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Abstract

We consider collocated wireless sensor networks, where each node’s transmissions can be heard by
every other node. Each node has a Boolean measurement and thegoal of the wireless sensor network
is to compute a given Boolean function of these measurements. We first consider the worst case
setting and study optimal block computation strategies forcomputing symmetric Boolean functions.
We study three classes of functions: threshold functions, delta functions and interval functions. We
provide exactly optimal strategies for the first two classes, and a scaling law order-optimal strategy with
optimal preconstant for interval functions. We also extendthe results to the case of integer measurements
and certain integer-valued functions. We use lower bounds from communication complexity theory, and
provide an achievable scheme using information theoretic tools.

Next, we consider the case where nodes measurements are random and drawn from independent
Bernoulli distributions. We address the problem of optimalfunction computation so as to minimize
the expected total number of bits that are transmitted. In the case of computing a single instance of a
Boolean threshold function, the problem reduces to one of determining the optimal order in which the
nodes should transmit. We show the surprising result that the optimal order of transmissions depends in
an extremely simple way on the values of previously transmitted bits, and the ordering of the marginal
probabilities of the Boolean variables, according to thek-th least likely rule: At any transmission, the
node that transmits is the one that has thek-th least likely value of its Boolean variable, wherek reduces
by one each time any node transmits a one. Initially the valueof k is (n+1 - Threshold). Surprisingly,
the order of transmissions does not depend on the exact values of the probabilities of the Boolean
variables, but only depends on their order.

The approach presented can be generalized to the case where each node has a block of measure-
ments, though the resulting problem is somewhat harder, andwe conjecture the optimal strategy. In
the case of identically distributed measurements, we further show that the average-case complexity of
block computation of a Boolean threshold function isO(θ ), whereθ is the threshold. We further show
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how to generalize to a pulse model of communication. One can also consider the related problem of
approximate computation given a fixed number of bits. In thiscase, the optimal strategy is significantly
different, and lacks an elegant characterization. However, for the special case of the parity function, we
show that the greedy strategy is optimal.

I. INTRODUCTION

Wireless sensor networks are composed of nodes with limitedpower and bandwidth, which can

sense the environment and wirelessly communicate with eachother to complete a collaborative

task. However, in contrast to wirelessdata networks, most wireless sensor network applications

are not ininterested only in computing some relevantfunctionof the correlated data at distributed

sensors. For instance, one might want to compute the mean temperature for environmental

monitoring, or the maximum temperature in fire alarm systems. In order to extract the relevant

information from enormous quantities of data generated by sensor nodes, one needs to design

scalable algorithms and protocols. Thus, one needs to look beyond the data-forwarding paradigm

and study how to design efficient in-network computation andcommunication strategies for

functions of interest.

The general problem of distributed function computation inwireless sensor networks presents

several challenges. The broadcast nature of the wireless medium means that nodes have to

deal with interference from other transmissions. This is typically resolved by a mechanism for

distributed scheduling of transmissions. One of the consequences is that nodes which transmit

later can exploit both previously received transmissions as well as the structure of the function

to be computed, in order to create a more efficient description of their own data. Further, it is

of interest to study the benefit of multi-round protocols, possibly involving complex interactions

between nodes, versus single round protocols, where each node transmits only once. In the

case where nodes have random data drawn from different distributions, there is the additional

question regarding which node should transmit, since different nodes affect the function to

different degrees.

In this paper, we consider the collocated network scenario where all nodes can hear all

transmissions. Its symmetry makes it a desirable starting point for studying random planar



networks. At most one node is allowed to transmit at any time.Each node has a Boolean

variable and we focus on the specific problem of symmetric Boolean function computation. We

will focus on strategies which achieve function computation with zero error forall sensor nodes.

This is motivated by applications in distributed control and sensor-actuator networks, where each

node needs to infer the state of the system in distributed fashion and respond in real time. We

adopt a deterministic formulation of the problem of function computation, requiring zero error.

We consider both the worst case setting and the average case setting where we impose a joint

probability distribution on the node measurements.

In Section III, we consider the worst case setting, and address the problem of computing

symmetric Boolean functions, which depend only on number of1s, i.e., the “type,”. We study

block computation strategies where nodes accummulate a block of measurements and employ

block codes to achiever greater efficiency. The set of admissible strategies includes all interactive

strategies, where a node may exchange several messages withother nodes. Since nodes can only

transmit one at a time, the key challenge is for nodes to thoroughly exploit previous transmissions

to compress their own data. We suppose that each node has a Boolean measurement and we

wish to compute a given symmetric Boolean function of these measurements with zero error. We

define three classes of functions, namely threshold functions which evaluate to 1 if the number

of 1s exceeds a certain threshold, delta functions which evaluate to 1 if the number of 1s is

exactly equal to a given value, and interval functions whichevaluate to 1 if the number of 1s

is between two given lower and upper values. For worst-case computation, we provide exactly

optimal strategies for the first two classes, and a scaling law order-optimal strategy with optimal

preconstant, as the number of nodes increases, for intervalfunctions. Using these results, we can

characterize the complexity of computing percentile type functions, which are of great interest.

In our analysis, we use lower bounds from communication complexity theory, and provide

an achievable scheme using information theoretic tools. Further, the approach presented can be

generalized to compute functions of non-Boolean measurements, as shown in our treatment of

general threshold functions and theMAX function. While the proposed achievability strategy is

exactly optimal for general threshold functions, it is onlyscaling law order-optimal for theMAX



function.

In Section IV, we address the case where the node measurements are independent and dis-

tributed according to given marginal Bernoulli distributions. Since the measurements are random,

the evolution of the computation depends on the particular instances of measurements, and

the time of termination of the computation is also accordingly random. We seek to minimize

the total expected number of bits exchanged to achieve zero error computation. We primarily

focus on optimal strategies for Boolean threshold functions. In the case of single instance

computation, this is equivalent to determining the optimalordering of nodes’ transmissions so

as to minimize the expected total number of bits exchanged. We present a surprising policy for

ordering the transmissions and prove its optimality. The optimal policy is dynamic, depending

in a particularly simple way on the previously transmitted bits, and on the relative ordering

of the marginal probabilities, but, surprisingly, not on their values. The problem of optimally

ordering transmissions of nodes is a sequential decision problem and can in principle be solved

by dynamic programming. However, this would require solving the dynamic program for all

thresholds and all probability distributions, which appears infeasible. We avoid this, and directly

establish the optimal policy. The proposed solution permits a unified treatment of the problems of

single instance computation, block computation and computation under alternate communication

models.

In Section IV-B, we turn our attention to the case where each node has a block of bits, and

we seek to compute the Boolean threshold function for each instance of the block. This problem

appears formidable due to the plethora of possibilities, and due to a far more complex class of

interactive strategies for computation. However, for a certain natural restricted class ofcoherent

strategies, we can establish that an analogous policy is optimal, thus establishing an upper bound

on the optimal cost. In order to establish a lower bound across all strategies, we propose the

approach of calculating the minimum entropy over all valid protocol partitions which respect

fooling set constraints. While this lower bound matches theupper bound for small examples,

a proof has remained elusive. In Section IV-B2, we show that the average case complexity of

computing a Boolean threshold function isO(θ), whereθ is the threshold.



In Section IV-C, we consider an alternate model of communication where nodes use pulses

of unit energy to convey information. We generalize our proof technique and derive the optimal

strategy for computing Boolean threshold functions under this model of communication. Finally,

in Section IV-D, we study the problem of approximate function computation given a fixed number

of timeslots. We show that the optimal strategy for the approximate computation of threshold

functions lacks the same elegant structure as present in thecase of exact computation. However,

for the special case of the parity function, we show that the logical strategy of first querying the

node with maximum uncertainty, i.e., entropy, is optimal.

II. RELATED WORK

The the problem of worst-case block function computation with zero error was formulated in

[?]. The authors identified two classes of symmetric functionsnamely type-sensitivefunctions

exemplified by Mean, Median and Mode, andtype-thresholdfunctions, exemplified by Maximum

and Minimum. The maximum rates for computation of type-sensitive and type-threshold func-

tions in random planar networks were shown to beΘ( 1
logn) andΘ( 1

log logn) respectively, wheren

is the number of nodes. If we impose a probability distribution on the node measurements, one

can show that the average case complexity of computing type-threshold functions isΘ(1) [?].

In this paper, we address the problem where every node wishesto determine the value of

the function. This approach naturally allows the use of tools from communication complexity

[?], where one seeks to find the minimum number of bits that must be exchanged in the worst

case between two nodes, in order to achieve zero-error computation of a function of the node

variables. The communication complexity of Boolean functions has been studied in [?], [?]. In

order to increase the computational efficiency, one can consider thedirect-sum problem[?] where

several instances of the problem are solved simultaneously. This block computation approach

results in matching upper and lower bounds in the case of the Boolean AND function [?]. In this

paper, we considerably generalize this result to derive theworst case complexity of computing

Boolean threshold functions in collocated networks

If the measurements are drawn from some joint probability distribution and one is allowed



block computation, we arrive at a distributed source codingproblem with a fidelity criterion

that is function-dependent, concerning which little is known. The problem of source coding

with side information was studied in [?]. The extension of this approach to the problem of

function computation with side information was studied in [?]. The problem of interactive

function computation in collocated networks has been studied in [?].

Due to the broadcast nature of the wireless medium, two nodeswhich are close to each

other cannot transmit simultaneously. Thus, nodes need to schedule their transmissions to avoid

interfering with one another. The challenge now is to order nodes’ transmissions so as to exploit

the structure of the function, the side-information gainedfrom previously transmitted bits, and

the knowledge of the underlying distribution. Sequential decision making problems have been

studied in various forms. The most well known problem of designing sequential experiments is

the bandit problem [?], [?], [?]. One is given a bandit with multiple arms which offer different

probabilistic payoffs. At each time-step, the player needsto choose which arm to play so as to

maximize the expected long-term payoff. Thus, there is a tension between exploring which arms

offer highest payoffs and exploiting them. Under the optimal strategy, each arm is assigned a

dynamic allocation index and the arm with maximum index is chosen.

In [?], an interesting problem in sequential decision making is studied, where,n nodes have

i.i.d. measurements, and a central agent wishes to know the identities of the nodes with thek

largest values. One is allowed questions of the type “IsX ≥ t”, to which the central agent receives

the list of all nodes which satisfy the condition. Under thisframework, the optimal recursive

strategy of querying the nodes is found. A key difference in our formulation of the sequential

decision making problem is that we are only allowed to query particular nodes, and not all nodes

at once. The problem of minimizing the depth of decision trees for Boolean threshold queries

is considered in [?].

III. W ORST CASE COMPUTATION OF SYMMETRIC BOOLEAN FUNCTIONS

In this section, we consider a collocated network with nodes1 throughn, where each node’s

transmissions can be heard by every other node. Thus, the problem of medium access is resolved



by allowing at most one node to transmit successfully at any time. Each nodei has a Boolean

measurementXi ∈ {0,1}, andeverynode wants to compute the same functionf (X1,X2, . . . ,Xn)

of the measurements. We seek to find communication schemes which achieve correct function

computation at each node, with minimum worst-case total number of bits exchanged. We allow

for the efficiencies of block computation, where each nodei has a block ofN independent

measurements, denoted byXN
i . Throughout this section, we suppose that collisions do notconvey

information thus restricting ourselves tocollision-free strategiesas in [?]. This means that for

the kth bit bk, the identity of the transmitting nodeTk depends only on previously broadcast

bits b1,b2, . . . ,bk−1, while the value of the bit it sends can depend arbitrarily onall previous

broadcast bits as well as its block of measurementsXN
Tk

.

It is important to note that allinteractivestrategies are subsumed within the class of collision-

free strategies. A collision-free strategy is said to achieve correct block computation if each node

i can correctly determine the value of the function blockf N(X1,X2, . . . ,Xn) using the sequence

of bits b1,b2, . . . and its own measurement blockXN
i . Let SN be the class of collision-free

strategies for block lengthN which achieve zero-error block computation, and letC( f ,SN,N)

be the worst-case total number of bits exchanged under strategy SN ∈ SN. The worst-case per-

instance complexity of computing a functionf (X1,X2, . . . ,Xn) is defined by

C( f ) = lim
N→∞

min
SN∈SN

C( f ,SN,N)

N
.

We call this thebroadcast computation complexityof the function f .

We begin by recalling Theorem 1 in [?], which states that the complexity of computing the

AND function of two variables is log23 bits. In Section III-A, we generalize this result to

obtain the broadcast communication complexity of the AND function of n variables. In Section

III-B, we derive the broadcast computation complexity for the more general class ofthreshold

functions. For this class of functions, we devise an achievable strategy which involves each node

transmitting in turn, using a prefix-free codebook, and a lower bound based on fooling sets. It

is interesting to note that the optimal strategy requires noback-and-forth interaction between

nodes. In Sections III-C and III-D, we extend this approach to derive the broadcast computation



complexity of computingdelta functionsand interval functionsrespectively.

Finally, in Section III-E, we present some extensions to thecase of non-Boolean measurements

and to the case of non-Boolean functions. Using the intuition gained from the Boolean case, we

show how the achievability scheme and fooling set lower bounds can be adapted. In particular

we study general threshold functions and theMAX function.

A. Complexity of computing the AND function

We consider now the specific problem of computing the AND function, which is 1 if all its

arguments are 1, and 0 otherwise. Consider a collocated network with n nodes, each of which

wants to compute the AND function ofn variables, denoted∧(X1,X2, . . . ,Xn). For the case

wheren= 2, we know from Theorem 1 in [?] that the broadcast communication complexity of

computing the AND function is log23 bits. We have the following result for generaln.

Theorem 1:For any strategySN,

C(X1∧X2 . . .Xn,SN,N)≥ N log2(n+1).

Further, there exists a strategyS∗N such that

C(X1∧X2 . . .Xn,S
∗
N,N)≤ ⌈N log2(n+1)⌉+(n−2).

Thus, the complexity of the multiple node AND function is given by C(∧(X1,X2, . . .Xn)) =

log2(n+1).

Proof of Achievability: The upper bound is established using induction on the numberof nodes

n. From Theorem 1 in [?], the result is true forn= 2 which is the basis step. Suppose the result

is true for a collocated network of(n−1) nodes. Consider an achievable scheme in which node

n transmits first, using a prefix free codebook. Let the length of the codeword transmitted be

l(XN
n ). After this transmission, the function is determined for the instances whereXn = 0. For the

instances whereXn = 1, the remaining(n−1) nodes need to compute∧(X1,X2, . . . ,Xn−1). From

the induction hypothesis, we know that this can be done using⌈w(XN
n ) log2n⌉+(n−3) bits. Thus

the worst-case total number of bits exchanged isL := maxXN
n
(l(XN

n )+⌈w(XN
n ) log2n+(n−3)⌉).



As before, we want to minimise this quantity subject to the Kraft inequality. Consider a prefix-

free codebook for noden which satisfies

l(XN
n ) = ⌈N log2(n+1)⌉+(n−2)−⌈w(XN

n ) log2n⌉− (n−3)

This satisfies Kraft inequality since

∑
XN

n

2⌈w(X
N
n ) log2n⌉ ≤ ∑

XN
n

2w(XN
n ) log2 n+1 ≤ 2(n+1)N ≤ 2⌈N log2(n+1)⌉+1

Proof of lower bound: The lower bound is shown by constructing afooling set [?] of the

appropriate size. We digress briefly to introduce the concept of fooling sets in the context of

two-party communication complexity [?]. Consider two nodesX and Y, each of which take

values in finite setsX and Y , and both nodes want to compute some functionf (X,Y) with

zero error.

Definition 1 (Fooling Set):A setE ⊆X ×Y is said to be a fooling set, if for any two distinct

elements(x1,y1),(x2,y2) in E, we have either

• f (x1,y1) 6= f (x2,y2), or

• f (x1,y1) = f (x2,y2), but either f (x1,y2) 6= f (x1,y1) or f (x2,y1) 6= f (x1,y1).

Given a fooling setE for a function f (X1,X2), we haveC( f (X1,X2)) ≥ log2 |E|. We have

described two dimensional fooling sets above. The extension to multi-dimensional fooling sets

is straightforward and gives a lower bound on the communication complexity of the function

f (X1,X2, . . . ,Xn).

We need to devise a subset of the set of alln×N measurement matrices which is a valid

fooling set. Consider the subsetE of measurement matrices which are only comprised of columns

which sum to(n−1) or n. Since there areN columns, there are(n+1)N such matrices. LetM1,

M2 be two distinct matrices in this subset. Iff N(M1) 6= f N(M2), then we are done. Suppose not.

Then there must exist one instance where the function evaluates to zero and for whichM1 and

M2 have different columns. Let us supposeM1 has 1n−ei andM2 has 1n−ej . Now if we replace

the ith row of M1 with the ith row of M2, the resulting measurement matrix, sayM∗ is such



that f (M∗) 6= f (M1). Thus, the setE is a valid fooling set. From the fooling set lower bound,

we have, forany strategySN ∈ SN, we must haveC(∧(X1,X2),SN,N) ≥ N log23 implying that

C( f )≥ log23. This concludes the proof of Theorem 1.✷

By symmetry, we can derive the complexity of the OR function,which is defined to be 0 if

all its arguments are 0, and 1 otherwise. Consider a collocated network withn nodes, each of

which wants to compute the OR function, denoted by∨(X1,X2, . . . ,Xn).

Corollary 1: The complexity of the OR function is given byC(∨(X1,X2, . . . ,Xn)) = log2(n+

1), since we can view it as∧(X1,X2, . . . ,Xn), by deMorgan’s laws.

Note: Throughout the rest of this section, for ease of exposition,we will ignore the fact that

terms likeN log2(n+1) may not be integer. Since our achievability strategy involves each node

transmitting exactly once, this will result in a maximum of one extra bit per node, and since we

are amortizing this over a long block lengthN, it will not affect any of the results.

B. Complexity of computing Boolean threshold functions

Definition 2 (Boolean threshold functions):A Boolean threshold functionΠθ (X1,X2, . . . ,Xn)

is defined as

Πθ (X1,X2, . . . ,Xn) =







1 if ∑i Xi ≥ θ

0 otherwise.

Theorem 2:The complexity of computing a Boolean threshold function isC(Πθ(X1,X2, . . .Xn))=

log2





n+1

θ



.

Proof of Achievability: The upper bound is established by induction onn. From Theorem 1 and

Corollary 1, the result is true forn= 2 and forall 1≤ θ ≤ n, which is the basis step. Suppose

the upper bound is true for a collocated network of(n−1) nodes, for all 1≤ θ ≤ (n−1). Given

a functionΠθ (X1,X2, . . . ,Xn) of n variables, consider an achievable strategy in which noden

transmits first, using a prefix free codeword of lengthl(XN
n ). After this transmission, nodes 1

throughn−1 can decode the blockXN
n . For the instances whereXn = 0, these(n−1) nodes now

need to computeΠθ (X1,X2, . . . ,Xn−1). For the instances whereXn = 1, the remaining(n−1)

nodes need to computeΠθ−1(X1,X2, . . . ,Xn−1). From the induction hypothesis, we have optimal



strategies for computing these functions. Letwi(XN
n ) denote the number of instances ofi in the

block XN
n . Under the above strategy, the worst-case total number of bits exchanged is

L = max
XN

n



l(XN
n )+w0(XN

n ) log2





n

θ



+w1(XN
n ) log2





n

θ −1







 .

We want to minimise this quantity subject to the Kraft inequality. Consider a prefix-free codebook

which satisfies

l(XN
n ) = N log2





n+1

θ



−w0(XN
n ) log2





n

θ



−w1(XN
n ) log2





n

θ −1



 .

This assignment of codelengths satisfies the Kraft inequality since

∑
XN

n

2−l(XN
n ) =





n+1

θ





−N

∑
XN

n





n

θ





w0(XN
n )



n

θ −1





w1(XN
n )

=





n+1

θ





−N







n

θ



+





n

θ −1









N

= 1.

Hence there exists a prefix-free code which satisfies the specified codelengths, and we have

L = N log2





n+1

θ



, which proves the induction step.

Proof of lower bound: We need to find a subset of the set of alln×N measurement ma-

trices which is a valid fooling set. Consider the subsetE of measurement matrices which

consist of only columns which sum to(θ − 1) or θ . Since there areN columns, there are








n

θ



+





n

θ −1









N

such matrices. We claim that the setE is a valid fooling set. LetM1,

M2 be two distinct matrices in this subset. Iff N(M1) 6= f N(M2), then we are done. Suppose

not. Then there must exist at least one column at whichM1 andM2 disagree, sayM( j)
1 6= M( j)

2 .

However, bothM( j)
1 andM( j)

2 have the same number of ones. Thus there must exist some row,

say i∗, whereM( j)
1 has a zero, butM( j)

2 has a one.

(i) Supposef (M( j)
1 ) = f (M( j)

2 ) = 0. Then, consider the matrixM∗
1 obtained by replacing the



i∗th row of M1 with the i∗th row of M2. The jth column of M∗
1 has θ ones, and hence

f (M∗( j)
1 ) = 1. Hence we havef (M∗

1) 6= f (M1).

(ii) Supposef (M( j)
1 ) = f (M( j)

2 ) = 1. Then, consider the matrixM∗
2 obtained by replacing the

i∗th row of M2 with the i∗th row of M1. The jth column ofM∗
2 hasθ −1 ones, and hence

f (M∗( j)
2 ) = 1. Hence we havef (M∗

2) 6= f (M2).

Thus, the setE is a valid fooling set. From the fooling set lower bound, forany strat-

egy SN ∈ SN, we must haveC(Πθ (X1,X2, . . . ,Xn),SN,N) ≥ N log2





n+1

θ



 implying that

C(Πθ(X1,X2, . . . ,Xn))≥ log2





n+1

θ



. ✷

C. Complexity of Boolean delta functions

Definition 3 (Boolean delta function):A Boolean delta functionΠ{θ}(X1,X2, . . . ,Xn) is de-

fined as:

Π{θ}(X1,X2, . . . ,Xn) =







1 if ∑i Xi = θ

0 otherwise.

Theorem 3:The complexity of computingΠ{θ}(X1,X2, . . . ,Xn) is given by

C(Π{θ}(X1,X2, . . . ,Xn)) = log2









n+1

θ



+





n

θ +1







 .

Sketch of Proof: The proof of achievability follows from an inductive argument as before. The

fooling setE consists of measurement matrices composed of only columns which sum up to

θ −1, θ or θ +1. Thus the size of the fooling set is









n

θ −1



+





n

θ



+





n

θ +1









N

.✷



D. Complexity of computing Boolean interval functions

A Boolean interval functionΠ[a,b](X1, . . . ,Xn) is defined as:

Π[a,b](X1,X2, . . . ,Xn) =







1 if a≤ ∑i Xi ≤ b

0 otherwise.

A naive strategy to compute the functionΠ[a,b](X1, . . . ,Xn) is to compute the threshold functions

Πa(X1, . . . ,Xn) andΠb+1(X1,X2, . . . ,Xn). However, this strategy gives us more information than

we seek, i.e., if∑i Xi ∈ [a,b]C, then we also know if∑i Xi < a, which is superfluous information

and perhaps costly to obtain. Alternately, we can derive a strategy which explicitly deals with

intervals, as against thresholds. This strategy has significantly lower complexity.

Theorem 4:The complexity of computing a Boolean interval functionΠ[a,b](X1,X2, . . . ,Xn)

with a+b≤ n is bounded as follows:

log2









n+1

b+1



+





n

a−1







≤C(Π[a,b](X1,X2, . . .Xn))

≤ log2









n+1

b+1



+(b−a+1)





n

a−1







 . (1)

The complexity of computing a Boolean interval functionΠ[a,b](X1, . . . ,Xn) with a+b ≥ n is

bounded as follows:

log2









n+1

a



+





n

b+1







≤C(Π[a,b](X1,X2, . . .Xn))

≤ log2









n+1

a



+(b−a+1)





n

b+1







 . (2)

Proof of lower bound: Supposea+b ≤ n. Consider the subsetE of measurement matrices

which consist of only columns which sum to(a−1), b or (b+1). We claim that the setE is a

valid fooling set. LetM1, M2 be two distinct matrices in this subset. Iff N(M1) 6= f N(M2), we

are done. Suppose not. Then there must exist at least one column at whichM1 andM2 disagree,



sayM( j)
1 6= M( j)

2 .

(i) Supposef (M( j)
1 ) = f (M( j)

2 ) = 1. Then, bothM( j)
1 and M( j)

2 have exactlyb 1s. Thus there

exists some row, sayi∗, whereM( j)
1 has a 0, butM( j)

2 has a 1. Consider the matrixM∗
1

obtained by replacing thei∗th row of M1 with the i∗th row of M2. The jth column of M∗
1

has(b+1) 1s, and hencef (M∗( j)
1 ) = 0, which meansf (M∗

1) 6= f (M1).

(ii) Supposef (M( j)
1 )= f (M( j)

2 ) = 0. If bothM( j)
1 andM( j)

2 have the same number of 1s, then the

same argument as in (i) applies. However, ifM( j)
1 has(a−1) 1s andM( j)

2 has(b+1) 1s, then

there exists some rowi∗ whereM( j)
1 has a 0, butM( j)

2 has a 1. Then, the matrixM∗
2 obtained

by replacing thei∗th row of M2 with the i∗th row of M1 is such thatf (M∗
2) 6= f (M2).

Thus, the setE is a valid fooling set and|E|=









n

b+1



+





n

a−1



+





n

b









N

. This

gives us the required lower bound in (1).

For the case wherea+b≥ n, we consider the fooling setE′ of matrices which are comprised

of only columns which sum toa−1, a or b+1. This gives us the lower bound in (2).

Proof of achievability: Consider the general strategy for achievability where noden transmits a

prefix-free codeword of lengthl(XN
1 ), leaving the remaining(n−1) nodes the task of computing

a residual function. This approach yields a recursion for computing the complexity of interval

functions.

C(Π[a,b](X1, . . . ,Xn))≤ log2

[

2C(Π[a−1,b−1](X1,...,Xn−1))+2C(Π[a,b](X1,...,Xn−1)
]

.

The boundary conditions for this recursion are obtained from the result for Boolean threshold

functions in Theorem 2. We could simply solve this recursioncomputationally, but we want to

study the behaviour of the complexity as we varya, b andn. Defineha,b,n := 2C(Π[a,b](X1,...,Xn)).

We have the following recursion forh(a,b,n)

h(a,b,n)≤ h(a−1,b−1,n−1)+h(a,b,n−1). (3)

We proceed by induction onn. From Theorems 2 and 3, the upper bounds in (1) and (2) are

true for n= 2 and all intervals[a,b]. Suppose the upper bound is true for all intervals[a,b] for



(n−1) nodes. Consider the following cases.

(i) Supposea+b≤ n−1. Substituting the induction hypothesis in (3), we get

h(a,b,n) ≤





n

b



+(b−a+1)





n−1

a−2





+





n

b+1



+(b−a+1)





n−1

a−1





=





n+1

b+1



+(b−a+1)





n

a−1



 .

(ii) Supposea+b≥ n+1. Proof is similar to case (i).

(iii) Supposea+b= n. Substituting the induction hypothesis in (3), we get

h(a,b,n) ≤





n

b



+(b−a+1)





n−1

a−2





+





n

a



+(b−a+1)





n−1

b+1





≤





n+1

a



+(b−a+1)





n

b+1



 .

where some steps have been omitted in the proof of the last inequality. This establishes the

induction step and completes the proof.✷

1) Discussion of Theorem 4:

(a) The gap between the lower and upper bounds in (1) and (2) isadditive, and is upper bounded

by log2(b−a+2) which is log2(n+2) in the worst case.

(b) For fixeda and b, as the number of nodes increases, we havea+b≤ n for large enough



n. Consider the residual term,(b−a+1)





n

a−1



 on the RHS in (1). We have

(b−a+1)





n

a−1



= o









n+1

b+1







 .

Hence,C(Π[a,b](X1, . . . ,Xn)) = log2









n+1

b+1



(1+o(1))



. Thus, for any fixed interval

[a,b], we have derived an order optimal strategy with optimal preconstant. The orderwise

complexity of this strategy is the same as that of the threshold function Πb+1(X1, . . . ,Xn).

Similarly, we can derive order optimal strategies for computing C(Π[n−a,n−b](X1, . . . ,Xn))

andC(Π[a,n−b](X1, . . . ,Xn)), for fixed a andb.

(c) Consider apercentiletype function where[a,b] = [αn,βn], with (α +β ) ≤ 1. Using Stir-

ling’s approximation, we can still show that

(β −α)n





n

αn−1



= o









n+1

βn+1







 .

Thus we have derived an order optimal strategy with optimal preconstant for percentile

functions.

(d) Consider the functionf := Π∪i[ai ,bi ](X1, . . . ,Xn) where the intervals[ai ,bi] are disjoint, and

may be fixed or percentile type. We can piece together the result for single intervals and

show that

C( f (X1, . . . ,Xn)) = log2

(

m

∑
i=1

g(ai ,bi,n)(1+o(1))

)

.

whereg(ai ,bi,n) =







































n+1

bi +1



 if ai +bi ≤ n





n+1

ai



 if ai +bi ≥ n.



E. Extension to general alphabets

In Sections III-B - III-D, we have studied optimal strategies for computing threshold functions,

delta functions and interval functions of Boolean measurements. In this section, we will show

that these results can be generalized to the case where nodeshave general integer alphabets, i.e.,

Xi ∈ {0,1, . . . ,mi}. The proofs are lengthier in this case, and to maintain clarity of presentation,

we will focus on threshold functions and theMAX function.

1) Complexity of General Threshold Functions:Consider a collocated network ofn nodes,

where nodei has measurementXi ∈ {0,1, . . . ,mi}.

Definition 4: A general threshold functionΠθ (X1,X2, . . . ,Xn) is defined as below.

Πθ (X1,X2, . . . ,Xn) :=







1 if ∑n
i=1Xi ≥ θ

0 otherwise
.

We employ the same notation as for Boolean threshold functions, which constitute a special case

of general threshold functions.

Theorem 5:The complexity of computingΠθ (X1, . . . ,Xn) is given by

C(Πθ (X1, . . . ,Xn)) = log2

(

[

Yθ
]

+
[

Yθ−1
]

(

n

∏
i=1

1−Ymi+1

1−Y

))

.

= log2





[

Yθ
]

+
[

Yθ−1
]

(

n

∏
i=1

(1−Ymi+1)

)





∞

∑
k=1





n+k−1

n−1



Yk









where the notation[Yθ ] refers to the coefficient ofYθ in the expression on the RHS.

Proof: The proof proceeds by induction on the number of nodesn. From Theorem 1 in [?],

we know that the result is true forn= 2 and all choices ofm1,m2 andθ . This serves as a basis

step for the induction. Let us suppose the result is true for acollocated network ofn−1 nodes

and all choices ofm1,m2, . . . ,mn−1 andθ . We now proceed to prove the result for a network of

n nodes.

We specify a strategyS∗N in which noden transmits first. As described in [?], the optimal

strategy consists of two stages, namely separation and coding. We begin by identifying the

symbols in{0,1, . . . ,mn} that need to beseparatedby noden. Let X̃n be the mapping ofXn to



the reduced alphabet given by{an, . . . ,bn}. Subsequently, we construct a prefix-free codeword

on the reduced alphabet. Let the length of the codeword transmitted be l(XN
1 ). At the end of

this transmission, the remainingn−1 nodes need to compute a residual threshold function for

each instance of the block. For example, ifXn = k, we are left with the task of computing

Πθ−k(X1, . . . ,Xn−1). By the induction hypothesis, there is an achievable strategy to compute this

residual threshold function, with complexityC(Πθ−k(X1, . . . ,Xn−1)). Thus the worst case total

number of bits exchanged under this strategy is given by

L := max
X̃N

n

(l(X̃N
n )+wan(X̃N

n )C(Πθ−an(X1, . . . ,Xn−1))+wan+1(X̃N
n )C(Πθ−an−1(X1, . . . ,Xn−1))

+ . . .+wbn(X̃N
n )C(Πθ−bn(X1, . . . ,Xn−1)),

wherew j(X̃N
n ) is the number of instances in the block whereX̃n = j. Our objective is to find the

smallestL that satisfies the Kraft inequality for prefix free codes, which states that∑X̃N
n

2−l(X̃N
n ) ≤

1. From the definition ofL, we can lower bound the LHS of the Kraft inequality.

∑
XN

n

2−l(X̃N
n ) ≥ 2L ∑̃

XN
n

(

2−wan(X̃N
n )C(Πθ−an(X1,...,Xn−1)) . . .2−wbn(X̃N

n )C(Πθ−bn(X1,...,Xn−1))
)

.

From the induction hypothesis, we have that

C(Πθ−k(X1, . . . ,Xn−1)) = log2

(

[

Yθ−k
]

+
[

Yθ−k−1
]

(

n−1

∏
i=1

(1−Ymi+1)

1−Y

))



Thus, the smallest feasible value ofL is given by

2L = ∑̃
XN

n

(

[

Yθ−an

]

+
[

Yθ−an−1
]n−1

∏
i=1

(

1−Ymi+1

1−Y

)

)wan(X̃N
n )

· . . .

· . . . ·

(

[

Yθ−bn

]

+
[

Yθ−bn−1
]n−1

∏
i=1

(

1−Ymi+1

1−Y

)

)wbn(X̃N
n )

=

(

bn

∑
k=an

(

[

Yθ−k
]

+
[

Yθ−k−1
]n−1

∏
i=1

(

1−Ymi+1

1−Y

)

))N

=

(

mn

∑
k=0

(

[

Yθ−k
]

+
[

Yθ−k−1
]n−1

∏
i=1

(

1−Ymi+1

1−Y

)

))N

(4)

=

(

[

Yθ
]

+
[

Yθ−1
]

(1+Y+ . . .+Ymn)
n−1

∏
i=1

(

1−Ymi+1

1−Y

)

)N

=

(

[

Yθ
]

+
[

Yθ−1
] n

∏
i=1

(

1−Ymi+1

1−Y

)

)N

.

L = N log2

(

[

Yθ
]

+
[

Yθ−1
] n

∏
i=1

(

1−Ymi+1

1−Y

)

)

. (5)

where (4) follows from the fact that fork< an andk> bn, the coefficients ofYθ−k andYθ−k−1

are both zero. Thus, we have derived an upper bound on the complexity of computing general

threshold functions in collocated networks.

Proof of lower bound: We need to find a subset of the set of alln×N measurement matrices

which is a valid fooling set. Consider the subsetE of measurement matrices which are made

up only of the column vectors which sum to(θ −1) or θ . Consider two distinct measurement

matricesM1,M2 ∈ E. Let f N(M1) and f N(M2) be the block function values obtained from

these two matrices. Iff N(M1) 6= f N(M2), we are done. Let us supposef N(M1) = f N(M2),

and note that sinceM1 6= M2, there must exist one column, say columnj, whereM1 and M2

differ. However, sincef N(M1) = f N(M2), each column ofM1 must sum to the same value as the

corresponding column inM2. Thus there must exist rowsi1 and i2 such thatM1(i1, j)< M2(i1, j)

andM1(i2, j)< M2(i2, j).

• If column j in M1 and M2 sum toθ −1, then consider the new measurement matrixM∗



got by replacing theith1 row of M1 with the ith1 row of M2. The jth column ofM∗ sums to

a value that is greater thanθ −1. Thus, we havef (M∗) 6= f (M1).

• If column j in M1 and M2 sum toθ , then consider the new measurement matrixM∗ got

by replacing theith2 row of M1 with the ith2 row of M2. The jth column of M∗ sums to a

value that is less thanθ . Thus, we havef (M∗) 6= f (M1).

Thus, the setE is a valid fooling set. We now need to evaluate the size ofE. The number of

columns which sum toθ −1 andθ respectively, can be evaluated by looking at the coefficients

at a carefully constructed generating polynomial given by

(1+Y+ . . .+Ym1)(1+Y+ . . .+Ym2) . . .(1+Y+ . . .+Ymn).

This polynomial models all possible measurement vectors(X1,X2, . . . ,Xn). Thus, we can now

calculate the size ofE by looking at the coefficients ofYθ andYθ−1 in this polynomial.

|E| =
[

Yθ
]

+
[

Yθ−1
]

(

n

∏
i=1

(1+Y+ . . .+Ymi)

)

(6)

=
[

Yθ
]

+
[

Yθ−1
]

(

n

∏
i=1

1−Ymi+1

1−Y

)

(7)

=
[

Yθ
]

+
[

Yθ−1
]

(

n

∏
i=1

(1−Ymi+1)

)





∞

∑
k=1





n+k−1

n−1



Yk



 , (8)

where the last equation follows from the binomial expansionfor negative exponents. Thus, we

have established the required lower bound.✷

2) The MAX function:In this section, we use the tools that we have developed to study a

particular example, namely theMAX function. However, we no longer obtain exact results, which

is to say that the single-round achievable scheme does not match the fooling set lower bound. This

suggests that single round strategies are no longer optimaland it might be necessary to consider

multi-round block computation strategies. Indeed, previous work in the area of communication

complexity has shown a multi-round protocol that does better that our single-round scheme for

the two node case. However, our proposed strategy is still exponentially better than the naive



strategy of communicating all measurements. Further, it provides reasonably tight bounds and

achieves the optimal scaling as the number of nodes increases.

Consider nodes 1 throughn organized in a collocated network as before. For simplicity, let

us suppose that for each nodei, Xi ∈ {0,1, . . . ,m}. The MAX function of n measurements is

defined in the natural way and is denoted byMAXm(X1,X2, . . . ,Xn). We want to determine the

worst case complexity of computing theMAX function.

Theorem 6:The complexity of theMAX function ofn variables from the alphabet{0,1, . . . ,m}

is bounded as follows.

log2(mn+1)≤C(MAXm(X1, . . . ,Xn))≤ log2





n+m

m



 .

Proof: We prove the result by induction on the number of nodesn. For the basis step, we

consider the two node problem. Consider the general achievable scheme where node 1 sends

a prefix free codeword of lengthl(XN
1 ), and node 2 indicates its exact value for each of the

instances of the block whereX1 < X2. For example, ifX1 = k, node 2 needs to indicate its

value in the set{k,k+1, . . . ,m}. Thus, the worst case total number of bits exchanged under this

scheme is given by

L = max
XN

1

(

l(XN
1 )+w0(XN

1 ) log2(m+1)+w1(XN
1 ) log2m+ . . .+wm(XN

1 ) log21
)

.

Proceeding as before, we can show that, in order to ensure a valid prefix free code with

codelengthsl(XN
1 ) that satisfy Kraft inequality, the minimumL is given by

L = log2(m+1+m+ . . .+1) = N log2





m+2

2



 .

For the lower bound, we can verify that the set of measurementmatrices with columns exclusively

from the setE given by

E = {(0,0),(0,1),(1,0), . . .,(0,m),(m,0)},



is a valid fooling set. Thus we have

log2(2m+1)≤C(MAXm(X1,X2))≤ log2





m+2

2



 ,

which establishes the basis step for the induction.

Now, let us suppose that the result is true for a network of(n− 1) nodes. Consider the

following achievable scheme for then node network. Noden transmits a prefix-free codeword

of length l(XN
n ). At the end of this transmission, the remaining(n−1) nodes need to compute

the residualMAX function for each instance of the block. For example, ifXn = k, we are

left with the task of computing theMAX function of (n− 1) nodes on the reduced alphabet

{k,k+ 1, . . . ,n}. Since{k,k+ 1, . . . ,n} is isomorphic to{0,1, . . . ,n− k}, this is equivalent to

computingMAXn−k(X1, . . . ,Xn−1). By the induction hypothesis, there is an achievable strategy

to compute this residualMAX function, which we can unroll recursively. Thus the worst case

total number of bits exchanged under this strategy is given by

L = max
XN

n

(

l(XN
n )+w0(XN

n )C(MAXm(X1, . . . ,Xn−1))+ . . .+wm(XN
n )C(MAX0(X1, . . . ,Xn−1))

)

.

In order to satisfy the Kraft inequality, the smallestL that is feasible is given by

L = N log2

m

∑
i=0

2C(MAXm−i(X1,...,Xn−1))

≤ N log2

m

∑
i=0





m+n− i −1

m− i





= N log2





m+n

m





which establishes the upper bound in the induction step.

In order to prove the lower bound, we need to construct a fooling set of the appropriate size.

Consider the set ofn×N measurement matrices which consist of columns from the setE defined



by

E =





















































0

0
...

0



















,



















1

0
...

0



















,



















0

1
...

0



















, . . . ,



















0

0
...

1



















, . . . ,



















m

0
...

0



















,



















0

m
...

0



















, . . . ,



















0

0
...

m





















































.

It is easy to check that this is a valid fooling set of size(mn+1)N which gives us the required

lower bound for the induction step.✷

We make some observations regarding the result in Theorem 6

• For fixedm, we have thatC(MAXm(X1,X2, . . . ,Xn)) = Θ(log2n). This agrees with the result

in [?] that the maximum rate of computing a type-threshold function is Θ( 1
log2n). Thus, the

proposed achievable strategy is scaling law order-optimal. Further, we obtain better bounds

on the complexity.

log2(mn+1)≤C(MAXm(X1,X2, . . . ,Xn))≤ log2





n+m

m



≤min(nlog2(m+1),mlog2(n+1)).

• The naive strategy for computing theMAX function consists of each node communicating

its measurement which has a complexity ofnlog2(m+1). For fixedm, the complexity of

the proposed scheme is upper bounded bymlog2(n+1), which is exponentially better than

the naive strategy (O(log2n) vs. O(n)).

IV. AVERAGE CASE COMPUTATION OF SYMMETRIC BOOLEAN FUNCTIONS

Consider a collocated network with nodes 1 throughn, where each nodei has a Boolean mea-

surementXi ∈ {0,1}. Xi is drawn from a Bernoulli distribution withP(Xi = 1) =: pi , and{Xi}
n
i=1

are independent of each other. Without loss of generality, we assume thatp1 ≤ p2 ≤ . . .≤ pn. We

address the following optimal distributed computation problem.Everynode wants to compute the

same functionf (X1,X2, . . . ,Xn) of the measurements. Given a strategy for computingf (X1,X2,

. . . ,Xn), the time of termination is a random variable. Our objectiveis to find communication

strategies which achieve correct function computation at each node, with minimum expected



total number of bits exchanged.

In Section IV-A, we formulate the problem of single instancecomputation of Boolean threshold

functions. We identify a surprisingly simple policy and present a detailed proof of its optimality,

by induction on the number of nodes in the network. In SectionIV-B, we consider the extension

to the case of block computation of threshold functions, where each node has a block of

measurements and we are allowed block coding. This problem is significantly harder, and we

conjecture the structure of an optimal multi-round policy,building on the optimal policy for

single instance computation. Further, we quantify the average case complexity of computing a

Boolean threshold function in Section IV-B2.

The extension of these results to an alternative model of communication, where binary in-

formation can be encoded by the presence or absence of a pulse, is studied in Section IV-C.

When considering exact computation of functions of random data, it should be noted that the

time of termination is a random variable. While the optimal strategy minimizes the expected

time of termination, some instances of computation might terminate earlier and some much later.

In Section IV-D, we consider the problem of approximate function computation given a fixed

number of timeslots.

A. Single Instance Computation of Boolean Threshold Functions

Let us suppose each node has a single Boolean measurement andwe seek to compute a

given Boolean threshold function. First, we note that sinceeach node has exactly one bit of

information, it is optimal to setbk = XTk. Indeed, for any other choiceb′k = g(b1, . . . ,bk−1,XTk),

the remaining nodes can reconstructb′k since they already knowbi , . . . ,bk−1. Thus the only

freedom available is in choosing the transmitting nodeTk as a function ofb1,b2, . . . ,bk−1, for

otherwise the transmission itself could be avoided. We callthis theordering problem. Thus, by

definition, the order can dynamically depend on the previousbroadcast bits. In this paper, we

address the ordering problem for a class of Boolean functions, namely threshold functions.

We will denote the set of measurements of nodes 1 throughn by (X1,X2, . . . ,Xn) which is

abbreviated asXn. We will useXn
−i to denote the set of measurements(X1, . . . ,Xi−1, Xi+1, . . . ,Xn).



As a natural extension, we useXn
−(i, j) to denote the set of measurements(X1, . . . , Xi−1,Xi+1, . . . ,Xj−1,Xj+1, . . . ,Xn),

where i < j.

Definition 5 (Boolean threshold functions):A Boolean threshold functionΠθ (X1,X2, . . . ,Xn)

is defined as

Πθ (X1,X2, . . . ,Xn) =







1 if ∑i Xi ≥ θ ,

0 otherwise.

The class of threshold functions has the property that, if one of the nodes’ measurements is

known, the residual function is still a threshold function.Given a functionΠn−k(Xn), if node

i transmits its bit, we are left with the residual task of computing Πn−k−1(Xn
−i) if Xi = 1, and

Πn−k(Xn
−i) if Xi = 0. Thus, the ordering problem can be formulated as a dynamic programming

problem. LetC(Πn−k(Xn)) denote the minimum expected number of bits required to compute

Πn−k(Xn). The dynamic programming equation is

C(Πn−k(X
n)) = min

i
{1+ piC(Πn−k−1(X

n
−i))+(1− pi)C(Πn−k(X

n
−i))}. (9)

with boundary conditionC(Πa(Xm)) = 0 if a= 0 or a> m.

To begin with, we argue that solving (9) for eachn and k does indeed yield the optimal

strategy for computing Boolean threshold functions. In particular, to derive the optimal strategy

for computingΠn−k(Xn), we first determine which node must transmit first, by solving(9) for

n,k. Then, depending on whetherXT(1) = 0 or XT(1) = 1, we are left with the residual task of

computingΠn−k(Xn
−T(1)) or Πn−k−1(Xn

−T(1)). We can determine which node should transmit

next in either case, from the solution of (9) forn−1,k−1 or n−1,k respectively. Proceeding

recursively, one can unroll the optimal strategy for computing Πn−k(X1,X2, . . .Xn).

In (9), we recognise that the single-stage cost is uniformly1. More generally, given a function

f (·) : [0,1]→ R+, one can write down a more general dynamic programming equation.

C(Πn−k(X
n)) = min

i
{ f (pi)+ piC(Πn−k−1(X

n
−i))+(1− pi)C(Πn−k(X

n
−i))}. (10)

Here, one can viewf (pi) as the cost of communicating the information of nodei which has

P(Xi = 1) = pi . Indeed, for the case of single instance computation, we have f (p) ≡ 1. In the



sequel, we will see how this general dynamic programming formulation will allow us to study

other problems of interest.

For generalf (·), solving the dynamic programing equation (10) may be intractable. Further,

it is unclear at the outset if the optimal strategy will depend only on the ordering of thepis,

or their particular values. This makes the explicit solution of (10), or even (9), for alln, k and

(p1, p2, . . . pn) notoriously hard. However, under some conditions onf (·), we can derive a very

simple characterization of the optimal strategy for eachn and 0≤ k≤ n−1. Further, we observe

that optimal strategy is independent of the particular values of thepis, but only depends on their

relative ordering.

Lemma 1:Let f (·) : [0,1]→ R+ be a function such that

• f (p) = f (1− p).

•
f (p)

p is a monotone non-increasing function ofp.

Then the minimum in (10) is attained byk+1. That is,

k+1∈ argmin
i

{

f (pi)+ piC(Πn−k−1(X
n
−i))+(1− pi)C(Πn−k(X

n
−i)
}

. (11)

This result is true for alln and all 0≤ k≤ n−1 and all probability distributions withp1 ≤ p2 ≤

. . .≤ pn.

Proof: We define the following expressions.

Tm,k,i(X
m) = pk+1C(Πm−k−1(X

m
−(k+1))+(1− pk+1)C(Πm−k(X

m
−(k+1))

− piC(Πm−k−1(X
m
−i)− (1− pi)C(Πm−k(X

m
−i)

S(1)m,k,i(X
m) := (pk+1− pi)C(Πm−k−1(X

m
−(k+1,i)))+(1− pk+1)C(Πm−k(X

m
−(k+1)))

− (1− pi)C(Πm−k(X
m
−i)).

S(2)m,k,i(X
m) :=(pi−pk+1)C(Πm−k−1(X

m
−(i,k+1)))+pk+1C(Πm−k−1(X

m
−(k+1)))−piC(Πm−k−1(X

m
−i)).

We establish the above theorem by induction on the number of nodesn. However, we need



to load the induction hypothesis. Consider the following induction hypothesis.

(a) Tm,k,i(X
m) ≤ f (pi)− f (pk+1) for all 0≤ k≤ (m−1),1≤ i ≤ m

(b) S(1)m,k,i(X
m) ≤ (1− pk+1) f (pi)− (1− pi) f (pk+1) for all 0≤ k+1≤ (m−1),k+2≤ i ≤ m

(c) S(2)m,k,i(X
m) ≤ pk+1 f (pi)− pi f (pk+1) for all 0≤ k≤ (m−1),1≤ i < k+1

Observe that part(a) immediately establishes (11).

The basis step form= 1 is trivially true. Let us suppose the induction hypothesisis true for

all m≤ n. We now proceed to prove the hypothesis form= n+1.

Lemma 2:For fixedk and i ≥ k+2, we have

S(1)n+1,k,i(X
n+1)≤ (1− pk+1) f (pi)− (1− pi) f (pk+1).

Proof: See Appendix A1.

Lemma 3:For fixedk and i ≤ k, we have

S(2)n+1,k,i(X
n+1)≤ pk+1 f (pi)− pi f (pk+1).

Proof: See Appendix A2.

Lemmas 2 and 3 establish the induction step for parts(b) and(c) of the induction hypothesis.

We now proceed to show the induction step for part(a).

Lemma 4:For fixedk and i ≥ k+2, we have

Tn+1,k,i(X
n+1)≤ S(1)n+1,k,i(X

n+1)+ pk+1 f (pi)− pi f (pk+1).

Proof: See Appendix A3.

Lemma 5:For fixedk and i ≤ k, we have

Tn+1,k,i(X
n+1)≤ S(2)n+1,k,i(X

n+1)+(1− pk+1) f (pi)− (1− pi) f (pk+1).

Proof: See Appendix A4.

Applying Lemmas 4 and 5 together with Lemmas 2 and 3, we see that Tn+1,k,i(Xn+1)≤ 0 for



all 0≤ k≤ n and i 6= k+1. For the casei = k+1, we haveT(n+1,k,k+1) = 0 trivially. This

completes the induction step for part(a), and the proof of the Theorem.✷

Using Lemma 1, we can now simply derive the optimal sequential communication strategy

for computing a single instance of the Boolean threshold function Πn−k(Xn).

Theorem 7:In order to compute a single instance of the Boolean threshold functionΠn−k(Xn),

it is optimal for node(k+1) to transmit its bit first.

Proof: In the case of single instance computation, we havef (p)≡ 1. Hence, trivially, we have

that f (p) = f (1− p), and that f (p)
p is a monotone non-increasing function ofp. From Lemma

1, we have

k+1∈ argmin
i

{

f (pi)+ piC(Πn−k−1(X
n
−i))+(1− pi)C(Πn−k(X

n
−i)
}

.

Thus, in order to compute the Boolean threshold functionΠn−k(Xn), it is optimal for nodek+1

to transmit first.✷

Remark 1:At the outset, there are two heuristics that one may apply to the ordering problem.

First, if we believe thatΠn−k(Xn) evaluates to 0, the conditional optimal strategy is for nodes

to transmit in order starting with node 1. Alternately, if webelieve thatΠn−k(Xn) evaluates

to 1, the conditional optimal strategy is for nodes to transmit in reverse order starting with

noden. Thus, the result in Theorem 7 can be viewed as an appropriatehedgingsolution which

safeguards against the event thatΠn−k(Xn) could evaluate to 0 or 1. It is indeed surprising that

a particularly simple hedging strategy is optimal for alln, all k and all probability distributions,

and that it does not depend on the actual values of the probabilities but only on their order.

B. Block Computation of Boolean Threshold Functions

We now shift attention to the case where we allow nodes to accumulate a block ofN

measurements, and thus achieve improved efficiency by usingblock codes. The most general

class of interactive strategies are those where the identity of the node transmitting thekth bit,

say Tk can depend arbitrarily on all previously broadcast bits, and thekth bit itself can depend

arbitrarily on all previously broadcast bits as well asTk’s block of measurements. We require



that all nodes compute the function with zero error for the block, and wish to minimize the

expected number of bits exchanged per instance of computation, denotedC (Πn−k(Xn)). While

the problem of finding the optimal strategy in this general class of strategies appears intractable,

we derive the optimal solution under a restricted class of strategies. The restriction we impose is

natural, and we conjecture that the optimal strategy in thisrestricted class is also optimal among

all interactive strategies.

Define the following restricted class ofcoherent strategies.

Definition 6: Coherent Strategies When computingΠn−k(Xn) for a block ofN measurements,

a coherent strategy mandates that the first node to transmit,say nodeT(1), must declare

its entire block using a Huffman code. Note that this does notexclude interactive strategies,

since, subsequent to nodeT(1)’s transmission, we have two subproblems over sub-blocks of

measurements corresponding to instances whereXT(1) = 0 and XT(1) = 1. For each of these

subproblems, we could potentially have different nodes transmitting first. Thus nodes may

transmit more than once. However each of these nodes are again constrained to communicate

their entire subblock of measurements.

Theorem 8:In the restricted class of coherent strategies, in order to computeΠn−k(Xn) for a

block of measurements, it is optimal for nodek+1 to transmit its entire block first, using the

Huffman code. This result is true for asymptotically long block lengths, for alln, all 0≤ k≤ n−1,

and all probability distributions withp1 ≤ p2 ≤ . . .≤ pn.

Proof: Let us suppose nodei transmits first. Under a coherent strategy, nodei must communicate

its entire block, which requires an average description length of H(pi) bits per instance. This

can be achieved asymptotically by using the Huffman code to compress nodei’s block of

measurements1. Subsequent to nodei’s transmission, we are left with the residual tasks of

computingΠn−k−1(Xn
−i) for the subblock whereXi = 1, andΠn−k(Xn

−i) for the subblock where

Xi = 0. These are two block computation problems again. LetCU (Πn−k(Xn) denote the minimum

number of bits per instance, that must be exchanged under this restricted class of strategies. We

1For clarity of presentation, we will ignore the fact that theHuffman code for block lengthN has average codelength
between⌊NH(p)⌋ and⌊NH(p)⌋+1 bits. The extra one bit can be amortized over long block lengths.



can write a dynamic programming equation as before.

CU (Πn−k(X
n)) = min

i
{H(pi)+ piCU (Πn−k−1(X

n
−i))+(1− pi)CU (Πn−k(X

n
−i))}, (12)

where H(p) is the standard binary entropy function defined byH(p) = −plog2(p)− (1−

p) log2(1− p). The boundary condition for (10) is given byCU (Πa(Xm)) = 0 if a= 0 or a> m.

Observe that (12) is a special case of (10) wheref (p) = H(p). Thus, for the class of coherent

strategies, the problem of optimal computation once again reduces to an ordering problem. If we

can show thatH(p) satisfies the conditions in Lemma 1, the result follows immediately. Clearly

H(p) = H(1− p) and one can verify that

d
(

H(p)
p

)

dp
=

log2(1− p)
p2 ≤ 0.

Thus, we have thatH(p)
p is a non-decreasing function ofp. Hence, from Lemma 1, the optimal

strategy for computingΠn−k(Xn) for a block of measurements is for nodek+1 to transmit its

entire block first, using the Huffman code.✷

Remark 2:The proposed optimal strategy is inherently interactive, since nodes do transmit

more than once. This is due to the recursive splitting of the original block of measurements

depending on nodes’ transmissions. This is illustrated in the computation tree forΠ2(X3), where

node 2 first transmits its entire block using a Huffman code, and the computation proceeds as

shown. In practice, all nodes need to agreea priori on a traversal order in the computation tree,

e.g., depth-first traversal or breadth-first traversal.

Remark 3:The proposed optimal strategy is asymptotically optimal inthe limit of long blocks.

This is necessary to achieve an average description length of H(pi) bits per instance. In practice,

one could simply choose a large enough block lengthN so that the average description length is

close enough to the entropy. In this context, it is importantto note that, as the computation

proceeds, the original block gets recursively subdivided into smaller and smaller subblocks

of measurements. Each of these subblocks needs to be large enough to achieve an average

description length that is close enough to the entropy of thetransmitting node. Thus, in the



worst case, we could have upto 2n subblocks in the computation tree, and we assume that each

of these subblocks are large enough, which is ensured by choosing N to be suitably large.

1) A Strategy-independent Lower Bound:Next, we would like to determine if the class of

coherent strategies considered above is rich enough to include the absolute optimal strategy for

interactive block computation without any restrictions ona node encoding all its information

using a Huffman code. Intuitively, since all the instances of the block are independent and

identically distributed, it appears suboptimal for nodes to communicate only partial information

regarding their blocks at any stage. Thus, it is plausible that, under the optimal strategy, one node

communicates its entire block, and the computation proceeds recursively from there. However,

establishing this fact rigorously is a formidable challenge. In this subsection, we describe a

possible approach toward establishing this result, by adapting the concept offooling sets. Fooling

sets are a classical tool for establishing lower bounds in communication complexity [?], and have

recently been used to establish tight lower bounds on the minimum number of bits exchanged

in the worst-case in collocated networks [?], and tree networks [?]. We describe an extension

of fooling sets to the probabilistic scenario and use this toestablish a lower bound.

We recall that, for the threshold functionΠn−k(Xn), a valid fooling set of maximum size is

given by

En,n−k := {Xn :
n

∑
i=1

Xi = n−k or
n

∑
i=1

Xi = n−k−1}

Any correct protocol for distributed computation ofΠn−k(Xn) partitions the function matrix into

monochromatic rectangles [?]. Further, each rectangle in the partition can contain at most one

element ofEn,n−k. Let D(Πn−k(Xn)) be the set of all protocol partitions of the function matrix of

Πn−k(Xn) which respect the fooling set constraints. Suppose we use a protocol with associated

partition d, the number of bits that must be exchanged under this protocol is lower bounded

by the entropy of this partition, denoted byH(p(d)), where p(d) is the implied probability

distribution on the elements of the partition. Thus, the number of bits that must be exchanged



underany protocol is bounded by

C (Πn−k(X
n))≥ min

d∈D(Πn−k(Xn))
H(p(d)) =: CL(Πn−k(X

n)). (13)

We conjecture that this lower bound is achievable and in particular, the optimal strategy described

in Theorem 8 achieves it.

Conjecture 1:The lower bound described in (13) satisfies the dynamic programming equation

in (12).

CL(Πn−k(X
n)) = min

i
{H(pi)+ piCL(Πn−k−1(X

n
−i))+(1− pi)CL(Πn−k(X

n
−i))}.

SinceCL(Πn−k(Xn))≤ C (Πn−k(Xn))≤ CU (Πn−k(Xn)), we conjecture that the optimal strategy

described in Theorem 8 is in fact optimal among all interactive strategies.

We note that the above conjecture has been verified by hand forall threshold functions of

three variables. A formal proof of the conjecture, however,remains a challenge for the future.

2) Average Case Complexity of Computing Boolean Threshold Functions: In this section, we

quantify the average case complexity of computing Boolean threshold functions in collocated

networks. For simplicity, we suppose that nodes’ measurements are independent and identically

distributed, and propose a natural block computation strategy that is easy to analyze.

Theorem 9:Suppose that the nodes’ measurementsX1,X2, . . . ,Xn are independent and iden-

tically distributed with p(Xi = 1) = p. Then, the average case complexity of zero error block

computation of the threshold functionΠθ (X1,X2, . . . ,Xn) is O(θ) bits.

Proof: We need to describe a coding strategy which achieves zero error block computation,

as block lengthN goes to infinity. Let us suppose that nodes communicate in reverse order

starting with noden. Noden encodes its block ofN measurements using a Huffman code which

requires⌈NH(p)⌉ bits. Having heard all previous transmissions, each successive node discards

the instances of the block that are alreadydetermined, i.e., those instances of the block that have

already recordedθ ones. It then constructs the Huffman code for the remaining instances of the

block. Let the number of determined instances after nodei+1 transmits be denoted by random

variableZi . Then, the average complexity of computing a function blockof length N is given



by
n

∑
i=1

(N−E(Zi))H(p) = θNH(p)+NH(p)
n−1

∑
i=θ

θ−1

∑
j=0





i

j



 p j(1− p)i− j . (14)

We need to somehow carefully upper bound the RHS in the (14). We start by establishing the

following lemma.

Lemma 6:Definegθ := xθ

1−x for θ a positive integer. Then

f (θ−1)
θ :=

d(θ−1)gθ

dx(θ−1)
= (θ −1)!

(

1
(1−x)θ −1

)

.

Proof of Lemma: The proof is by induction onθ . For θ = 1, we haveg1 =
x

1−x = g(0)1 trivially.

For θ > 1, observe thatgθ−1−gθ = xθ−1 and henceg(θ−1)
θ = g(θ−1)

θ−1 −(θ −1)!. By the induction

assumption, we have

g(θ−1)
θ =

d
dx

(

(θ −2)!
(1−x)θ−1

)

− (θ −1)! =

(

(θ −1)!
(1−x)θ −1

)

,

which completes the induction.✷

We now proceed to show that the second term on the RHS in (14) issmaller thanθNH(p)
(

1−p
p

)

for eachn. The proof is by induction onθ . For θ = 1, the second term is given by

n−1

∑
i=1

NH(p)pθ (1− p)i = NH(p)
(1− p)− (1− p)n

p
<

NH(p)(1− p)
p

.

DefineRn
θ := ∑n−1

i=θ ∑θ−1
j=0





i

j



 p j(1− p)i− j . Then, we have the following recursion:

Rn
θ = Rn

θ−1+
n−1

∑
i=θ





i

θ −1



 pθ−1(1− p)i−θ+1−
θ−2

∑
j=0





θ −1

j



 p j(1− p)θ−1− j .



From the induction hypothesis, we have that

Rn
θ ≤

(θ −1)(1− p)
p

+





n−1

∑
i=θ





i

θ −1



 pθ−1(1− p)i−θ+1



−1+ pθ−1

≤
(θ −1)(1− p)

p
+

(

pθ−1

(θ −1)!

∞

∑
i=θ

i(i −1) . . .(i −θ +2)(1− p)i−θ+1

)

−1+ pθ−1

=
(θ −1)(1− p)

p
+

pθ−1

(θ −1)!
d(θ−1)

dx(θ−1)

(

xθ

1−x

)

−1+ pθ−1. (15)

Now, applying Lemma 6 in (15), we can showRn
θ ≤

θ (1−p)
p , which establishes the induction

step. Substituting the upper bound for the second term in theRHS of (14), we obtain that the

total number of bits transmitted is less thanθNH(p)
p for all n. This yields a sum rate ofθH(p)

p

which completes the proof.✷

We make some observations regarding the above result.

(i) For a type-threshold function [?] with threshold vector[θ1,θ2], we can run two parallel

schemes with thresholds[θ1,0] and [0,θ2], thus attaining a sum rate(θ1+θ2)H(p)
p . Since we

typically considerθ1,θ2 to be constants independent ofn, we obtain that the average case

complexity of computing Boolean threshold functions isO(1).

(ii) As a special case, the average case complexity of computing a symmetric Boolean Disjunc-

tive Normal Form with bounded minterms isΘ(1).

C. Computation under an alternate communication model

In this section, we illustrate how we can adapt the solution to the general dynamic pro-

gramming equation described in Lemma 1 to a different communication model. We return to

the problem of computing a single instance of a Boolean threshold functionΠn−k(Xn) in the

broadcast scenario. Let us suppose that time is slotted, andthat nodes transmit information in

the form of pulses, which have unit energy cost. Under this alternate communication model, our

modified objective is to minimize the expected total energy expended in transmissions.

In contrast to Section IV-A where the cost of transmitting a bit is uniformly 1, under the

pulse model of communication, silence can be used to convey information with zero cost. This



is similar to the silence-based communication model studied in [?]. Thus, the communication

problem is no longer trivial. However, since each node makesa Boolean measurement, the value

of its bit can be mapped to the presence or absence of a pulse intwo ways. Either nodei

transmits a pulse to indicateXi = 1 and remains silent to indicateXi = 0, or vice versa. Clearly,

the optimal communication strategy is as follows:

• If pi ≤
1
2, then nodei transmits a pulse to indicateXi = 1.

• If pi ≥
1
2, then nodei transmits a pulse to indicateXi = 0.

We are still left with the problem of determining the optimalordering of transmissions.

Let E (Πn−k(Xn)) be the minimum expected total energy required in order to compute the

threshold functionΠn−k(Xn) under this communication model. The problem of minimizing the

expected total energy can be formulated as a dynamic programming equation as follows

E (Πn−k(X
n)) = min

i
{min(pi ,1− pi)+ piE (Πn−k−1(X

n
−i))+(1− pi)E (Πn−k(X

n
−i))} (16)

From Lemma 1, we have the following result.

Theorem 10:In order to compute a single instance of the Boolean threshold functionΠn−k(Xn)

under the pulse communication model, it is optimal for nodek+1 to transmit first.

Proof: Observe that (16) is a special case of (10) wheref (p) = min(p,1− p). Hence, in order to

establish the result, it is sufficient to show that min(p,1− p) satisfies the conditions in Lemma

1. Indeed, min(p,1− p) is symmetric aboutp= 1
2 and we have,

g(p) =
min(p,1− p)

p
=







1 if p≤ 1
2,

1−p
p if p> 1

2.

Thus, min(p,1−p)
p is a monotone non-increasing function ofp. The theorem then follows directly

from Lemma 1.✷

D. Approximate Function Computation

In Sections IV-A through IV-C, we have considered the problem of computing Boolean

threshold functions with zero error. While we have focused on constructing optimal strategies



to minimize the expected total number of bits exchanged during computation, we must note that

the worst-case total number of bits exchanged might still ben. In some applications however, we

might have a constraint on the number of bits exchanged, or equivalently, the number of timeslots

available for computation. In this case, one cannot always hope to compute the function exactly.

Instead, we considerapproximatefunction computation where we seek to minimize certain error

metrics.

To begin with, let us consider the class of Boolean thresholdfunctions. As before, we permit

all interactive strategies where the choice of next transmitting node can depend arbitrarily on all

previously broadcast bits. Let us suppose that we are allowed to exchange at most(n−θ) bits

in order to compute the threshold functionΠn−k(Xn). We propose two metrics of error, namely

probability of error and conditional entropy of the function.

• Probability of error: Let P(θ )
e (Πn−k(Xn)) denote the minimum probability of error after at

most (n−θ) bits are exchanged. Note that these bits are exchanged in sequential fashion,

since we are computing in a broadcast network. Hence, the identity of each successive

transmitting node can depend on the previously transmittedbits. The sequential nature of

this problem permits a dynamic programming formulation analogous to (10).

P(θ )
e (Πn−k(X

n)) = min
i
{piP

(θ )
e (Πn−k−1(X

n
−i)+(1− pi)P

(θ )
e (Πn−k(X

n
−i)}, (17)

with the boundary conditionP(θ )
e (Πθ−k(Xθ )) = min(P(Πθ−k(Xθ ) = 1),P(Πθ−k(Xθ ) = 0)).

• Conditional entropy of function: Let H(θ )(Πn−k(Xn)) denote the minimum conditional

entropy of the function after at most(n− θ) bits are exchanged. As before, the identity

of each successive transmitting node can depend on the previously transmitted bits. Once

again, the sequential nature of this problem permits a dynamic programming formulation

analogous to (10).

H(θ )(Πn−k(X
n)) = min

i
{piH

(θ )(Πn−k−1(X
n
−i)+(1− pi)H

(θ )(Πn−k(X
n
−i)}, (18)

with the boundary conditionH(θ )(Πθ−k(Xθ )) = H(Πθ−k(Xθ )).



1) Counter-example:At fsubirst glance, one would expect that the optimal strategy for

approximate function computation would match the strategyfor exact function computation,

thus verifying that the strategy proposed in Theorem 7 isincreasingly correct. Unfortunately,

this is not true as shown by the following counter example.

Let us suppose that we want to computeΠ2(X1,X2,X3) and we are allowed to exchange

exactly one bit. We have exactly three choices of strategy. Either node 1 transmits first, or node

2, or node 3. Consider the case wherep1 = 0.7, p2 = 0.82, p3 = 0.84, then one can calculate the

conditional entropy when node 1 transmits first (respectively node 2 and node 3).

H(2)(Π2(X1,X2,X3)|X1) = p1H((1− p2)(1− p3))+(1− p1)H(p2p3) = 0.4002.

H(2)(Π2(X1,X2,X3)|X2) = p2H((1− p1)(1− p3))+(1− p2)H(p1p3) = 0.4991.

H(2)(Π2(X1,X2,X3)|X3) = p3H((1− p1)(1− p2))+(1− p3)H(p1p2) = 0.4121.

Contrary to our expectation, it is not always optimal for node 2 to transmit first. This is also true

for the probability of error metric. Again, consider the approximate computation ofΠ2(X1,X2,X3)

where we are only allowed to exchange exactly one bit. For thecase wherep1 = 0.6, p2 =

0.72, p3 = 0.84, the probability of error expressions for the three strategies are given by

P(2)
e (Π2(X1,X2,X3)|X1) = p1min((1− p2)(1− p3),1− (1− p2)(1− p3))

+(1− p1)min(p2p3,1− p2p3) = 0.1850,

P(2)
e (Π2(X1,X2,X3)|X2) = p2min((1− p1)(1− p3),1− (1− p1)(1− p3))

+(1− p2)min(p1p3,1− p1p3) = 0.1850,

P(2)
e (Π2(X1,X2,X3)|X3) = p3min((1− p1)(1− p2),1− (1− p1)(1− p2))

+(1− p3)min(p1p2,1− p1p2) = 0.1632.

Thus, it appears that the structure of the optimal solution when we seek approximate com-

putation given a fixed number of bits, is somewhat different from the optimal strategy for zero

error computation.



2) Special case of the parity function:While the structure of the optimal strategy for the

approximate computation of threshold functions remains elusive, the case of the parity function is

solvable. In this section, we show that an intuitive greedy strategy is optimal for the approximate

computation of the parity function. To begin with, the parity function of n Boolean variables

labeledX1 throughXn is defined as follows:

Φ(Xn) :=







0 if ∑i Xi is even

1 if ∑i Xi is odd.

We consider the computation ofΦ(Xn) in a broadcast scenario whereXi ∼ Bern(pi). If we

seek exact computation, the problem becomes trivial since each node must transmit its bit. Hence,

we will consider approximate computation of parity under the conditional entropy metric. Let

us suppose that nodes are allowed to exchange upto(n−θ) bits. Let H(θ )(Φ(Xn)) denote the

minimum conditional entropy of the function after(n− θ) bits are exchanged. The dynamic

programming equation analogous to (18) is

H(θ )(Φ(Xn)) = min
i

{

piH
(θ )(Φ(Xn

−i))+(1− pi)H
(θ )(Φ(Xn

−i))
}

= min
i

{

H(θ )(Φ(Xn
−i))

}

(19)

with the boundary conditionH(θ )(Φ(Xθ )) = h(P(Φ(Xθ) = 1)). One can derive the solution to

(19) and hence deduce the optimal strategy for approximate computation of parity.

Theorem 11:In order to minimize the conditional entropy ofΦ(Xn) after (n− θ) bits are

exchanged, it is optimal for the node with highest binary entropy to transmit first. Subsequently,

the node with the next highest entropy transmits, and so on until (n−θ) bits are transmitted.

Proof: First, we note that (18) implies that the optimal strategy for approximate computation

of Φ(Xn) is not data-dependent. Indeed, if nodei transmits first, irrespective of whetherXi = 0

or Xi = 1, we have the residual task of computingΦ(Xn
−i) given at most(n−θ −1) bits. Thus,

the optimal strategy can be specifieda priori and does not depend on the particular values of

the bits exchanged. Further, if our objective is to minimizethe conditional entropy after(n−θ)

bits, we are only interested in determining the optimal subset of nodes that must transmit, and



the order of transmission within this set is irrelevant. Thus, we have

H(θ )(Φ(Xn)) = min

S⊆ {1, . . . ,n}

|S|= n−θ

H(Φ(Xn)|XS).

Let A= {a1,a2, . . . ,an−θ} be an optimal set of nodes. We claim thatA consists of nodes with

the (n−θ) highest entropies among then nodes. Suppose not. Then there exists nodesa∗ /∈ A

andai ∈ A such thatH(pa∗)> H(pai). Consider the setA∗ := (A\{ai})
⋃

{a∗}.

H(Φ(Xn)|XA∗) = H(Φ(Xn)|XA\{ai},Xa∗)

= H(Φ(Xn
−((A\{ai}),a∗)

))

= H(pai P(Φ(Xn
−(A,a∗))) = 1)+(1− pai)P(Φ(Xn

−(A,a∗))) = 0))

≤ H(pa∗P(Φ(Xn
−(A,a∗))) = 1)+(1− pa∗)P(Φ(Xn

−(A,a∗))) = 0))

= H(Φ(Xn
−((A\a∗),ai)

)),

which contradicts the assumption thatA is an optimal subset. Thus, under the toptimal strategy,

the set of transmitting nodes must be those with the highest entropies. A candidate strategy

which achieves this is one where nodes transmit in decreasing order of their binary entropies.✷

V. CONCLUDING REMARKS

We have addressed the problem of computing symmetric Boolean functions in a collocated

wireless sensor network. In the worst case setting, we have derived optimal strategies for

computing threshold functions, and order optimal strategies with optimal preconstant for interval

functions. The approach presented can be extended in two directions. First, one can consider

non-Boolean alphabets and functions which depend only on∑i Xi. Alternately, one can consider

non-Boolean functions of a Boolean alphabet. The fooling set lower bound and the strategy for

achievability can be generalized to both these cases.

In the average case setting, we have considered some sequential decision problems, that arise

in the context of optimal distributed computation of Boolean functions of random data. The



broadcast nature of the medium forces nodes to communicate sequentially, and the challenge is

to order nodes’ transmissions so as to both exploit the structure of the function and the knowledge

of the underlying distribution.

For single instance computation of Boolean threshold functions, we have shown the surprising

result that the optimal strategy has an elegant structure, which depends only on the ordering of

the marginal probabilities, but not on their exact values. The extension to the case of block

computation is harder. However, we have derived the optimalstrategy for a restricted class of

coherent strategies, which we conjecture to be optimal in general. The proof technique presented

allows a unified treatment of these two problems, and also allows extension to alternate pulse

models of communication where nodes transmit pulses of energy.

Finally, we have considered the problem of approximate function computation, where we are

given a fixed number of bits and seek to minimize the error in the estimate of the function. We

have shown that this problem is more complicated and the optimal strategy lacks the structure

that we observed in the case of exact computation. However, for the special case of the parity

function, a simple greedy strategy is optimal. There remainseveral open problems concerning

optimal computation in wireless sensor networks, including the case of correlated measurements,

and generalizing the sequential decision making approach to handle more general functions.

APPENDIX

A. Proofs of Lemma 1

1) Proof of Lemma 2:First, let us supposek= 0. In this case

S(1)n+1,0,i(X
n+1)= (p1−pi)C(Πn(Xn+1

−(1,i)))+(1−p1)C(Πn+1(Xn+1
−1 ))−(1−pi)C(Πn+1(Xn+1

−i ))=0

However, by assumption, we have 0≤ (1− p1) f (pi)− (1− pi) f (p1).



Next, consider the case wherek 6= 0.

(pk+1− pi)C(Πn−k(X
n+1
−(k+1,i)))+(1− pk+1)C(Πn−k+1(X

n+1
−(k+1)))− (1− pi)C(Πn−k+1(X

n+1
−i ))

= (pk+1− pi)
[

f (pk)+ pkC(Πn−k−1(X
n+1
−(k,k+1,i)))+(1− pk)C(Πn−k(X

n+1
−(k,k+1,i)))

]

+(1− pk+1)
[

f (pk)+ pkC(Πn−k(X
n+1
−(k,k+1)))+(1− pk)C(Πn−k+1(X

n+1
−(k,k+1)))

]

−(1− pi)
[

f (pk)+ pkC(Πn−k(X
n+1
−(k,i)))+(1− pk)C(Πn−k+1(X

n+1
−(k,i)))

]

(20)

= pk

[

(pk+1− pi)C(Πn−k−1(X
n+1
−(k,k+1,i)))

+(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k(X

n+1
−(k,i)))

]

+(1− pk)
[

(pk+1− pi)C(Πn−k(X
n+1
−(k,k+1,i))) (21)

+(1− pk+1)C(Πn−k+1(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k+1(X

n+1
−(k,i)))

]

≤ pk

[

(pk+1− pi)C(Πn−k−1(X
n+1
−(k,k+1,i)))

+(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k(X

n+1
−(k,i)))

]

+(1− pk)S
(1)
n,k−1,i−1(X

n+1
−k )

≤ pk

[

(pk+1− pi)C(Πn−k−1(X
n+1
−(k,k+1,i)))

+(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k(X

n+1
−(k,i)))

]

+(1− pk) [(1− pk+1) f (pi)− (1− pi) f (pk+1)] (22)

= pk

[

(pk+1− pi)C(Πn−k−1(X
n+1
−(k,k+1,i)))+(1− pk+1)C(Πn−k(X

n+1
−(k,k+1)))

−(1− pi)[ f (pk+1+ pk+1C(Πn−k−1(X
n+1
−(k,k+1,i)))+(1− pk+1)C(Πn−k(X

n+1
−(k,k+1,i)))]

]

+(1− pk) [(1− pk+1) f (pi)− (1− pi) f (pk+1)] (23)

= pk(1− pk+1)
[

C(Πn−k(X
n+1
−(k,k+1)))− piC(Πn−k−1(X

n+1
−(k,k+1,i))) − (1− pi)C(Πn−k(X

n+1
−(k,k+1,i)))

]

−pk(1− pi) f (pk+1)+(1− pk) [(1− pk+1) f (pi)− (1− pi) f (pk+1)]

≤ pk(1− pk+1) f (pi)− (1− pi) f (pk+1)+(1− pk)(1− pk+1) f (pi) (24)

= (1− pk+1) f (pi)− (1− pi) f (pk+1)



Equation (20) follows from the optimal ordering for computingΠn−k(X
n+1
−(k+1,i)), Πn−k+1(X

n+1
−(k+1))

and Πn−k+1(X
n+1
−i ), which is true by the induction hypothesis form= n. The inequality (22)

follows from the induction hypothesis thatS(1)n,k−1,i(X
n+1
−k ) ≤ (1− pk+1) f (pi)− (1− pi) f (pk+1).

Equality in (23) and (24) follows from the optimal ordering for computingΠn−k(X
n+1
−(k,i)) and

Πn−k(X
n+1
−(k,k+1)) respectively.✷

2) Proof of Lemma 3:First, let us supposek= n. In this case

S(2)n+1,n,i(X
n+1) = (pi − pn+1)C(Π0(Xn+1

−(i,n+1)))+ pn+1C(Π0(Xn+1
−(n+1)))− piC(Π0(Xn+1

−i )) = 0.

However, by assumption, we have 0≤ pn+1 f (pi)− pi f (pn+1).

Next, consider the case wherek< n.

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1)))+ pk+1C(Πn−k(X

n+1
−(k+1)))− piC(Πn−k(X

n+1
−i ))

= (pi − pk+1)
[

f (pk+2)+ pk+2C(Πn−k−1(X
n+1
−(i,k+1,k+2))) + (1− pk+2)C(Πn−k(X

n+1
−(i,k+1,k+2)))

]

+pk+1

[

f (pk+2)+ pk+2C(Πn−k−1(X
n+1
−(k+1,k+2)))+(1− pk+2)C(Πn−k(X

n+1
−(k+1,k+2)))

]

−pi

[

f (pk+2)+ pk+2C(Πn−k−1(X
n+1
−(i,k+2)))+(1− pk+2)C(Πn−k(X

n+1
−(i,k+2)))

]

(25)

= pk+2

[

(pi − pk+1)C(Πn−k−1(X
n+1
−(i,k+1,k+2)))

+pk+1C(Πn−k−1(X
n+1
−(k+1,k+2)))− piC(Πn−k−1(X

n+1
−(i,k+2)))

]

+(1− pk+2)
[

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1,k+2))) + pk+1C(Πn−k(X

n+1
−(k+1,k+2)))

+pk+1C(Πn−k(X
n+1
−(k+1,k+2)))− piC(Πn−k(X

n+1
−(i,k+2)))

]

≤ (1− pk+2)
[

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1,k+2)))

+ pk+1C(Πn−k(X
n+1
−(k+1,k+2)))− piC(Πn−k(X

n+1
−(i,k+2)))

]

+ pk+2

[

S(2)n,k,i(X
n+1
−(k+2))

]

≤ (1− pk+2)
[

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1,k+2)))

+pk+1C(Πn−k(X
n+1
−(k+1,k+2)))− piC(Πn−k(X

n+1
−(i,k+2)))

]

+pk+2 [pk+1 f (pi)− pi f (pk+1)] (26)



= (1− pk+2)
[

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1,k+2)))+ pk+1C(Πn−k(X

n+1
−(k+1,k+2)))

−pi [ f (pk+1)+ pk+1C(Πn−k−1(X
n+1
−(i,k+1,k+2)))+(1− pk+1)C(Πn−k(X

n+1
−(i,k+1,k+2)))]

]

+pk+2 [pk+1 f (pi)− pi f (pk+1)] (27)

= (1− pk+2)pk+1

[

C(Πn−k(X
n+1
−(k+1,k+2)))− piC(Πn−k−1(X

n+1
−(i,k+1,k+2)))

− (1− pi)C(Πn−k(X
n+1
−(i,k+1,k+2)))

]

−(1− pk+2)pi f (pk+1)+ pk+2 [pk+1 f (pi)− pi f (pk+1)]

≤ (1− pk+2)pk+1 f (pi)− pi f (pk+1)+ pk+2pk+1 f (pi) (28)

= pk+1 f (pi)− pi f (pk+1)

Equation (25) follows from the optimal ordering for computingΠn−k(Xn+1
−(i,k+1)), Πn−k(Xn+1

−(k+1))

andΠn−k(X
n+1
−i ), which follows from the induction hypothesis form= n. The inequality (26) fol-

lows from the induction hypothesis thatS(2)n,k,i(X
n+1
−(k+2))≤ pk+1 f (pi)− pi f (pk+1). Equations (27)

and (28) follow from the optimal ordering for computingΠn−k(Xn+1
−(i,k+2)) andΠn−k(Xn+1

−(k+1,k+2))

respectively.✷

3) Proof of Lemma 4:First, we observe that

Tn+1,k,i(X
n+1)−S(1)n+1,k,i(X

n+1) = pk+1C(Πn−k(X
n+1
−(k+1)))− piC(Πn−k(X

n+1
−i ))

− (pk+1− pi)C(Πn−k(X
n+1
−(k+1,i))).

Thus it is enough to show that

pk+1C(Πn−k(X
n+1
−(k+1)))− piC(Πn−k(X

n+1
−i ))

≤ (pk+1− pi)C(Πn−k(X
n+1
−(k+1,i)))+ pk+1 f (pi)− pi f (pk+1) for i ≥ k+2.



First, observe that fork= n, the statement is vacuously true sincei ≥ n+2 is impossible. Hence,

let us suppose thatk< n. We have

pk+1C(Πn−k(X
n+1
−(k+1)))− piC(Πn−k(X

n+1
−i ))

= pk+1

[

f (pk+2)+ pk+2C(Πn−k−1(X
n+1
−(k+1,k+2)))+(1− pk+2)C(Πn−k(X

n+1
−(k+1,k+2)))

]

−pi

[

f (pk+1+ pk+1C(Πn−k−1(X
n+1
−(k+1,i)))+(1− pk+1)C(Πn−k(X

n+1
−(k+1,i)))

]

(29)

= pk+1

[

f (pk+2)+ pk+2C(Πn−k−1(X
n+1
−(k+1,k+2)))− piC(Πn−k−1(X

n+1
−(k+1,i)))

]

+pk+1(1− pk+2)C(Πn−k(X
n+1
−(k+1,k+2)))− pi(1− pk+1)C(Πn−k(X

n+1
−(k+1,i)))− pi f (pk+1)

≤ pk+1

[

f (pi)+(1− pi)C(Πn−k(X
n+1
−(k+1,i)))− (1− pk+2)C(Πn−k(X

n+1
−(k+1,k+2)))

]

+pk+1(1− pk+2)C(Πn−k(X
n+1
−(k+1,k+2)))− pi(1− pk+1)C(Πn−k(X

n+1
−(k+1,i)))− pi f (pk+1) (30)

= (pk+1− pi)C(Πn−k(X
n+1
−(k+1,i)))+ pk+1 f (pi)− pi f (pk+1)

Equation 29 follows from the optimal order for computingΠn−k(Xn+1
−(k+1)) andΠn−k(Xn+1

−i ). The

inequality in 30 follows from the induction hypothesisTn,k,i(X
n+1
−(k+1))≤ f (pi)− f (pk+2). ✷

4) Proof of Lemma 5:First, we observe that

Tn+1,k,i(X
n+1)−S(2)n+1,k,i(X

n+1) = (1− pk+1)C(Πn−k+1(X
n+1
−(k+1)))− (1− pi)C(Πn−k+1(X

n+1
−i ))

− (pi − pk+1)C(Πn−k(X
n+1
−(i,k+1))).

Thus it is enough to show that

(1− pk+1)C(Πn−k+1(X
n+1
−(k+1)))− (1− pi)C(Πn−k+1(X

n+1
−i ))

≤ (pi − pk+1)C(Πn−k(X
n+1
−(i,k+1)))+(1− pk+1) f (pi)− (1− pi) f (pk+1) for i ≤ k.



First, observe that fork = 0, the statement is vacuously true sincei ≤ 0 is impossible. Hence,

let us suppose thatk> 0. We have

(1− pk+1)C(Πn−k+1(X
n+1
−(k+1)))− (1− pi)C(Πn−k+1(X

n+1
−i ))

= (1− pk+1)
[

f (pk)+ pkC(Πn−k(X
n+1
−(k,k+1)))+(1− pk)C(Πn−k+1(X

n+1
−(k,k+1)))

]

−(1− pi)
[

f (pk+1)+ pk+1C(Πn−k(X
n+1
−(i,k+1)))+(1− pk+1)C(Πn−k+1(X

n+1
−(i,k+1)))

]

(31)

= (1− pk+1)
[

f (pk)+(1− pk)C(Πn−k+1(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k+1(X

n+1
−(i,k+1)))

]

+pk(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− pk+1(1− pi)C(Πn−k(X

n+1
−(i,k+1)))− (1− pi) f (pk+1)

≤ (1− pk+1)
[

f (pi)+ piC(Πn−k(X
n+1
−(i,k+1)))− pkC(Πn−k(X

n+1
−(k,k+1)))

]

+pk(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− pk+1(1− pi)C(Πn−k(X

n+1
−(i,k+1))) (32)

= (pi − pk+1)C(Πn−k(X
n+1
−(i,k+1)))+(1− pk+1) f (pi)− (1− pi) f (pk+1)

Equation (31) follows from the optimal order for computingΠn−k+1(Xn+1
−(k+1)) andΠn−k+1(Xn+1

−i ).

The inequality in (32) follows from the induction hypothesis Tn,k−1,i(X
n+1
−(k+1)) ≤ f (pi)− f (pk)

✷.
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