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Abstract

We consider collocated wireless sensor networks, wherle eade’s transmissions can be heard by
every other node. Each node has a Boolean measurement agdahef the wireless sensor network
is to compute a given Boolean function of these measuremé&sfirst consider the worst case
setting and study optimal block computation strategiescimmputing symmetric Boolean functions.
We study three classes of functions: threshold functioe#tadfunctions and interval functions. We
provide exactly optimal strategies for the first two classesl a scaling law order-optimal strategy with
optimal preconstant for interval functions. We also extdraresults to the case of integer measurements
and certain integer-valued functions. We use lower bouramia tommunication complexity theory, and
provide an achievable scheme using information theoretitst

Next, we consider the case where nodes measurements aramd drawn from independent
Bernoulli distributions. We address the problem of optirhalction computation so as to minimize
the expected total number of bits that are transmitted. éncidise of computing a single instance of a
Boolean threshold function, the problem reduces to one tdrdening the optimal order in which the
nodes should transmit. We show the surprising result thebfitimal order of transmissions depends in
an extremely simple way on the values of previously traneaibits, and the ordering of the marginal
probabilities of the Boolean variables, according to khiln least likely rule At any transmission, the
node that transmits is the one that haskhh least likely value of its Boolean variable, whéeeeduces
by one each time any node transmits a one. Initially the vafueis (n+ 1 - Threshold). Surprisingly,
the order of transmissions does not depend on the exactsvalutghe probabilities of the Boolean
variables, but only depends on their order.

The approach presented can be generalized to the case vdwren@de has a block of measure-
ments, though the resulting problem is somewhat harder,vadonjecture the optimal strategy. In
the case of identically distributed measurements, we éurinow that the average-case complexity of
block computation of a Boolean threshold functiorO&9), where® is the threshold. We further show
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how to generalize to a pulse model of communication. One ¢sm @nsider the related problem of
approximate computation given a fixed number of bits. In taise, the optimal strategy is significantly
different, and lacks an elegant characterization. Howdwetthe special case of the parity function, we
show that the greedy strategy is optimal.

. INTRODUCTION

Wireless sensor networks are composed of nodes with limpibacer and bandwidth, which can
sense the environment and wirelessly communicate with etdwr to complete a collaborative
task. However, in contrast to wireledata networks, most wireless sensor network applications
are not ininterested only in computing some relevanttionof the correlated data at distributed
sensors. For instance, one might want to compute the meapetatnre for environmental
monitoring, or the maximum temperature in fire alarm systdm®rder to extract the relevant
information from enormous quantities of data generateddnssr nodes, one needs to design
scalable algorithms and protocols. Thus, one needs to lepérial the data-forwarding paradigm
and study how to design efficient in-network computation @othmunication strategies for
functions of interest.

The general problem of distributed function computatiomireless sensor networks presents
several challenges. The broadcast nature of the wirelesBumemeans that nodes have to
deal with interference from other transmissions. This [@dglly resolved by a mechanism for
distributed scheduling of transmissions. One of the comseces is that nodes which transmit
later can exploit both previously received transmissiansvall as the structure of the function
to be computed, in order to create a more efficient descriptiotheir own data. Further, it is
of interest to study the benefit of multi-round protocolssgibly involving complex interactions
between nodes, versus single round protocols, where eagdé tnansmits only once. In the
case where nodes have random data drawn from differentbdistms, there is the additional
guestion regarding which node should transmit, since miffe nodes affect the function to
different degrees.

In this paper, we consider the collocated network scenateres all nodes can hear all

transmissions. Its symmetry makes it a desirable startimigt for studying random planar



networks. At most one node is allowed to transmit at any tilBach node has a Boolean
variable and we focus on the specific problem of symmetricl&oo function computation. We
will focus on strategies which achieve function computatiath zero error forall sensor nodes.
This is motivated by applications in distributed controtlasensor-actuator networks, where each
node needs to infer the state of the system in distributdiidasand respond in real time. We
adopt a deterministic formulation of the problem of funoticomputation, requiring zero error.
We consider both the worst case setting and the average etisgysvhere we impose a joint
probability distribution on the node measurements.

In Section[ll, we consider the worst case setting, and adthe problem of computing
symmetric Boolean functions, which depend only on numbetxfi.e., the “type,”. We study
block computation strategies where nodes accummulate &k lmbmeasurements and employ
block codes to achiever greater efficiency. The set of adbisstrategies includes all interactive
strategies, where a node may exchange several messagesheitmodes. Since nodes can only
transmit one at a time, the key challenge is for nodes to tigirly exploit previous transmissions
to compress their own data. We suppose that each node hasleaBauneasurement and we
wish to compute a given symmetric Boolean function of thesasnrements with zero error. We
define three classes of functions, namely threshold funstishich evaluate to 1 if the number
of 1s exceeds a certain threshold, delta functions whichuateato 1 if the number of 1s is
exactly equal to a given value, and interval functions whaehluate to 1 if the number of 1s
is between two given lower and upper values. For worst-casgpatation, we provide exactly
optimal strategies for the first two classes, and a scalwglaer-optimal strategy with optimal
preconstant, as the number of nodes increases, for inteinvetions. Using these results, we can
characterize the complexity of computing percentile tyyecfions, which are of great interest.

In our analysis, we use lower bounds from communication dexity theory, and provide
an achievable scheme using information theoretic toolgthEy the approach presented can be
generalized to compute functions of non-Boolean measurtanas shown in our treatment of
general threshold functions and tMAX function. While the proposed achievability strategy is

exactly optimal for general threshold functions, it is osgaling law order-optimal for thB1AX



function.

In Section[1V, we address the case where the node measureaenindependent and dis-
tributed according to given marginal Bernoulli distritaris. Since the measurements are random,
the evolution of the computation depends on the particuiatances of measurements, and
the time of termination of the computation is also accorljirgndom. We seek to minimize
the total expected number of bits exchanged to achieve zeoo eomputation. We primarily
focus on optimal strategies for Boolean threshold fundtiolm the case of single instance
computation, this is equivalent to determining the optimaering of nodes’ transmissions so
as to minimize the expected total number of bits exchangedpk¥sent a surprising policy for
ordering the transmissions and prove its optimality. Thénagl policy is dynamic, depending
in a particularly simple way on the previously transmittets,band on the relative ordering
of the marginal probabilities, but, surprisingly, not oreithvalues. The problem of optimally
ordering transmissions of nodes is a sequential decisioblggm and can in principle be solved
by dynamic programming. However, this would require sajvihe dynamic program for all
thresholds and all probability distributions, which appeiafeasible. We avoid this, and directly
establish the optimal policy. The proposed solution pesmitinified treatment of the problems of
single instance computation, block computation and coatfmrt under alternate communication
models.

In Section[IV-B, we turn our attention to the case where eamtlerhas a block of bits, and
we seek to compute the Boolean threshold function for eastiamece of the block. This problem
appears formidable due to the plethora of possibilities, dme to a far more complex class of
interactive strategies for computation. However, for gaiarnatural restricted class obherent
strategies, we can establish that an analogous policy isvahtthus establishing an upper bound
on the optimal cost. In order to establish a lower bound acedsstrategies, we propose the
approach of calculating the minimum entropy over all validtpcol partitions which respect
fooling set constraints. While this lower bound matches upper bound for small examples,
a proof has remained elusive. In Sectlon [MB2, we show thataverage case complexity of

computing a Boolean threshold function@6), where8 is the threshold.



In Section[IV-C, we consider an alternate model of commuinoawhere nodes use pulses
of unit energy to convey information. We generalize our prtechnique and derive the optimal
strategy for computing Boolean threshold functions unter tnodel of communication. Finally,
in Sectior 1V-D, we study the problem of approximate funet@mmputation given a fixed number
of timeslots. We show that the optimal strategy for the apipnate computation of threshold
functions lacks the same elegant structure as present icageof exact computation. However,
for the special case of the parity function, we show that tiggchl strategy of first querying the

node with maximum uncertainty, i.e., entropy, is optimal.

Il. RELATED WORK

The the problem of worst-case block function computatiothvezero error was formulated in
[?]. The authors identified two classes of symmetric functioamelytype-sensitivdunctions
exemplified by Mean, Median and Mode, atyge-thresholdunctions, exemplified by Maximum
and Minimum. The maximum rates for computation of type-gamsand type-threshold func-

tions in random planar networks were shown to@iqe—) andO( ) respectively, whera

loglogn Iogn
is the number of nodes. If we impose a probability distriaton the node measurements, one
can show that the average case complexity of computing ttyshold functions i©(1) [?].

In this paper, we address the problem where every node wishdstermine the value of
the function. This approach naturally allows the use ofddobm communication complexity
[?], where one seeks to find the minimum number of bits that maséxchanged in the worst
case between two nodes, in order to achieve zero-error datmu of a function of the node
variables. The communication complexity of Boolean fumas has been studied iff][ [?]. In
order to increase the computational efficiency, one canidenthedirect-sum problenii?] where
several instances of the problem are solved simultaneotibig block computation approach
results in matching upper and lower bounds in the case of tueAn AND function P]. In this
paper, we considerably generalize this result to deriventbist case complexity of computing

Boolean threshold functions in collocated networks

If the measurements are drawn from some joint probabilistrithution and one is allowed



block computation, we arrive at a distributed source cogngblem with a fidelity criterion
that is function-dependent, concerning which little is wmo The problem of source coding
with side information was studied ir?]. The extension of this approach to the problem of
function computation with side information was studied #. [The problem of interactive
function computation in collocated networks has been stlith [?].

Due to the broadcast nature of the wireless medium, two nedesh are close to each
other cannot transmit simultaneously. Thus, nodes needhiedsile their transmissions to avoid
interfering with one another. The challenge now is to ordmtas’ transmissions so as to exploit
the structure of the function, the side-information gairfiesn previously transmitted bits, and
the knowledge of the underlying distribution. Sequentiatidion making problems have been
studied in various forms. The most well known problem of desig sequential experiments is
the bandit problem], [?], [?]. One is given a bandit with multiple arms which offer diieit
probabilistic payoffs. At each time-step, the player nedshoose which arm to play so as to
maximize the expected long-term payoff. Thus, there is aitenbetween exploring which arms
offer highest payoffs and exploiting them. Under the optisteategy, each arm is assigned a
dynamic allocation index and the arm with maximum index issgn.

In [?], an interesting problem in sequential decision makingtislied, wheren nodes have
i.i.d. measurements, and a central agent wishes to knowd#hiiies of the nodes with thie
largest values. One is allowed questions of the typeX“Ist”, to which the central agent receives
the list of all nodes which satisfy the condition. Under tfrismework, the optimal recursive
strategy of querying the nodes is found. A key difference uin fmrmulation of the sequential
decision making problem is that we are only allowed to quemtipular nodes, and not all nodes
at once. The problem of minimizing the depth of decisiondrés Boolean threshold queries

is considered in7].

. WORSTCASE COMPUTATION OF SYMMETRIC BOOLEAN FUNCTIONS

In this section, we consider a collocated network with notlésroughn, where each node’s

transmissions can be heard by every other node. Thus, théepraf medium access is resolved



by allowing at most one node to transmit successfully at amg.tEach node has a Boolean
measuremen; € {0,1}, andeverynode wants to compute the same functi(iXy, Xz, . . ., Xn)
of the measurements. We seek to find communication schemies abhieve correct function
computation at each node, with minimum worst-case totalbrmof bits exchanged. We allow
for the efficiencies of block computation, where each nodes a block ofN independent
measurements, denoted l@‘ Throughout this section, we suppose that collisions dacaovey
information thus restricting ourselves tollision-free strategiess in [?]. This means that for
the K" bit by, the identity of the transmitting nod®& depends only on previously broadcast
bits by, by, ..., bx_1, while the value of the bit it sends can depend arbitrarilyatinprevious
broadcast bits as well as its block of measureme(rﬁﬁs

It is important to note that alhteractivestrategies are subsumed within the class of collision-
free strategies. A collision-free strategy is said to aghieorrect block computation if each node
i can correctly determine the value of the function bId(E‘i(Xl,Xg,...,Xn) using the sequence
of bits by,by,... and its own measurement bIoOkN. Let .#n be the class of collision-free
strategies for block lengtiN which achieve zero-error block computation, and@gf, Sy, N)
be the worst-case total number of bits exchanged undeegyr&,; € .#n. The worst-case per-

instance complexity of computing a functidiiX, X, ..., X,) is defined by

C(f) = lim min M
N—ro0 Sy

We call this thebroadcast computation complexity the functionf.

We begin by recalling Theorem 1 ir?][ which states that the complexity of computing the
AND function of two variables is log3 bits. In Sectiori Il[-A, we generalize this result to
obtain the broadcast communication complexity of the ANBDction of n variables. In Section
[M-B] we derive the broadcast computation complexity foe tmore general class tfreshold
functions For this class of functions, we devise an achievable giyasdhich involves each node
transmitting in turn, using a prefix-free codebook, and adiowound based on fooling sets. It

is interesting to note that the optimal strategy requiresdback-and-forth interaction between

nodes. In Sectiorls IIHC ard 114D, we extend this approaxklérive the broadcast computation



complexity of computinglelta functionsandinterval functionsrespectively.

Finally, in Section IlI-E, we present some extensions toddme of non-Boolean measurements
and to the case of non-Boolean functions. Using the intuitjained from the Boolean case, we
show how the achievability scheme and fooling set lower lkdsuran be adapted. In particular

we study general threshold functions and MAX function.

A. Complexity of computing the AND function

We consider now the specific problem of computing the AND fiom; which is 1 if all its
arguments are 1, and 0 otherwise. Consider a collocatedorietwith n nodes, each of which
wants to compute the AND function af variables, denoted\ (X1, Xp,...,Xn). For the case
wheren= 2, we know from Theorem 1 in?] that the broadcast communication complexity of
computing the AND function is log3 bits. We have the following result for general

Theorem 1:For any strategysy,
C(XgAX2... %0, Sy, N) > Nlogy(n+1).
Further, there exists a strate§y; such that
C(X1 AXa... %n, S, N) < [Nlogy(n+1)] + (n—2).

Thus, the complexity of the multiple node AND function is @iv by C(A(X1,X,... X)) =
log,(n+1).

Proof of Achievability: The upper bound is established using induction on the nuwfeodes

n. From Theorem 1 in7], the result is true fon = 2 which is the basis step. Suppose the result
is true for a collocated network @¢h— 1) nodes. Consider an achievable scheme in which node
n transmits first, using a prefix free codebook. Let the lendtthe codeword transmitted be
I(XN). After this transmission, the function is determined fa thstances when¥, = 0. For the
instances wher¥, = 1, the remainingdn— 1) nodes need to computg Xy, Xz, ..., Xp—1). From

the induction hypothesis, we know that this can be done usiri¥,\) log, n] + (n— 3) bits. Thus

the worst-case total number of bits exchanget is- maxn(l (XN) 4+ Tw(XN)log, n+ (n—3)]).



As before, we want to minimise this quantity subject to thafKmequality. Consider a prefix-

free codebook for noda which satisfies

I(XY) = [Nlogy(n+1)T+ (n—2) — [w(X}) log,n] — (n—3)
This satisfies Kraft inequality since

Z' o[W(Xy') logzn] <

zzw(xf']\‘)logzn—i—l < 2(n+ 1)N < 2|—N log,(n+1)]+1
Xn

X
Proof of lower bound: The lower bound is shown by constructingf@oling set[?] of the
appropriate size. We digress briefly to introduce the conoégooling sets in the context of
two-party communication complexity?]. Consider two nodeX andY, each of which take
values in finite setsZ” and ¢/, and both nodes want to compute some functigX,Y) with
zero error.

Definition 1 (Fooling Set):A setE C 2" x % is said to be a fooling set, if for any two distinct

elements(x1,y1), (X2,¥2) in E, we have either

o f(x1,y1) # f(Xx2,y2), or

o f(x1,y1) = f(x2,y2), but eitherf (x1,y2) # f(x,y1) or f(x2,y1) # (X1, y1).

Given a fooling setE for a function f(X1,X2), we haveC(f(X1,X2)) > log,|E|. We have

described two dimensional fooling sets above. The extansianulti-dimensional fooling sets
is straightforward and gives a lower bound on the commuimicatomplexity of the function
f(X1,X2,...,X%n).

We need to devise a subset of the set ofre N measurement matrices which is a valid
fooling set. Consider the subdetf measurement matrices which are only comprised of columns
which sum to(n— 1) or n. Since there ar&l columns, there arén+1)N such matrices. Le;,

M, be two distinct matrices in this subset.flf (M) # fN(M,), then we are done. Suppose not.
Then there must exist one instance where the function elia zero and for whicM; and
M have different columns. Let us suppdde has 1 —e andM; has 1 —ej. Now if we replace

the ith row of My with the ith row of M,, the resulting measurement matrix, ey is such



that f(M*) = f(M1). Thus, the seE is a valid fooling set. From the fooling set lower bound,
we have, forany strategySy € -, we must haveC(A (X1, X2), Sy, N) > Nlog, 3 implying that
C(f) >log,3. This concludes the proof of Theorémml.

By symmetry, we can derive the complexity of the OR functiahjch is defined to be O if
all its arguments are 0, and 1 otherwise. Consider a cobdcaetwork withn nodes, each of
which wants to compute the OR function, denoted¥s, Xa, ..., Xn).

Corollary 1: The complexity of the OR function is given /(\V/ (X1, X2, ..., X)) =l0g,(n+

1), since we can view it as (X1, X»,...,Xy), by deMorgan’s laws.

Note: Throughout the rest of this section, for ease of expositwa,will ignore the fact that
terms likeNlog,(n+1) may not be integer. Since our achievability strategy inesleach node
transmitting exactly once, this will result in a maximum afeoextra bit per node, and since we

are amortizing this over a long block length it will not affect any of the results.

B. Complexity of computing Boolean threshold functions

Definition 2 (Boolean threshold functionsik Boolean threshold functioflg (X1, X, ..., Xn)
is defined as
1 if 5;%>86

n9<x17X27"~7Xn) -
0 otherwise.

Theorem 2:The complexity of computing a Boolean threshold functioB(Blg (X1, X2,...Xn)) =

n+1
log,

Proof of Achievability: The upper bound is established by inductionnoffrom Theorenall and
Corollary[1, the result is true fan= 2 and forall 1 < 8 < n, which is the basis step. Suppose
the upper bound is true for a collocated networkof- 1) nodes, for all 1< 8 < (n—1). Given

a functionMg (X1, X, ..., Xy) of n variables, consider an achievable strategy in which node
transmits first, using a prefix free codeword of lengtX\). After this transmission, nodes 1
throughn— 1 can decode the blockN. For the instances wheb& = 0, thesg(n— 1) nodes now
need to computé&lg(Xy,Xo,...,Xy-1). For the instances wheng, = 1, the remainingn— 1)

nodes need to compuly_1(X1, Xz, ..., Xy-1). From the induction hypothesis, we have optimal



strategies for computing these functions. lAé@XnN) denote the number of instancesiah the

block XN. Under the above strategy, the worst-case total numbertefelichanged is

Lmax(I(XnN)-i—V\/O(XnN)Iogz( " ) —i—vvl(XnN)Iogz( " )) .
XN 0 01

We want to minimise this quantity subject to the Kraft inelifyaConsider a prefix-free codebook

which satisfies

(X)) = Nlog, ( ”;1 ) WO(XnN)|092( ; ) w1<><nN>logz< eil ) .

This assignment of codelengths satisfies the Kraft inetyusilince

—N

W) whq)
1) n+1 n n
xZ,; 0 xZ,; 0 6-1

)] -

Hence there exists a prefix-free code which satisfies theifsggbcodelengths, and we have

n+1
6

n+1
L =Nlog, , Which proves the induction step.
0

Proof of lower bound: We need to find a subset of the set of alk N measurement ma-
trices which is a valid fooling set. Consider the subBebf measurement matrices which

consist of only columns which sum t@@ — 1) or 6. Since there aréN columns, there are

0 6-1
M, be two distinct matrices in this subset. i¥(My) # fN(My), then we are done. Suppose

n n
[( ) + ( )] such matrices. We claim that the &eis a valid fooling set. LeMy,

not. Then there must exist at least one column at wiMghand M, disagree, say/lij) #* Méj).
However, bothng) and Mé” have the same number of ones. Thus there must exist some row,

sayi*, Whereng) has a zero, bult/léj) has a one.

(1) Supposef(Mij)) = f(Méj)) = 0. Then, consider the matri¥; obtained by replacing the



i*th row of My with the i*th row of M,. The jt column of M; has 6 ones, and hence
f(M:y = 1. Hence we havé (M}) # f(My).

(i) Supposef(Mi”) = f(Méj)) = 1. Then, consider the matriM; obtained by replacing the
i*th row of M, with thei*th row of M1. The j" column ofM; has6 —1 ones, and hence
f(M;1)) = 1. Hence we havd (M3) # f(My).

Thus, the setE is a valid fooling set. From the fooling set lower bound, famy strat-

n+1
egy S\ € N, we must haveC(Mg(X1, X2,...,%n), SN, N) > Nlog, ( ) implying that
6

n+1
C<|_|9<x17x27"'7xn))2|092 ( 0 ) U

C. Complexity of Boolean delta functions

Definition 3 (Boolean delta function)A Boolean delta functior g, (X1, Xz, ..., %) is de-

fined as:
1 if 5;X%=86

0 otherwise.

ﬂ{g}(xl,)(z,..,xn) — {

Theorem 3:The complexity of computingl g, (X1, X2, ..., %n) is given by

n+1 n
C(Mygy(X1,X2,- .-, %)) =09, [( ) + ( )} :
6 6+1

Sketch of Proof: The proof of achievability follows from an inductive argumes before. The
fooling setE consists of measurement matrices composed of only colunmshveum up to
6—1, 0 or 8+ 1. Thus the size of the fooling set is

() ()(n)

N

.0




D. Complexity of computing Boolean interval functions

A Booleaninterval functionM g (Xy,...,Xs) is defined as:

n[a,b] (Xl,XZ,...,Xn) — { Di

0 otherwise.

A naive strategy to compute the functiéh, (X, ..., Xn) is to compute the threshold functions
Ma(Xy,...,%Xn) andMp1(X1, X, ..., X,). However, this strategy gives us more information than
we seek, i.e., ify; X € [a, b]C, then we also know iff; X; < a, which is superfluous information
and perhaps costly to obtain. Alternately, we can deriveratesty which explicitly deals with
intervals, as against thresholds. This strategy has signify lower complexity.

Theorem 4:The complexity of computing a Boolean interval functibi (X1, X2, .- ., Xn)

with a+b < nis bounded as follows:

n+1 n
log, [( ) + ( )] < C(Mpp(Xe, X2, .- Xn))
b+1 a—1
n+1 n
<log, +(b—a+1) . (1)
b+1 a—1

The complexity of computing a Boolean interval functibip, p (X1, ..., %n) with a+b>n'is

bounded as follows:

n+1 n
log, [( ) + ( )} < C(Mpap (X1, X2, .- Xn))
a b+1
n+1 n
<log, +(b—a+1) . (2
a b+1

Proof of lower bound: Supposea+ b < n. Consider the subsdf of measurement matrices
which consist of only columns which sum ta—1), b or (b+1). We claim that the seE is a
valid fooling set. LetM;, M, be two distinct matrices in this subset. il(M1) # fN(M,), we

are done. Suppose not. Then there must exist at least onar@uwhichM, andM- disagree,



sayM( 2 ).

(i) Supposef(Mij)) = f(Méj)) = 1. Then, bothMij) and Méj) have exactlyb 1s. Thus there
exists some row, say’, where Mij) has a O, buﬂ\/léj) has a 1. Consider the matri;
obtained by replacing th&th row of M; with the i*th row of My. The j™ column of M]
has(b+1) 1s, and hencé(MI(j)) =0, which meand (M) # f(My).

(i) Supposef(Mij)) = f(Méj)) =0. If both M&j) andMéj) have the same number of 1s, then the
same argument as in (i) applies. HoweveMﬁfi) has(a—1) 1s and\/léj) has(b+1) 1s, then
there exists some row WhereMij) has a 0, buMéj) has a 1. Then, the matrM; obtained

by replacing th&*th row of My with thei*th row of My is such thatf (M3) # f(My).

n n n
Thus, the seE is a valid fooling set andE| = + +
b+1 a-1 b

gives us the required lower bound [d (1).

. This

For the case whera+b > n, we consider the fooling sé&’ of matrices which are comprised
of only columns which sum ta—1, a or b+ 1. This gives us the lower bound il (2).
Proof of achievability: Consider the general strategy for achievability where nottansmits a
prefix-free codeword of Iengtlﬂ(xlN), leaving the remainingn— 1) nodes the task of computing
a residual function. This approach yields a recursion fangoting the complexity of interval

functions.
C(n[a,b](xb ..., %)) < log, 2C(Ma-1p-2 (X1, %0-1)) 4 2C(Mpapy (X17-~-,Xn71)] )

The boundary conditions for this recursion are obtainethftbe result for Boolean threshold
functions in Theorem]2. We could simply solve this recurstomputationally, but we want to
study the behaviour of the complexity as we varyb and n. Define hyp, ;= 2¢(Man(Xe-%n)),

We have the following recursion fdr(a, b, n)
h(a,b,n) <h(a—1,b—1,n—1)+h(a,b,n—1). 3

We proceed by induction on. From Theorem§]2 ard 3, the upper bounddin (1) ahd (2) are

true forn= 2 and all intervalga,b]. Suppose the upper bound is true for all interjald| for



(n—1) nodes. Consider the following cases.

() Supposea+b < n-—1. Substituting the induction hypothesis in (3), we get

h(a,b,n) < (n) (b— a-|—1)(n l)
b a—2
(o) (20)
+ +(b—a+1)
b+1
= (n+1)+(b a-l—l)( )
b+1 a—1

(i) Supposea+b > n-+ 1. Proof is similar to case (i).

(i) Supposea+ b = n. Substituting the induction hypothesis [0 (3), we get

h(a,b,n) < (n)+(b a+1)(n l)
b a—2
(2) (i)
+ (b—a+1)
a b+1
5 () - >( )
a b+1

where some steps have been omitted in the proof of the lagui@hi¢y. This establishes the
induction step and completes the proof.
1) Discussion of Theorefd 4:
(a) The gap between the lower and upper boundsin (1)[@nd é2)disive and is upper bounded
by log,(b—a+2) which is log(n+2) in the worst case.

(b) For fixeda andb, as the number of nodes increases, we hayd < n for large enough



(©)

(d)

n. Consider the residual ternib—a+1) ( ) on the RHS in[(l1). We have

a—1

SRR

n+1
Hence,C(M g (X, .., Xn)) = log, ( ) (1+ 0(1))). Thus, for any fixed interval
b+1

[a,b], we have derived an order optimal strategy with optimal pnstant. The orderwise
complexity of this strategy is the same as that of the thieshunction My (X1, ..., Xn).
Similarly, we can derive order optimal strategies for cotm@IC(Mn_an_p) (X1, - -, %n))
andC(Mgn_p (X1, ---,%n)), for fixed a andb.

Consider goercentiletype function wherga, b] = [an, Bn], with (a + ) < 1. Using Stir-

ling’s approximation, we can still show that

seon( ) =o((o2))

Thus we have derived an order optimal strategy with optintat@nstant for percentile
functions.

Consider the functiorf := M5 1,1 (X1,...,Xa) Where the intervals$a;, bj] are disjoint, and
may be fixed or percentile type. We can piece together thdtriEsusingle intervals and

show that

C(f(Xqg,...,X%n)) =log, ig(ai,bi,n)(l-%o(l))).

n+1

if a+b<n
bi+1

whereg(aj, bi,n) =
n+1

if aj+by >n.
8



E. Extension to general alphabets

In Sectiong I1I-B {1II-D, we have studied optimal strategjfer computing threshold functions,
delta functions and interval functions of Boolean meas@ms In this section, we will show
that these results can be generalized to the case where nadegeneral integer alphabets, i.e.,
Xi €{0,1,...,m}. The proofs are lengthier in this case, and to maintaintylarfi presentation,
we will focus on threshold functions and tivAX function.

1) Complexity of General Threshold FunctionSonsider a collocated network of nodes,
where nodeé has measuremed§ € {0,1,...,m}.

Definition 4: A general threshold functioflg(Xy, Xz, ...,Xn) is defined as below.

1 if 5P >0

|_|9(X1,X2, ... ,Xn) =
0 otherwise

We employ the same notation as for Boolean threshold fumstiowhich constitute a special case
of general threshold functions.

Theorem 5:The complexity of computindlg(Xy,...,X,) is given by

emn.x) = oas( [+ + [ (115557 )
— log, [YG}_'_[YQ—l] (.Iﬂl(l_YmiH)) i n+k—1 vk

i= k=1 n-1

where the notatioriY®] refers to the coefficient of ® in the expression on the RHS.
Proof: The proof proceeds by induction on the number of nadeBrom Theorem 1 in7],
we know that the result is true for= 2 and all choices ofmn,mp and 8. This serves as a basis
step for the induction. Let us suppose the result is true foolbcated network ofi— 1 nodes
and all choices ofm,mp,...,m,_1 and 8. We now proceed to prove the result for a network of
n nodes.

We specify a strategysy in which noden transmits first. As described ir?]}; the optimal
strategy consists of two stages, namely separation anch@ollie begin by identifying the

symbols in{0,1,...,my} that need to beeparatedby noden. Let X, be the mapping oK, to



the reduced alphabet given Kw,,...,by}. Subsequently, we construct a prefix-free codeword
on the reduced alphabet. Let the length of the codeword rtrtesl bel (X{'). At the end of
this transmission, the remaining— 1 nodes need to compute a residual threshold function for
each instance of the block. For example X{f = k, we are left with the task of computing
Mo_k(X1,...,Xn—1). By the induction hypothesis, there is an achievable gyate compute this
residual threshold function, with complexi§(Mg_k(X1,...,Xn—1)). Thus the worst case total

number of bits exchanged under this strategy is given by

L:= T”(nﬁm (X)) + WA (XN)C(Mg gy (X1, - -, Xn-1)) + W T HXI)C(Mg_ay-1(X1, - ., Xn-1))
AW (XNC(Mg (X1, -+, %no1)),

wherew! (X)) is the number of instances in the block whéke= j. Our objective is to find the

smallestL that satisfies the Kraft inequality for prefix free codes, aihstates thay g 2710 <

1. From the definition of., we can lower bound the LHS of the Kraft inequality.

Z 2714 > oL S (szan<>?nN)C(rlefan<x1,...,xnfl>> o sz"n<>~<nN)c<r|9,bn<x1,...,xn,1>>) ,
X Xy

From the induction hypothesis, we have that

ol 25



Thus, the smallest feasible value lofis given by

£ g (b))
<[Yebn] s (1—1Y”:1)>Wb"(x"N>

- (& (bR )

- (B (55)

= ()¢ pearvevm (11Yj)>

- (L IACS)

- wea{e ) (55))

where [4) follows from the fact that fdc < a, andk > by, the coefficients ol ?—* andy?—*-1

are both zero. Thus, we have derived an upper bound on thelexitypof computing general
threshold functions in collocated networks.

Proof of lower bound: We need to find a subset of the set of @k N measurement matrices
which is a valid fooling set. Consider the sub&bf measurement matrices which are made
up only of the column vectors which sum {6 — 1) or 6. Consider two distinct measurement
matricesMy,M, € E. Let fN(M;) and fN(M) be the block function values obtained from
these two matrices. IfN(M;) # fN(M,), we are done. Let us suppogé' (M;) = fN(My),
and note that sincél; # Mo, there must exist one column, say columinwhere M; and M,
differ. However, sinceN(M;) = fN(M,), each column of; must sum to the same value as the
corresponding column iM,. Thus there must exist rows andi, such thatM1 (i1, j) < Ma(iy, j)
andM(iz, j) < Ma(iz, J).

e If column j in M7 and M, sum to 8 — 1, then consider the new measurement maltfix



got by replacing thé} row of M; with the i{" row of M,. The j*" column of M* sums to
a value that is greater thath— 1. Thus, we have (M*) £ f(Mq).
o If column j in My and M, sum to 8, then consider the new measurement malfix got
by replacing they' row of M; with the iff' row of M,. The | column of M* sums to a
value that is less thaf. Thus, we havef (M*) #£ f(My).
Thus, the seE is a valid fooling set. We now need to evaluate the siz&offhe number of
columns which sum t&@ — 1 and6 respectively, can be evaluated by looking at the coeffisient

at a carefully constructed generating polynomial given by
(I+Y+. . +Y™)(L+Y 4. +Y™) L (14Y ..+ Y™,

This polynomial models all possible measurement vectisXo, ..., Xn). Thus, we can now

calculate the size oF by looking at the coefficients of® andY?-1 in this polynomial.

- - - - n
E|] = [Y®]+ Yot r!(1+v+...+vm)> (6)

AV
C a1 T 1 (N 1_ym+l

= YO+ |yo? 7> 7)
A A R A Y
o], [vo-1] [ mi+1 o [ ntk-1 k

= (YO +|Y r!(l—v I Yk, (8)
-0 - \i= K=1 n—1

where the last equation follows from the binomial expandmnnegative exponents. Thus, we
have established the required lower bound.

2) The MAX function:In this section, we use the tools that we have developed ty su
particular example, namely tihdAX function. However, we no longer obtain exact results, which
is to say that the single-round achievable scheme does rohrtiee fooling set lower bound. This
suggests that single round strategies are no longer opsinthlt might be necessary to consider
multi-round block computation strategies. Indeed, presiaork in the area of communication
complexity has shown a multi-round protocol that does bettat our single-round scheme for

the two node case. However, our proposed strategy is splbmentially better than the naive



strategy of communicating all measurements. Further,avides reasonably tight bounds and
achieves the optimal scaling as the number of nodes in@ease

Consider nodes 1 through organized in a collocated network as before. For simplidét
us suppose that for each nodeX; € {0,1,...,m}. The MAX function of n measurements is
defined in the natural way and is denoted MAXn(X1, X2, ..., Xn). We want to determine the
worst case complexity of computing th@AX function.

Theorem 6:The complexity of theVIAX function ofn variables from the alphabg0,1,..., m}

is bounded as follows.

n-+m
log,(Mn+1) < C(MAXm(X1, ..., Xn)) < log, ( ) :
m

Proof: We prove the result by induction on the number of node$or the basis step, we
consider the two node problem. Consider the general adblievscheme where node 1 sends
a prefix free codeword of lengt(X}'), and node 2 indicates its exact value for each of the
instances of the block wher¥; < X,. For example, ifX; =k, node 2 needs to indicate its
value in the sefk, k+1,...,m}. Thus, the worst case total number of bits exchanged undger th
scheme is given by

L = max(( (X)) + WP (X logy(m+ 1) +wh (X)) log, m+ ... +w™(X{) log, 1) .

Xl

Proceeding as before, we can show that, in order to ensurdich m&fix free code with

codelengthﬂ(X{\') that satisfy Kraft inequality, the minimura is given by

m+2
L =log,(m+1+m+...4+1) = Nlog,

For the lower bound, we can verify that the set of measurementices with columns exclusively

from the setE given by

E ={(0,0),(0,1),(1,0),...,(0,m),(m,0)},



is a valid fooling set. Thus we have

m+2
log,(2m+ 1) < C(MAXm(X1,X2)) < log, ( ) ,
2

which establishes the basis step for the induction.

Now, let us suppose that the result is true for a networkrof- 1) nodes. Consider the
following achievable scheme for thenode network. Node transmits a prefix-free codeword
of lengthl(XN). At the end of this transmission, the remainifrg— 1) nodes need to compute
the residualMAX function for each instance of the block. For exampleXif= k, we are
left with the task of computing th&1AX function of (n— 1) nodes on the reduced alphabet
{k,;k+1,...,n}. Since{k,k+1,...,n} is isomorphic t0{0,1,...,n— Kk}, this is equivalent to
computingMAX,_«(Xy,...,Xn—1). By the induction hypothesis, there is an achievable gyate
to compute this residuaAX function, which we can unroll recursively. Thus the worssea

total number of bits exchanged under this strategy is giwen b
L= ry(ngx(l (X)W ORCMAX (X1, - Xa 1)) + -+ WX C(MAX (X4, -, X0 1)) -
In order to satisfy the Kraft inequality, the smallésthat is feasible is given by

L = Nlog, izC(MAXmi(Xl,-.-,an))
i=
< NI m [ m+n—i-1
= NIog,
i;) m—i

m+n
= Nlog,
m

which establishes the upper bound in the induction step.
In order to prove the lower bound, we need to construct arigatiet of the appropriate size.

Consider the set af x N measurement matrices which consist of columns from th& skffined



by

¢ T r 7 B 7 r T r 7 B T B )
0 1 0 0 m 0 0
0 0 1 0 0 m 0
E= s s ’ s ) s ) s ’
0 0 0 1 0 0 m )

It is easy to check that this is a valid fooling set of sipen+ 1)N which gives us the required

lower bound for the induction stepl

We make some observations regarding the result in Thebrem 6

« For fixedm, we have thaC(MAXm(X1, X2, ..., Xn)) = ©(log, n). This agrees with the result

in [?] that the maximum rate of computing a type-threshold fuorcis O(@). Thus, the
proposed achievable strategy is scaling law order-optifaither, we obtain better bounds

on the complexity.

n+m
log,(mn+1) <C(MAXm(X1, X2, ..., X%n)) <log, <min(nlog,(m+1),mlog,(n+1)).
m

The naive strategy for computing tiAX function consists of each node communicating
its measurement which has a complexityrdbg,(m+1). For fixedm, the complexity of
the proposed scheme is upper boundedrbyg,(n-+ 1), which is exponentially better than

the naive strategy((log,n) vs. O(n)).

IV. AVERAGE CASE COMPUTATION OF SYMMETRIC BOOLEAN FUNCTIONS

Consider a collocated network with nodes 1 thromgkwhere each nodehas a Boolean mea-

suremeni; € {0,1}. X is drawn from a Bernoulli distribution witR(X; = 1) =: p;, and {X}]"_;

are independent of each other. Without loss of generaligyassume that < p2 <... < pp. We

address the following optimal distributed computationipem. Everynode wants to compute the

same functionf (X1, Xo, ..., Xn) of the measurements. Given a strategy for compufifg, Xo,

...,Xn), the time of termination is a random variable. Our objeciéo find communication

strategies which achieve correct function computationamhenode, with minimum expected



total number of bits exchanged.

In Sectior IV=A, we formulate the problem of single instaioeputation of Boolean threshold
functions. We identify a surprisingly simple policy and geat a detailed proof of its optimality,
by induction on the number of nodes in the network. In Sedfi6B] we consider the extension
to the case of block computation of threshold functions, neheach node has a block of
measurements and we are allowed block coding. This prokdesignificantly harder, and we
conjecture the structure of an optimal multi-round polibyilding on the optimal policy for
single instance computation. Further, we quantify the ayercase complexity of computing a
Boolean threshold function in Sectién TV-B2.

The extension of these results to an alternative model ofnmonication, where binary in-
formation can be encoded by the presence or absence of a muksteidied in Sectiof V-C.
When considering exact computation of functions of randatadit should be noted that the
time of termination is a random variable. While the optimabtegy minimizes the expected
time of termination, some instances of computation migithieate earlier and some much later.
In Section[IV-D, we consider the problem of approximate tiorc computation given a fixed

number of timeslots.

A. Single Instance Computation of Boolean Threshold Faonsti

Let us suppose each node has a single Boolean measurememieasdek to compute a
given Boolean threshold function. First, we note that sireeh node has exactly one bit of
information, it is optimal to seby = X,. Indeed, for any other choidg = g(by,... b1, X7,),
the remaining nodes can reconstrigt since they already know;,...,b._1. Thus the only
freedom available is in choosing the transmitting ndgeas a function ofoy, by, ..., bx_4, for
otherwise the transmission itself could be avoided. We tbadl theordering problem Thus, by
definition, the order can dynamically depend on the previmagadcast bits. In this paper, we
address the ordering problem for a class of Boolean funstinamely threshold functions.

We will denote the set of measurements of nodes 1 thraugly (X1, Xo,...,Xn) which is

abbreviated aX". We will useX"; to denote the set of measuremefXs, ..., X_1, Xiy1,...,X%n).



As a natural extension, we uXéj(i 0 to denote the set of measuremeXs, ..., Xi—1,Xir1,...,Xj—1, Xj+1,. .-

wherei < j.
Definition 5 (Boolean threshold functionsjk Boolean threshold functioflg(Xz, X, ..., Xn)

is defined as
1 if 5;%>86,

Mo(X1,Xo,..., %n) =
0 otherwise.

The class of threshold functions has the property that, & ohthe nodes’ measurements is
known, the residual function is still a threshold functigsiven a function,_y(X"), if node
i transmits its bit, we are left with the residual task of comipy M,_k_1(X";) if X =1, and
Mnh_k(X";) if X; =0. Thus, the ordering problem can be formulated as a dynarogramming
problem. LetC(M,,_x(X")) denote the minimum expected number of bits required to coenpu

My _«(X"). The dynamic programming equation is
C(Mnk(X") = min{1+piC(Mnk-1(X75) + (1= p)C(Mnk(X%))}- 9)

with boundary conditiorC(M4(X™)) =0 if a=0 ora>m.

To begin with, we argue that solving](9) for eaohand k does indeed yield the optimal
strategy for computing Boolean threshold functions. Irtipalar, to derive the optimal strategy
for computingl,_(X"), we first determine which node must transmit first, by solv@yfor
n,k. Then, depending on wheth& ;) =0 or Xy(;) = 1, we are left with the residual task of
computing I'In,k(xr_‘T(l)) or I'In,k,l(X”_T(l)). We can determine which node should transmit
next in either case, from the solution @i (9) for- 1, k—1 or n— 1 k respectively. Proceeding
recursively, one can unroll the optimal strategy for conmmt,_ (X1, X, ... Xn).

In (), we recognise that the single-stage cost is uniforinlylore generally, given a function

f(-):[0,1] — R, one can write down a more general dynamic programming &muat
C(Mnk(X") = min{ f (1) + PC(Mn-1(X2)) + (1= p)C(Ma-k(XZi)) }- (10)

Here, one can viewf (pj) as the cost of communicating the information of nadehich has

P(Xi =1) = pi. Indeed, for the case of single instance computation, we ligg) = 1. In the



sequel, we will see how this general dynamic programmingédation will allow us to study
other problems of interest.

For generalf(-), solving the dynamic programing equatidn(10) may be in#tale. Further,
it is unclear at the outset if the optimal strategy will degpeamly on the ordering of they;s,
or their particular values. This makes the explicit solutaf (10), or even[(9), for alh, k and
(p1, P2, --- Pn) Notoriously hard. However, under some conditionsf¢r), we can derive a very
simple characterization of the optimal strategy for ea@nd 0< k < n— 1. Further, we observe
that optimal strategy is independent of the particular ealaf thep;s, but only depends on their
relative ordering.

Lemma 1:Let f(-):[0,1] — R™ be a function such that

« f(p)="f(1-p).

)

. f(Tp IS @ monotone non-increasing function f

Then the minimum in[(10) is attained 4+ 1. That is,
k+1 e argmin{ f(pi) + piC(Mpk-1(X")) + (1= p))C(Mp_k(X"}) } . (11)
|

This result is true for alh and all 0O< k< n—1 and all probability distributions witlp; < py <

... < pn.

Proof: We define the following expressions.

Tk (X™) = pk+1c(|_|m—k—1(XT(k+1)) +(1- pk+1)c(nm—k(xr_n(k+1)>

— PiC(Mmk-1(X™) — (1= pi)C(Mm-k(XT)

Sgnl,)k,i(xm) = (Pk+1— pi)c(nmfkfl(XT(k-i-l’i))) +(1- pk+l)C(nm7k(Xr_n(k+1)))

—(1- p)C(Mmk(XT)).
§<-r2.)k| (X™) = (P = Py 1) C(Mmk-1 (X" 1)) + Prr1C(Mmk-1(X M1 19)) = PIC(Mm k-1 (X))

We establish the above theorem by induction on the numbeodésn. However, we need



to load the induction hypothesis. Consider the followinguation hypothesis.

(@) Tmki(X™) < f(pi)—f(pr1) forall0<k<(m-1),1<i<m
(b) sﬁn{)k?i(xm) < (A=p) f(p) = (1=p)f(peya) forall 0<k+1<(m—1),k+2<i<m
(c) sﬁkj(xm) < prraf(pi) = pif(peya) forall 0<k<(m—1),1<i<k+1
Observe that parta) immediately establishes {111).
The basis step fom= 1 is trivially true. Let us suppose the induction hypothesitrue for

all m< n. We now proceed to prove the hypothesis o= n+ 1.

Lemma 2:For fixedk andi > k+ 2, we have

Dk (X < (1 peca) F(p1) — (1 P F(Prga).

Proof: See AppendiXx_All.

Lemma 3:For fixedk andi < k, we have

2+)1,k,i(xn+l) < prra F(Pi) — pif(Pkra)-

Proof: See Appendix AR.
Lemmag R anfll3 establish the induction step for pdrtsand (c) of the induction hypothesis.
We now proceed to show the induction step for gait

Lemma 4:For fixedk andi > k+ 2, we have

Toraki (XM < :-Lgl,kj X"+ pera F(pi) — Pif (Prera)-

Proof: See Appendix AB.

Lemma 5: For fixedk andi < k, we have

Toe1ki (X < 87 (XM + (1= pren) F(p) — (1= p) f(Press).

Proof: See Appendix AX.
Applying Lemmag# anfl5 together with Lemnids 2 Bhd 3, we se€Tthayi(X"1) <0 for



all 0<k<nandi#k+1. For the casé=k+1, we haveT (n+ 1,k k+ 1) = O trivially. This
completes the induction step for pd#), and the proof of the Theoremi

Using Lemmd_ L, we can now simply derive the optimal sequentenmunication strategy
for computing a single instance of the Boolean thresholdton M, (X").

Theorem 7:1In order to compute a single instance of the Boolean thresfuoictionl,, _(X"),
it is optimal for node(k+ 1) to transmit its bit first.
Proof: In the case of single instance computation, we héyg = 1. Hence, trivially, we have
that f(p) = f(1— p), and thatLFf’) IS @ monotone non-increasing function pf From Lemma

[, we have
k-1 € argmin{ f(p) + PC(Mn-i-2(X™)) + (1= PIC(Mn-1(X")

Thus, in order to compute the Boolean threshold funclign,(X"), it is optimal for nodek+ 1
to transmit first.O

Remark 1:At the outset, there are two heuristics that one may applizéatdering problem.
First, if we believe thafl,, «(X") evaluates to 0, the conditional optimal strategy is for sode
to transmit in order starting with node 1. Alternately, if believe thatl, (X") evaluates
to 1, the conditional optimal strategy is for nodes to tramsm reverse order starting with
noden. Thus, the result in Theorem 7 can be viewed as an appropréatgingsolution which
safeguards against the event thiat «(X") could evaluate to O or 1. It is indeed surprising that
a particularly simple hedging strategy is optimal formllall k and all probability distributions,

and that it does not depend on the actual values of the prigiEsbut only on their order.

B. Block Computation of Boolean Threshold Functions

We now shift attention to the case where we allow nodes to matate a block ofN
measurements, and thus achieve improved efficiency by udouk codes. The most general
class of interactive strategies are those where the igeotithe node transmitting the" bit,
say Ty can depend arbitrarily on all previously broadcast bits] #re k" bit itself can depend

arbitrarily on all previously broadcast bits as well & block of measurements. We require



that all nodes compute the function with zero error for theck] and wish to minimize the
expected number of bits exchanged per instance of compntatenoteds (M, _«(X")). While
the problem of finding the optimal strategy in this generakslof strategies appears intractable,
we derive the optimal solution under a restricted classrattegies. The restriction we impose is
natural, and we conjecture that the optimal strategy inréssricted class is also optimal among
all interactive strategies.

Define the following restricted class obherent strategies

Definition 6: Coherent Strategies When computifig_,(X") for a block of N measurements,

a coherent strategy mandates that the first node to transayt,nodeT (1), must declare

its entire block using a Huffman code. Note that this does exafude interactive strategies,
since, subsequent to nodg1)’'s transmission, we have two subproblems over sub-blocks of
measurements corresponding to instances whgrg = 0 and X3y = 1. For each of these
subproblems, we could potentially have different nodessimatting first. Thus nodes may
transmit more than once. However each of these nodes are egastrained to communicate
their entire subblock of measurements.

Theorem 8:In the restricted class of coherent strategies, in ordeptopaitell, y(X") for a
block of measurements, it is optimal for nolle- 1 to transmit its entire block first, using the
Huffman code. This result is true for asymptotically longdk lengths, for alh, all 0< k<n-—1,
and all probability distributions witlp; < p2 < ... < pp.

Proof: Let us suppose noddransmits first. Under a coherent strategy, nogheist communicate
its entire block, which requires an average descriptiomgtierof H(p;) bits per instance. This
can be achieved asymptotically by using the Huffman codeampress node’s block of
measuremenfg. Subsequent to nodés transmission, we are left with the residual tasks of
computingl,_x_1(X";) for the subblock wher&; = 1, andM,_¢(X";) for the subblock where
X; = 0. These are two block computation problems againdgti, x(X") denote the minimum

number of bits per instance, that must be exchanged underdsiricted class of strategies. We

1For clarity of presentation, we will ignore the fact that tHeffman code for block lengtiN has average codelength
between|NH(p)| and [NH(p)] +1 bits. The extra one bit can be amortized over long blocktteng



can write a dynamic programming equation as before.
G0 (Mnk(X")) = min{H (pi) + pi6y (M1 (X)) + (L= pi) 60 (Mnk(X2)) (12)

where H(p) is the standard binary entropy function defined Hyp) = —plog,(p) — (1 —
p)log,(1— p). The boundary condition fof (10) is given I (Ma(X™)=0if a=0ora>m.
Observe thaf (12) is a special case[of (10) whighe) = H(p). Thus, for the class of coherent
strategies, the problem of optimal computation once againces to an ordering problem. If we
can show thaH (p) satisfies the conditions in Lemrha 1, the result follows imiatedy. Clearly

H(p) =H(1— p) and one can verify that

H(p)
(" ):Iogz(l—p)<o
dp p2 T

Thus, we have thai'% is a non-decreasing function gf Hence, from Lemmal1, the optimal
strategy for computindl,,_«(X") for a block of measurements is for nole-1 to transmit its
entire block first, using the Huffman code.

Remark 2: The proposed optimal strategy is inherently interactivieces nodes do transmit
more than once. This is due to the recursive splitting of thgimal block of measurements
depending on nodes’ transmissions. This is illustrate¢héndomputation tree fdi(X2), where
node 2 first transmits its entire block using a Huffman coadwl the computation proceeds as
shown. In practice, all nodes need to agaegriori on a traversal order in the computation tree,
e.g., depth-first traversal or breadth-first traversal.

Remark 3: The proposed optimal strategy is asymptotically optimahalimit of long blocks.
This is necessary to achieve an average description leffidgilim) bits per instance. In practice,
one could simply choose a large enough block lengto that the average description length is
close enough to the entropy. In this context, it is importennote that, as the computation
proceeds, the original block gets recursively subdividet ismaller and smaller subblocks
of measurements. Each of these subblocks needs to be laogglemo achieve an average

description length that is close enough to the entropy oftthasmitting node. Thus, in the



worst case, we could have upt8 &ubblocks in the computation tree, and we assume that each
of these subblocks are large enough, which is ensured bysoiwpN to be suitably large.

1) A Strategy-independent Lower Bounext, we would like to determine if the class of
coherent strategies considered above is rich enough todedhe absolute optimal strategy for
interactive block computation without any restrictions @mode encoding all its information
using a Huffman code. Intuitively, since all the instancéstie block are independent and
identically distributed, it appears suboptimal for nodesdmmunicate only partial information
regarding their blocks at any stage. Thus, it is plausilde, tinder the optimal strategy, one node
communicates its entire block, and the computation praceedursively from there. However,
establishing this fact rigorously is a formidable challengn this subsection, we describe a
possible approach toward establishing this result, by @ataghe concept ofooling setsFooling
sets are a classical tool for establishing lower bounds imnoanication complexityq], and have
recently been used to establish tight lower bounds on thémmim number of bits exchanged
in the worst-case in collocated networkd,[and tree networks?]. We describe an extension
of fooling sets to the probabilistic scenario and use thiegtablish a lower bound.

We recall that, for the threshold functidm,_,(X"), a valid fooling set of maximum size is
given by

n n
Enn_k = {X": _lei =n—kor _lei =n—-k-1}
i= =

Any correct protocol for distributed computationdf,_x(X") partitions the function matrix into
monochromatic rectangle®][ Further, each rectangle in the partition can contain astnome
element ofE, k. Let D(My_k(X")) be the set of all protocol partitions of the function matrix o
M,_«(X™") which respect the fooling set constraints. Suppose we usetagol with associated
partition d, the number of bits that must be exchanged under this prbtedower bounded
by the entropy of this partition, denoted By(p(d)), where p(d) is the implied probability

distribution on the elements of the partition. Thus, the hamof bits that must be exchanged



underany protocol is bounded by

% (Mpk(X") = deD(rrH[rkl(xn))H(p(d)) = EL(Mn-k(X")). (13)

We conjecture that this lower bound is achievable and inqadair, the optimal strategy described
in Theoren 8 achieves it.

Conjecture 1:The lower bound described in_(13) satisfies the dynamic progring equation
in (@2).

EL(Mpk(XM) = miin{H(IOi) + P (Myk-1(XD)) + (1= p) EL(Mnk(XT)) -

Since %L (Mp_k(X")) <€ (Mn_k(X") < €U (ML_k(X™)), we conjecture that the optimal strategy
described in Theoref 8 is in fact optimal among all intexecttrategies.

We note that the above conjecture has been verified by handllféinreshold functions of
three variables. A formal proof of the conjecture, howevemains a challenge for the future.

2) Average Case Complexity of Computing Boolean Threshofdttions: In this section, we
guantify the average case complexity of computing Booldarashold functions in collocated
networks. For simplicity, we suppose that nodes’ measunésrere independent and identically
distributed, and propose a natural block computationegisathat is easy to analyze.

Theorem 9:Suppose that the nodes’ measuremefits<,, ..., X, are independent and iden-
tically distributed withp(X; = 1) = p. Then, the average case complexity of zero error block
computation of the threshold functidmg (X1, Xz, ..., X,) is O(0) bits.

Proof: We need to describe a coding strategy which achieves zeoo klwck computation,
as block lengthN goes to infinity. Let us suppose that nodes communicate iarsevorder
starting with noden. Noden encodes its block dN measurements using a Huffman code which
requires[NH(p)] bits. Having heard all previous transmissions, each ssoeesode discards
the instances of the block that are alrea#yerminedi.e., those instances of the block that have
already recorded ones. It then constructs the Huffman code for the remaimistances of the
block. Let the number of determined instances after rog# transmits be denoted by random

variablez;. Then, the average complexity of computing a function blo€kength N is given



by

i(N—E(Zi)) (p) = 6NH(p) +NH(p niei()pll p) . (14)

We need to somehow carefully upper bound the RHS in[the (14)siaft by establishing the
following lemma.

Lemma 6:Definegg := 1 - for 6 a positive integer. Then

(6-1)
6-1 . d" "ge 1
(Y= = (-1 (7(14)9 1).
(0)

Proof of Lemma: The proof is by induction o. For 8 =1, we haveg; = 1%; =0; ' trivially.
For 6 > 1, observe thaflg_1 —gg = x? 1 and henceggefl) = g%ejll) —(6—1)!. By the induction

assumption, we have

-1 d (6—-2)! EACE]
o =) 0= (1)

which completes the induction]
We now proceed to show that the second term on the RHSin ($#)adler tharONH(p) <1;pp)
for eachn. The proof is by induction o®. For 8 = 1, the second term is given by

(1-p-(1-p)" _NH(P)(A-p)
p p '

ZNH —p)' =NH(p)

[ . o
DefineRy := 313575 ( ) pl(1—p)'~i. Then, we have the following recursion:
i

fu 0-1 011 Z[(0-1) 01|
Rg=Rg 1+ p°t(1-p' ot Z) | Pa-pf
i=0 \6—1 = J



From the induction hypothesis, we have that

_ _ n—1 i )
Rg < (9 1)<1 p)+ % pQ—l(l_p)l—9+1 _1+p9—1
i=0 \0—1

< (- 1>p<1_ b, <(;Q__11)! ii(i ~1)..(i-6+2)(1- p)i—9+1> ~14pft
0-1)(1— 6-1 d(efl) 0 B
- )p< 2 (ep— 1)l dxo-1) <1X—X) Lep o)

Now, applying Lemma6 in[(15), we can shd®} < e(l—gp), which establishes the induction
step. Substituting the upper bound for the second term irRtHE of (14), we obtain that the
total number of bits transmitted is less thgﬁy for all n. This yields a sum rate o@
which completes the proofl

We make some observations regarding the above result.

(i) For a type-threshold function?] with threshold vector{0;, 6], we can run two parallel
schemes with threshold$;,0] and [0, 8], thus attaining a sum rat@%. Since we
typically considerfy, 6, to be constants independentmfwe obtain that the average case
complexity of computing Boolean threshold functionga€l).

(i) As a special case, the average case complexity of camgpatsymmetric Boolean Disjunc-

tive Normal Form with bounded minterms &(1).

C. Computation under an alternate communication model

In this section, we illustrate how we can adapt the solutiorthie general dynamic pro-
gramming equation described in Lemia 1 to a different comeoation model. We return to
the problem of computing a single instance of a Boolean Halesfunction,_(X") in the
broadcast scenario. Let us suppose that time is slottedthatchodes transmit information in
the form of pulses, which have unit energy cost. Under thisriaate communication model, our
modified objective is to minimize the expected total energyemded in transmissions.

In contrast to Sectioh IV-A where the cost of transmittingifii® uniformly 1, under the

pulse model of communication, silence can be used to comfeynnation with zero cost. This



is similar to the silence-based communication model studhe[?]. Thus, the communication
problem is no longer trivial. However, since each node makBsolean measurement, the value
of its bit can be mapped to the presence or absence of a pulseoinways. Either node
transmits a pulse to indicat§ = 1 and remains silent to indicad¢ = 0, or vice versa. Clearly,
the optimal communication strategy is as follows:

o If pi <3, then node transmits a pulse to indicat§ = 1.

o If pi> % then nodd transmits a pulse to indicat§ = 0.
We are still left with the problem of determining the optinmabtlering of transmissions.

Let &(Mn_x(X™) be the minimum expected total energy required in order toptgmthe
threshold functiorm,,_x(X") under this communication model. The problem of minimizihg t

expected total energy can be formulated as a dynamic progiagnequation as follows
& (Mnk(X")) = min{min(p;, 1= pi) + pié’ (Mnk-2(X23)) + (1= )& (Mnk(X21))} - (16)

From Lemmadl, we have the following result.

Theorem 10:In order to compute a single instance of the Boolean threldlioictionll,, _(X")
under the pulse communication model, it is optimal for nédel to transmit first.
Proof: Observe thaf(16) is a special case[ofl (10) whighg) = min(p,1— p). Hence, in order to
establish the result, it is sufficient to show that (sl — p) satisfies the conditions in Lemma

. Indeed, migp,1— p) is symmetric aboup = % and we have,

min(p,1— 1 ifp<s,
g(p):M

1— .
P Tp if p> 2

Thus,w is @ monotone non-increasing function @f The theorem then follows directly

from Lemmall.0

D. Approximate Function Computation

In Sections[IV-A througH_IV-C, we have considered the problef computing Boolean

threshold functions with zero error. While we have focusedconstructing optimal strategies



to minimize the expected total number of bits exchangedhdutbmputation, we must note that
the worst-case total number of bits exchanged might stih.da some applications however, we
might have a constraint on the number of bits exchanged, wvaently, the number of timeslots
available for computation. In this case, one cannot alwayseho compute the function exactly.
Instead, we considexpproximatefunction computation where we seek to minimize certainrerro
metrics.

To begin with, let us consider the class of Boolean threshatdtions. As before, we permit
all interactive strategies where the choice of next trattemginode can depend arbitrarily on all
previously broadcast bits. Let us suppose that we are alldaveexchange at mosgh — 6) bits
in order to compute the threshold functiéh,_(X"). We propose two metrics of error, namely
probability of error and conditional entropy of the functio

« Probability of error: Let Pé9>(|'|n_k(x“)) denote the minimum probability of error after at

most(n— ) bits are exchanged. Note that these bits are exchanged uerst fashion,
since we are computing in a broadcast network. Hence, thatiigeof each successive
transmitting node can depend on the previously transmiitesd The sequential nature of

this problem permits a dynamic programming formulationlagaus to [10).
p(9)(|—| XM = mind o: L& n. _nplo n.
e n—k(X")) = mi'n{ PiPe” (Mn-k-1(XZ;) + (1 —pi)Pe ™ (Ma-k(XZ) }, (17)

with the boundary conditioR? (Mg_(X?)) = min(P(Mg_i(X®) = 1), P(Mg_k(X?) = 0)).

« Conditional entropy of function: Let H(®) (M, (X")) denote the minimum conditional
entropy of the function after at mogh — 0) bits are exchanged. As before, the identity
of each successive transmitting node can depend on theopstyitransmitted bits. Once
again, the sequential nature of this problem permits a dynanogramming formulation

analogous to[(10).
H(®) (Mo _(X") = min{pH® (Mo (XY) + (1= p)H@ (M (X)) (18)

with the boundary conditiofd () (Mg_,(X%)) = H(Mg_k(X?)).



1) Counter-example:At fsubirst glance, one would expect that the optimal styatéor
approximate function computation would match the stratégyexact function computation,
thus verifying that the strategy proposed in Theoidm hdseasingly correct Unfortunately,
this is not true as shown by the following counter example.

Let us suppose that we want to compuile(Xy,Xp,X3) and we are allowed to exchange
exactly one bit. We have exactly three choices of strateglgeEnode 1 transmits first, or node
2, or node 3. Consider the case whexe= 0.7, p, = 0.82, p3 = 0.84, then one can calculate the

conditional entropy when node 1 transmits first (respelstimvede 2 and node 3).

H@ (Ma(X1, X2, X3)[X1) = paH((1—p2)(1— p3)) + (1 — p1)H(pzps) = 0.4002

H® (M(Xg, X, Xa)|%2) = p2H((1— p1)(1— pa)) + (1 p2)H(pLps) = 0.4991

H@ (Mp(Xg, X2, %3)|Xs) = paH((1— pa)(1—p2)) + (1 — ps)H(p1p2) = 0.4121
Contrary to our expectation, it is not always optimal for adtito transmit first. This is also true
for the probability of error metric. Again, consider the apgmate computation dfl»(Xy, X2, X3)

where we are only allowed to exchange exactly one bit. Forctme wherep; = 0.6, p, =

0.72,p3 = 0.84, the probability of error expressions for the three sygigs are given by

P (M2(Xe, Xo. Xa) [X1) = prmin((1— pz)(1— pa). 1= (1— p2) (1~ pa))
+(1— p1) min(pzps, 1 — p2ps) = 0.1850
P (M2(Xe, o, Xa)Xe) = p2min((1— pa)(1— pa),1— (1= py)(1— pa))
+(1— pz) min(pyp3, 1 — p1ps) = 0.185Q
P (M2(Xe, Yo, Xa)|Xg) = pamin((1— pa)(1—p2),1— (1= pu)(1—p2))
+(1— p3) min(pypz, 1 — p1pp) = 0.1632
Thus, it appears that the structure of the optimal solutitrenwwe seek approximate com-

putation given a fixed number of bits, is somewhat differeatrf the optimal strategy for zero

error computation.



2) Special case of the parity functioWhile the structure of the optimal strategy for the
approximate computation of threshold functions remainsieg, the case of the parity function is
solvable. In this section, we show that an intuitive greettigtegy is optimal for the approximate
computation of the parity function. To begin with, the paritinction of n Boolean variables

labeledX; throughX, is defined as follows:

(X" :{ 0 if X is even
1 if 3;X is odd.

We consider the computation @f(X") in a broadcast scenario wheXe~ Bern(p;). If we
seek exact computation, the problem becomes trivial siack rode must transmit its bit. Hence,
we will consider approximate computation of parity undeg ttonditional entropy metric. Let
us suppose that nodes are allowed to exchange (ptod) bits. LetH(®) (d(X™)) denote the
minimum conditional entropy of the function aftén— 6) bits are exchanged. The dynamic

programming equation analogous (ol(18) is

HE(@(XM) = min{pHE(@(X")) + (1- pIHE(@(X"))}

= min{H®(®(x"))} (19)

with the boundary conditiotd () (d(X8)) = h(P(®(X?) = 1)). One can derive the solution to
(@I9) and hence deduce the optimal strategy for approxin@tguatation of parity.

Theorem 11:In order to minimize the conditional entropy @f(X") after (n— 6) bits are
exchanged, it is optimal for the node with highest binary@my to transmit first. Subsequently,
the node with the next highest entropy transmits, and so ¢ih (m- 8) bits are transmitted.
Proof: First, we note that (18) implies that the optimal strategy dpproximate computation
of ®(X") is not data-dependent. Indeed, if nadeansmits first, irrespective of wheth¥r =0
or X; =1, we have the residual task of computigX".) given at mostn— 6 —1) bits. Thus,
the optimal strategy can be specifiadoriori and does not depend on the particular values of
the bits exchanged. Further, if our objective is to minintize conditional entropy aftgin— 0)

bits, we are only interested in determining the optimal stilo$ nodes that must transmit, and



the order of transmission within this set is irrelevant. $hwe have

H®) (d(XM) = min H(®(X")[Xs).
SC{1,...,n}

Si=n-6

Let A={aj,as,...,an_g} be an optimal set of nodes. We claim tiatonsists of nodes with
the (n— 6) highest entropies among timenodes. Suppose not. Then there exists nades A
anda; € A such thatH (pa+) > H(py). Consider the sed™ := (A\ {a}) U{a"}.

H(®(X™)[Xa) = H(@X")|Xa\ a5 Xa)
= HOXL @ @pa))
— H(paP(@X g ) = 1) + (1 Pa) PO(X" g 1)) = O))
< H(Pa POy ) = 1)+ (1= P PO(XT p ) = O))

= H(®XI (aa).a))):

which contradicts the assumption thaais an optimal subset. Thus, under the toptimal strategy,
the set of transmitting nodes must be those with the highesbges. A candidate strategy

which achieves this is one where nodes transmit in decrgasuter of their binary entropies]

V. CONCLUDING REMARKS

We have addressed the problem of computing symmetric Bodig@actions in a collocated
wireless sensor network. In the worst case setting, we havevedl optimal strategies for
computing threshold functions, and order optimal str&egvith optimal preconstant for interval
functions. The approach presented can be extended in twactidins. First, one can consider
non-Boolean alphabets and functions which depend onlyofs. Alternately, one can consider
non-Boolean functions of a Boolean alphabet. The foolingmeer bound and the strategy for
achievability can be generalized to both these cases.

In the average case setting, we have considered some sidjdectsion problems, that arise

in the context of optimal distributed computation of Boalenctions of random data. The



broadcast nature of the medium forces nodes to communiegteestially, and the challenge is
to order nodes’ transmissions so as to both exploit the tstreiof the function and the knowledge
of the underlying distribution.

For single instance computation of Boolean threshold fonst we have shown the surprising
result that the optimal strategy has an elegant structuneshadepends only on the ordering of
the marginal probabilities, but not on their exact valueke Extension to the case of block
computation is harder. However, we have derived the optstrategy for a restricted class of
coherent strategies, which we conjecture to be optimal meg®. The proof technique presented
allows a unified treatment of these two problems, and alsswallextension to alternate pulse
models of communication where nodes transmit pulses ofggner

Finally, we have considered the problem of approximate ttanccomputation, where we are
given a fixed number of bits and seek to minimize the error endktimate of the function. We
have shown that this problem is more complicated and thengptstrategy lacks the structure
that we observed in the case of exact computation. Howewethe special case of the parity
function, a simple greedy strategy is optimal. There rensawveral open problems concerning
optimal computation in wireless sensor networks, inclgdire case of correlated measurements,

and generalizing the sequential decision making appraoadtandle more general functions.

APPENDIX
A. Proofs of LemmAa] 1l

1) Proof of Lemmal2:First, let us supposk = 0. In this case
201X = (1= PC(Ma(X™ ) + (1= pC(Mn 1 (X™5Y) = (1= p)C(Mn; 2 (X)) =0

However, by assumption, we have<0(1— p1)f(p;) — (1 — pi) f(po).



IN

IN

Next, consider the case whekez 0.

(Pee1 — POC(Mn (XL 1)) + (L= Pee) STt s (XML 1)) — (1= P)C(Mnoira (X))
(P = ) [ TP+ PO 1 (X, 17)) + (L= POC(Ta k(X )]
(1= Prt) [ F(P) + PO k(X 1)) + (1= PICTTn k2 (X" 1))
(1= p) [ (P + PC(M X)) + (1= PIC(Mn k2 (XL )| (20)
P | (P = POk 1 (X 1)

(1= P 1) CMn (X", 1)) = (L= PICn (X" )]
+(1=p) | (Pre1 = PICMa kX1 1) (21)

(1= P )C M k1 (X 1))) — (L= PICn k2 (X )|

P | (P = POk 1 (X 1)
(1= s 1) C(Mn (X, 1)) — (L= PICTa k(X" ))] + (1= PS4, 1 (XY
P | (P — Pk 1 (X" 1)
(1= P 1) CMn (X", 1)) — (L= PICn k(X" )]
(1= p) [(L = pra) F(pi) — (1= pi) F(Prs2)] (22)

P | (P2 = PIC(Mn k1 (X 1)) + (2= Py )C(M k(X 1)

(1= P F(Prsa P 1CMnk 1 (X g ) + (1= P )M (X1 )]]
+(1= P [(1— Pre) F(p) = (1= P) F(Presn)] (23)
(L~ P [ CMn k(X 1)) = PC(Ma k1K™, 1)) = (2= PICTa k(X" 1)
—Pk(L—pi) F(Prra) + (1= Pio) [(1 = Prsa) F(Pi) — (1= i) F(Pra)]
Pk(1 = Pit2) F(Pi) — (1= pi) F(Prra) + (1= ) (1 — Prra) F (i) (24)

(1= pra) F(pi) — (1= pi) F(Pry)



Equation[(2D) follows from the optimal ordering for commgil,, k(X”Ja}HI)) I'In_k+1(xrfa}+1))
andN,_ k+1(X”*1) which is true by the induction hypothesis for= n. The inequality [(ZR)
follows from the induction hypothesis thsﬁk 1 (XM < (1- pera) F(pi) — (L= pi) F(Prga)-

Equality in (23) and[(24) follows from the optimal orderingrfcomputingl‘ln_k(XTEIii)) and

ﬂn k(xn+l

(kks1)) respectivelyl

2) Proof of Lemmal3:First, let us supposk = n. In this case
210t (XY = (pi = o) C(Mo(X™E 1))+ PrpaC(Mo(X™(E, 1)) — BIC(Mo(X™ 1)) =0.

However, by assumption, we have<Opn;1f(pi) — pi f(pPns1)-

Next, consider the case wheke< n.

(Pi = P 1)C(Ma k(X 1)) + PreaC(Mn k(XML 1)) — PC(Ma k(X))
= (Pi— Per) [ F(Ps2) + PO 1 (X 1)) + (1= Prs2)CMn kX 11,2
et | F(Pir2) + e oClMn 1(XM i 14 5)) + (1= Ps2) M kXM, 11, )|
=i [ F(Pir2) + s 2CMn s 1 (X M ) + (1= P 2)C(M k(X )] (25)
= Pki2 [(pi—pkﬂ)c(”n k1 (XT k+1k+2)))
s CMn k1 (X 1 4)) = PC(Mnok 1 (X )]
(1= Pes2) | (B = Pen)CMn kX 12))) + Pt k(X 1))

P aCMn kX 111 2))) = PC(M k(X" )|

< (1—pks2) [( Pi — Pkr1)C(Mn- k(XnJE|lk+1 k+2))>
+ P 1C (M (X™ (k1+1 k+2)>) — piC(Mp k(X" (|1k+2))>} + Pk+2 [551 ) (Xn—i(_&+2))i|
< (1= Per2) | (A= P CMn kX 1)

—|—pk+1C(|_|n k(Xn(&Jrl k+2))) - piC(rIn k(XnJalkJrz)))]

+Prt2 [P T (Pi) — Pi f (Prr1)] (26)



= (1= Ps2) | (B = Pet)CMa kX, 1 2))) + PeaClMn kXY 14 )
~BilF () + PrsaClMn k1 (X 1 2) + (1= P O k(X 142
+Pir2 [Prera F () — Pi f (Pira)] (27)
= (1= Pes2)Prst | M kX 14 5)) = PC(Mak 1K™ 14 5))
— (1= )M XM 1 42)]

— (1= pPir2) Pi F (Pit-1) + P2 [Prs1 F(Pi) — Pi F (Prga)]

IA

(1—prs2) P2 F(Pi) — Pif (Prr1) + Prr2Prra F(Pi) (28)

= P f(pi) — pif(Prs1)

Equation[(25) follows from the optimal ordering for commgi,,_ k(X”+(I1k+1)) Mo k(X”+(|%+l))
andl,_ k(X”*l) which follows from the induction hypothesis for=n. The inequality[(26) fol-
lows from the induction hypothesis thsffkl X”*&Jrz)) < preaf(pi) — pi f(prs1)- Equations[(27)

) andM,_y (X1

and [28) follow from the optimal ordering for computifiy,_ (X1 ki1, k+2))

(i,k+2)
respectivelyd

3) Proof of Lemma&l4:First, we observe that

Toe ki (X8 = S (XM = peaC(Mn (XL 1)) — PC(Ma k(X))
— (P2 = P)C(Mnk(X i 1))
Thus it is enough to show that

Pk+1C(Mn- k(XnJE&Jrl))) - piC(rIn—k(XTirl»

< (Prr1— Pi)C(Mn- k(XnﬁH.))) + Prra F(Pi) — pi f (Pra) for i > k+ 2.



First, observe that fok = n, the statement is vacuously true sincen-+2 is impossible. Hence,

let us suppose that < n. We have

P 1C(Mnk(X™ (g, 1))) — PIC(Mni(X"}H))
= Pt | f(Pei2) + pk+2C(r|n—k—l(xrlJE&+17k+2))) +(1— pk+2>C(ﬂn—k(XllJE|}+17k+2)))}

—pi [f (Pre1+ Prg2C(M nfkfl(xrﬁ(élj))) +(1- pk+1)C(”n7k(erE|3+l,i)))] (29)

= Peea | F(Pera) + P 2C(Mnt-1 (XM 1 i) — piC(ﬂnfkfl(X%fH,i)))]
+Prr1(1— Dk+2)C(”n—k(Xrl+(;f+1vk+2))) —pi(1- pk+1>C(r|n—k(erE|%+1vi))> —pif(Pri1)
Pk+1 [f(pi) +(1— pi)C(nnfk(Xn_—"(_li-_l’_l’i))) —(1- pk+2>C(r|n—k(Xrl—Ekl+1vk+z)))]

+Prr1(1— pk+2)c(r|n7k<xrl+(kl+17k+2))) —pi(1- pk+l)C(r|n—k(xr,‘+(kl+1yi))) —pif(pkr1) (30)

IN

= (Pkr1— pi)C(nn—k(xr_‘Ylt_Li))) + Prra F(P) — i f (Prra)

Equatior 29 follows from the optimal order for computiﬁg_k(xnf(lhl)) andr, x(X"1). The

inequality in(30 follows from the induction hypothes‘i§7k7i(X”_JEI}+l)) < f(pi) — f(prs2). O

4) Proof of Lemmal5:First, we observe that
Toe1kd (X = 82 (X = (1= P )C(Mnckes s (XML 1)) — (1= P)C(Mnoieen (X))
—(pi — pk+1)c(nnfk(xr,‘+(i%k+1)))~
Thus it is enough to show that
(1= P 1)CMn-ke 1 (XM 1)) = (1= POC(Mnkera (X))

< (pi— pk+1>C(r|n—k(XTEi%k+1)>) + (1= prra) F(Pi) — (1= pi) F(Prta) for i <k.



First, observe that fok = 0, the statement is vacuously true since 0 is impossible. Hence,

let us suppose that> 0. We have

(L= Prr)C(Maicr1 (XM 1)) = (1= POC(Mn-ka (X))

= (1—pks1)
—(1-pi)

= (1-pxs1)

—

(P + PC(Mnk(X ey 0)) + (1~ Dk)C(”n—kﬂ(Xrﬁ(k{kH)))}

f(Pkra) + pk+1C<r|n—k(XrlJEi17k+1))) +(1- pk+l)c(r|n7k+1(XTEi17k+1)))] (31)

:f (k) + (1= p)C(M nfk+1(xrl+(kl7k+l))) —(1—p )C(nn7k+1<xr,‘+(i];k+1)))]

+pk(1— Dk+1)C(”n—k(Xrl+(;ik+1))) — Prra(l- pi>C(r|n—k(Xn_JEi%k+1)>) —(1—pi) F(Prs2)

IN

(1 Pyi1) [f(pi) + piC(ﬂn—k(XTEi%kJrl))) - ka(nn—k(Xrl—Ek{kJrl)))

+p(1— pk+l)C(nnfk<xrl+(kl’k+1))> — Prya(l— pi>C(r|n—k(XrlJEi%k+1)>) (32)

= (pi— pk+1>C(r|n—k(XrlJEi%k+1)>) + (1= prra) F(Pi) — (1= pi) F(Prta)

Equation[(31) follows from the optimal order for computiﬁg_kﬂ(xrf(&ﬂ)) andlMp_. 1 (X",

The inequality in[(3R) follows from the induction hypOtmg‘h,k—l,i(Xn_—i(_&_i_l)) < f(pi)— f(px)

O.
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