IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013 1

Computing Statistical Functions in Wired Networks

Rajasekhar Sappidi, Catherine Rosenberg and André Girard

Abstract—For applications in which a node is interested in a
function of the data generated at different sources, in-network
computation is a promising approach to improve the network
performance. In this paper, we study the problem of computing
the first 1/ moments of the data using in-network computation in
an arbitrary wired communication network. We are interested in
finding a routing and queue management strategy that maximizes
the data rate at which the sources could generate new data.

We first propose a very simple tractable flow model that
computes an upper bound on the maximum data generation
rate that could be supported in a given network for a given M.
To validate the tightness of this upper bound and to provide a
practical feasible solution, we then propose a heuristic strategy
involving the generation of multiple trees and effective queue
management that achieves data generation rates close to this
upper bound. This cross-validates the tightness of the upper
bound and the goodness of our heuristic strategy. Finally, using
the flow model, we provide engineering insights on what in-
network computation can achieve.

Index Terms—Wired networks, in-network computation, ag-
gregation, statistical functions, flow model, heuristics.

I. INTRODUCTION

ONSIDER an application in which there are several
sources that are periodically generating data destined to
a single node (called sink in the following) that is interested
only in a function of this data. A fire alarm system in which
the sink is monitoring the maximum temperature is one such
application. Traditionally, the intermediate nodes simply store
and forward the packets towards the sink without altering
the data in any way. After receiving all the packets, the sink
computes the function. This data collecting approach is known
as convergecast in the literature. As the sink is interested only
in the value of the function and not all the data, sending all
of it to the sink is a strain on the network resources. If we
allow the intermediate nodes to perform partial computations
(depending on the function) on the packets they receive, it
reduces the volume of the data transferred in the network
and could significantly improve the maximum achievable data
generation rate. We call this approach, in-network computa-
tion. In this paper, we identify the challenges when operating
a network allowing in-network computation and quantify the
gains of this approach in terms of network performance.
In some applications, the sink is interested only in the first
M moments of the data (what we call a statistical function).

Manuscript received ; revised . This work was supported in part by Natural
Sciences and Engineering Research Council of Canada (NSERC) and by
General Motors (GM).

R. Sappidi and C. Rosenberg are with Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, Ontario, Canada (e-mail: rrsap-
pid@uwaterloo.ca, cath@ece.uwaterloo.ca.

A. Girard is with INRS-EMT, Montréal, Québec, Canada.

Digital Object Identifier 10.1109/JSAC.2013.1304xx.

The k-th moment of a discrete random variable X, uy is
defined as the expectation of X k, ie.,

e = B(X") (D
We can estimate p as the average of the k-th powers of all
the observed data, i.e.,

N k
VX!
PR s @)

For instance, in an application maintaining uniform tem-
perature in a building, the sink might be monitoring both the
average and the variance, that can be computed with the first
two moments. These functions have a property that the sink
could compute the first A/ moments of the data if it knows just
the sums of the first M powers of the data. For example, the
first two moments can be computed by knowing the sum of
the data and the sum of the squares of the data (provided the
sink knows the number of sources). So, the intermediate nodes
could transmit just the sum and sum of squares of the data they
receive, instead of all the raw data. Thus, the data is aggregated
resulting in a reduction in the volume of data transferred in
the network, improving the network performance. The special
case of M = 1 results in, what we call, perfect aggregation
that covers functions like MAX and MIN, in addition to the
first moment, e.g., MEAN.

When in-network computation is allowed, the conservation
of packets no longer holds at the intermediate nodes. In our
previous work [1], we have proposed a formulation based on
conservation of information that models in-network computa-
tion in a wireless network. The system considered in that work
is a wireless sensor network with transmissions synchronized
to time-slots and a single modulation and coding scheme
yielding a unit rate on all the links. For this system, we have
derived a flow model that computes the maximum achievable
data generation rate from a discrete model based on time-slots.
We then showed that a simple single path routing achieves a
throughput that is very close to the value computed by the
flow model.

In this paper, we consider a similar problem on a wired
network. The underlying system is very different as we no
longer have time-slots and the transmission of packets is not
synchronized among different links. We also consider that the
links might have different capacities. For this system, we are
interested in finding the optimal routing and queue manage-
ment strategy that would support the maximum data generation
rate at the sources. Borrowing the idea of conservation of
information from our previous study [1], we formulate a flow
model that computes the maximum achievable data generation
rate for a given wired network utilizing in-network computa-
tion. However, unlike wireless networks, for wired networks,
the throughput achieved by any single path routing is quite

0733-8716/13/$31.00 (© 2013 IEEE

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

far from the optimal in general. Multi-path routing requires
effective queue management to allow maximum aggregation
to occur and to avoid loops. We elaborate more on these issues
in Section IV.

The following are our contributions.

1) A very simple tractable flow model that computes a tight
upper bound A}, on A7, the maximum data generation
rate ! using in-network computation in a wired network
when the sink is interested in the first M moments of
the data collected by the sources. We also give simple
bounds on Aj,.

2) A heuristic strategy to operate a network under multiple
trees based routing using in-network computation which
supports data generation rates close to the upper bound.
This cross validates the tightness of the upper bound
obtained by our flow model and the efficiency of our
heuristic strategy.

3) Engineering insights and the quantification of the possible
performance gains using in-network computation.

The rest of the paper is organized as follows. In Section II,
we present the related literature. The network model and the
problem formulation are given in Section III. In Section IV,
we present a heuristic strategy (multiple trees based routing
and queue management) to operate the network that achieves
throughput close to the upper bound computed by the flow
model. We give numerical results and engineering insights in
Section V and conclude in Section VI.

II. RELATED WORK

Finding the maximum flow in a wired network using
convergecast has been well studied in the literature [2]-[4].
In-network computation adds an interesting dimension to the
problem of maximizing the flows in a network. The earliest
studies on this problem were made by Tiwari [5]. They studied
the communication complexity, i.e., the number of bits needed
to communicate the function to the sink in the worst case, in
a two source network. This problem has received much more
interest in the wireless context and many different aspects of
this problem have been studied in the literature. Giridhar and
Kumar [6] gave a good survey of the existing literature on
this topic. Gallager [7] proposed a distributed algorithm that
could compute the parity of the bits at the nodes in a broadcast
network with binary symmetric channels with a given accuracy
using only O(lnIn N) bits per node. Giridhar and Kumar [8]
studied the computation of symmetric functions in a multihop
wireless networks under a protocol model of interference and
gave asymptotic results on the achievable throughput. Kamath
and Manjunath [9] compute MAX efficiently in a structure-
free network while Damon and Shah [10] give an elegant
scheme based on exponential random numbers to compute
separable functions (e.g., SUM) in a structure free network.
Information theoretic approach has been taken to tackle the
problem of in-network computation in some recent works [11],
[12].

To the best of our knowledge, [1] and [13] are the only two
works that consider finding optimal routing explicitly when

I'This rate will be defined precisely in Section IIT

X1 X2
X3

N

O

Fig. 1.
[13]

A schema to represent the function © = X1 X> + X3, courtesy of

in-network computation is allowed. While in [1] we consider
computing statistical functions in a wireless time-slot based
network, Shah et al [13] consider a similar problem in wired
networks. They address the problem of finding the optimal
routing that maximizes the throughput for a given function
using in-network computation in a wired network. The class of
functions they consider are the ones that could be represented
by a computational schema. See Figure 1 which is taken from
their work for an example of a schema. Their formulation
is heavily dependent on the schemas of the function. The
computation time of their algorithm is linear in the number
of schemas that can be used for computing the function.
Thus, for a function with perfect aggregation property like
AVERAGE or SUM which has an exponentially large number
of computational schema representations, it is computationally
difficult to find the optimal routings using their algorithm.
With the techniques developed in this paper, we address the
problem of finding a near-optimal routing for the computation
of functions with perfect aggregation. They are represented
by M =1 in this paper and we find the maximum achievable
data generation rate and near-optimal routings not only for
these functions but also for any M.

III. PROBLEM FORMULATION

In this section, we describe our network and formulate the
problem to compute the maximum achievable data generation
rate using in-network computation in a given network.

A. The Network and its Operation

A directed wired network with n nodes and [links with
one of the nodes designated as the sink is given. Let the set of
nodes and the set of links be denoted by N and £ respectively.
Assume that the maximum transmission rates supported by
each of the links, i.e., their capacities are also given. The
transmission of packets on different links is asynchronous
and is uncoordinated. In this network, a subset of nodes are
sources, denoted as S C A/, that are periodically collecting
new data and the sink is interested in the first A/ moments
of this data. We assume that all the sources are collecting a
new raw data packet every ¢ units of time. In other words,
new raw data is being generated by each of the sources at a
rate of A where A = 1/4. This is the data generation rate of
the sources. We assume that there is a background mechanism

SAPPIDI et al.: COMPUTING STATISTICAL FUNCTIONS IN WIRED NETWORKS

Sink

Fig. 2. A network to illustrate in-network computation

that keeps the clocks of the sources synchronized so that they
collect new data at the same time.

Let the w-th measurement of source 7 be x;(w). Let x(w)
denote the collection of the w-th measurements made by all
the sources. Assuming that all the sources collect data at the
same time, we call the collection x(w), the w-th wave of
information. In applications like the fire-alarm system, the
sink is interested only in some function f(x(w)) of these
measurements. We say that the sink has received the wave
w if it is able to compute the function of the data in wave w.
We define throughput as the rate at which the sink receives
the waves. For the system to perform correctly, the sink needs
to receive all the necessary data to compute the function, at
the same rate at which the new data is being generated at the
sources. Thus, the throughput of the system is precisely equal
to the data generation rate of the sources. We are interested
in finding the maximum data generation rate (equivalently
throughput) supported by a given network when the sink is
interested in computing a given statistical function.

If the sink is interested in the first M moments and
in-network computation is allowed, then the intermedi-
ate nodes can perform partial computations on the data
they receive. Suppose a node is on the path to receive
2y (W), T4y () . ..z, (W), then it could combine these data
into M partial sums defined as S,(w) = Z;”:l xp, Vp=
1...M and forward only these M packets instead of the
k packets it received. Note that this kind of aggregation is
beneficial only when k& > M.

Consider the network in Figure 2. Let all the nodes other
than the sink be sources in this network. Assume that the sink
is interested in the first two moments of the data generated
by these sources so that it can compute the mean and the
variance. The sink can compute these quantities if it receives
all the data generated by the sources for a given wave but
this is a strain on the network resources. Instead, with in-
network computation, node D can be an aggregator, i.e., it
can perform partial computations and aggregate the packets
it receives before forwarding. In order to minimize the total
traffic carried in the network and to take full advantage of
in-network computation, node D would have to wait until it
receives the data of wave w from A, B and C before it sends
any data for wave w to E. Similarly, node E would have to wait
to receive the data of wave w from node D before forwarding
any data from wave w to the sink. Note that if the nodes do
not wait, they might not be able to aggregate and the purpose
of in-network computation would be forfeited. This will be
discussed at length in Section IV.

Under the assumption that it waits, node D, after it receives
the raw packets x4 (w), zp(w) and zc(w) from A, B and C

respectively, can create two partial sum packets, one for the
sum of data, SP(w) = za(w) + zp(w) + zc(w) + zp(w)
and another for the sum of the squares, S¥(w) = 22 (w) +
2% (w) + 2% (w) + 2% (w). It can then send only these two
partial sum packets to node E. Node E now can combine
its own data, xg(w) with these two partial sum packets as
SE(w) = SP(w) + ep(w) and SE(w) = SP(W) + 2% (w)
and sends only these two partial sum packets to the sink which
now has all the information to compute the 2 moments.

More generally, we see that in-network computation leads
to the creation of new types of packets, i.e., the partial sums.
If the sink is interested in the first A/ moments, the partial
computations at the intermediate nodes (when performed) lead
to M new types of packets in addition to the raw data. We
call the packet created by the partial sum of the p-th powers
of the data in the same wave as a packet of type p (1 <
p < M) and by convention type 0 represents the raw data.
The following are the conditions under which nodes perform
in-network computation.

1) If the node receives a raw data packet and it already
has M packets of the same wave (irrespective of their
type) in its buffer, then all the raw data packets get
aggregated (effectively disappearing) and M different
types of packets (corresponding to the M partial sums
described above) are created (some of them may already
exist). Else, no aggregation is performed.

2) If the node receives a packet of type p > 0, three cases
arise
a) The node already has a packet of the same type for the

same wave, then the new packet is just added to this
packet.

b) The node does not have the same type of packet for
the same wave but it already has M packets of the
same wave, then all raw data packets of this wave
disappear and M different types of partial sum packets
are created.

c) Else no aggregation is performed.

For any given network modelled as above, we are not only
interested in finding the maximum data generating rate that
could be supported, i.e., the throughput using in-network com-
putation but also in finding a solution detailing the operation
of the network (routing and queue management) that achieves
this rate or close to it when implemented in a packet-based
network.

In the next sub-section, we propose a flow model that
can be used to compute an upper bound on the maximum
achievable data generation rate in a given network using in-
network computation when the sink is interested in the first
M moments of the data.

B. The Flow Model

We define a flow as the stream of packets from a source to
the sink. In the following formulation, we ignore the discrete
nature of the packets leading to the assumption that the flows
are continuous. We also make the a-priori strong assumption to
ignore the notion of waves. The impact of this assumption will
be discussed later. The idea in a conventional flow model is
to balance the incoming and outgoing flows at every node. As

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

the conservation of flows no longer holds in the conventional
sense when in-network computation is allowed, we balance
the flow of information at every node.

This is better explained on an example first. Consider again
the network in Figure 2 where the sink is interested in the
first two moments. Every node is a source and produces a
raw data flow f§ of rate A. If no in-network computation is
allowed, these data flows would have to share the links, e.g.,
link (D,E) would have to carry 4\ corresponding to the raw
data flows fgt, f8, f§ and fP. If in-network computation is
possible, we could try to model the aggregation by saying
that D transforms these 4 flows into 2 flows corresponding
to the 2 partial sums S; and S3. However, if we modelled
the problem this way, we cannot easily write the conservation
rules and hence we cannot be sure that information from all
the sources has reached the sink. To ensure this, i.e., to track
the information from each source, we do not create 2 flows in
D out of the 4 raw data flows but 8 (since M=2) virtual flows,
4 of type 1 and 4 of type 2 (one for each source involved in
the partial sums at D). To model in-network computation, we
allow flows of the same type p > 0 to be transmitted fogether
on a link and we account for that in the constraints of our flow
model. Note that the flows of type p = 0 cannot be transmitted
together on a link.

For the purpose of tracking in our flow-based model, we use
the variable, y;’f, which represents the amount of information
from source s of type p carried on link (7,7). Whenever
aggregation happens at a node, the raw information is replaced
with M higher types of information, one for each of the M
partial sums. The advantage these higher types have over raw
data is that all information of the same type from any number
of sources is transmitted at the same time on a link while
raw data from only one source could be transmitted at a time.
This tracking is for modelling purposes only to make sure that
we account for all the information correctly. So, in the flow
model, there can be up to M + 1 different types of flows for
every source in the network, viz., raw data and one for each
of the M partial sums. Of course these flows can be split over
multiple paths.

In the actual network operation, aggregation does not hap-
pen between data belonging to different waves. Our flow
model does not keep track of the waves and hence it cannot
enforce this condition. However, as was the case in the
wireless networks [1], we hope that despite this apparent
relaxation, the flow model computes a tight upper bound on
the maximum data generation rate in a network when using
in-network computation. We show in Section V that it indeed
gives a tight upper bound.

Let ¢; ; be the capacity of the link (7,7). Let yfjo be the
amount of information corresponding to the raw data from
source s carried on link (i,7) and let y;”/ be the amount of
information of type p from source s carried on link (7, j). The
following is the flow model that we propose to compute the
maximum achievable data generation rate in a given network
when the sink is interested in the first A/ moments.

Pf : MaX)\ (3)

wy,z

A ifi=seS

s,0 s,0

50 _ vl = 4
;ym ;yw v {0 otherwise @

ny,f—zy;ff—ufZO Vp=1...M (5)
J J
M
b <ey Vi) €L (6)
p=0
V(i j) € L (7)

s,0 0
> vy <=
S

5P < P
Yij <%y Vs

Vp=1...M V(,j) €L (8)

Constraints (4) and (5) conserve the information. The vari-
able u; models aggregation, i.e., it is the amount of informa-
tion from the raw data flow from source s that disappears due
to aggregation at node 7 and appears as information in the M
higher flows. The variable zf ; is the fraction of the capacity
of link (4, j) that is allocated to the flow of type p. Using z’s,
constraint (6) restricts the total transmission rate supported by
the link (4, j) to its capacity c¢; ; which is shared among the
M + 1 different types of flows. The difference between a raw
data flow and a higher type flow is modelled in constraints
(7) and (8) which captures the essential nature of in-network
computation and its advantage. A higher type of flow, say
p > 0 can utilize the entire allocated link capacity for type p
(zf’ ;) simultaneously with the same type of flows from all the
other sources available at node ¢. But, as the raw data packets
from different sources cannot be transmitted at the same time,
the raw data flows crossing node 7 have to share the allocated
portion of the link’s capacity for raw data (zg ;) and hence
there is a summation over all the sources in (7).

The flow model (3-8) is a linear program that is not very
different from the flow model for convergecast [2]. It has
(Mnl+n?+M]I) variables and ((n?+1)(M+1)+1) constraints
where [is the total number of links and 7 is the total number
of nodes in the network (in the worst case of every node
being a source). Thus, it can be solved in polynomial time
[14]. Let X}, be the solution to (3-8) for a given M. The
solution A}, computed using this flow model is an upper
bound on the maximum achievable data generation rate in a
real network due to two reasons. The first is because we have
ignored the packet nature of the flows in this formulation.
And the second reason is that there is no constraint ensuring
that the aggregation does not happen between different waves.
This might lead to higher rates than that is permissible by
the network operation which restricts aggregation to happen
only between data of the same wave. We cannot introduce a
constraint to ensure this without introducing integer variables
which would increase the computational complexity of the
problem. Thus, there is a need to validate this model, i.e.,
we have to show that the A}, computed by this flow model
is close to the achievable data generation rate in a network
that is operated with in-network computation restricting the
aggregation between packets of the same wave.

SAPPIDI et al.: COMPUTING STATISTICAL FUNCTIONS IN WIRED NETWORKS

C. Bounds on \};

In this subsection, we present some bounds on the optimal
value computed by the flow model, A}, using the max-flow
min-cut theorem. Let C' be the solution to the max-flow min-
cut problem for the source s and the sink in the given network.
Define C' £ Min, C,. Then, we have

AsC ©)

Ny <0 (10)

Inequality (9) is true because no node can send more than
the rate allowed by the min-cut if the links have to operate
within their capacity. The upper-bound in the inequality (10)
also follows from this argument. The lower bound in (10) is
true because given a solution achieving A}, we can achieve
A7 /M when the sink is interested in the first M moments if
we simply replace every source with M sources and scale
down the ¢; ;’s of the links by M. With this replacement,
we have M identical problems with a scaled down network
capacity and M = 1 for the data aggregation.

We can further show that the upper bound in inequality
(9) is tight by constructing a feasible solution to (3—8) when
M = 1. The feasible solution is as follows. Let u$ = A,
y;’f =0 and z?) ; = 0. With this, the problem separates into
identical sub-problems, one for every source s. The solution to
each of these sub-problems is the max-flow min-cut problem
for that source and sink and thus its solution is C5 for a given
source, s. Thus, we have a feasible solution whose rate is
c 4 Miny Cy. Thus, we have

r=C (11)

¢ 12)

a7 A <C

To see why A3}, could be strictly greater than %, consider
a tree network rooted at the sink with every link having
a capacity c;. Now add directed links of capacity co from
every node to the sink resulting in a network like the one
in Figure (3). For this network, irrespective of M, the star
with dotted links always achieves a data generation rate of ca
(no need for aggregation) while the tree achieves a minimum
data generation rate of Cﬁl Thus, for this network, we have
C =c¢1 + ¢y but

c1+ co C

* C1
)\M262+M> i :M

In the next section, we construct a heuristic strategy that
is implementable in a packet based network and that has a
performance close to A},.

(13)

IV. HEURISTIC STRATEGY

The flow model (3-8) is a very simple and tractable
model to quickly compute an upper bound on the maximum
achievable data generation rate for a given network and a given
M. As discussed in the last section, there is a need to validate
this model, i.e., show that the A}, it computes is close to the
maximum achievable data generation rate in the network for

—

Links with capacity c1

-

Links with capacity c2

Fig. 3. An example network

the given M. For this, we need to propose a strategy that could
be implemented in the network and that would yield a data
generation rate close to A},. By strategy, we mean a set of
actions a node executes when it receives or generates a new
packet of data. In other words, the strategy helps the node
decide if it has to aggregate the new packet and on which
outgoing link it has to transmit it. This strategy is not only
useful for validating the flow model but it is also useful in
itself as a practical method to achieve a near optimal data
generation rate in a given network for a given M.

One attractive way would be to derive some information
about that strategy from the solution to the flow model.
Unfortunately, the numerical solution does not give much
useful information beyond the value of A}, which we know is
an upper bound on the maximum achievable data generation
rate for the given M. There are typically multiple solutions
that result in the same optimal)}, and in general, the solution
we get for the flow model by using a commercial solver
like CPLEX is not amenable for deriving an implementable
strategy from it.

For example, consider solving the flow model with M =1
on a 4x4 (directed) grid network, given in Figure 4. Every link
in this network represents two directed links of unit capacity
in either direction. This is a very simple case and it can easily
be seen that the optimal throughput for this network is 2 which
can be achieved by operating two independent trees (i.e., the
two trees do not share any links) such that each tree connects
all the nodes and uses one of the links (1, sink) or (2, sink)
as its final link to the sink (see Figure 5 for the trees and we
explain later in this section in more detail how to operate a
tree and multiple trees). However, the only useful information
from the CPLEX solution to this flow model is that the value
of A7 is 2 and the numerical solution, i.e., the optimal values
of the variables y,u and z for which this A] is computed,
does not reflect these trees and is quite complicated. We have
tried to add constraints to the flow model to gear its solution
towards something simpler that can be interpreted but we were
unsuccessful even for this simple network. Thus, there is a
need to develop a heuristic strategy that is both implementable
in a network and yields a good throughput.

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

A ® @ ®

Fig. 4. A grid network: Every link represents two directed links, one in
either direction
~ @—0—@ o
@@
1
~—@ o 0 o
2 ‘Sink 2

(a) Tree-1 (b) Tree-2

Fig. 5. Two independent trees of the grid network in Figure 4

In this section, we present a heuristic strategy that could
be implemented in a packet-based network and achieves data
generation rates close to the value computed by the flow
model. This heuristic strategy is based on a set of observations
and a set of assumptions. The first observation which is
common to both convergecast and in-network computation is
that in a wired network, multi-path routing is necessary to
provide high throughput. For example, any single path routing
is sub-optimal for the wired network in Figure 3 for both
convergecast and in-network computation A routing with two
trees achieves significantly higher data generation rates than
the one with just one of the trees. Thus, for a general wired
network, we have to consider multi-path routing for higher
performance.

A difficulty when multi-path routing is used is that it might
result in cycles like in the network in Figure 6 which has two
trees, viz., one with solid links and the other with dotted links.
The combination of these two trees results in a cycle ABCA
and any packet being stuck in this cycle is undesirable. It is
known that to avoid loops in convergecast, a source-based path
routing (as opposed to a hop by hop routing) needs to be used
in which the sources arbitrarily map the packets they generate
to one of the paths originating from them towards the sink.
The proportion of packets mapped to a path depends on the
fraction of the total data rate the path is expected to carry.

For in-network computation, the main idea of our heuristic
strategy comes from the following facts.

1) There is a need for multi-path routing.

2) We know how to develop an optimal strategy to achieve
the maximum achievable data generation rate in a tree
network. This is an important building block towards
developing a strategy for a general network. This single

Fig. 6. Multi-path routing

tree strategy is presented in sub-section IV-A.

Hence, our heuristic strategy generates multiple trees, com-
putes the maximum data generation rate supported by each
of the trees and operates them simultaneously so that the
network supports a data generation rate which is the sum of
the data generation rates of the individual trees. In sub-section
IV-B, we propose a multiple tree generating algorithm based
on depth-first search algorithm. In this algorithm, we do not
impose any condition to generate only independent trees, i.e.,
we allow the trees to share links if the capacities of the links
allow it.

When in-network computation is allowed and multiple trees
are used, we note that to enable aggregation, we have to
facilitate the “meetings” in time and space of the packets of
the same wave. We try to enforce this by assigning all packets
(irrespective of their type) from a given wave to the same tree.
This assignment has to be done locally at each source node
but in a way that ensures that all nodes map the same wave to
the same tree. This also prevents the packets from entering a
cycle that could result from operating multiple trees together.
We propose a wave to tree assignment algorithm to perform
this in sub-section IV-C.

Finally, we need to extend the queue management and the
aggregation strategy developed for a single tree to the case of
multiple trees that might not be independent.

In summary, our strategy is based on the following three
components.

1) An optimal strategy for a given tree which is the main
building block for our heuristic strategy for a general
network;

2) An algorithm to generate multiple trees;

3) A queue management scheme that is an extension of the
optimal queue management scheme for a single tree. This
extension also ensures that packets of the same wave are
assigned to the same tree using a distributed wave to tree
assignment algorithm.

We address each of these components in the next three sub-
sections. We begin with presenting the optimal strategy for a
tree network.

A. Strategy for a Single Tree

Consider a network with a directed tree topology rooted
at the sink, i.e., there is exactly one path from every node
to the sink (e.g., the network with just solid links in Figure
3). Without loss of generality, assume that some of the nodes
(except the sink) are sources and let the data generation rate
of each source be \j;. For this network, there is only one

SAPPIDI et al.: COMPUTING STATISTICAL FUNCTIONS IN WIRED NETWORKS

choice of routing. Let the capacity of a link (¢,7) in this
network be ¢; ;. As the link (4, 7) is the only outgoing link
from node %, if GG; is the number of sources in the children
of node ¢ (including), then the link (¢,7) carries the data
from all the G; sources. To determine if the link (4, j) carries
aggregated flows or raw flows, we have to check if G; < M.
If it is true then the link (¢,7) carries only raw data flows,
otherwise it carries aggregated flows. Thus, the capacity of
the link (¢, 7) limits the maximum data generation rate of the
sources follows.

Ci,j 01_3 }
M’ G;
If a node performs in-network computation, then its parent
also performs in-network computation according to the rules
given in III-A. The link that gives the lowest upper bound on
the data generation rate of the sources (computed using equa-
tion (14)) forms the bottleneck and determines the maximum
data generation rate supported by the network. Thus, we have

An < max{ (14)

Cij Cij

Ay = min{max{ (15)
(4.3)

If a strategy on the tree network supports the Ay, computed
by (15), then it is optimal as it an upper bound because of
the bottleneck. In calculating this Az, there is an implicit as-
sumption that a node always performs in-network computation
whenever more than M sources route their data through it. We
call such nodes as aggregators. This is a best case assumption
in terms of the amount of traffic carried. The amount of
traffic carried is a function of how much aggregation can
be performed. The expected amount of traffic to be carried
on a link (¢,7) is min{M A, GiAn}. We propose a queue
management strategy that ensures that the aggregators always
perform in-network computation to minimize the amount of
traffic carried and keep it at the expected level.

The nodes first determine if they are aggregators or just
forwarders and if they are aggregators, they also determine the
total number of packets they expect to receive for a wave from
all of their immediate children. This task can be accomplished
using either a simple distributed or a centralized algorithm.

At every aggregator node, we assume that there are two
buffers. One for processing at the node which we call the nodal
buffer and the other for the outgoing link (in the case of a tree,
each node has exactly one outgoing link), which we call the
output queue. The packets move from the nodal buffer to the
output queue when they are ready to be transmitted. All the
incoming and the generated packets first enter the nodal buffer.
The node performs aggregation on the packets in this buffer
using the rules given in Section III-A. After the node receives
all the expected packets from its immediate children for a
given wave, it sends the aggregated packets of that wave to
the output queue. In the output queue, the packets are ordered
from oldest to the newest wave and packets of the oldest wave
are transmitted first. If the node is not an aggregator, then the
packets are immediately sent to the output queue. This queue
management strategy ensures that the traffic on any link does
not exceed the expected traffic carried, which in turn does
not exceed its capacity because of the way we computed Aj;.
Although, it seems that we are delaying some of the data

Algorithm 1 Heuristic to generate multiple routings
Input: A connected graph, G with link capacities
Output: A set of routings, R

1. ¢ +¢G

2: while G’ is connected do

3. T « DFS (G’) {Extract a tree T from G’}
R+ RUT
Compute A for tree 1" using equation 15
W(i.j) € Tocij(G) = ey(G') — min{MA, (Gi)A}
{We perform G’ < G’ — T in this step}
7: end while

SAN AN

from reaching the sink quicker, it should be noted that the
sink can compute the function of the data in a wave only
after it receives all the data of the wave. Thus, from that point
of view, there is no additional delay.

Intuitively, it might seem that the above proposed queue
management strategy unnecessarily forces the aggregators to
wait for the data from its children and a naive strategy without
any waiting could also result in a similar high performance
in terms of throughput. However, simulations of this naive
strategy on some networks resulted in unstable queues, i.e.,
the size of the queues increased without bounds. We did not
encounter this scenario if there was just a single tree but with
multiple trees operating simultaneously, this instability became
evident. Thus, we propose the above queue management
strategy for achieving a stable higher performance.

In the next sub-section, we present our algorithm for gen-
erating multiple trees from a given network.

B. Generation of Multiple Trees

We address the task of generating multiple trees by propos-
ing Algorithm 1. It generates trees by performing the following
three steps in a loop until the network is disconnected, i.e.,
until there is at least one source for which there is no path to
the sink.

1) Extract a tree from the network.

2) Compute the Ajs supported by it using equation (15).
3) Update the capacities of the links in the network by
subtracting the capacity needed by the links in the tree to
support Aps. We remove the links whose capacity after
update becomes O.
Since, we are reducing the capacity of the links of the network
in every cycle of the while loop, the network would eventually
become disconnected terminating the algorithm.

For the task of generating a tree (the step (3) in Algorithm
1), we use an adaptation of the well-known depth-first search
DFS(G’) algorithm [15] to extract a tree T' from the network
G'. DFS(G’) 2 is given in Algorithm 2. It uses Algorithm 3. The
key difference between our depth-first search and the classic
depth-first search (given in [15]) is that our algorithm tries
to find up to M nodes at the same depth before it increases
the depth of exploration. This adaptation was done so as to
increase the opportunities for aggregation as much as possible
in the generated trees.

2 A bread-first search (BFS) approach was also tested but its performance
was inferior in comparison to DFS

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

Algorithm 2 Extract a tree using depth-first search: DFS(G’)

Algorithm 4 Assignment Algorithm: waves to trees

Input: A connected graph, G’

Output: A tree T {i.e., parent[i] Vi € Nodes(G)'}
1: Vi € Nodes(G'), color[i] - WHITE
2: Vi € Nodes(G'), parent[i] <— NIL
3: DFS_VISIT(sink)

Algorithm 3 Recursive subroutine for DFS: DFS_VISIT(z)
Input: A connected graph, G’, node i and M
Output: Updates parent vector

1: color[i] + BLACK {Node i is explored}

2: m+<+0

3: if ¢ is not sink then

4: for each vertex j such that i € Adj(j) do

5 if color[j] = WHITE then
6: parent[j] < 4
7
8
9

color[j] +— GRAY
m<+m-+1
: if m = M then
10: DFS_VISIT(j)
11: end if
12: end if
13: end for
14: if m # 0 then

15: for each vertex j such that ¢ € Adj(j) do
16: if parent[j] = i and color[j] = GRAY then
17: DFS_VISIT(j)

18: end if

19: end for

20: end if

21: else

22 for each vertex j such that i € Adj(j) do
23: if color[j] = WHITE then

24: parent[j] < 4

25: color[j] <~ GRAY

26: DFS_VISIT(5)

27: end if

28: end for

29: end if

Let /\Z be the sum of the data generation rates supported
by all the trees generated by Algorithm 1. This value is a
measure of the performance of the algorithm. The higher it
is, the better is the performance of the task of generation of
multiple trees. If A7 is the upper bound computed by the flow
model on the maximum achievable data generation rate, C,in
is the capacity of the link with minimum capacity and C' is
the minimum of the min-cuts as defined in Section III, then
for any algorithm that generates trees (in any order), we have
the following bound on its performance because the algorithm
would generate at least one tree which in the worst case has
the link with c,,;, capacity as the bottleneck.

h
A M Cmin

AT C

(16)

Later, in Section V we show that our algorithm performs
very well on many random networks.

Input: A\, A3, ..

Ak
1w+ 0
2: for i =1to k do
3: t; < 0
th 0
end for
while w < MAX_ WAVE do
for i =1to k do
ty) +
end for M
10: timin < min,; t; and] < {Z it = tmin}
1: w+w+1
12: Map wave w to Tree j
13: té’ — tmin
14: end while

R e A A

In the next sub-section, we present a queue management
strategy for the operation of multiple trees. This is based on the
optimal strategy we have presented for a single tree network.

C. Queue Management Strategy for Multiple Trees

Assume that the heuristic in Algorithm 1 has generated k
trees with A}, A3, ... Ak as the respective data generation
rates supported by each of them individually. We assume
that each node uses the same tree numbering and knows the
corresponding \%,. Then, the aim of our queue management
strategy is to ensure that the network supports a total rate of
A where

k
Moo= Z Mo (17)
i=1
Every source is generating new packets at rate \?,. Every

newly generated raw data packet is assigned a new wave
number and is saved in the nodal buffer of the source. All
the raw data packets carry the wave number in their header.
All packets of type p > 0 also carry the same wave number
as the raw data they are created from. For enabling as many
opportunities for aggregation as possible, we have to ensure
that all the nodes map packets of the same wave to the same
tree. For this task, we propose Algorithm 4 that can be run
by any node to determine the assignment of the waves to
the trees. It is simply a weighted round robin that allocates a

wave to a tree based on the weights % All nodes use the
same MAX WAVE = [ﬁ] in Algorithm 4, where \,.;,, is
the rate of the tree with the minimum rate. The assignment
generated by Algorithm 4 would be repeated cyclically every
MAX WAVE number of waves. Since all the nodes run the
algorithm with the same inputs (\j,’s), a given wave is
mapped to the same tree at all the nodes. The mapping for
a wave w to a tree ¢ is saved at a node until all the packets of
wave w that are supposed to be forwarded by the node have
been transmitted.

Next, we propose a queue management strategy when the &
generated trees are operated simultaneously. We assume that
every node knows its outgoing link for every tree. As was the

SAPPIDI et al.: COMPUTING STATISTICAL FUNCTIONS IN WIRED NETWORKS

TABLE 1
THE RANGE OF THE NUMBER OF LINKS IN THE NETWORKS

Network ID | Number of links
1 to 50 30 to 125
51 to 100 126 to 230
101 to 150 231 to 350
151 to 200 351 to 450

case for the single tree, every node first determines for every
tree if it is an aggregator or just a forwarder using either a
centralized or a simple distributed algorithm. If a node is an
aggregator in a tree, it also determines the total number of
packets it expects to receive from all of its immediate children
in that tree. A node could be an aggregator in some trees and
just a forwarder in others. As was the case in the single tree
strategy, the aggregator of any tree waits for its immediate
children in that tree to send all the data of the wave before it
performs in-network computation and forwards the aggregated
data to the output buffer of the outgoing link in that tree.

If an outgoing link is shared among multiple trees then
its output queue receives packets corresponding to all those
trees from the nodal buffer and the packets of the oldest wave
(irrespective of the tree number) gets priority in transmission.
This strategy ensures that a link is never used beyond its
capacity, even when it is shared among many trees.

We have implemented a discrete event simulator in C++
that imitates the network operation to check that the M our
heuristic strategy claims to support in a network is indeed
feasible. This simulator was used not only as an additional
check that our heuristic strategy works but also to check if any
other simpler queue management strategy (one that does not
force the aggregator nodes to wait before transmitting data for
a given wave) could have worked. We have seen that there are
networks for which a queue management without the waiting
in the nodal buffer did not work.

In the next section, we present two types of numerical
results. One to show that the heuristic strategy supports a data
generation rate that is close to the upper bound computed by
the flow model and the other to show the significant perfor-
mance gains that result from using in-network computation.

V. RESULTS

In this section, we first cross validate the flow model and the
heuristic strategy by presenting numerical results on four sets
of 200 instances of 30-node random networks (two sets with
links of unit capacity and two with links of random capacity)
that show that the upper bound computed by the flow model
is close to the practical achievable data generation rate for
different values of M. We, then compare the throughputs of
M =1, M = 2 and convergecast on the same four sets of 200
instances of 30-node random networks. In all the networks, we
assume that all the nodes other than the sink are sources.

A. Validation

We have calculated the data generation rates achieved by
our heuristic strategy on four sets of 200 instances of 30-
nodes random networks and compared them with the upper
bound computed by the flow model. The first two sets of these

<
0O 20 40 60 80 100 120 140 160 180 200
Network ID
(a) With unit capacity links
<

0O 20 40 60 80 100 120 140 160 180 200
Network ID
(b) With random capacity links
Fig. 7. For the first two sets of 200 instances of 30-node networks, data

generation rate obtained by the heuristic strategy vs the upper bound computed
by flow model when M =1

random networks are generated by letting a link (4,7) exist
with probability p and we have used values of p from 0.04 to
0.5 (we have discarded the networks that were disconnected).
The first set of networks have unit capacity on all their links
while the second set have links with random capacity between
1 and 2. For these networks, we assumed that the node O is
the sink. The next two sets of random networks are generated
by distributing the nodes uniformly in a field of dimensions
20m x 20m and assuming that a link exists between two nodes
if and only if they are within a fixed distance of each other. For
these networks, we have assumed that the sink is at the center
of the field. The first set of these networks have unit capacity
on all their links while the second set have links with random
capacity between 1 and 2. We have ordered the network ids
in every set in terms of the number of links in the network
(the lower the network id, the lower the number of links).
Note that for the 200 networks in a set, multiple networks
might have the same number of links. Table I gives a rough
mapping of the number of links to the network ids. Note that
the connectivity increases when the network id increases.
We can observe that when M = 1, the data generation
rate supported by the heuristic strategy (labeled A?) is almost
always the same as the upper bound (labeled \}) computed
by the flow model (see Figures 7 and 8). When M = 2,
the comparison is given in Figures 9 and 10. For the first
two sets of networks, the average difference between the two
throughputs is 15.6% for the set of networks with unit capacity

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

20 T

o —
15 t
< 10
5|

0 20 40 60 80 100 120 140 160 180 200
Network ID

(a) With unit capacity links

20 T
A —
7‘1h
15
< 10
5 L
O L L L L L L L L L

0O 20 40 60 80 100 120 140 160 180 200
Network ID
(b) With random capacity links
Fig. 8. For the last two sets of 200 instances of 30-node networks, data

generation rate obtained by the heuristic strategy vs the upper bound computed
by flow model when M =1

links and it is 14.8% for the set of networks with links of
random capacity. For the last two sets of networks, the average
difference between the two throughputs is 8.1% for the set
with unit capacity links and it is 8% for the set with links
of random capacity. As it takes longer to compute the upper
bound using the flow model for M = 3, we have computed A}
for every fourth network in the first two sets of networks. The
comparison for these 50 networks in each set when M = 3 is
shown in Figure 11. The average difference between the two
throughputs is 9.1% for the networks with unit capacity links
and it is 11.6% for the set of networks with random capacity
links. Thus, the heuristic strategy achieves data generation
rates very close to the upper bound (irrespective of the method
used to generate the random networks). The implications of
this is two-fold. First, it validates the flow model, i.e., it
shows that even though the flow model does not take waves
into account and ignores the discrete nature of the packets, it
gives a tight upper bound on the maximum achievable data
generation rate. Second, it shows that the heuristic strategy is
close to the optimal.

B. Engineering Insights

In Figures 12 and 13, we have plotted the throughputs
computed by the flow model when M = 1, M = 2 and for
convergecast for all the four sets of networks. The throughput
of convergecast is very low when compared to the throughput
when in network computation is enabled and hence for ease of

14 | oy 1
h
)\'

12 | 2 1

10 + 1
<

0O 20 40 60 80 100 120 140 160 180 200
Network ID
(a) With unit capacity links

<

0 20 40 60 80 100 120 140 160 180 200
Network ID
(b) With random capacity links
Fig. 9. For the first two sets of 200 instances of 30-node networks, data

generation rate obtained by the heuristic strategy vs the upper bound computed
by flow model when M = 2

illustration, we have magnified its throughput by a factor of ten
in the plots in Figures 12 and 13. We see from these plots that
in-network computation results in significant improvements in
terms of network performance when compared to convergecast
(which is a typical store and forward strategy). The achievable
throughput when M = 1 or M = 2 is approximately 10
times higher than that possible with convergecast, especially
at higher connectivity.

In Figure 12, we also observe that the increase in throughput
when connectivity is very high can be very significant when in-
network computation is allowed compared to when converge-
cast is used. Although, connectivity helps in increasing the
throughput of convergecast, the increase is not as significant
as it is when in-network computation is allowed. However,
for the last two sets of networks (see Figure 13) which are
generated using a different technique, this is not true and the
increase in throughput for convergecast with connnectivity is
proportional to the increase in throughput using in-network
computation (although lower by a factor of ~ 10). The reason
for this is that in the second method, at high connectivity
more nodes are directly connected to the sink compared to
the number of direct links to the sink in the networks with
high connectivity generated using the first method.

In Figure 12, we also note that A\] > A3 and observe that
at low connectivity (for network ID < 50), the throughput
possible when M = 1 is twice that possible when M = 2.
But as the connectivity increases, the throughputs of these are

SAPPIDI et al.: COMPUTING STATISTICAL FUNCTIONS IN WIRED NETWORKS

20 T

15 ¢]

<
0 20 40 60 80 100 120 140 160 180 200
Network ID
(a) With unit capacity links
<

0 20 40 60 80 100 120 140 160 180 200
Network ID
(b) With random capacity links
Fig. 10. For the last two sets of 200 instances of 30-node networks, data

generation rate obtained by the heuristic strategy vs the upper bound computed
by flow model when M = 2

not very different and the average difference between them is
only 19.3% for networks with unit capacity links and 19.1%
for networks with random capacity links. Likewise, for the last
two sets of networks (see Figure 13), the average difference
between A} and Aj is just 12.7% for networks with unit
capacity links and 13% for networks with random capacity
links.

We conclude this section with two interesting facts. The
first one is that there is one network, the star network (all
nodes are directly connected to the sink), for which in-network
computation does not help. The throughput is equal to the
capacity of the link with minimum capacity and it is the same
as that of convergecast for all M. The second fact is on the
networks with unit capacity links. For these networks when
M =1, any tree achieves a data generation rate of exactly 1.
And thus, A] is also equal to the number of trees needed to
achieve it. This shows that a single path routing could be A}
times worse than a multiple path routing.

In summary, whenever the sink is interested in a statistical
function of the data being collected, in-network computation
should be used with multiple tree routing.

VI. CONCLUSION

In this paper, we have identified and addressed some of the
challenges posed by introducing in-network computation when
a sink is interested in a statistical function of the data being
collected by some nodes. We have proposed a very simple

14 | A3t 1

12 1

20 25 30 35 40 45 50
Network ID

0 T
0 5

10 15

(a) With unit capacity links

12 1

10]

e
1 L L L L L L

0 T i
0O 5 10 15 20 25 30 35 40 45 50
Network ID
(b) With random capacity links
Fig. 11. For 50 30-node random networks in the first two sets, data generation
rate obtained by the heuristic strategy vs the upper bound computed by flow
model when M = 3

and compact flow model that computes an upper bound on the
maximum achievable data generation rate in a network when
the sink is interested only in the first M/ moments. We have
also developed a heuristic strategy that can be implemented in
practice in a network. This strategy achieves a data generation
rates close to the upper bound computed by the flow model.
It is based on the idea that to enable the largest number of
opportunities for aggregation, some delay needs to be imposed
at intermediate nodes. However, this does not impact the end
to end delay to compute the function for a given wave since the
sink cannot compute this function before it has received all the
data for that wave. We also note that the network performance
when in-network computation is used is substantially higher
than the performance of convergecast.

The centralized heuristic strategy proposed in this paper has
a near-optimal performance. But a distributed strategy which
is not only fault tolerant but also supports a dynamic network
topology is desirable. Thus, as part of our future work, we
propose to develop such a distributed heuristic strategy.

REFERENCES

[1] R. Sappidi, A. Girard, and C. Rosenberg, “Maximum achievable
throughput in a wireless sensor network using in-network computation,”
Submitted to IEEE/ACM Trans. Netw., 2012. [Online]. Available:
http://ece.uwaterloo.ca/~ cath/preprint.pdf

[2] L.R.Ford and D.R.Fulkerson, “Constructing maximal dynamic flows
from static flows,” Operation Research, vol. 6, pp. 419—433, 1958.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

20
15 ¢]
< 10t
51
o [P A
0 20 40 60 80 100 120 140 160 180 200

Network ID
(a) With unit capacity links

0
0O 20 40 60 80 100 120 140 160 180 200
Network ID

(b) With random capacity links

Fig. 12. For the first two sets of 200 instances of 30-node networks, the
comparison of throughputs when M = 1, M = 2 and convergecast

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

R. Burkard, K. Dlaska, and B. Klinz, “The quickest flow problem,”
Mathematical Methods of Operations Research, vol. 37, pp. 31-58,
1993. [Online]. Available: http://dx.doi.org/10.1007/BF01415527

N. Kamiyama, N. Katoh, and A. Takizawa, “An efficient algorithm
for evacuation problem in dynamic network flows with uniform arc
capacity,” IEICE - Trans. Inf. Syst., vol. E89-D, no. 8, pp. 2372-2379,
2006.

P. Tiwari, “Lower bounds on communication complexity in distributed
computer networks,” J. ACM, vol. 34, no. 4, pp. 921-938, 1987.

A. Giridhar and P. R. Kumar, “Toward a theory of in-network compu-
tation in wireless sensor networks,” JEEE Commun. Mag., vol. 44, pp.
98-107, 2006.

R. Gallager, “Finding parity in a simple broadcast network,” IEEE Trans.
Inf. Theory, vol. 34, no. 2, pp. 176—180, Mar. 1988.

A. Giridhar and P. Kumar, “Computing and communicating functions
over sensor networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 4, pp.
755-764, Apr. 2005.

S. Kamath and D. Manjunath, “On distributed function computation in
structure-free random sensor networks,” in Proc. IEEE ISIT, Jul. 2008,
pp. 647-651.

D. Mosk-Aoyama and D. Shah, “Fast distributed algorithms for com-
puting separable functions,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp.
2997-3007, Jul. 2008.

O. Ayaso, D. Shah, and M. Dahleh, “Information theoretic bounds for
distributed computation over networks of point-to-point channels,” IEEE
Trans. Inf. Theoru, vol. 56, no. 12, pp. 6020 —6039, dec. 2010.

A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903-917, 2001.

V. Shah, B. Dey, and D. Manjunath, “Network flows for functions,” in
Information Theory Proc. (ISIT), 2011 IEEE International Symposium
on, aug. 2011, pp. 234 -238.

N. Karmarkar, “A new polynomial-time algorithm for linear
programming,” in Proceedings of the sixteenth annual ACM
symposium on Theory of computing, ser. STOC ’84. New
York, NY, USA: ACM, 1984, pp. 302-311. [Online]. Available:
http://doi.acm.org/10.1145/800057.808695

20

0O 20 40 60 80 100 120 140 160 180 200
Network ID

(a) With unit capacity links

0O 20 40 60 80 100 120 140 160 180 200
Network ID

(b) With random capacity links

Fig. 13. For the last two sets of 200 instances of 30-node networks, the
comparison of throughputs when M = 1, M = 2 and convergecast

[15] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

Rajasekhar Sappidi graduated with B.Tech. in
Electrical Engineering from Indian Institute of Tech-
nology, Bombay, India in 2007. He worked as a
design engineer at Cypress Semiconductors, Hyder-
abad, India in 2007. Since 2008, he is pursuing
Ph.D. in Electrical and Computer Engineering at
the University of Waterloo, Canada. His research
focus is on modelling and performance evaluation
of wireless and wired networks with in-network
computation.

SAPPIDI et al.: COMPUTING STATISTICAL FUNCTIONS IN WIRED NETWORKS

Catherine Rosenberg was educated in
France (Ecole Nationale Supérieure des
Télécommunications de Bretagne, Diplome
d’Ingénieur in EE in 1983 and University of
Paris, Orsay, Doctorat en Sciences in CS in 1986)
and in the USA (UCLA, MS in CS in 1984),
Dr. Rosenberg has worked in several countries
including USA, UK, Canada, France and India. In
particular, she worked for Nortel Networks in the
UK, AT&T Bell Laboratories in the USA, Alcatel
in France and taught at Purdue University (USA)
and Ecole Polytechnique of Montreal (Canada). Since 2004, Dr. Rosenberg
is a faculty member at the University of Waterloo where she now holds a
Tier 1 Canada Research Chair in the Future Internet. Her research interests
are broadly in networking with currently an emphasis in wireless networking
and in smart energy systems. She has authored over 150 papers and has
been awarded eight patents in the USA. She is a Fellow of the IEEE. More

information can be found at http://ece.uwaterloo.ca/~cath/.

André Girard received the Ph.D. degree in physics
from the University of Pennsylvania, Philadelphia,
in 1971. He is an Honorary Professor with INRS-
EMT and an Adjunct Professor with Ecole Poly-
technique of Montréal, QC, Canada. His research
interests all have to do with the optimization of
telecommunication networks, and in particular with
performance evaluation, routing, dimensioning, and
reliability. He has made numerous theoretical and
algorithmic contributions to the design of telephone,
ATM, IP and wireless networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

