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Abstract—Markets are often viewed as a key ingredient in manage interference. For example, agents could purchase
facilitating more efficient dynamic spectrum access. In thé paper  spectrum to preclude others from using it, creating guango
we consider how such spectrum markets are influenced by a o gemand. This results in bundles of “spectrum assetshigavi
key property of the wireless medium: interference. Interfeence o
can result in "complementarities” among the “spectrum good” complementaritiegi.e., the value (,)f a P“”d'e may be Qfea_ter
being traded, which complicates the design of an efficient miet ~ than the sum of the values of the individual assets). In audit
mechanism. We consider several alternative models for defing to creating guard zones, an agent could mitigate interéeren
such spectrum goods, and explore the impact of these choices  py coordinating transmissions across neighboring specttu
the complexity of the resulting market. owns, again leading to complementarities.

Index Terms—Dynamic Spectrum Sharing, Spectrum Markets, Our focus in this paper is on developing models of different
Optimization, Complexity approaches to defining complementary spectrum assets in

such a market. We study the effect of such definitions on
. INTRODUCTION the complexity of the resulting efficient allocation praile,

Spectrum markets have been proposed as a way to end¥isre an ef_‘ficient allocation is one that maxjmizes the vafug
a more flexible allocation of spectrum [1]-[5], [25]. Suchhe bgyers in the markétWe are mterest_eq in the complexity
markets could be operated by a primary spectrum holder b efficient market allocation because it is closely related
lease spectrum for secondary use, or by a neutral third pafiny mechanism design issues. In particular, if there ®xist
that pools and leases spectrum from multiple providersand? Simple algorithm to solve the efficient allocation problem
the government. Indeed, provisions for limited forms oftsudhen there may exist a simple pricing scheme (such as uniform
markets have been adopted in the U.S. [6]. When combinefcing) that achieves the efficient allocation. Otherwige
with software defined (frequency-agile) radio technolagygh SU99ests that simple price functions cannot achieve the effi
markets could be operated on much finer scales in time afi§nt allocation, which may require pricimgindlesof goods in
space than traditional spectrum allocations. The desigucti he market. Here, different definitions of spectrum asseslt
spectrum markets must account for the fact that transmittiff? different manifestations of interference complemeiies.

in the same spectrum at nearby locations creates intediererpy. cOmparing the complexities of the allocation problems in
which differentiates spectrum from many other goods. different markets, we examine the influence of the defingion

particular, an agent’s value for spectrum at a particuleation of spectrum assets. In cases where the resulting allocation

may depend on the use of the spectrum at nearby locatiop@blems are NP-hard, we also discuss various algorithms
One solution to this is for a market to allocate a banf’ @Pproximating the optimal algorithm. Our motive here

of spectrum at only two locations that are sufficiently fai® two-fold. First, such algorithms can be used to study the
apart, creating "spatial guard zones’ to mitigate intefee. efficient allocation for a large number of assets and agants,
However, if spectrum is allocated on a small geographicescaf€cond. such algorithms might be useful in developing falith
the overhead from such guard zones can become significafiiechanisms that approximate an efficient allocation [9)],[1
Moreover, the acceptable interference (and thus the agptep [16]. Alternatively, the cases where the allocation praidere

guard zone) may vary greatly depending on the application aP-hard may provide a reason to design spectrum markets in
the technology used. such a way that the problem sizes are not too large, so that

Instead of using predetermined guard zones to desiaﬁSpite the NP-hardness, the relevant problems can bedsolve

markets without interference, we consider using markets $§actly- _ _ _ _
An alternative approach for dealing with such interference
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trum assets are defined as well as how they are allocated.

Such an approach dates back to the work of the economist

Ronald Coase [7], who argued that if agents have well-defined

property rights and there are no transaction costs, theh suc Cllc24 " ok
bargaining would lead to the efficient allocation. This may ek

seem to suggest that the problem of defining spectrum assets oy

is unimportant; would agents not simply bargain with each ‘( ______________ @
other to determine the correct definition? The problem with ck,

this conclusion is that transaction costs are not zero.dotfme Tk2 T3 =0

there are importanfrictions that can can impede bargainingF, , _
such as the time needed to find counter parties and reach ?Qlé} /E%ir;f';ﬁarjggn#fdgndde,'{gg;e{ﬁg ;essfg{ ftgﬁeﬁhisc%eigﬁﬁs %Soi?;i
agreement. When spectrum is allocated on a finer temporak@#nue. The dashed arrows denote the interference cast fageould incur
spatial scale, such frictions would likely increase. Intleie Without having the corresponding neighboring asset.
cases where the allocation problems are NP-hard, bargginin
to achieve an efficient outcome is also likely to be difficult.
Additionally, Coase’s conclusions are based on agentsgavbut more generally can be a service provider that may seek
perfect information about each other’s valuations and dp i@ dynamically acquire spectrum at multiple locations tvee
hold in general in the presence of imperfect information. it customers. We assume th@tis planar, as would be the
We first give a basic model in Section Il for spectrum mag€ase for interference due to spatial proximity. kgt denote
kets with complementarities, in which determining the édfit  the revenue that agenticcrues when assigned asgéftthere
allocation is shown to be NP hard. Several approximati¢h no interference from any assgt such that(j, ;') € E.°
schemes are discussed. We then consider different modelsfer exampley;; could be proportional to the number of end
defining the assets in a spectrum market, including allowittgers agent serves in assef. Furthermore, if agent is
guard zones with secondary users (Section Ill) and allowi@§signed asset and agenty # i is assigned asset with
the market to determine a “radius” over which nodes mdy.Jj’) € E, then agent suffers aninterference cosbf ¢},
transmit (Section 1V). We show that redefining the spectrufnd agenty suffers an interference cost ef,; (assuming
asset in this way leads to a substantial reduction in (worét”,j) € E). Note thatc}; needs not be equal tg, ;. We
case) complexity. assume that;; > >, .hepc;; for alli andj, so that an
In terms of related work, a number of papers have discussggent never receives a negative utility (revenue minussgost
mechanisms for allocating spectrum to primary and/or seléom an asset. If ageritacquires both assefjsand;j’, she will
ondary users including various types of auctions [11]-frij not suffer this interference cost, due to the complemesgtari
pricing schemes [18]-[24]. As noted above, here we do nbgtween assets. (Fig. 1 shows an example scenario for ah agen
consider an explicit mechanism but instead focus on the-prdb€ A and three asseté/(= {1, 2, 3}).) This complementarity
lem of finding an efficient spectrum allocation. This can beould be due to reducing power in one asset, coordinating
viewed as a key part of a mechanism such as a VCG auctigi@nsmission schedules across assets or utilizing soneeafyp
in which the efficient allocation is determined from agentgooperative transmission scheme. For now we do not focus
submitted valuation$ The interference complementarities we®n any particular underlying cause, but will return to this i
study do not arise in most of the prior work because eith&ect. V!
the focus is on allocating spectrum at a single locationtor i This model allows for multiple frequency bands at any
is assumed that no two interfering locations are allocated. location, where each band corresponds to a distinct asset. A
suming no interference across different bands, the inemfe
Il. BASIC MODEL FORSPECTRUMMARKETS graph consists of a separate component for each bawel.
. , ) , also assume that an agent'’s utility from acquiring multiple
Our basic model is for a market with a fixed s€t, of 5n45 at a single location is simply the sum of the utility
avalla_lblespectrum qssetsrvhere gach assgt_e C Tepresents ¢, aach hand. This is reasonable if an agent is serving users
the right to exclusively transmit with a fixed power maslg,5; 4re tied to a given band or has sufficiently many users to
over a given frequency band within a given geographic aregyjjize 4| bands, but precludes cases where different banel
We assumeC| is large so that there are many assets t0 Reqiitytes (e.g., where an agent desires one of two bards bu

allocated, and these assets are small enough relative t ¢ jo1h) with these assumptions, the problem decomposes
given power mask that interference effects among them are

significant.
g . . SWe assume that spectrum is scarce enough so that if dgeaes not
Let A be the set of agents who wish to acquire the assefgguire it, then another agent will.

and letG' = (C, E) be aninterference graphin which the set  70f course this linear model is a simplification. More elaieranodels
of directed edged, corresponds to pairs of interfering assetgoeuld be developed based on specific assumptions about hemtsagoor-

. . .. dinate the use of neighboring assets. Even in such casestsageuld be
Each agent here needs not be a S'ngle transmitter/receiirer Restricted to report valuations in this linear form to siifypthe market design.

8The model can be extended to allow interference acrossrefiffenands
4In a VCG auction, a version of the efficient allocation probleould also  modeling for example out-of-band interference due to chffé choices of
have to be solved for each agent to determine their payment. receive filters. However, in this case, the resulting imtenfice graph may not
5This definition is motivated in part by the discussion in [25] be planar and some of the following analysis would need to bdified.



into a separate problem for each band. Hence, we assume a
single band in the following.

A. Efficient Allocations

. . . . - Ci. .
A desirable goal for a market is to maximize efficiency GRS
(revenue minus cost). For our basic model, this is given Ipyy. 2. An example of the line topology with intervdl = [51, jo] for an
the following integer program: agenti.
max > > rigwy =Y, Y, Cyleg —wg)t (P
icA jeC i€A (4,j)EE 2) Line Model: In this scenario we restrict the topology of

the interference graph to be a line with the assets numbered
consecutively (see Fig. 2). We reformulate the optimizatio
] . ) terms ofintervalsof consecutive assets. Létbe the set of all
wherex;; = 1 if agenti € A is assigned assgt ¢ C' and jntervals on the line, and;(I) be the utility agent receives
zero otherwise. , from being allocated intervdl and not any neighboring assets,

Note that if there are no complementarities (i€,, = 0 e  y,(1) = S erTii = €y = € agry Wherel =
for all i € A and(j,j') € E), then (P1) is easy to solve;; 1 Problem (P1) can then be reformulated as follows,
simply give each assgtto the agent with the largest value Ofvvherex” indicates if intervall is assigned to agent
r;j. We next consider the complexity of (P1) whej), > 0.

max Z Z ui(I)xir (P)

sty @i <1, 25 €{0,1},Vj€C,Vie A jeC
€A

B. Computational Complexity icAlel | }
i i S.t. 7 < 1andz; 0.1} Vi IcT.
By choosing large interference costs, one can ensure that _GZA%:“T” - zip €{0, 1} vie A, T e
¢ J

when an agent is assigned an asset, no neighboring asdets wil o

be assigned to another agent. Using this idea, one can rﬂ-éi‘? next lemma shows that Problem)(Ran be efficiently

the independent set problem into an instance of (P1), stipwitP!ved by linear programming. _

that it is NP hard. Moreover, as the next proposition states,-€mma 1:1f the integer constraint in Problem /(Pis re-

the problem remains hard even for small interference costdaxed 100 < z;r <1, foralli € A, I € 7, then the resulting
Proposition 1: Problem (P1) is NP-hard even if the interfeasible set is a polyhedron with integral extreme points.

ference costs on each link is arbitrarily small (relativethe ~ This lemma holds simply because the relaxed constraint
revenue). matrix in (R) has consecutive 1's in each column and thus

The proof of this proposition is given in Appendix A. 1S totally unimodular[31]. .

The hardness in (P1) comes from the integer constraint,3) Ring Model: The analysis of a line model can be gener-
Indeed, relaxing this constraint 0 < z;; < 1 yields a alized to a ring. In this case the corresponding reformaitati
linear program (LP) that is easily solvable. This LP willS not totally unimodular, but is "nearly” so. This can be
typically have fractional solutions, which cannot neceigsa exploited to eff|(:|en_tly fmld a solution. The details are det
be interpreted as frequency or time sharing due to the need§ 10 Space considerations.
coordinate such fractional assignments across asset§gfgee 1€ line and the ring cases suggest that one way to manage

We next identify several scenarios in which (P1) can ghe market complexity would be to have lines or rings of asset
efficiently solved. separated by spatial guard zones, each such line or ring coul

1) Dominant RevenuesFirst we consider restrictions on be operated as a separate market in which prices are anrbunce

the costs and revenues. We say that an aghes adominant (0T intervals of assets as suggested by).(P
revenuefor an assey if
‘ C. Approximation Algorithms
rij 2 Z i+ Z e c;?’j’ (1) We next consider approximation algorithms for a general
:00"eE i:0:3")e8 instance of Problem (P1). These are based on reformulding t
andi’s net revenue (assuming interference from all neighbofssoblem by replacing thér;; — x;;/)* terms in the objective
L.e.,7ij — >0 iner Cjjv) IS the largest among ageritsthat - with z;;(1 — z;;:) and introducing the new variables,, :=

also satisfy (1) withi’ replacingi. x5 yielding
Proposition 2: Assume for eacli € C, there is at least one . o
agenti*(j) with dominant revenue. Then under either of the =~ &% Z Z Tijij + Z Z ~ Cjjt Zj5 (P2)
following conditions, the optimal solution is to assign lkeac iedjec €A (j4)eE
assetj to i*(j): (i) for eachj € C there is only one agent S-t-zxzj <1, z;€{0,1},Vie A,j€C,
with positive revenue or (ii) eache A has positive revenue icA

for at most one asset.
The proof of this follows from showing that in each case, } . . .

one can always improve the revenue by assigning an asseWigresi; = (rij — >, iner ¢ ) €0 = ¢y + ¢y and

an agent with a dominant revenue. F is the set ofundirectededges for the interference graph

Z;-j/ < Tij, Z;j/ < Tijrs Vi€ A, (],]I) ek



formed by replacing all directed edges between a pair of siode is NP-complete, but it can be approximated to within 1
by a single undirected edge. Heftg is the minimum revenue by the maximum degre® plus one. An edge coloring using
agent: can gain from asset (assuming interference from all D + 1 colors can be easily found, resulting in(2 + D)-
neighbors), and® ., is the extra revenuegained ifi receives approximatior.
j andj’ (or edge(yj, j')). Let Z,,, denote the optimal value 4) GRA-approximationiLet Z|:—o andZ|— be defined as
of (P2) or equivalently (P1). in the Max+;; approximation. SINC& | =g+ Z|s=o > Zopt, it
1) Max+;; approximation: First we consider a simple follows that eitherZ|s—g > 1/2Z,,; Or Z|;=o > 1/2Zop. AsS
scheme: allocate each asset to the agent with the largest vale have noted previously, computidy_, is easy. However,
of 7;;. The performance of this scheme is bounded as followskactly computingZ|;—¢ is difficult in general. Indeed, by a
Proposition 3:Let v+ > 0 be a constant so thatsimilar argument as in the proof of Proposition 1, it can be
Zj’:(j,j’)eE cé-j, < 475, Vi € A,j € C. Then the Max#;;  shown that this is NP-hard. Instead we consider approxitgati
scheme gives &l + ~)-approximation to (P2). this by adapting theGeometric Rounding AlgorithriGRA)
Proof: Let Z be the total utility achieved by this algorithmin [26]. This involves solving the natural LP relaxation to
and leti*(j) be the agent assigned asgein this solution. (P2) and then applying a randomized dependent rounding
Note thatZ > Zle=0 = Zjec Ti(5),;» Where Z|z—q is the scheme to get an integer solution. The specific scheme in
solution to a modified version of (P2) in which each of th§26] is shown to give a constant factor approximation to
é;'.j, terms is set to zero. Similarly, lef|;— be the solution theWinner Determination ProblerVDP) in a combinatorial
to (P2) in which all of ther;; terms are set to zero, and letauction with single-minded bidders. The WDP is to efficigntl
i(j) be the agent assigned to asgé this solution. Note that allocate a collection of distinct goods to a set of biddetsere
Z|e=0 + Z|i=0 > Zop:. By the definition of~, each bidder only desires a specific subset of the goods. The
- approximation factor for the GRA scheme in [26] is equal to
Zli=o < Z Z C}(f/) < va;(j),j < vZ|e=o. the maximum cardinality of the subset desired by any agent.
JEC j":(j.5')EE Jjec Finding Z|7—o can be viewed as a generalization of the
WDP problem in which the goods are assets to be allocated
t(% each agent. Each agenwill only value pairs of goods
E],j’) for which cz»j/ > (0. However, in our case, agents are not
single minded and may value multiple pairs, with an additive
valuation across pairs. It can be seen that the results ih [26
still apply with such a generalization, i.e., applying thR&
algorithm approximate¥|—, with an approximation factor
equal to the maximum cardinality of a subset desired by an
agent (2 in our case). Using this we have the following bound.
Proposition 6: Taking the minimum o¥|:—, and the GRA
pproximation toZ|;—, is a 4-approximation.
We briefly comment on the implications of these approxi-
. mations in terms of market mechanisms. The Mgxand the
~ S Max-r;; only base their allocations on one value per agent
Z = Z Zrijzij * Z Z chj’zﬂ'j" @ for each asZet and so would suggest a mechanismpwith ?ower
jecied k=145 €B ic4 overhead, and moreover, given these values, the alloction
Consider solving the followingy + 1 modified problems: each asset can be done separately. The challenge here is how
for eachk = 1,...,¢, one problem is given by replacingto incentivize the agents to correctly report these val&es.
the objective in (2) withy ; .cp, D ;e €525 » and the example, it is well known that using such an approximation
final problem is given by replacing the objective in (2) withn a truthful mechanism, like the VCG auction, can result in
> jec 2ica Tijrij- Let Z denote the optimal value of eacha mechanism that is no longer truthful. The edge coloring
of these problems. Note thaf,,, is equivalent toZ|z—o as and GRA approximation require agents to report their full
defined for the previous approximation and so can be easiijluations for all bundles of assets and again ensuring that
solved. Furthermore, the firgt problems can also be solvedthis is done truthfully is an open question.
by a greedy assignment of edges, since no two adjacent edges
appear in their objectives. We then use the allocation fer t
problem with the largest valug;, as our approximation.
Proposition 5: If a proper edge coloring off can be found ~ We present a numerical example to illustrate the perfor-
using ¢ colors, then the preceding procedure giveld a ¢)- Mmance of the preceding approximations for a square lattice
approximation. with |C] = 9 assets andA| = 6 agents. An agent’s revenue
Proof: Clearly, the allocation achievingax;, Z;, is also for an asset is proportional to the number of end users within

a feasible solution to (P2) and from (2) we hage,; < the asset, which are distributed according to a spatialsBois

It Zk. Hence,maxy, 7, > Zezt, T _ _ _ _
i g+ Moreover, for certain graphs of interest such as reguléicést, y is equal

This apprQXimation factor is minimized by settiqgaquallt(_) to the degree and g-edge coloring can be easily found giving(g + 1)-
the chromatic index of GG. For a general graph determiningapproximation.

Combining we havél + 7)2 > Zopt-

2) Max+;;: A related approximation is to assign each ass
to the agent with the largest value of;. By a similar proof
this scheme has the following approximation bound:

Proposition 4:Let v/ > 0 be a constant so that
Zj/:(j_’j,)eE c§j, <~'rij, foralli € A,j € C. Then allocating
each asset to the agent with the larggstgives al/(1+~')-
approximation.

3) Edge coloring approximationConsider a proper edge
coloring of G = (C, E), which dividesE into ¢ disjoint sets
E,,...,E,, one for each color. The objective function in (P25’Jl
can then be written as

IE). Numerical Example
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Fig. 3. Total revenue achieved by various approximatiororilygms for a

3 x 3 lattice with six agents, and Poisson intensities of 5 and s¥¥afasset.

interference. Hence, we consider treating the asset boynda

process with intensity.. The area of each asset is normalize@reas as separate assets from the interiors, which arietextr
to one, and the locations of end-user groups are independéhtbe used by secondary agents that provide local service
The interference cost is due to the inability to serve endsusavithin those regions with lower Quality of Service (QoS),
close to the asset boundary, modeled as the outieaction Provided that they do not interferer with primary users.sThi
of the asset's area. The interference cost is then propaitiois motivated by the well known model for secondary usage
to the number of end users located within the correspondifigch as that proposed for the TV white-spaces [27]; however,
boundary area. here the secondary sharing is restricted to boundary region
Fig. 3 shows total revenue versus the interference areavhich are allocated via a spectrum market. We show that
for the different approximations with intensities pf= 5 and allowing secondary boundary assets does not fundamentally
1 = 20 users per asset for all agents. These are compared WiHuce the complexity of the resulting efficient allocation
the optimal total revenue obtained from the integer sofuti Problem provided that agents can operate in both a primary
(P1). The revenue of a natural linear relaxation to (P1)ctvhi and secondary role.
is an upper bound for the optimal revenue, is also shown inThis model is illustrated in Fig. 4, which shows two
Fig. 3. Each point is an average ov#l0 realizations of the adjacent asséts In our original model, these assets might be
locations of the end users (and thus the revenues and costépresented by adjacent spatial regions (dashed linegidFi
The approximation algorithms achieve close to the maXNow, we reduce the size of these regions, to create primary
mum revenue for smal\. The gap widens as both and assets (solid lines in Fig. 4), that do not create significant
the spatial intensity: increase, with the GRA-approximiationinterference with each oth&rThe area along the original asset
performing best for larga and .. However, for smalley;, the boundaries (shaded in Fig. 4) becomes available for secpnda
Max-r;; approximation performs best. This algorithm assigri¢se. Both the boundary and primary assets are allocated/to an
assets based on their total value assuming no interferer@@ent via a spectrum market.
while the other algorithms make assignments based on eiAs before, the set of primary assets, are related via an
ther the total revenue from the assets’ boundary areas usrdirected grapliy = (C, E), where2 now represents assets
interference-free areas. For > 0.5, the probability that an that share a boundary area, i.e., each boundary area isethdex
agent has more revenue in the boundary areas than in liyean edge in2. A boundary aredj, j') € E only experiences
interference-free area is increasing withHence for largg:  interference from the neighboring assgtand j'.
an algorithm that focuses on the boundary areas such as thAgent i receives revenue;; when assigned assgt re-
GRA-approximation performs better, while for smallerthe gardless of whether or not she is assigned the neighboring
Max-r;;, which accounts for the entire asset performs bettdpoundary areas. Lqi;-j, denote the revenue agenteceives
from boundary aregj, ;') in isolation. If the agent owns asset
[1l. M ARKETS WITH SECONDARY ASSEFEDGE USERS j and the neighboring boundary aréaj’), then the agent

In Section II, we have shown that a generic definition fdieceives an additional (complementary) revenue;of. This
spectrum assets with complementarities leads to an efficiéh @gain due to the possibility of mitigating interference b
allocation problem that is difficult to solve. In this sectjo coordinating transmissions across the asset and boundsry a
we give an alternative model for spectrum assets that uses s -
secondar)agents in an attempt to improve on this complexit% 10The example in Fig. 4 uses square shape for assets forallvstpurpose

. . inly. Our model in this section applies for general intexfere graphs.
Interference prlmarlly affects the users near asset boun Of course, the needed reduction will depend on the power snaskd

aries, while users near the interior of an asset may recitiee | within each asset.



The efficient allocation is again given by an integer prograstage assign the assets to maximize the current revenutplus

with the objective: future revenue of the boundary assignment. Under the given
P condition, stage two always assigns each boundary are@to th
max Z Z TijTij + Z Z PijYji agent with the largest value pf ;,, giving the stated algorithm.
iedjec €A (j,j)eE u
D D (G eEy). (P3)
€A (j el IV. MARKETS WITH FLEXIBLE ASSETBOUNDARIES

So far we have assumed that the interference costs are given
constants, which could model a variety of scenarios. We now
consider a specific model for mitigating interference: atiing
the “radius” over which an agent can transmit in a given

Jj’ i i i
is assigned both assgtand the boundaryj,;’). Note that asset.- For examplg, it agents SEIVE USErs 1n egch agset via
ownlink transmissions from a single access point, this can

Zt., and 2%, refer to different assets. These are subject {0 . L o .
77 7' . . e accomplished by adjusting the access point’s transmnissi
analogous constraints as in (P2).

13 i issi
Next i show it (°9) s cquvalent 1 a special case JPAET 1 O cases, sueh o unink hevamissons e
(P2). Given an instance of (P3) with a graph construct

a new araph which has a additional node for each nodWhiCh users may transmit (determined for example via GPS).
. grap L ve study market mechanisms that assign both assets and the
in G plus a node for each boundary area (edgeliis; G

will have an edge between each node and the corresponcfiad"’ and show that this additional flexibility can redute t

ng. ; )
. - . complexity of the allocation problem.
boundary area. By appropriately defining the costsfarthis FOFI)’ sirr?plicity we assumz that the underlying (undirec-
equivalency follows. The resulting gragt will have a special . ; ' . L
. -~ tional) interference graph is sguarelattice; however, all of
structure not present in a general graphUnfortunately, this our bl f lati
problem formulations can be extended to other regular

structure does not make the problem more tractable. Inde]e%i. . .

. . . . . atfices (such as a hexagonal lattice) and our main results
using similar arguments as in Section 1I-B it can be shovvrr(1a arding complexity remain the same
that (P3) is still NP-hard. It also follows that the approziion 9 9 piexity '
algorithms in Sect. II-C apply to (P3). We can use the stmectu
in (P3) to give an alternative approximation result for th&. Model with Sectorization

Max-7;; algorithm. Specifically, if there is a constaptsuch e first consider a model in which each square asset is
that Zj,:(jyj,)eE e;'-j, < o (mj + %Zj,:(j,j,)eE p§j,) then partitioned into four90—de.gre.e sectors as shown in Fig. 5. For
assigning each asset or boundary area to the agent with @@mple, an access point in the center of each asset could
largest value of;; or p, gives a(1++')-approximation. The use directional antennas to independently adjust the sadiu
constanty’ would likely be smaller than the corresponding of each sector. The length of an assetlis which is also
for (P2). the distance between the centers of neighboring assets. We
In the above discussion, any agent can acquire the bound@ggume that each sector experiences interference frontrnly
areas. However, if assets can only be acquired by primanpsest sector in the neighboring asset. Each ddgg) € £
agents while boundary areas can only be acquired bycarresponds to a pair of interfering sectors; we abuse inatat
different group of secondary agents, then there will be rfd denote the corresponding sector in agsgtr ;) by jj’
complementarities, and (P3) can be solved easily. Likewider j’j). Let R}, € [0, L/2] be theradiusof agenti in sector
in such a setting designing a market mechanism is Simpﬁf, which is the minimal distance from the asset center to
Each assets and boundary region can essentially be sold viés &oundary over which agentcan serve customers without
separate mechanism, such as a posted price or a second-phigsference. Letw;; be the revenue per unit area of agent
auction. i in assetj, e.g., the density of agerits customers in the
The structure in (P3) can also be used to give a conditi@§Set. Agent's revenue from sectoj;j’ is thenw;; R}, in the
under which the problem can be solved by a simple gree@9sence of interference.
procedure. The precise statement follows. Interference costs are modeled by using iaterference
Proposition 7: If for any boundary areaj,j’) ¢ E, there boundary which extends beyond a sector’s given radius by
exists some agent such thatp;'.j, > ng + E;j, + 6;‘_/,]_ for A units!* Specifically, an interference cost is incurred in
all i’ # i, then (P3) can be Solved by a two-stage greedipth 590150@'3" (assigned ta) and jj’ (assigned td:) when
algorithm that first assigns each boundary area to the agéfyy + 25, > L — A. Interference from assgtin sector;’;
with the largest value of?, and then assigns each asset to tfe@n be ignored beyond distané;;, + A from the center of
agent with the largest revenue given the boundary assignma@ssetj. Let z1*, = max{R!,, + R%  — (L — A),0} denote the
Proof: Consider using a two-stage dynamic programing

to solve (p3): in the second stage given an assignment OlfOf course in practice, exactly controlling the "radius” cdrismission is
' ot possible due to effects such as fading. This quantitetebviewed in an

assets, optlmally assign the boundary areas, and in the fﬁf\rﬁrage sense over the relevant time-scale at which atlasatre performed.

14This is similar to the interference footprint in the startiprotocol model

2Namely, G’ includes every node ofy, but also introduces a new node from [28]. Of course, this is an over-simplification; but fogides a first order
for each boundary area. model of how one can adapt the interference externality.

This is optimized over the binary variablds:;, !, 2 },
where z;; = 1 if agenti is assigned asset, and is zero
otherwise,y;?j, = 1 if the boundary area between assgts

and j' is assigned to agent , and z¢., = 1 if agents



lemma shows that the first step can be solved independently
of the second.

Lemma 2:In an optimal solution to (P4)y;; = 1 if and
only if ¢ = argmaxwij for eachj € C.

m\\agent i
Proof: Let {Zij, R'j;, 2%} be an optimal solution to

g (P4) and suppose that the lemma is not true for some asset

e j. Leti be the user currently assigned asgeind leti* =

arg max, w;;. Re-assigning assgtto agent;* with the same

radii for each sector and the same choicesi6f and keeping

all other variables unchanged must still be a feasible gmlut

with the same area served in each asset. Moreover, the @venu

from assetj will increase and so the original solution cannot

be optimal. [ |
Given an optimal asset assignment, the optimal radii are as

in Lemma 2, we next consider optimizing the asset radii. This

is given by the following quadratic program (QP):
Fig. 5. lllustration of the radii model for two adjacent sgriassets each

with four sectors. Hﬁazx wj(Rjj/ N ij/)2 + w;s (Rj/j _ ij/)2 (P5)
(G,0)EE

amount of overlap of interference boundaries in secjgfs st.0<Rjjy+Rj;—zjy <L-AV(j)¢€ E

and j'j. Agents receive no revenue for any area within this L I -,

overlap (the shaded area in Flg 5). Hence, the revenue of age 9 A < Rjj < bR V(i) EE

i in sectorjj’ is w;;(R!, —z%,)?. No additional interference 2 >0, ¥(j,j") € E
management is assumed between sectors assigned to the same ! ’
agent, i.e.z;%, is not necessarily zero. Interference among thehere we have dropped the agent indices, since the agent

sectors aSS|gned to the same agent is managed by the maaksigned to each asset is given. The objective of this QP is

optimizing the radii. convex and so it cannot be solved directly by using first order
The efficient allocation is given by the followingnixed- conditions. However, its extreme points have the following
integer quadratic progran(MIQP) : useful property:
Lemma 3:An optimal solution to (P5) must satisfi €
mps 22 2wy =) =) TN "
€A JEC TG EE hed (Pa) The proof is similar to the proof of Proposition 2.1 in [29]
and so we omit it here.
st Iij(f —A)< Rj-j/ < Iijé’ Vie A, (j,j') € E Since each sectgjj’ only interferes with the neighboring
2 ; L i 2 sector 5’7, (P5) can be separated into a collection of sub-
0< Rjy + Rjy; — 25 < L= A, problems, one for eaclij,j’) € E. The subproblem for
Vi,ke A, (j,j') € E (4,4") € E only involves the variables?;;/, R;; and z;;,

ZI” <1, 2% >0, 2 € 0,1} which from Lemma 3 can take on only a finite number of_
- Y=t = ’ values each. Hence, we can solve (P5) and thus (P4) in
. . o ~ polynomial-time.
Viked, jeC (G.7) € b For the case of hexagonal assets with 120-degree sector-
This is clearly a simplified model that we have chosen faation, the efficient allocation problem is again a quadrat
highlight the potential advantages of having a market eetgroblem that is very similar to (P4). Thus, Lemmas 2 and 3
mine both asset assignments and radii. We briefly commentean be extended directly. The only slight difference is that
a few of these simplifications. The assumption that assets #re corresponding (P5) is separated into a collection of sub
located on a regular lattice is one simplification; this colbbé problems, one for each group of three interfering sectors.
relaxed for example by introducing different distanégs for ~Therefore, the problem can still be solved in polynomiaeti
different pairs of assets. Another simplification is the rlddr The key difference between (P4) and (P1) is due to letting
interference costs; one could use a more sophisticatedqalysthe market assign the radii. Indeed, if the radii are not
layer model to capture these effects and these costs conld v@determined by the market, (P4) is equivalent to a specia cas
among providers who use different technologies and/or hae®(P1), and is still NP-hard. Specifically, suppose thatgera
different QoS requirements. Finally, the revenue modelsdoelways uses the maximum radi|E§(2 if it is assigned sector
not account for capacity constraints, which could preclade;j;j’ but not sectorj’;j, so thatz 7 = A. An agent assigned
provider from serving all users within an asset. both sectorsjj’ and 5’5 can opt|m|ze both radii as in (P5).
Problem (P4) can be solved via a two-step procedure: {ihis maps to (P1) by letting;; be the revenue obtained from
determine an assignment of assets to agents and (ii) deernsisset;j using the optimal radn{R” i, j)Er given by the
the radii of each sector for the assigned assets. The faipwisolution to (P5) and letting;;, = w;; (R’ )*—wi; (L/2—A)>.



-'_‘Z’?‘f]".v’,\ inj < 1, Z;];/ > 0, Tij € {O, 1},
. [

[} ; X
<Ly bl . . s n
agent | agent k Vi,ke A, jeC, (j,7") € E.
- At Lemmas 2 and 3 can be generalized to this problem.
assetj asset;’ However, given an assignment of assets, the resulting QP for
o Yo Ry - - Ry jrwX determining the radii is now coupled across the assets and th

objective is neither concave or convex, making this difficul
to solve for a large number of assets. However, after making
the assignment of assets, the number of remaining variables
is much smaller; there will be no more th&nC| variables
while before making an assignment there are on the order of
2|A|%|C| +|AJ|C| variables; hence, for a moderate number of
Fig. 6. lllustration of the omnidirectional radii model farsquare lattice. ~aSSets, it is feasible to use a commercial solver to determin
the optimal raditt® Alternatively, we next consider a linearized
version of this problem which yields a more tractable soluti
B. Omnidirectional Model Note that sinceR;; < L/2, no interference costs will be

Next we consider a variation without sectorization, so thiicurred if an agent uses a radifig2 — A. Thus, the revenue
assets have the same radii in each direction. For examjse, that an agent gains from an asset can be represented as the
models a system in which agents transmit from the center of $#M Of the revenue from a square with radiy2 — A and the
asset using an omnidirectional antenna. With sectorizatice '€Maining area, which may incur an interference cost. $peci
optimization of asset radii decomposes into a separateerob iCally, by replacingfz;; in (3) with (5- A)+ (Rij— (5- A))
for each pair of interfering sectors. In an omnidirection@nd simplifying the resulting expression, (3) can be revemit
model, the optimization of asset radii becomes coupledsacréS

multiple assets. Nevertheless, we will show that a lineakiz
d

- L -

version of this problem can still be efficiently solved.

We consider the same model as in the previous section
except a single radiug;; is used for assej by agenti. I 2
Hence, the assets are squares as shown in Fig. 6. Again, the — 4w;; (5 — A) +0(A?%) 4)
assumption of square assets is only for the ease of preisentat
The formulation and results can be extended to hexagomaiere we have used thét;; < L/2 and z;’; < A to get the
lattices in a straightforward way. Agerits revenue when O(A?) bound. o
assigned assej with radius R;; is then 4w;;R7, minus  Dropping theO(A?) terms, the remaining terms are linear
the interference costs from any overlap with the interfeeenin the optimization variables. Furthermore, we can drop the

footprint of neighboring assets (shaded area in Fig. 6). Thenstant terrrnwij(é — A)?, and the (non-negative) scaling

L 1 .
2 A) wgly = > qwi ) 7

345" )EE keA

revenue agent receives from asset is then given by term of 8 (4 — A), giving the following new optimization
problem:
Wij <2Rij - Z(Z;I;n + Z;?)) X
keA ik
2R — > (2, + 2%%.) 3) reAue THITIEERE
( ’ ,;, v st(x,R,z) € P

wherez;'-.’;, again denotes the amount of overlap of a neighbowrhere P denotes the same constraint set as in (P6). In fact,
ing asset’s interference area ajid j°, j*, and;j¢ denote the this linear approximation can be applied to any regulaicktt
assets to the north, south, east and west ©fith respect to with o = § for a square lattice as derived and= £ for a

an arbitrary choice of north). The efficient allocation igith hexagonal lattice.

given by the following MIQP: Lemma 2 can be extended to (P7) and so this problem can
again be solved by first allocating each asset to the ageht wit
max wi;j | 2R — Lk 4 ik the largestw;; and then optimizing the radii, which is now
xR,z ZEZA 762; ! ( ! ,;4( 7 i) a linear program, and so (P7) can be efficiently solved. Note

that the optimal asset assignment is the same in both (P6) and
x | 2Ri; — Z(z;l;w + Z;';) (P6) (P?). Of course, if the t_rue_ valuation.is giv_en by the obj&rti.
red in (P6), then solving this linear version will lead to a loss i
st 0< Ry + Ry — Z;ljc/ < L—A, revenue, Which_is gharacterized by the following I_emma. Lg_t
f(R) be the objective value of (P6) for some particular radii

. .. =
Vi,k € A,(4,)') € E vectorR that satisfiesP.

L L . .
xu(a —A)< Ry < xija’ VieA jel 15Note that by using Lemma 3 this can be formulated as an int@ger

IN



Lemma 4:SupposeR* andR are the solution to (P6) andwhich offers the most flexibility in assigning resourcesttBo
(P7), respectively. Ther$,(R*) — f(R) < SAL Z max wij, curves for the omnidirectional model are indistinguisiediolr
i€

jec the entire range of\, showing that at least for this scenario,
where = 4 for a square lattice and = 2v/3 for a hexgonal the linear model is a good approximation. For small enohgh
lattice. (equivalently smallA), the omnidirectional model outperforms

The lemma can be proved simply by obtaining an uppéne original model. However, for large (large A), the
and lower bound orf(R*) and f(R), respectively, and thus omnidirectional model has lower revenue than the original
omitted. Lemma 4 suggests that this linear approximationnsodel. While the omnidirectional model has the flexibility o
reasonable for smalh. Numerical results, in the next sectionpoptimizing asset radii across agents, the costs for theénailig
show that the loss may be small even for large valueAof model are based on allowing agents to adapt asset radii on
a sector basis when they own neighboring assets. Hence, it
is not clear that one of these schemes will always perform
better than the other. For large the revenue from “boundary

Pgions” is greater and apparently the original model h@tebe

erformance.

C. Numerical Results

We present some numerical comparisons of the reve
achieved by the original model and the radii models wit
and without sectorization. A square lattice withx 4 assets
and 6 agents is used. We sdt = 1 and for the radii
model thew;;’s are randomly generated following a Poisson
distribution with intensityy, = 50. As in Sect. II-D,1 — x  We have examined several simple models of spectrum
denotes the fraction of each asset which is always interéere markets with interference complementarities and shown how
free. For the radii models, this is equivalent to choosirgjfferent market structures can impact both the computatio
A = (1—+/1T—=X)/2. The revenues and costs for the origin®f an efficient outcome and the resulting revenue. For a basic
model are assigned as in Sect. IV-A. For the original modénodel in which the market specified only the assignment of
we exactly solve (P1). For the omnidirectional model, wersol @ssets to users, the resulting assignment problem was shown
(P7) to determine the asset assignment and radii used, dnt t# be NP-hard, which suggests that “simple” mechanisms will
plot the corresponding revenue using the objective of (R@). Not be able to obtain the efficient outcome in such markets.
also solve (P6) numerically. As a benchmark, we also shcwgveral approximations were given, which had good perfor-
results for a model with spatial guard zones, i.e., agergs &pance in numerical examples. Next, we considered a market
required to use a radius &f—A so that no two assets interfereWhere guard zones between primary assets were allocated for

In this case, the efficient allocation is to assign each agsegecondary use. This did not improve the complexity of the
to the agent with the largest value of;. general allocation problem, but provided structure that loe

exploited in several cases. Finally, we considered models i
which the market determined both the assignment of assets
and their radii, which led to simpler allocation problems as
well as higher total revenue. These examples illustrategus
few of the rich possibilities in defining spectrum assets and
the non-trivial interactions between these definitions el

V. CONCLUSIONS

o complexity and efficiency of the resulting market design.
g Future research directions include developing more refined
¢ models for interference costs and studying their effecthan t
g resulting markets, studying strategic behaviors of agémts
origina - such markets and developing mechanisms to implement the
==© - Radii, omni, sol. of linear obj. 9\\ marketS.
600 .. 4 Radii, omni, sol. of quadratic obj. \Q\
= =A- = Radii, 90° sectorized \Qx
5501 —¢— spatial guard bands ~ ~ APPENDIX
500 : : : : : : : : : ‘ A. Proof of Proposition 1
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

A Given a graplG = (V, E) and positive numbeK > 3, the
Graph Partitioning problem is to find a partition of” in to
disjoint setsV4,....V;,, such that|V;| < K forall 1 <i <m
and such that ifE’ C E is the set of edges that have two
Fig. 7 shows the total revenue for each model versus endpoints in two different sets, théh’| is minimized, where
averaged ove200 realizations of thew;;’s. The fixed guard || is the cardinality of the set. (see [30] for a general version
zone model achieves the lowest revenue, which goes to zefdhis problem). This problem is NP-complete, even with the
as ) increases since no revenue is obtained in the guard zonestriction thatk = 3.
Even for moderate values of, the other approaches achieve We give a transformation of the graph partitioning problem
significantly higher revenue, demonstrating the poteigade- with K = 3 into the spectrum asset allocation problem. Let
fit of the spectrum market managing interference. The highds be the set of spectrum assets afidthe corresponding
revenue is achieved by the radii model with sectorizatianterference graph. For any; C V such that|V;| < 3,

Fig. 7. The total revenue versus the amount of interferemzfeudifferent
market models.
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introduce an agent with;; = ro only for j € V;, and zero [19] O. lleri, D. Samardzija, and N. Mandayam, “Demand resee pric-

otherwise; also, sett ., = ¢o for all edges(j,j’) € E such ing and competitive spectrum allocation via a spectrum esgnin
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thaty € Vi orj° € V; or both. The number of agents resulting,g; v, xing, R. Chandramouli, and C. Cordeiro, “Price dyriesnin com-

from thiS%n3—|—O(n). Thus, this transformation can be done in  petitive agile spectrum access marketEE JSAG vol. 25, no. 3,

olynomial time. Furthermore, assumg> 0 and thatzy > 0 pp. 613-621, April 2007.
.p y , me . v é%l} J. Jia and Q. Zhang, “Bandwidth and price competitiomsvoeless
is small enoth so that an agent’s revenue Is always greater gepyice providers in two-stage spectrum market,"Piroc. IEEE ICC
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