θ̂π(k)(t)

f
(

θ̂π(k)(t)
)



 (12)

whereIu is the set of sensed-free channels when the sensing result isX(t) = u, f(θi) = (1 − P i
f )θi +

(1 − P i
d)(1 − θi), and (π(1), π(2), ..., π(N)) is a permutation of(1, 2, ..., N) such that

(1−Pπ(1)
f )θπ(1)

f(θπ(1))
>

(1−Pπ(2)
f )θπ(2)

f(θπ(2))
> ... >

(1−Pπ(N)
f )θπ(N)

f(θπ(N))
.

First consider homogeneous sensing whenP i
d = Pd andP i

f = Pf , i ∈ {1, 2, ..., N}. Without loss of

generality, assume{θ1 > θ2 > ... > θN}. Then (12) is simplified as

Prob
(

k
Θ̂(t)(u) 6= kΘ(u)

)

≤
∑

i>k,i∈Iu,k∈Iu

Prob
(

θ̂i(t) > θ̂k(t)
)

. (13)

According to Algorithm 2, we havêθi(t) =

1

t

t
∑

j=1

Xi(j)+Pd−1

Pd−Pf
to estimateθi. We denote the sum of

sensing samples until Slott for Channeli (i = 1, 2, ..., N ) asXt
i ,

t
∑

j=1
Xi(j). SoXt

1,X
t
2, ...,X

t
N are

independent binomial random variables with parametersf(θ1), f(θ2), ..., f(θN ), respectively. Whent is

large enough (sayt ≥ t0), the binomial distribution ofXt
i can be approximated as a normal distribution
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with meantf(θi) and variancetf(θi)(1− f(θi)). We usegXt
i

to denote the probability density function

of Xt
i , which follows a normal distribution. Then for the term in the summation in (13), we have

Prob
(

θ̂i(t) > θ̂k(t)
)

= Prob
(

Xt
i > Xt

k

)

=

∫ +∞

−∞
gXt

k
(y)

∫ +∞

y
gXt

i
(x) dxdy

=

∫ tf(θi)

−∞
gXt

k
(y)

∫ +∞

y
gXt

i
(x) dxdy +

∫ +∞

tf(θi)
gXt

k
(y)

∫ +∞

y
gXt

i
(x) dxdy. (14)

The two terms on the right hand side of (14) have the followingupper bounds.
∫ tf(θi)

−∞

gXt
k
(y)

∫ +∞

y

gXt
i
(x) dxdy <

∫ tf(θi)

−∞

gXt
k
(y)dy = Q

(

t (f(θk)− f(θi))
√

tf(θk) (1− f(θk))

)

≤ 1

2
e
−

(f(θk)−f(θi))
2

2f(θk)(1−f(θk))
t

(15)

where the second inequality comes from the Chernoff bound. HereQ(·) is theQ-function given as

Q(x) = 1√
2π

∫∞
x e−

v2

2 dv.

∫ +∞

tf(θi)
gXt

k
(y)

∫ +∞

y
gXt

i
(x) dxdy

≤
∫ +∞

tf(θi)

1

2
√
2π
√

f(θk)(1− f(θk))t
e
− (y−f(θk)t)2

2f(θk)(1−f(θk ))t e
− (y−f(θi)t)

2

2f(θi)(1−f(θi))t dy

Ri=f(θi)(1−f(θi))t
Rk=f(θk)(1−f(θk))t

=
1

2

∫ +∞

tf(θi)

1
√

2πf(θk)(1 − f(θk))t
e
−Ri(y−f(θk )t)2+Rk(y−f(θi )t)

2

2RiRk dy

=
1

2

1√
Rk

√

RkRi

Ri +Rk
e
−

Ri(f(θk)t)2+Rk(f(θi)t)
2

Ri+Rk
−
(Rif(θk)+Rkf(θi))

2
t2

(Ri+Rk)2

2RiRk
Ri+Rk Q





tf(θi)− tRif(θk)+Rkf(θi)
Ri+Rk

√

RiRk

Ri+Rk





≤ 1

4

√

Ri

Ri +Rk
e
− (θi−θk)2t2

2(Ri+Rk) =
1

4

√

Ri

Ri +Rk
e
− (θi−θk)2

2(f(θi)(1−f(θi))+f(θk)(1−f(θk )))
t

(16)

where the two inequalities are from the Chernoff bound.
From (11) and (13)-(16), we can bound the false access probability, for Slot t when t ≥ t0, as

Prob
(

k
Θ̂(t) (X(t)) 6= kΘ (X(t))

)

≤
∑

u∈U

∑

i>k,i∈Iu,k∈Iu

Prob
(

θ̂i(t) > θ̂k(t)
)

Prob(X(t) = u)

≤
∑

u∈U

∑

i>k,i∈Iu,k∈Iu

(

1

2
e
−

(f(θk)−f(θi))
2

2f(θk)(1−f(θk))
t
+

1

4

√

Ri

Ri +Rk
e
−

(θi−θk)2

2(f(θi)(1−f(θi))+f(θk)(1−f(θk ))) t

)

Prob(X(t) = u)

≤ c1e
−c2t, wherec1 =

(|U|
2

)

, c2 = min
i>k

{

(f(θk)− f(θi))
2

2f(θk) (1− f(θk))
,

(θi − θk)
2

2(f(θi)(1 − f(θi)) + f(θk)(1− f(θk)))

}

.

13



Then for regretR(t) of Algorithm 2, we have

lim sup
t→∞

R(t) ≤ lim sup
t→∞

t
∑

j=1

c0Prob
(

k
Θ̂(j) (X(j)) 6= kΘ (X(j))

)

≤
t0
∑

j=1

c0Prob
(

k
Θ̂(j) (X(j)) 6= kΘ (X(j))

)

+ lim sup
t→∞

t
∑

j=t0+1

c0Prob
(

k
Θ̂(j) (X(j)) 6= kΘ (X(j))

)

≤ c0t0 +

∞
∑

j=t0+1

c0c1e
−c2j <∞

wherec0 denotes the largest possible reward loss by accessing a false channel (i.e., a suboptimal channel)

at a slot.

Then consider heterogenous sensing when we do not haveP i
d = Pd andP i

f = Pf , i ∈ {1, 2, ..., N}.

Without loss of generality, assume
(1−P 1

f )θ1
f(θ1)

> ... >
(1−PN

f )θN
f(θN ) . Then (12) is rewritten as

Prob
(

k
Θ̂(t)(u) 6= kΘ(u)

)

≤
∑

i>k,i∈Iu,k∈Iu

Prob

(

(1−P i
f )θ̂i(t)

f(θ̂i(t))
>

(1−P k
f )θ̂k(t)

f(θ̂k(t))

)

=
∑

i>k,i∈Iu,k∈Iu

Prob
(

Xt
iX

t
k

(

1−P i
f

P i
d−P i

f

− 1−P k
f

P k
d −P k

f

)

> t
(

(1−P i
f )(1−P i

d)

P i
d−P i

f

Xt
k −

(1−P k
f )(1−P k

d )

P k
d −P k

f

Xt
i

)) (17)

where the second line comes from̂θi(t) =
1

t

t
∑

j=1

Xi(j)+P i
d−1

P i
d−P i

f

=
1

t
Xt

i+P i
d−1

P i
d−P i

f

.

Define d1 ,
(1−P i

f )(1−P i
d)

(P i
d−P i

f )

/(

1−P i
f

P i
d−P i

f

− 1−P k
f

P k
d −P k

f

)

and d2 ,
(1−P k

f )(1−P k
d )

(P k
d −P k

f )

/(

1−P i
f

P i
d−P i

f

− 1−P k
f

P k
d −P k

f

)

. Then

(17) can be rewritten as

Prob
(

k
Θ̂(t)(u) 6= kΘ(u)

)

≤ ∑

i>k,i∈Iu,k∈Iu

Prob
(

Xt
iX

t
k > td1X

t
k − td2X

t
i

)

=
∑

i>k,i∈Iu,k∈Iu

(

∫ +∞
td1

gXt
i
(x)
∫ +∞

td2x

td1−x

gXt
k
(y) dydx+

∫ td1

−∞ gXt
i
(x)
∫

td2x

td1−x

−∞ gXt
k
(y) dydx

)

.
(18)

In order to get a bound of Prob
(

k
Θ̂(t)(u) 6= kΘ(u)

)

, next we derive the bounds for the two terms in

the summation in the last line in (18). Without loss of generality, we assume
1−P i

f

P i
d−P i

f

− 1−P k
f

P k
d −P k

f

> 0, while

scenario with
1−P i

f

P i
d−P i

f

− 1−P k
f

P k
d −P k

f

< 0 can be similarly proved. Note that when
1−P i

f

P i
d−P i

f

− 1−P k
f

P k
d −P k

f

= 0, similar

way to that in the homogenous sensing can be used to derive a bound of Prob
(

k
Θ̂(t)(u) 6= kΘ(u)

)

.

∫ +∞

td1

gXt
i
(x)

∫ +∞

td2x

td1−x

gXt
k
(y) dydx ≤

∫ +∞

td1

gXt
i
(x)dx = Q

(

td1 − tf(θi)
√

f(θi)(1− f(θi))t

)

≤ 1

2
e
− (d1−f(θi))

2

2f(θi)(1−f(θi ))
t

where the last inequality comes from the Chernoff bound, in which the following fact is used:

d1 =
(1− P i

f )(1− P i
d)

(P i
d − P i

f )

/

(

1− P i
f

P i
d − P i

f

−
1− P k

f

P k
d − P k

f

)

>
(1− P i

f )(1− P i
d)

1− P i
f − (P i

d − P i
f )

= 1− P i
f ≥ f(θi).
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The second term in the summation in the last line in (18) is decomposed into two sub-terms:
∫ td1

−∞
gXt

i
(x)

∫
td2x

td1−x

−∞
gXt

k
(y) dydx

=

∫ td1

tf(θk)d1
d2+f(θk)

gXt
i
(x)

∫
td2x

td1−x

−∞
gXt

k
(y) dydx+

∫
tf(θk)d1
d2+f(θk)

−∞
gXt

i
(x)

∫
td2x

td1−x

−∞
gXt

k
(y) dydx. (19)

The first sub-term in (19) is bounded as
∫ td1

tf(θk)d1
d2+f(θk)

gXt
i
(x)

∫
td2x

td1−x

−∞
gXt

k
(y) dydx <

∫ td1

tf(θk)d1
d2+f(θk)

gXt
i
(x)dx <

∫ +∞

tf(θk)d1
d2+f(θk)

gXt
i
(x)dx

= Q





t
(

f(θk)d1

d2+f(θk)
− f(θi)

)

√

f(θi)(1 − f(θi))t



 ≤ 1

2
e
−(

f(θk)d1
d2+f(θk)

−f(θi))
2

2f(θi)(1−f(θi ))
t (20)

where the last inequality comes from the Chernoff bound. In the derivation of the last inequality in (20),

we should havef(θi) <
f(θk)d1

d2+f(θk)
for i > k. This is satisfied from the following fact

f(θi)(d2 + f(θk))

(

1− P i
f

P i
d − P i

f

−
1− P k

f

P k
d − P k

f

)

= f(θi)

(

f(θk)
1− P i

f

P i
d − P i

f

− θk(1− P k
f )

)

<f(θk)f(θi)

(

1− P i
f

P i
d − P i

f

−
θi(1− P i

f )

f(θi)

)

= f(θk)

(

1− P i
f

P i
d − P i

f

−
1− P k

f

P k
d − P k

f

)

d1

where the first equality comes from the definition ofd2, the inequality comes from
(1−P i

f )θi
f(θi)

<
(1−P k

f )θk
f(θk)

for i > k, and the last equality comes from the definition ofd1.
The second sub-term in (19) is bounded as
∫

tf(θk)d1
d2+f(θk)

−∞

gXt
i
(x)

∫

td2x

td1−x

−∞

gXt
k
(y) dydx

Ri=f(θi)(1−f(θi))t
Rk=f(θk)(1−f(θk))t

≤
∫

tf(θk)d1
d2+f(θk)

−∞

1

2
√
2π

√
Ri

e
−

(x−f(θi)t)
2

2Ri e
−
( td2x

td1−x
−f(θk)t)

2

2Rk dx

(a)

≤
∫

tf(θk)d1
d2+f(θk)

−∞

1

2
√
2π

√
Ri

e
−

(x−f(θi)t)
2

2Ri e
−

(

d2+f(θk)
d1

x−f(θk)t

)2

2Rk dx

A=(d2+f(θk))
2/d2

1

H=tf(θk)d1/(d2+f(θk))
=

∫

tf(θk)d1
d2+f(θk)

−∞

1

2
√
2π

√
Ri

e
−

Rk(x−tf(θi))
2+RiA(x−H)2

2RiRk dx

= e
−

(Rk+RiA)(Rkt2f(θi)
2+RiAH2)−(Rktf(θi)+RiAH)2

(Rk+RiA)2RiRk

∫

tf(θk)d1
d2+f(θk)

−∞

1

2
√
2π

√
Ri

e
−

(Rk+RiA)

(

x−
Rktf(θi)+RiAH

Rk+RiA

)2

2RiRk dx

=
1

2

√

Rk

Rk +RiA
e
−

(Rk+RiA)(Rkt2f(θi)
2+RiAH2)−(Rktf(θi)+RiAH)2

(Rk+RiA)2RiRk Q





Rktf(θi)+RiAH
Rk+RiA

− tf(θi)
√

RiRk

Rk+RiA





≤ 1

4

√

Rk

Rk +RiA
e
−

(Rk+RiA)(Rkt2f(θi)
2+RiAH2)−(Rktf(θi)+RiAH)2+

(

tf(θi)−
Rktf(θi)+RiAH

Rk+RiA

)2
(Rk+RiA)2

(Rk+RiA)2RiRk

(b)

≤ 1

4

√

Rk

Rk +RiA
e
−

t2(f(θi))
2(Rk+RiA)

2RiRk =
1

4

√

Rk

Rk +RiA
e
−

(f(θi))
2(f(θk)(1−f(θk))+f(θi)(1−f(θi))A)
2f(θi)(1−f(θi))f(θk)(1−f(θk))

t (21)
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where(a) comes from the fact that forx ∈ (−∞, tf(θk)d1

d2+f(θk)
], we have td2x

td1−x ≤ d2+f(θk)
d1

x ≤ tf(θk), (b)

comes from the fact that sincef(θi) < d1 we havetf(θi) < H
△
= tf(θk)d1/(d2 + f(θk)), and other

inequalities come from the Chernoff bound.

From (11) and (18)-(21), we can bound the false access probability, for Slot t when t ≥ t0, as

Prob
(

k
Θ̂(t) (X(t)) 6= kΘ (X(t))

)

≤
∑

u∈U

∑

i>k,i∈Iu,k∈Iu

Prob
(

k
Θ̂(t)(u) 6= kΘ(u)

)

Prob(X(t) = u)

≤
∑

u∈U

∑

i>k,i∈Iu,k∈Iu

(

1

2
e
− (d1−f(θi))

2

2f(θi)(1−f(θi))
t
+

1

2
e
−(

f(θk)d1
d2+f(θk)

−f(θi))
2

2f(θi)(1−f(θi))
t

+
1

4

√

Rk

Rk +RiA
e
− f(θi)

2(f(θk)(1−f(θk))+f(θi)(1−f(θi))A)
2f(θi)(1−f(θi ))f(θk)(1−f(θk))

t

)

Prob(X(t) = u)

≤ c3e
−c4t

wherec3= 5
4

(|U|
2

)

, c4=min
i>k

{

(d1−f(θi))2

2f(θi)(1−f(θi))
,

(

f(θk)d1
d2+f(θk)

−f(θi)
)2

2f(θi)(1−f(θi))
, f(θi)

2(f(θk)(1−f(θk))+f(θi)(1−f(θi))A)
2f(θi)(1−f(θi))f(θk)(1−f(θk))

}

> 0.

Therefore, for regretR(t) of Algorithm 2, we have

lim sup
t→∞

R(t) ≤ lim sup
t→∞

t
∑

j=1

c0Prob
(

k
Θ̂(j) (X(j)) 6= kΘ (X(j))

)

≤
t0
∑

j=1

c0Prob
(

k
Θ̂(j) (X(j)) 6= kΘ (X(j))

)

+ lim sup
t→∞

t
∑

j=t0+1

c0Prob
(

k
Θ̂(j) (X(j)) 6= kΘ (X(j))

)

≤ c0t0 +

∞
∑

j=t0+1

c0c3e
−c4j <∞. (22)

APPENDIX III
PROOF OFTHEOREM 3

Recall that we assumeθ1 > θ2 > ... > θN , and for the genie-aided rule,M∗ = {1, 2, ...,M}
is the optimal set of channels to sense. Then for any rule, theexpected reward loss in a slot (say

Slot j) is bounded by the maximal expected reward of the genie-aided rule in the slot, given as∆
△
=

B(T − τ)E
[

max
i∈M∗

θi(1−Pf )
f(θi)

Xi(j)
]

, wheref(θi) = (1 − P i
f )θi + (1 − P i

d)(1 − θi) is the probability that

Channeli is sensed free. Throughout our proofs,I{A} is an indicator function for an eventA.

Recall that in Algorithm 3,M(j) denotes the set of channels to sense at Slotj. So until Slott, the

regretR(t) of Algorithm 3 is bounded as

R(t) ≤ ∆

t
∑

j=1

E
[

I{M(j)6=M∗}
]

+∆

t
∑

j=1

E
[

I{M(j)=M∗}I{
∪

i<k,i∈IM∗ (j),k∈IM∗ (j)

{

θ̂i(j)+
1

Pd−Pf

√

2 ln(j−1)

Ti(j−1)
<θ̂k(j)+

1

Pd−Pf

√

2 ln(j−1)

Tk(j−1)

}

}

]

(23)
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whereIM∗(j) denotes sensed-free channels in Slotj when channels inM∗ are sensed. On the right

hand side of (23), the first term is the regret bound when the secondary user does not select exactlyM∗

to sense (i.e.,M(j) 6= M∗), and the second term is the regret bound when the secondary user senses

channels inM∗ but does not select the best sensed-free channel to access.

In the sequel of this proof, for Slotj, denoteθ̂Tk (Tk(j−1)) as the estimated free probability of Channel

k, as described in Algorithm 3, when Channelk has been sensed byTk(j − 1) slots until Slotj − 1.

Now we derive a bound for the first term on the right hand side of(23). Recall thatTi(t) is the number

of slots in which Channeli is sensed until Slott. Then we have
t
∑

j=1

E
[

I{M(j)6=M∗}
]

≤
N
∑

i=M+1

E[Ti(t)]. (24)

Further, forM + 1 ≤ i ≤ N and any positive integerl, we have

Ti(t) = 1 +
t
∑

j=⌈ N

M
⌉+1

I{i∈M(j)} = 1 +
t
∑

j=⌈ N

M
⌉+1

I{i∈M(j), Ti(j−1)≥l} +
t
∑

j=⌈ N

M
⌉+1

I{i∈M(j), Ti(j−1)<l}

≤ l +
t
∑

j=⌈ N

M
⌉+1

I{i∈M(j),Ti(j−1)≥l}

≤ l +
t
∑

j=⌈ N

M
⌉+1

I{
min

k∈M∗

{

θ̂T
k (Tk(j−1))+ 1

Pd−Pf

√

2 ln(j−1)

Tk(j−1)

}

≤θ̂T
i (Ti(j−1))+ 1

Pd−Pf

√

2 ln(j−1)

Ti(j−1)
, Ti(j−1)≥l

}

≤ l +
M
∑

k=1

t−1
∑

j=⌈ N

M
⌉
I{

θ̂T
k (Tk(j))+

1

Pd−Pf

√

2 ln j

Tk(j)
≤θ̂T

i (Ti(j))+
1

Pd−Pf

√

2 ln j

Ti(j)
, Ti(j)≥l

}

≤ l +
M
∑

k=1

t−1
∑

j=⌈ N

M
⌉
I{

min
0<t1≤j

{

θ̂T
k (t1)+

1

Pd−Pf

√

2 ln j

t1

}

≤ max
l≤t2≤j

{

θ̂T
i (t2)+

1

Pd−Pf

√

2 ln j

t2

}

}

≤ l +
M
∑

k=1

t
∑

j=1

j
∑

t1=1

j
∑

t2=l

I{
θ̂T
k (t1)+

1

Pd−Pf

√

2 ln j

t1
≤θ̂T

i (t2)+
1

Pd−Pf

√

2 ln j

t2

}.

(25)

Similar to analysis in [22], we have the fact that if eventθ̂Tk (t1)+
1

Pd−Pf

√

2 ln j
t1

≤ θ̂Ti (t2)+
1

Pd−Pf

√

2 ln j
t2

happens, then at least one of the following three events willhappen:θ̂Tk (t1) ≤ θk − 1
Pd−Pf

√

2 ln j
t1

,

θ̂Ti (t2) ≥ θi +
1

Pd−Pf

√

2 ln j
t2

, andθk < θi+
2

Pd−Pf

√

2 ln j
t2

. In other words, we have

E



I{
θ̂T
k (t1)+

1

Pd−Pf

√

2 ln j

t1
≤θ̂T

i (t2)+
1

Pd−Pf

√

2 ln j

t2

}





≤ E



I{
θ̂T
k (t1)≤θk− 1

Pd−Pf

√

2 ln j

t1

}



+ E



I{
θ̂T
i (t2)≥θi+

1

Pd−Pf

√

2 ln j

t2

}



+ E



I{
θk<θi+

2

Pd−Pf

√

2 ln j

t2

}



 .

(26)

Using Chernoff-Hoeffding bound, the first two terms on the right hand side of (26) are bounded as

E

[

I{
θ̂T
k (t1)≤θk− 1

Pd−Pf

√

2 ln j

t1

}

]

≤ j−4, E

[

I{
θ̂T
i (t2)≥θi+

1

Pd−Pf

√

2 ln j

t2

}

]

≤ j−4. (27)
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We note that ift2 ≥ 8 ln t
(θM−θi)2(Pd−Pf )2

, then we always haveθk ≥ θi +
2

Pd−Pf

√

2 ln j
t2

for any k ∈ M∗

andj ≤ t, which meansI{
θk<θi+

2

Pd−Pf

√

2 ln j

t2

} = 0. Therefore, by settingl =
⌈

8 ln t
(θM−θi)2(Pd−Pf )2

⌉

, from

(24)-(27) we have

t
∑

j=1
E
[

I{M(j)6=M∗}
]

≤
N
∑

i=M+1

⌈

8 ln t
(θM−θi)2(Pd−Pf )2

⌉

+
N
∑

i=M+1

M
∑

k=1

∞
∑

j=1

j
∑

t1=1

j
∑

t2=

⌈

8 ln t

(θM−θi)
2(Pd−Pf )2

⌉

2j−4

≤
N
∑

i=M+1

8 ln t
(θM−θi)2(Pd−Pf )2

+ (N −M)
(

Mπ2

3 + 1
)

.

(28)
To bound the second term on the right hand side of (23), we have

t
∑

j=1

I{M(j)=M∗}I{
∪

i<k,i∈IM∗ (j),k∈IM∗ (j)

[

θ̂T
i (Ti(j−1))+ 1

Pd−Pf

√

2 ln(j−1)
Ti(j−1)

<θ̂T
k
(Tk(j−1))+ 1

Pd−Pf

√

2 ln(j−1)
Tk(j−1)

]

}

≤ 1+
t
∑

j=⌈N
M ⌉+1

I{M(j)=M∗}I{
∪

i<k,i,k∈IM∗ (j)

[

θ̂T
i (Ti(j−1))+ 1

Pd−Pf

√

2 ln(j−1)
Ti(j−1)

<θ̂T
k
(Tk(j−1))+ 1

Pd−Pf

√

2 ln(j−1)
Tk(j−1)

]

}

≤ 1 +
∑

i<k, i,k∈M∗

t
∑

j=⌈ N
M ⌉+1

I{M(j)=M∗}I{θ̂T
i (Ti(j−1))+ 1

Pd−Pf

√

2 ln(j−1)
Ti(j−1)

<θ̂T
k
(Tk(j−1))+ 1

Pd−Pf

√

2 ln(j−1)
Tk(j−1)

}

≤ ∑

i<k, i,k∈M∗

(

li,k +
t
∑

j=⌈ N
M ⌉+1

(

I{M(j)=M∗,Tk(j−1)≥li,k}

· I{
θ̂T
i (Ti(j−1))+ 1

Pd−Pf

√

2 ln(j−1)
Ti(j−1)

<θ̂T
k
(Tk(j−1))+ 1

Pd−Pf

√

2 ln(j−1)
Tk(j−1)

}

)

)

≤ ∑

i<k, i,k∈M∗

{

li,k +
t
∑

j=1

j
∑

t1=1

j
∑

t2=li,k

I{
θ̂T
i (t1)+

1
Pd−Pf

√

2 ln j
t1

<θ̂T
k
(t2)+

1
Pd−Pf

√

2 ln j
t2

}

}

(29)

whereli,k can be an arbitrary positive integer.

Similar to the treatments in (26)-(28), the second term on the right hand side of (23) is bounded as

∆
t
∑

j=1
E






I{M(j)=M∗}I{

∪
i<k,i,k∈IM∗ (j)

{

θ̂T
i (Ti(j−1))+ 1

Pd−Pf

√

2 ln(j−1)

Ti(j−1)
<θ̂T

k (Tk(j−1))+ 1

Pd−Pf

√

2 ln(j−1)

Tk(j−1)

}

}







≤ ∆ ln t
∑

i<k∈M∗

8
(θi−θk)2(Pd−Pf )2

+∆
(

M
2

)(

π2

3 + 1
)

.

(30)
Then, from (23), (28) and (30), the regret until Slott, R(t), is bounded as

R(t) ≤ ∆ ln t

N
∑

i=M+1

8

(θM − θi)2(Pd − Pf )2
+∆ ln t

∑

i<k∈M∗

8

(θi − θk)2(Pd − Pf )2

+∆(N −M)

(

Mπ2

3
+ 1

)

+∆

(

M

2

)(

π2

3
+ 1

)

. (31)

In other words,R(t) ∼ O(ln t) for finite t and for t→ ∞.
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APPENDIX IV
PROOF OFTHEOREM 4

DenoteMi∗ as the optimal set of channels to sense (i.e., the set of channels to sense in the genie-aided

rule). DenoteM(t) as the channel set decided by Algorithm 4 to be sensed at Slott. Similar to proof

of Theorem 3, the regretR(t) until Slot t is bounded as

R(t) ≤ ∆

t
∑

j=1

E
[

I{M(j)6=Mi∗}
]

+∆

t
∑

j=1

E

[

I{M(j)=Mi∗}

· I
















∪
mi∗,k,mi∗,r∈IMi∗

(j)

E[Smi∗,k
|Xmi∗,k

=1]>E[Smi∗,r
|Xmi∗,r

=1]

{

Yi∗,k(j−1)

Ti∗,k(j−1)
+
√

2 ln(j−1)

Ti∗,k(j−1)
<

Yi∗,r(j−1)

Ti∗,r(j−1)
+
√

2 ln(j−1)

Ti∗,r(j−1)

}



















]

. (32)

Next we derived bounds for the two terms on the right hand sideof (32), respectively.

SinceTi(t) is the number of slots that channel setMi is sensed until Slott, the first term on the right

hand side of (32) is∆
t
∑

j=1
E
[

I{M(j)6=M∗}
]

= ∆
∑

i 6=i∗,i∈{1,2,...,(N

M
)}
E[Ti(t)].

For eachi ∈ {1, 2, ...,
(N
M

)

}, it can be proved that the reward sequenceYi(t)|Ti(t)=1, Yi(t)|Ti(t)=2, ...,

Yi(t)|Ti(t)=n satisfy a so-calleddrift condition4. The proof is omitted due to space limit.

Similar to the treatments in (25)-(28), we haveE[Ti(t)] ≤ 8 ln t
ξi

+ π2

3 + 1 where

ξi
△
=
(

E
[

max
l∈IMi∗

E [Sl|Xl = 1]
]

− E
[

max
l∈IMi

E [Sl|Xl = 1]
])2

andIMi
is the set of sensed-free channels ifMi is sensed. Therefore, the first term on the right hand

side of (32) is bounded as

∆

t
∑

j=1

E
[

I{M(j)6=M∗}
]

≤ ∆ ln t
∑

i∈{1,2,...,(N

M
)}

i 6=i∗

8

ξi
+∆

((

N

M

)

− 1

)(

π2

3
+ 1

)

. (33)

Similar to the treatments in (29)-(30), we have a bound for the second term on the right hand side of

(32) as∆ ln t
∑

k<r≤M

8
(

(1−P
mi∗,k
f )θmi∗,k

f(θmi∗,k
)

−(
1−P

mi∗,r
f )θmi∗,r

f(θmi∗,r
)

)2 +∆
(

M
2

)(

π2

3 + 1
)

.

It can be seen that, the two terms on the right hand side of (32)are bounded byO(ln t). Therefore,

the regret until Slott, R(t), is O(ln t).
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Fig. 1. Average regretR(t) of Algorithm 1 with homogeneous sensing in Case I (full channel sensing)
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Fig. 2. Average regretR(t) of Algorithm 1 with heterogeneous sensing in Case I (full channel sensing)
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Fig. 3. Average regretR(t) of Algorithm 2 with homogeneous sensing in Case I (full channel sensing)

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6

7

8

t

A
ve

ra
ge

 R
eg

re
t R

(t
)

 

 

K=1
K=3
K=5
K=7

Fig. 4. Average regretR(t) of Algorithm 2 with heterogeneous sensing in Case I (full channel sensing)
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Fig. 5. AverageR(t)/ ln t of Algorithm 3 (single channel access) with homogeneous sensing in Case II (partial channel
sensing)
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Fig. 6. AverageR(t)/ ln t of proposed multiple channel access rule with homogeneous sensing in Case II (partial channel
sensing)
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Fig. 7. AverageR(t)/ ln t of Algorithm 4 (single channel access) with heterogeneous sensing in Case II (partial channel
sensing)
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Fig. 8. AverageR(t)/ ln t of proposed multiple channel access rule with heterogeneous sensing in Case II (partial channel
sensing)
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