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Distributed Function Computation with
Confidentiality

Himanshu Tyadi

Abstract—A set of terminals observe correlated data and
seek to compute functions of the data using interactive puld
communication. At the same time, it is required that the vale
of a private function of the data remains concealed from an
eavesdropper observing this communication. In general, th
private function and the functions computed by the nodes can
be all different. We show that a class of functions are secuhg
computable if and only if the conditional entropy of data given
the value of private function is greater than the least rate 6
interactive communication required for a related multiter minal
source-coding task. A single-letter formula is provided fo this
rate in special cases.

Index Terms—Balanced coloring lemma, distributed comput-
ing, function computation, omniscience, secure computain.

|. INTRODUCTION

We consider the following distributed function computatiowhereR*
problem with a confidentiality requirement. The terminais i

symbolwise maxima. An observer of the communication must
not learn of the data of terminais ..., m.

The answer to the general question above remains open.
The simplest case of interest when the terminals in a subset
A of M compute only the private functiogy and those
not in A perform no computation was introduced in[19].
The data download problem, upon dropping the computation
requirements for terminal®, ..., m, reduces to this setting. It
was shown that ifj is securely computable (by the terminals
in A), then

H (X m|Go) = H (Xm) — H (Go) = R, @)
and g, is securely computable if
H (X pm|Go) > R, )

has the operational significance of being the min-
imum overall rate of communication needed for a specific

a setM = {1,...,m} observe correlated data, and wish tQy ititerminal source-coding task that necessitates thevesy
compute functiongyi, ..., g, respectively, of their collective ¢ oiire data at all the terminals id; this task does not
daf[a. To this end, theY gommunlcgte mteractlyely OVET iAvolve any security constraint (see Sectigh Il for a detil
noiseless channel of unlimited capacity. It is required thi discussion). Loosely speaking, denoting the collectivéada
communication must not reveal the value of a specified ®ivajt ha terminals by the random variable (¥, and the
function go of the data. If such a communication protocol,.4om value of the functiop, by the rvGo, the maximum

exists, the functionso, g1, ..., g are said to besecurely oo of randomness (in the data) that is independeofs
computable We formulate a Shannon theoretic multitermina

source model that addresses the basic questithhen are the
functionsgy, g1, ..., gm Securely computable?

Applications of this formulation include distributed COM-ate R*
puting over public communication networks and function
computation over sensor networks in hostile environmenﬁJ

In contrast to the classic notion of secure computing

cryptographyl[[21l], we assume that the nodes are trustwor
but their public communication network can be accessed byt%n

eavesdropper. We examine the feasibility of certain disted
computing tasks without revealing a critical portion of theta
to the eavesdropper; the functign, ¢ = 1,...,m, denotes
the computation requirements of tlith terminal, while the
critical data is represented by the value of private fumctig

} (Xm|Go). The conditions above imply, in effect, that is
securely computable if and only if this residual randomness
of rate H (X r(|Go) contains an interactive communication, of

, for the mentioned source-coding task.

In this paper, for a broad class of settings involving the se-
re computation of multiple functions, we establish neags

d sufficient conditions for secure computation of the same
m as [[1) and{2), respectively. The rdté now corresponds

, roughly, the minimum overall rate of communication that
allows each terminal to:

(i) accomplish its required computation task, and,
(i) along with the private function value, recover the eati
data.

As an example, consider a data download problem in a sen$bis characterization of secure computability is obtainieda
network. The central server terminaldownloads binary data general heuristic principle that leads to new results anithéu
from terminals, ..., m, while the latter terminals compute theexplains the results of [19] in a broader context.
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Using the sufficient conditio{2), we present a specific se-
cure computing protocol in SectignllV with a communication
of rate R*. Under [2), the secure computing schemel[in [19]
recovered the entire data, i.e., the collective obsematiof
all the terminals, at the (function seeking) terminals.n
using communication that is independent@j. In fact, we
observe that this is a special case of the following more ig¢ne
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principle: a terminal that computes the private functign g¢;' : X3 — )} is defined by
may recover the entire data without affecting the condgion

for secure computability. 9i(@ha) = (gi(@11, o @m1)s - Gil@1ns s Tran))
Unlike [19], we do not provide a single-letter formula foeth T = (21, .. ) € Xy

quantity R*, in general; nevertheless, conditiofi$ (1) and (Por convenience, we shall denote thegfv(X7,) by G2, n >
provide a structural characterization of securely comipieta | gnd. in particularG! = g; (X ) simply by G;

. . . .. ) 1 7 .
functions in a.broader.settlng, generallzmg_ thg re;ull[ﬂj. Each terminali € M wishes to compute the function
A general recipe for single-letter characterization isspréed g7 («7,), without revealingg (73, ), 'L, € X%,. To this end,

which, in ExamplélL and Corollaﬂ4beloyv, yields singleidet the terminals are allowed to communicate over a noiseless
_results that are new and cannot be obtained from the analy&ﬁ)lic channel, possibly interactively in several rounds.
in [19]. To the best of our knowledge, the general analysis
presented here is the only known method to prove the neges®tfinition 1. An r-rounds interactive communication protocol
of the single-letter conditions for secure computabilitgliese consists of mappings

special cases. Furthermore, for the cases with singlerlett

characterizations, the aforementioned heuristic in&tgion Aty e frms eees fr1y ooy frm,

of R* is made precise (see the remark following Lenltha @here f;; denotes the communication sent by thie node in

below). the ith round of the protocol; specificallyf;; is a function
The algorithms for exact function computation by multiplef X7 and the communication sent in the previous rounds

parties, without secrecy requirements, were first conslér {f,,: 1 <k <i— 1,1 € M}. Denote the rv corresponding to

[20], and have since been studied extensively (cf. €.0.]%] the communication by

[10]). An information-theoretic version with asymptotilga

accurate (in observation length) function computation was F =P, Fins ey Fris oo Frm,

considered in[16]/T11]. The first instance of the exact tiorc noting thatF = F(™) (X7,). The ratd of F is L log IF|.

computation problem with secrecy appears/inl [15]. A basic "

version of the secure computation problem studied here wRsfinition 2. For e, > 0, n > 1, we say that functiofis

introduced in [18], [10];[[8] gives an alternative proof ¢fet gm = (90, 91,--,gm), With private functiongo, are e,-

results in [18], [19]. securely computablé,,- SC) from observations of length,
The problem of secure computing for multiple functiondnd public communicatiol = F(", if

is formulated in the next section, followed by our results injy G s ¢ - recoverable from( X7, F) for everyi € M,

sectiorLTll. The proofs are given in sectidns IV &nd V. Thelfina = gpq

section discusses alternative forms of the necessarytwomsli iy F satisfies the secrecy condition

Notation. The set{1,...,m} is denoted byM. Fori < j, lI(Gg AF) <ep.
denote by[i, j] the set{i, ..., j}. Let X1, ..., X,,,, m > 2, be rvs "
taking values in finite setd’, ..., X,,, respectively, and with Remark.The definition of secrecy here corresponds to “weak
a known probability mass function. Denote B, the col- secrecy”[1], [18]. When our results have a single-lettentp
lection of rvs(X1, ..., X,,,), and by X7 = (Xaq1, oo Xaq,n)  OUT achievability schemes for secure computing attairotjr
then independent and identically distributed (i.i.d). repetis secrecy” in the sense df [14]1[4].][6]. In fact, when we have
of the rv X (. For a subsefd of M, denote byX 4 the rvs a single-letter form, our proof in sectidnllV yields “strong
(X;,i€ A). GivenR; > 0,1 < i < m, let R4 denote the secrecy” upon minor modification.

sum_,c 4 Iti. Denote the cardinality of the range-space of gy gefinition, fore,,-SC functionsy v, the private function

an rvU by [[U]. G, is effectively concealed from an eavesdropper with access
Finally, for0 < e <1, an rvU is e-recoverable from an rv to the public communicatiof'.

V if there exists a functiog of V' such thaPr (U = g(V)) >
1—e. Definition 3. For private functiongg, we say that functions

gm are securely computablé g, aree,- SC from obser-
vations of lengthn and public communicatio® = F),
[l. PROBLEM FORMULATION such thatlime, = 0. Figure[1 shows the setup for secure
computing.n
We consider a multiterminal source model for function ) ) o o
computation using public communication, with a confiden- N this paper, we give necessary and sufficient conditions
tiality requirement. This basic model was introduced [ih [Gf]or the secure computability of C(_ertalln cIassgs of.funalon
in a separate context of SK generation with public transaéM = (90: 91, -, gm). The formulation in[[19], in which the
tion. Terminalsl, ..., m observe, respectively, the sequencd§'Minals in a given subset of M are required to compute
X7, ..., X of lengthn. For0 < i <m, letg;, : Xp — Vs
be given mappings, where the se¥s are finite. Further, 1p) jogarithms are with respect to the bage
for 0 < ¢ < m andn > 1, the (single-letter) mapping 2 The abuse of notatioprs = (g0, 91, .., gm ) Simplifies our presentation.



Interactive Communication F, 711] (FAGE) =0 As an application, our results provide simple conditions fo
secure computability in the following illustrative exarapl

Examplel. We consider the case ofi = 2 terminals that

observe binary symmetric sources (BSS) with underlying rvs
X1, X5 with joint pmf given by

1-96
PI‘(Xl :O,Xg = 0) = PI‘(Xl = 17X2 = 1) = —
Xy Xp | e Xn 2

m
Pr(X;=0,Xo=1)=Pr(X; =1,X,=0) = é,

2
¢(n) A¢(n) Afn) where0 < 6 < 1/2. The results of this paper will allow us
Gy Gy Gm to provide conditions for the secure computability of therfo
choices ofqg, g1, g2 below; it will follow by Theoreni1 that
functionsgg, g1, g are securely computable if

Fig. 1. Secure computation @fi, ..., gn, with private functiongg

h(d) < T,
(only) go securely, is a special case with and conversely, if the functions above are securely conieita
) then
gi= % e @3) he) <.
constant otherwise.

_ . ~ whereh(r) = —1log7T — (1 —7)log(1 —7), and the constant
It was shown in[[19] that[{1) and}(2) constitute, respectivel; — 7(§) depends on the choice of the function. These
necessary and sufficient conditions for the functions alfove characterizations are summarized in the next table. Dehete

be securely computable, with* being the minimum rate of AND and the OR of two random bit&; and X, by X;.X>
interactive communicatiorF' that enables all the terminalsand x, ¢ X5, respectively.

in M to attain omniscience(see [[6]), i.e., recovenll the
data X%,, using F and thedecoder side informatiorGy

given to the terminals inM \ A. In fact, it was shown that [ 4, g1 g2 T
when condition[(R) holds, it is possible to recov€R, using [ x, & X, X, & X X1 ®Xo | 1/2
communication that is independent Gf;. X, & X X, 6 Xs o) 1
The guiding heuristic in this work is the following general X o X, X, X, | X; @ Xo, X1.X2 | X1.X2 26/3
principle, which is also consistent with the results[of [19] X & X, X, D Xo X;. X, 2/3

Conditions[(1) and{_2) constitute, respectively, the nsags

and sufficient conditions for functions = (9o, g1, 9m) 0 The results for the first two settings follow from 19]. The

be securely computable, Wf)"m is the infimum of the rates of i and fourth results are new. In these settings, terhiina

interactive communicatiol” such that, for each <4 <m, s required to recover the private function; our resultsoel

the following hold simultaneously: show that the conditions for the secure computability irséhe

(P1) G7 is e,-recoverable from X, F’), and cases remain unchanged even if this terminal is required to

(P2) X7, is e,-recoverable from X[, G, F'), i.e., terminals attain omniscience. Note that sindgs) < 1 for all 0 <
attain omniscience, witli:j as side information that is § < 1/2, there exists a communication protocol for securely
used only for decoding (but is not used for the commgemputing the functions in the second setting. By contrast,
nication F), secure computing protocol for the functions in the thirdisgt

wheree, — 0 asn — oc. does not exist for any < § < 1/2, sinceh(d) > 2§/3. O

Thus, (P1) and (P2) require any terminal computiggto

become omniscient, an observation that was also made foldll. CHARACTERIZATION OF SECURELY COMPUTABLE

the special case in_[19]. The first condition (P1) above is FUNCTIONS

straightforward and ensures the computability of the fomst 1y s section, we characterize securely computable func-

g1, - gm, by the terminalsl, ..., m, respectively. The omni- yions for three settings. Our necessary and sufficient ¢iondi
science condition (P2) facilitates the decomposition @¢élto ontail the comparison off (X |Go) with a rate R*; the
entropy into mutually indepe_ndent components that inclug%eciﬁc choice ofR* depends on the functiongy. Below
the random values of the private functiéfj and the com- e consider three different classes of functigns. Although
municationF’. For the specific case ifl(3)z* above has a e first class is a special case of the second, the two are
single-letter formula. In general, a single-letter expi@s for pangled separately as the more restrictive case is amenable
R* is not known. i ) ] ) ~ to simpler analysis. Furthermore, forn = 2, the obtained
Our results, described in sectibnl Ill, are obtained by s&mphecessary and sufficient conditions for secure computybil

adaptations of this principle. Unliké [119], our conditions ¢ake a single-letter form in the first case (see Corolry 4).
general, are not of a single-letter form. Neverthelessy the

provide a structural characterization of secure complittabi (1) In the first class we consider, values of all the functions



g1,-..,gm Must be kept secret. In addition, at least one ¢ifa) VL C M, [1,mo] € L,

the terminals must compute all the functiofs ..., g.,. This 1

case arises in distributed function computation over a agtw R, >—-H (XZ|X}\LA\L, F) ;
where all the computed values are collated at a single sink K
node, and we are interested in securing the collated fumcidP) V£ & M, [1,mo]
values. Alternatively, denoting the function computed ra t 1 nlwn "
sink node by the private functiog,, the computed functions Re = EH (X£|XM\£’ GO’F) :
g1, ---, gm Can be restricted to be functions @f. Specifically,
for 0 < mo < m, and for private functiony, let

gﬁ!

The quantity inf,, g R(Fl) corresponds to the solution of a
multiterminal source coding problem. Specifically, it iseth
9o, i€ [1,mo], infimum of the rates of interactive communication that $atis
9= gitao). i€ mo+ L], (4)  (P1) and (P2) above (se@ [5, Theorem 13.15], [6]).

Next, letR; (gaq1) denote the closure of the set of pairs
(2) The next case is a relaxation of the previous model in that 1
the restrictiong; = g¢; (go) for i € [mo + 1,m| is dropped. (R(FQ), —I(Gy /\F)) ,
For this general case, our analysis below implies roughly "
that requiring the terminal§l, m,] that compute the private for all n > 1 and interactive communicatidfl, where
function g, to recover the entire datd}, does not change the @2 1 . ,
conditions for secure computability, which is a key obsgora Ry’ = EH(F) + inf [R[moﬂ,m] + RM} ’ @)

of this paper. with the infimum taken over the rate®,...,R,, and

(3) The last class of problems we study is an instancgeofire  [27,,,11: ---» 27, satisfying the following constraints:
multiterminal source codingvhich arises in the data download2a) VL C M, [1,mg] € L,

problems in sensor networks where each node is interested 1

in downloading the data observed by a subset of nodes. R, >—-H (XZIX}\‘A\L,F);
Specifically, we consider the situation where each termire% ; . "

wishes to recover some subs&t, of the sources where ) formo <j <m,
M; T M\ {i}, ie, R, >

9 (Xm) = Xmi, PEM. ®) (26 v € M, [1,mo] € £, andL’ C [mo + 1, m] with either
This last case appears to be disconnected from the previous £ # M or £’ # [mg + 1,m],
two cases a priori. However, our characterizations of secur 1
computability below have the same form for all cases aboveR, + R; > EH ( s X2 Ghmgt1,mp s Xz Go » F) :
Moreover, the same heuristic principle, highlighted in)(Bdd
(P2), leads to a characterization of secure computabiligili The quantity inf, g R(FQ) corresponds to the solution of a
three cases. multiterminal source coding problem, and is the infimum of

The necessary and sufficient conditions for secure coithe rates of interactive communicatidh that satisfy (P1) and

putability are stated in terms of quantiti&$(g.q), i = 1,2,3, (P2) above, and additionally satisfies:

which are defined next. The subscriptorresponds to casgpg) X7, is e,-recoverable from(G™, G2, F'), my < j < m.
(7) above. In particular, the quantiti?* corresponds to the / u

minimum rate of communication needed for an appropriatd!is medification corresponds to the introductionief-mq

modification of the source-coding task in (P1), (P2). Beloffummy terminals, with thgth dummy terminal observingy,
we give specific expressions fdt:, i = 1,2,3, along with "0 <J < m (see sectio VI); the dummy terminals can be
their operational roles (for a complete description of toie rea7ll|zed by a terminal in [1, ..., mo] that recoversX i, from
see the sufficiency proof in SectibalIV). (X, F). The conditions (P2) and (P3) above correspond to
Denote byR} (gu) the closure of the (nonempty) set 01Ihe omniscience at the terminals in the extended model, with
! & provided as side information only for decoding.

air
P Finally, denote byR} (ga) the closure of the set of pairs

(m. 21 ).

H (G7|X},F);

1
n

1
(A 2G5 am).

for all n > 1 and interactive communicatidf, where

W 1 1 for all interactive communicatiol', where
Ry =—H(F)+— > H(G}X]'F)+inf Ry, (6) o1
n (L St R — ~H(F) + inf R, ®)

with the infimum taken over the rate,, ..., R,, satisfying with ratesR;

: ) ..., R, satisfying the following constraints:
the following constraints:

(3a) For1 <i<m,VLCM,; C M\ {i},

3The first term accounts for the rate of the communication &edsecond 1 nwn n
term tracks the information abouf; leaked byF (see [(1l)) below Re > EH (X£|XMi\La X; 7F) ;



(Bb) VL C M, and if g, are securely computable then

1 i
Re > EH (X2|X}\l/l\£, g,F) . H (Xm|Go) > R((:o)nstant

where Réf))nstamis the minimum rate of communication that

- (3) -
As before, the quantitinf,, ¢ Ry’ corresponds to themf'mumsatisfies (P1), (P2) fof — 1,3, and satisfies (P1)-(P3) for

of the rates of interactive communication that satisfy (&1d P

(P2) abovc?. , As a consequence of Lemrhh 2, we obtain below a single-
Our main result below characterizes securely computalgyer characterization of securely computable functiavith

functions for the three settings above. m = 2, in a special case; the following lemma, which is a

special case of [7, Lemma B.1] (see alsal[12, Theorem 1]), is

Theorem 1. For ¢ = 1,2, 3, with functionsgg, g1, ..., gm @s in
0,91, -+ gm instrumental to our proof.

the case4) above, the functiong,, are securely computable

if the following condition holds: Lemma 3. Let m = 2. For an interactive communicatioR,
N we have

Conversely, if the functions above are securely compu,tablewe next consider casd)(for two terminals

then '
) Corollary 4. For m = 2, for functionsgg, g1, g2 With g; = go

H (XM|G0) > R’L (gM)7 (10) and go = g2 (go)’ we have
where R; (ga) = H (Xa|X1) + H (Ga| Xa) + H (X1|X5, G)
R (gm) = x, i=1,2,3. (11) (13)

inf
T, R
(=0)eR;(am) Proof: The constraints (1a) and (1b) satisfied by rates

Remark. Although the first setting above is a special casg;, R» in the definition ofRS) are
of the second, it is unclear if fog,, in (@) the quantities

1
Ri(gm) and R3(gam) are identical (also, see SectifnlVI). Ry > EH(XQIX?,F),
In general, the multi-letter characterizations of securen< 1
putability of g, above can have different forms. For case Ry > —H (X7'1X3, G5, F),

(1) with m = 2, Corollary[ below provides a single-letter
formula for R} (gaq). However, a similar single-letter formula

for R; is not known. 1 | yn
3(gm) i W - o _ RS)ZE[H(F)+H(G2|X27F)
Theorem_l]l affords the following heuristic _mterpretatlon. FH (XDXDF) + H (XM XD, GRF)]. (14)
The quantity H (X \|Go) represents the maximum rate of
randomness ik}, that is (nearly) independent 6f;. On the  Thus, Rithsamequals the term on the right side 6F113). Upon

other hand R} (g.) is an appropriate rate of communicatiormanipulating the expression fatl,’ above, we get
for the computation of ,(; we show that latter being less than

H (X m|Go) guarantees the secure computabilitygaf;. Ry = 1 [H(F) — H (F|X7) — H (F| X}, GP)
Although the characterization in Theordth 1 is not of a "

single-letter form, the following result provides a sufict

condition for obtaining such forms. Denote lﬁ&)nstam i = Further, sincell (G2|Gyp) = 0, it holds that

itvp () —
1,2,3, the quantityRy’ for F = constant. 1(G3 AFIXD) < I(GAFIXD),

Lemma 2. For case (i), i = 1,2,3, if for all n > 1 and \yhich along with [IF) yields
interactive communicatiol’

which further yields

—I1(G2 AF|X1)] + RY (15)

constant*

. , m 1 n n (1)
Rg) > Rg))nstam (12) RF 2 E H(F) - H (F|Xl ) —-H (F|X2) + Rconstant
i . i 1
then R? (9/\/1) = R((:o)nstant: 1nfn,F R%)- > Rgo)nstant’
The proof is a simple consequence of the definition (Where the last inequality follows from Lemrid 3. The result

R} (gm) in (@IT). Note thatRé?nstamhas a single-letter form. then follows from Lemm&l2. =

. ) (i) We next derive simple conditions for secure computability
Remark.As mentioned before, the quantityf,, 7 Ry’ is the for the BSS in Exampl&]1

infimum of the rates of interactive communication that $igss | id h f .
(P1), (P2) fori = 1,3, and satisfies (P1)-(P3) for= 2. Thus, EX@mple2. Consider the setup of Examplé 1, with =

when the conditions of Lemni 2 hold, we have from Theorefi = X1 © X2, X1.X> and g, = X;.X5. By C(:rollaryIZ
[ that g, are securely computable if and the observatioll (G2|X32) = h(6)/2, we getR] (gm) =
) 3h(5)/2 SinCEH(Xl,XQ | Go):H(Xl,XQ |X1 @XQ)—

H (X m|Go) > Rgg)nstam H(X;.X>| X1 9 X3) = 4, the characterization of secure



computability claimed in Examplel 1 follows from Theorenfor securely computingyo, g1, ..., gm. In the first step, for
. O sufficient large N, the terminals[l, mo| (go-seeking termi-
Example3. In the setup of ExamplEl 1, considgs = g, = Nals) attain omniscience, using an interactive commuioicat
X, @ X, and go = X,.X,. This choice ofgy, g1,90 is an F' =F"(XY) that satisfies

instance of case2] above. For an interactive communication 1 N Y

F, the constraints (2a), (2b), (2c) in the definition Bff), NI (GO NF ) <e (19)

upon simplification, reduce to where ¢ > 0 is sufficiently small. Next, upon attaining

1 . .
Ry > ~H (X1|XP, GG F), omniscience, one ef the terminals [h, mg] computes the
n following for mg < j < m:
Ry > lH(X;’|X{ZF), (i) Slepian-Wolf codewords”; = F} (GY) of appropriate
q‘ rates R for a recovery ofGN by a decoder with the
Ri+ Ry > EH (X1, X3Gy, Gy F) knowledge ofXJN and preV|0us communicatidi”, and
1 (i) the rvs K; = K; (XV) of ratesR/ that satisfy:
Ry > ~H (G3|X3.F). )
. — /‘
Therefore, inf [R; + Ry + R}] with Ry, Ro, R, satisfying ’NH(KJ) Rj <e (20)
(2a), (2b), (2c¢), is given by 1

1 (K, AGY F" {Kl@Fl} <e (21)
1 N ' mo<l<j—1
~ | H (X{'|X5,G5, G5, F) )

S o Note thatK ;@& F; denotes the encrypted version of the Slepian-
+max {H (X3|Gg, G5, F), H (X3|X{", F)} Wolf code £}, encrypted with a one-time pad using the secret
+H(GDXD,F) key (SK) K;. Thus, terminajj, with the knowledge of<;, can

S recover ; from K & Fj, and hence can recovér?. The
which further gives operationk; @ F} is valid since the SKK; has size greater

than || . Furthermore, we have frorﬂll9) arld]21) that

1 N
_I (Gév " FH’ {KJ @ Fj}mo<i<m>

2 1 n n n n
Ri‘): E[H(F)"‘H(Xl X3, Gy, Gy, F)

+max {H (X3|Gg, G5, F), H (X3| X1, F)}

- N . nl %
+H(G§|X§,F)} 16 =N (G A @Fﬂ}mmgm ¥ ) e
It follows from H (X7'| X%, G2, G5, F) = 0 that < > % [1og||Kj @ F
j=mo+1
Rgi)nstant - H (G2|X2) ’ ’ ~ ~ N
11
+ max {H (X5|Go, G2) , H (X2|X1)} - H (Kj S F; | F, {Ki ® Fi}mmq_1 ,Go ﬂ +e
h(5) 3 m B
= — = — 1
5+ max {0, h(9)} = Sh(d), an . 3 . {H (K;)
ash(d) > o for 0 < g < 1/2. g=mo+1
Next, note from[(1B) that for any interactive communication —_ H (Kj @ F7 | ¥, {Ki @ Fz} | ,G6V> } 12
F mo<i<j—1
1 n n n n - 1
R > L) 1 (xp1x B + (0319 - Yyl
1 j=mo+1
=—[H(F)+ H (X} X7 .
n [H(F) (X1XT) —H(KﬂF”,{Ki@Fi} ,G5V>}+2e (22)
—H (F|XY) + H (G3,F|X3) — H (F|X3)] mo<isy—1
1 n n < 3me,
2 — [H(F) - H (F|X{) — H (F|X3)]

where the third inequality above usgs](20) and the last ialequ
+ H (G2| X2) + H(X2|X1; ity follows from (21). The equality in[{22) follows from the
> H (G2]Xs) + H (X|X1) = Sh(6), (18) fact thatF; = F; (GV) is a function of G{f, sinceG; is a
2 function ofGo We note that this is the only place in the proof
where the last inequality above follows from Lemfda 3. Th&here the functional relation betweér; and Gy is used.
characterization in Examplg 1 follows froi {17).{18), and Thus, the communication(F”, K, @ £}, mo < j <m
H (X1, X2|Go) = 1, using Lemmd} and Theordmh 1. U . qittes the required secure computing protocol gfor.
It remains to show the existence Bf and K, mg < j <m
IV. PROOF OF SUFFICIENCY INTHEOREM[T] that satisfy [IR)F21).

Sufficiency of[(9) foi = 1: We propose a two step protocol Specifically, when[[9) holds foi = 1, we have from



the definition of R} (gaq) in (@) that for all0 < ¢ < ¢¢  We have from[(25)E(29) that
(e to be specified later), there exists> 1 and interactive

1 )

communicatiorF = F (X7%,) such that Rj < ~H (XN | Gy, F*) = R, (30)

lI(GS AF) < e, (23) Heuristically, sinceX {; is recoverable from(X [}, F* F'),

n (30) gives
and 1 € 1 N N gk

* /.
R < Ri (900 + 5, (54 1G9 FEF D)
1 1 .
where R) is as in [). This further implies that there exist ~ ~ ~ (XN | GY,FF) — ~a (F'(4) | Gy, F)
Ry, ..., R, satisfying (1a) and (1b) (foF) such that 1 ,
1 m > Lot (xay 6y ) - v
1 1 mn n *
EH(F)‘FE Z H (G} | X}, F) + Ry < RY (gam) + €. >R,
1=mo+1

(24) Thus, a randomly chosen mappirg 1 = K;;1 (X7,) of
rate R/, , is almost jointly-independent @, F*, ¥'(j) (see
[4]). This argument is made rigorous using a version of the
€0 < H(Xm | Go) — Ry (gm) — 6, “balanced coloring lemma” (se€l[2].1[6]) given in Appendix
B. Specifically, in LemmdB1, seV = X, U = X,
V =GY,F*, h=F'(j), and

Choosing

for somed < H (X | Go) — R (9m), we get from[(2B) and
(24) upon simplification:

1 & 1 U, _{xN e xl
= Y H(G}|X]\F) + R +0 < —H (X3 | Gi.F). CTTM M
i=mop+1 n
" @ o= e (S (1) i (a20)

Next, for k£ > 1, denote byFk = (F4,...,Fy) the i.i.d. rvs  for some mapping); 1, where f’ (Xj\v/[) =F’ is as in [26).
Fi = F(Xan(-1)41, - Xmni), 1 < i < k. Further, By the definition ofF’,

let N = nk. In Appendix A, we follow the approach in

the proof of [19, Theorem 5] and use_{25) to show that for Pr(Uely) 21 —¢,

sufficiently largek there exists an interactive communicatioRq that condition[{BI1)()) preceding LemrialB1 is met. Con-
F' = ' (X}f) of overall rate Rxq + 6/2 that satisfies the gition (BI)(ii), too, is met from the definition offy, h and

following: V.
X% is e-recoverable from( XY, F* F) for 1 < i < my, Upon choosing
and from (XY, F* G, F') for mg < i <m, nd
26) a=exp [k (1 (3165 F) - 72 )]
and further, in (B2), the hypotheses of LemnialB1 are satisfied for ap-
1 N wk , propriately chosen\, and for sufficiently largek. Then, by
NI(GO JFPAF) <e (27) LemmalB1, with
The proposed communicatid®’ comprisesF’, F¥, and con- r=Tlexp(NR,,,)], o = [exp (NR(J')H
dition (I9) follows from [2B) and[{27). Finally, we show the AR ’

existence off; and K;, mo < j < m, as above. From the and with K ; in the role ofg, it follows from (B4) that there
Slepian-Wolf theorem[17], there exist /g = F; (GY) of exists VK1 = K;1 (X],) that satisfies[{20) and(R1),
rates for k sufficiently large. The proof is completed upon repeating
R;- - %H (ij | XJN,F’“) N 2i, this ar.gl.Jment form, <'y < m | O
m Sufficiency of({9) foi = 2: The secure computing protocol
for this case also consists of two stages. In the first stageea
v fore, the terminalsl, mg] (go-seeking terminals) attain omni-
science, using an interactive communicatidh=F" (X}).
The second stage, too, is similar to the previous case and
involves one of the omniscience-attaining terminals$linm]
transmitting communicatiod; = F; (GV) to the terminals

such thatG} is e-recoverable from XJN,F’“,FJ-), mo <
j < m, for k sufficiently large. Suppose the

Kmg+1, Kmg 2, ..., K; of rates R, R}, 1o, ..., R}, re-
spectively, satisfy[(20) and_(21) for somjie< m — 1. Denote
by F’'(j) the communication(F’,Kl- ® Fi,mp <i < j) of

rate RV that satisfies 4, for mg < j < m. However, the encryption-based scheme of
1 j the previous case is not applicable here; in particUlai) (22
RY) < Ry + — Z H(GYN | XN, F¥)+6 (29) longer holds. Instead, the communicatifj now consists of
N i=mo+1 the Slepian-Wolf codewords fa’ﬁév given XJN, and previous

communicationF”. We show below that if[{9) holds, then



there exist communicatio®” and Fj, mo < j < m, of (Fy,...,Fg) the iid. rvsF;, = F Xg(ii_l)ﬂ), 1<i<Ek,

appropriate rate such that the following holds: it follows from (3a) and (3b) that foiV = nk the random
1 N e - R mappingsF! = F! (X'*) of ratesR;, 1 < < m, satisfy the
NI (Go NED Frg 1, ---va) <6 following with high probability, fork sufficiently large (see

for sufficiently largeN [5, Lemma 13.13 and Theorem 13.14]):

e . .. . i ; nk ; k nk\-
Specifically, when[{9) holds for = 2, using similar manip- ~ () for i € M, X}z is e-recSkvergbIe from(F’, F*, X*);
ulations as in the previous case we get that fobatl e < ¢,, () for @ € M, Xz is erecoverable from

there exist interactive communicatiéh= F (X7, ), and rates (F', F* X%, Ggb).
Ri,...;Rp, Rl 11, ..., R, satisfying (2a)-(2c) (forF) such From [32), the approach of Appendix A implies that there
that 1 exist F/, i € M, as above such that
€

—I(G§ ANF) < -, 1

nGONE) <5 — I (GpF AFFF) <,
and nk

1 for sufficiently large k. The interactive communication
Rpa+ Ry g +0 < EH (X% | Gy F), (31) (F’,F*) constitutes the protocol for securely computing,

with § < H (X | Go) — RS (ga1) — €0; @) replaced(25) in whereg: (Xr) = Xn,i € M. H
the previous case.

Next, for N = nk consider2m — mgq correlated sources
XJN, 1 < j < m, and Gj.V, mo < j < m. Since Necessity of[(10) foi = 1: If functions g, are securely
Ri,...,Rm, R, .1, R, satisfy (2a)-(2c), random map-computable then there exists an interactive communicaion
pings F} = (X)) of ratesR;, 1 < j < m, and such thatG} is e,-recoverable fron{X;", F), i € M, and
Fo o =F._ (GYN) of ratesR:;, my < j < m 1
satisfy the following v3it(h ?nzz,h probability, fok: sufficiently ~1(GG AF) < en, (33)
large (see[[b, Lemma 13.13 and Theorem 13.14]):

V. PROOF OFNECESSITY INTHEOREM[

4
J

wheree,, — 0 asn — oc. It follows from the Fano’s inequality
() for 1 < i < m, X% is erecoverable from thal

F! ... F' FF _Xnk): 1
. (FY, o B o ) _ —H(G? | X" F) < ci€n, i€ M. (34)
@iy for mgy < j < m, G}”“ is e-recoverable from n
(Ff g 5, XTFY; Using an approach similar to that in| [6], we have frdml](33):

@iy for my < j < m, X% is e-recoverable from 1H xn
(F/,F* X% Gg*) and from (F/, F*, G, Gg*), n (X3 )
1
where F* = (F,..,F;) are iid. s F; = =-H(GGF)+—H(X}y |GG F)
F (XAn(i-1)+15 - Xmmi)s 1 < i < k. It follows 1 1 1 . .
from (33) in a manner similar to the proof in Appendix A = —H (Gg) + —H (F) + —H (X} | G5, F) —en,  (35)

that there exist communicatioﬁjf, 1<j<2m—mg as

1
above such that

1 n 1 E n n n
EH(Go) + gH(F) +- ;H (Xi | X[l,ifl]’GO’F)

1 mn
%I (GEF NFFF) <,

— €,. (36)
for sufficiently largek. Next, for £ C M, with [1,mg] ¢ £, we have
The first stage of the protocol entails transmission of 1
F*, followed by the transmission of7, ..., F},, i.e., F/ = —H (XZ | Xﬂ\ﬁ,F)
(F*,F{,..,F},). The second stage of communicatiéh is 1 1
given by F/ ., .., formg <j <m. O = EH (XZ | X3z S,F) + ﬁH (GS | X}fA\DF)
Sufficiency of{9) foi = 3: Using the definition of?} (g1) < lH (XZ | X3 z) Gos F) + Cc1€n,

and the manipulations above, the sufficiency conditioh (9) n )
implies that for all0 < € < ¢, there exist interactive Where the last step follows frorh {34) and the assumption that
communicatiorF = F (X7,), and ratesk, , ..., R,,, satisfying 9: = 9o for i € [1,mo]. Continuing with the inequality above,

(3a), (3b) (forF) such that we get
1 € 1 n n
- n i —-H(X;| X F
nI(GO/\F)<2, 0 1( 21X e )
and =n > {H (Xin | X115 g’F) * Cle”} - G0
iel

1

4The constants, c2, c3, ¢4 depend only ofog || XA ||, m, mo (and not

for 6 < H(Xm | Go) — R% (gam) — 0. Denoting byF* = onn).



. 1
Letting < ﬁH (XZ | X3z S,F)

Ri=—H (X7 | Xl 0 G.F) beren, €M, < Re+ Ry, (40

" :
; « Therefore, [(30), [[34) and[(#0) imply thafry, ..., R,
b Ry, ..., R, satisfy (1a) and (1b) folF, whereby it ) ! 0
foyll(;iv.];)frolm @2) and[C:%) (tha)t (1b) y Ry, R, satisfy (2a)-(2c) forF, which along with [(3B)
yields
H (X | Go)
) | om H(Xp | Go) > R — csep,
= ﬁH(F) + n ‘_ZH H(G? | X F) + Ry — caen WhereRg) is as in [T), and® satisfies[(3B), which completes

) the proof of necessity {10) for = 2 upon taking the limit
> Ry’ — caen, n — oo. O
whereF satisfies[(33). Taking the limit — oo, and using the ~ Necessity of(10) for = 3: If the functionsg, in (B) are

definition of R* we getH (X Go) > R* 0 securely computable then, as above, there exists an ititerac
i (gm) 9 (Xa [ Go) 2 B (g:) communicatiorF that satisfies[ (33) and (B4). Defining

1
Necessity of {(10) for = 2: If g, are securely computable, R; = —H (Xi" | X{1,i-1), GG F) +c1€n, €M,
the approach above implies that there exists an interactive " . )
communicationF satisfying [38) and{34) such that, with ~ Similar manipulations as above yield

1
1y (Xi" X7 Gg,F) +eren, 1< < mo, H(Xpm|Go) > —H(F) + Rp —caen. (41)
_ Further, from[(34) we get thak,, ..., R,, satisfy (3a) and (3b)
Ri=19, n| xn n n for F. It follows from (@1) that
o (Xi | X[ G[m0+1,i—1pG07F) + C1€n, '
mo <1< m, H(XM|G0)ZR£?3)—C4EH,
Rj = cien, mo <j<m, whereR{ is as in [B), and¥ satisfies[(38), which completes
we have by[(35), the proof of necessityf (10) far= 3 as above. O
H (X | Go) VI. DISCUSSION ALTERNATIVE NECESSARY CONDITIONS
> lH(F) + lH (X7 | GBF) —e, FOR SECURE COMPUTABILITY
K K mo The necessary condition (10) for secure computing given in
> lH(F) + 1 ZH (Xi" | Xﬁ 1] n, F) sectiorIl is in terms of quantitieBif), 1 =1,2,3, defined in
n ni4 ’ ©), (@), [8), respectively. As remarked before, for 1, 3, the
1 X quantityinfg RS) is the infimum over the rates of interactive
+o > H (Xi" | Xii—1p Ghme+1,i-1) GO F) —€n  communication that satisfy conditions (P1) and (P2). Hauev
i=mo+1 this is not true fori = 2. Furthermore, although = 1 is
> lH(F) 1+ R+ Rfmoﬂ.m] — 36, (38) special case of = 2, it is not clear. if the necessary gondition
n ’ (I0) for i = 2 reduces to that foi = 1 upon imposing the
Furthermore,[(34) and the assumptign= gy, 1 < i < myg, restriction in [4). In this section, we shed some light ors thi
yield for [1,mg] € £ C M that baffling observation.
1 First, consider the functiongy, in (@). For this choice of
;H (XZ | X}Q\L,F) functions, denoting byR; the minimum rate of interactive
1 communication that satisfies (P1) and (P2), the results9h [1
< EH (XZ | X}(/[\L,G{},F) +cién imply that [1) constitutes a necessary condition for secure
1 computability, withR* = Rj.
< Y {EH (Xi” | Xﬁ,iflpGg’F) + Clen] + Next, consider an augmented model obtained by introducing
i€L,i<mo a new terminalm + 1 that observes nX,,11 = §(Xm)

Z EH (X" P an an F) Y oere and seeks to compuig,.1 = (). Further, the terminal does
5 n ¢ L Fmot -1 00 "] not communicate, i.e., observatioff, , , is available only for
1em o decoding. Clearly, secure computability in the originaldeb

= I, (39) implies secure computability in the new model. It followsrir
and similarly, for[1,mg] C £ C M, £' C [mo + 1,m], with the approach of [19] that for the new model aldd, (1) consti-
either£ £ M or L' # [mo + 1, m] that tutes a necessary condition for secure computability, \iith
1 now being the minimum rate of interactive communication
EH( 2 X2 Gl 1m0 X 2 Q,F) that satisfies (P1) and (P2) when termimal+ 1 does not

1 communicate; thisR* is given by

= 1 (X201 X ) max{H (Xau | §(Xa). Go) . B3},
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Note that the new necessary conditibh (1) is Then it would follow from [Al), [[A2), and definition of ,

. N that
H (Xpm | Go) = Ry = max{H (Xam | 9(Xr), Go), Ro},
which is, surprisingly, same as the original condition Pr({JM € Jm + X)q is erecoverable from
H (X | Go) > Ry (X7%, ZF gy (X3gy) ) i € M, and

Our necessary condition_(110) for = 2 is based on a 1. n n
similar augmentation that entails introductionmaf— my new EI (dm (X30) A GGt Fk) < E}) e
terminals observingy,,.,+1 (X)), vy gm (Xaq) (to be used
only for decoding). Now, however, this modification may esu
in a different necessary condition.

This shows the existence of a particular realizafirof J
that satisfies[(26) and (27).

It now remains to prove (A3). Defining

APPENDIXA
From [25), we have Ji = {jM\{i} € T iy @ X34 is e-recoverable from
5 n n

where Ry, ..., R,, satisfy conditions (1a) and (1b). For each ~
i and R; > 0, consider a (map-valued) ry; that is uni- we have by[(All) thaPr (JM\{i} € Ji) > 1 —e. It follows
formly distributed on the family7; of all mappingsX** — that
{1,...,[exp(knR;)]}, i € M. The vsJi, ..., Jm, XX are
taken to be mutually independent. Pr<{j/v( €Im:
Fix €€, with ¢ > me ande + ¢ < 1. It follows from 1
the proof of the general source network coding theorem [5, —7T (ji(X;lk) AGEF F gy (X}f/’f\{i})) > i})
Lemma 13.13 and Theorem 13.14] that for all sufficientlyéarg "% m
k, et D Pr(lvg =dm) P s

Pr({jM e Im: X}\’,’f is e-recoverable from
since J; is independent of/u iy, where p (jan(i}) is

nk - n . defined as
(Xi kaJM\{i} (X/\/]f\{i}) aZka) NAS M}) >1—c¢,
(A1) Pr({jz‘ €Ji:
where, fori € M,

1 €

— 1 (Gi(X]®) AGEEF gy (X0 ) ) = —})

Zki Fk, jE [11m0]7 nk ( ( M })) m
P (F*,Gz%), mo <j<m. Thus, [A3) will follow upon showing that

/

. . € . ~
Below we shall establish that p(iangy) < — =€ jmiiy €T (A4)

- . 1 - nk nk k ~
Pr ({JM €Im: EI(JM(XM)/\GO FY) > E}) <<, for all k sufficiently large. Fixjinpp € Ji. We take
(A2) recourse to LemmAB1 in Appendix B, and dét= X377,

. _ _ _ U' =Xk V= (GrF,FF)  h = jrngi, and
for all k£ sufficiently large, to which end it suffices to show ‘ ( 0 ) Ima

that n n n nk n
Uy = {%ﬁ € XRf i = (%kaJM\{i} (x/\ﬁ\{i}) ’
Pr({jM e Im:
1 P (e3) . () 1o <i <) ) |
€
— I (Gi(X["™) AGEE FE gy (XM ) ) = —}) )
nk ( 0 M ( M })) m for some mapping);. By the definition of 7;,
e ,
S ieM, (A3) Pr(U ely) >1—c¢,
since so that condition[(B1)(i) preceding LemrhalB1 is met. Con-
) " " dition i), too, is met from the definition of/,, » and

1(is (XP%) A G3F F* | i (X%) ... jus (XP%))  Upon choosing
d= exp [k (H (X3lGE,F) - g)} |

in (B2), the hypotheses of LemnfaBl are satisfied, for

.

@
Il
A

o

@
Il
—

I (ji (XY A GEEF® G gy (X}Uf\{i})) :



appropriately chosen, and for sufficiently large:. Then, by
LemmalB1, with

r=[exp (knR;)], ' = [exp (knRap,)],

and with .J; in the role of ¢, (A4) follows from (B3) and
B4). O

(1]
(2]

(3]
APPENDIX B

Our proof of sufficiency in Theoreld 1 requires random map4]
pings to satisfy certain “almost independence” and “almos[ts]
uniformity” properties. The following version of the “baleed
coloring lemma” given in[[19] constitutes the key step in the
derivation of these properties. [6]

Consider rvsU,U’, V with values in finite setd/,u’,V, 7]
respectively, wherd/’ is a function ofU, and a mapping
h:U — {1,...;7}. For0 < XA < 1, let Uy be a subset
of U such that
() Pr(U € Up) > 1— )%
(i) given the event{U € Uy, h(U) = j,U" = ',V = v},
there exista, = u(u') € Uy satisfying

(8]
El

[10]
Pr (U/ = 'LL/ | h(U) = j, V =, U S u()) [11]
=Pr(U=u|hU)=4V=0U€cly), (B1)

[12]

for 1 < j <7’ andv € V. Then the following holds.

Lemma B1. Let the rvsU, U’, V and the set{, be as above.

Further, assume that [13]
1 [14]

Pyy <{(u,v):Pr(U—u|V—v)>a}) <\ (B2)
[15]

Then, a randomly selected mapping U’ — {1,...,r} fails

to satisfy [16]

r’ [17]

Z > Pr(a(U) =4,V =0v)x 18]

j=lveVy

[19]

SIS PrU = | h(U) =,V =v) - 2| <143, R0
i=1 u’E/M’:‘ "

d(u')=i (83) [21]

with probability less tharRrr’|V| exp (— Cj:,d) for a constant
c > 0.

Remark. Denoting by s,., the left side of [BB), it follows
from [6, Lemma 1] that
logr — H(¢(U)) + I(@(U) A (U), V) < Suarlog —.
SU&T

Since the functionf(z) = xzlog(r/x) is increasing for) <

11
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