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A Measurement Framework for Directed Networks
Mostafa Salehi and Hamid R. Rabiee

Abstract—Partially-observed network data collected by link-
tracing based sampling methods is often being studied to obtain
the characteristics of a large complex network. However, little
attention has been paid to sampling from directed networks
such as WWW and Peer-to-Peer networks. In this paper, we
propose a novel two-step (sampling/estimation) frameworkto
measure nodal characteristics which can be defined by an average
target function in an arbitrary directed network. To this en d,
we propose a personalized PageRank-based algorithm to visit
and sample nodes. This algorithm only uses already visited
nodes as local information without any prior knowledge about
the latent structure of the network. Moreover, we introduce a
new estimator based on the approximate importance sampling
to estimate average target functions. The proposed estimator
utilizes calculated PageRank value of each sampled node as
an approximation for the exact visiting probability. To the
best of our knowledge, this is the first study on correcting
the bias of a sampling method by re-weighting of measured
values that considers the effect of approximation of visiting
probabilities. Comprehensive theoretical and empirical analysis
of the estimator demonstrate that it is asymptotically unbiased
even in situations where stationary distribution of PageRank is
poorly approximated.

Index Terms—Directed Networks, Link-tracing Sampling, Es-
timation, PageRank.

I. I NTRODUCTION

M ANY real-world communication systems such as the
Internet, World Wide Web (WWW), Peer-to-Peer sys-

tems, and Online Social Networks (OSNs) can be modeled as
a complex network of interacting dynamical nodes. In the last
decade, a considerable amount of research has been done on
measuring the characteristics of complex networks in various
domains [1]. To extract useful knowledge from a network,
one should study the collected network data. However, the
tremendous growth of the Internet and its applications in recent
years has resulted in creation of large-scale complex networks
involving tens or hundreds of millions of nodes and links.
Thus, it may be impossible or costly to obtain a complete
picture of these large networks, and partially-observed data is
often being studied for network characterization. The network
resulting from such measurements may be thought of as a sam-
ple from a larger underlying network. However, sampling in
a network context introduces various potential complications
such as the bias of selecting the nodes in the procedure of
sampling [2].

Many network characterization metrics we are aware of
can be expressed as averages of some target functions. For
example, the density of infected computers with a virus in the
Internet, the ratio of sport websites in the WWW networks,
and the average number of copies of a file in a Peer-to-Peer
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network, can be computed by the average of the target function
f : f(x) = 1, if nodex has desired characteristic (respectively,
is infected with that virus, is a sport website, has a copy of
that file), andf(x) = 0, otherwise.

A measurement framework for computing the average of
such functions can be achieved in two steps; (1) Sampling, and
(2) Estimation. In many cases (e.g. the Internet), the global
structure of a network is initially unknown and there is no
sampling frame (i.e., a list of all nodes within a network,
from which nodes can be directly sampled). Therefore, using
classical sampling methods such as random sampling are either
impossible or impractical, and link-tracing based sampling
methods are the only feasible solutions to collect data from
such networks. In these methods, one can see the neighbors of
already sampled nodes and make a decision on which nodes
to visit next. Snowball (which is similar to breadth-first search
in computer science) [2] and Random walk based methods [3]
are among the most popular link-tracing based methods.

In the Estimation step, an estimator is used to approximate
the network characteristics. An estimator is a function that
accepts a summary of the sampled data as input and outputs
an estimate of an unknown network characteristic. Specifically,
the selection bias of a sampling method can be corrected by
using the general idea of Hansen-Hurwitz estimator [4], i.e.
the measured value is weighted inversely proportional to the
visiting probability of the corresponding node [5]. Therefore,
we need to compute (or approximate) the visiting probabilities
of each sampled node. In particular, in undirected networks,
when data from snowballs with more than one wave are
available, it might be comparatively easy to compute the
visiting probabilities of each sampled node based on the first
few waves, but it is more complicated to find the required
visiting probabilities for snowballs of many waves [2], [6].
For random walk based sampling methods, in a sufficiently
long ergodic walk on an undirected network, we would expect
that the probability that a node is visited is proportional to its
degree [7].

Many of the networks around us such as WWW, Twitter, and
Peer-to-Peer networks contain directed links, or links which
do not have the same strength in each direction. However,
despite recent efforts on characterizing undirected networks
based on the sampled data [8], [9], [10], [11], little attention
has been made on the statistical properties of sampled directed
networks [12], [13]. The directed links pose a considerable
challenge to the process of network measurement (i.e., un-
known bias in the sampled nodes). In summary, computing
(or approximating) the visiting probabilities of sampled nodes
for directed networks still remains as an open problem. For
example, the stationary distribution for random walks on
a directed network is no longer determined by the degree
sequences. We can only show that a random walk process on
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a strongly connected directed network has a unique stationary
distribution (but, there is no analytical solution for it yet).
However, most real-world directed networks are not strongly
connected. Without this property, the limiting distribution of
a random walk is sensitive to the starting distribution, andits
analysis can be very complicated. A modification of random
walk which overcomes this problem allows for a jump with
small probability to a node at random from the whole network.
That is called PageRank in the Internet search literature [14].
It’s clear that according to our assumptions about the absence
of sampling frame, jumping to a random node from the whole
network may not be possible. Therefore, PageRank can not be
applied to our problem in its global definition.

In this paper, we propose a complete framework to measure
nodal characteristics which can be defined by average target
functions in an arbitrary directed network. In the sampling
step, we introduced a novel link-tracing algorithm by utilizing
the general idea of PageRank. We employ a modified version
of PageRank, called personalized PageRank [15], using a
specific set of nodes as a seed vector. Jumping is limited
to this seed vector. Thus, personalized PageRank determines
the importance of every node to the seed by using local
information. In particular, the proposed method samples the
underlying network by moving from a node to one of its
neighbors through an outgoing link, based on the approximated
probability of personalized PageRank.

Since these probabilities represent an approximation of the
exact visiting probabilities, we utilize the idea of approximate
ratio importance sampling to propose a new estimator. The
previous well-known work [5], [16] on the estimators for
correcting the bias, does not consider the effect of approx-
imation of visiting probabilities which we address in this
paper. Importance sampling is one of the methods of Monte
Carlo simulation [17] in which instead of generating a sample
from the target distribution (e.g., uniform distribution in our
case), the estimator generates a sample from a different trial
distribution (e.g., the distribution generated by the proposed
sampling algorithm). We evaluate our framework over large
synthetic and real datasets in terms of estimated average of
a target function (here, we focus on the infection ratio and
outdegree distribution) and its bias. Our results show thatthe
proposed method performs well even in low sampling rates.

II. RELATED WORK

Link-tracing based sampling methods in the context of net-
works are somewhat distinct from classical sampling methods
[2]. Random walk (RW) [7] is one of the most important and
widely used sampling methods in different kind of network
contexts such as uniformly sampling Web pages from the
Internet [18], content density in Peer-to-Peer networks [19],
degree distributions of the Facebook social graph [10], and
collecting data from information diffusion networks [20],[21].
A classic RW, samples a graph by moving from a node,x,
to a neighboring node,y, through an outgoing link, chosen
uniformly at random from the neighbors ofx. By this process
links and nodes are sampled. In any given connected and non-
bipartite undirected graph, the classic RW is biased towards
node with higher degree.

In general, the probability of selecting the next node de-
termines the probability that nodes are visited in sampling
procedure. Metropolis-Hastings technique [22] can be used
to modify the probabilities of the node selection in random
walk in order to have the uniform stationary distribution
for visiting each node. This technique is a general Markov
Chain Monte Carlo (MCMC) method [23] for sampling from
probability distributions based on constructing a Markov Chain
that has the desired distribution as its stationary distribution.
This approach, known as Metropolis-Hastings Random Walk
(MHRW), has been applied to Peer-to-Peer networks [19],
Facebook [10], and Twitter [24].

Alternatively, one can use the unmodified classic RW
method to sample from a graph and correct the degree bias
by re-weighting the sampled values. The Respondent-driven
sampling (RDS) [3], [16] is an example of this approach.
Actually, this is a framework in the field of social sciences to
sample and infer in hard-to-reach populations such as injection
drug users. In these populations, a sampling frame for the
target population is not available. Sampling from OSNs or
WWW network graph is analogous to the sampling of hidden
population in the social sciences. In the context of graph
sampling, the RDS method has been used for Facebook [10],
Twitter [24], and Peer-to-Peer networks [19].

One of the main assumptions of the above mentioned studies
is that the underlying network is undirected. Since most real-
world networks (such as WWW, Twitter, and Peer-to-Peer
networks) are directed, this assumption is not easily met in
real life. However, little attention has been paid to directed
networks by considering the effect of directed links. The
authors in [25] consider directed links in the Peer-to-Peer
network while maintaining desirable statistical properties (i.e.,
uniformity) for the sampling procedure. The main idea of
this RW based method is to avoid the calculation of each
node’s visiting probability, and instead to adjust the transition
probabilities iteratively, converging to a state in which the
sum of transition probabilities into each node equals1. The
resulting transition matrix is said to be doubly stochastic, and
induces uniform stationary distribution.

In [12], it is shown that when the sample size is relatively
small, the RDS method may generate relatively large biases
and errors if the studied networks are directed, indicatingthat
estimates from previous RDS studies should be interpreted
and generalized with caution. In [13], a random walk sampling
algorithm with jumps, called Directed Unbiased Random Walk
(DURW), is proposed that achieves asymptotically unbiased
estimates of the outdegree distribution of a directed graph.
The authors construct an undirected graph using the nodes that
are selected by the random walker on the directed graph. The
undirected graph is built to allow the walker to traverse known
outgoing links backwards, and guarantees that the probability
of sampling a node can be approximated, even though incom-
ing links are not observed. However, this method is based on
the assumption that nodes can be sampled uniformly at random
from the original graph (i.e., there is some means of obtaining
a list of nodes in the network) which is not always feasible.
For example, while it is feasible for Wikipedia and Twitter,it
is not feasible for the WWW graph.
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In conclusion, while the effect of directed links have been
studied, there is no efficient measurement framework for
directed networks in the literature. Moreover, no analytical
solution for the visiting probabilities of the nodes is available
for a general directed network.

III. PRELIMINARIES

A. Basic Notations and Definitions

Let G = (V,E) with n = |V | and m = |E| be the
graph representing a complex network, whereV is the set
of nodes, andE = {(i, j) : i, j ∈ V,Aij = 1} is the
set of unweighted directed links between pairs of nodes.Aij

indicates the presence (= 1) or absence (= 0) of relation of
interest (such as a hyper-link in WWW, friendship in a social
network, and file transferring in a Peer-to-Peer network) from
i to j. The aboven × n matrix A is called an adjacency
matrix. The indegree of a nodex, din(x), is the number
of distinct ingoing links (y1, x), ..., (yk, x) into x, and its
outdegree,dout(x), is the number of distinct outgoing links
(x, y1), ..., (x, yk) out of x.

A link is called reciprocal if a connected pair of nodes have
both an ingoing and an outgoing link between each other. The
proportion of reciprocal links in a network called reciprocity,
r (i.e. r = 1 when the network is undirected, andr = 0
when the network is directed in a way such that there are no
reciprocal links).

Let S be a sample of nodes whereS ⊂ V , andG(S) is
the induced subgraph ofG based on the sampleS. Let N(S)
denote the neighborhood ofS;

N(S) = {w ∈ V − S : ∃v ∈ S s.t. (v, w) ∈ E} (1)

Therefore,N(S) is the set of nodes that we know exist due
to other outgoing links but have not yet visited.

Let L be a set of real-valued labels. For instance, a label
can be the degree of a node. We assume that a labellx ∈ L is
assigned to each nodex ∈ V by a target functionf : V → L,
i.e. f ⊆ {(x, lx) : x ∈ V, lx ∈ L}. We can express many
network characterization metrics as averages of some target
functions overV . Given a target functionf , the average off
is: avg(f) =

∑

x∈V f(x)/|V |.
Our main goal in this paper is to propose a measurement

framework to computeavg(f) (based on the sampled nodes
S) for a general target functionf (that defines a nodal
characteristic) in an arbitrary directed networkG. Our only
assumption onG is that it is weakly connected, i.e. every
node can be reached from every other node by traversing the
links without considering the direction of the links.

B. Personalized PageRank Vectors

PageRank was first introduced by Brin and Page [14] for
search algorithms in the WWW network. However, it can be
defined for any graph as a stationary distribution of a certain
random walk over that graph. At each step, with probability
(1−α), the random walk follows a randomly outgoing link of a
node, and with probabilityα the random walk makes a jump to
a new node chosen uniformly among all nodes in the network.
The jumping constantα (0 < α ≤ 1), controls the diffusion

rate. With smallerα, the random walks spread further from the
initial nodes before performing a random jump. Traditionally,
the value ofα is chosen to be0.15.

Let A be the adjacency matrix of a graphG. The PageRank
vectorp(s) of this graph is a visiting probability distribution
on the nodes ofG that can be defined as the solution of the
following equation:

p(s) = αs + (1− α)pD−1
A A (2)

wheres is a seed vector that includes the initial distribution for
starting nodes. We use the notationD−1

A to indicate the diago-
nal matrix with the inverse outdegree for each node. Globally,
uniform s = 1/n is considered for computing PageRank.
However, an arbitrary distributions can lead to creation of
personalized PageRank [26]. Specifically, the random walk
in the personalized PageRank only jump to a few nodes of
personal interest. It can be shown that for anys andα, there
is an unique vectorp(s) satisfying Equ.(2) [15].

There are various algorithms for computing global PageR-
ank and personalized PageRank [15], [27], [28]. As a standard
PageRank algorithm, we can efficiently compute the solution
of Equ.(2) by applying the power method [29]. Given some
initial distributions, the power method is defined as following
iteration:

p(k+1) = (1− α)p(k)D−1
A A

p(k+1) = p(k) + (1− ‖p(k+1)‖1)s

where‖.‖1 denotes the1-norm. As an algorithm, the power
method continues this iteration until‖p(k+1) − p(k+1)‖1 < δ
for a user-provided stopping toleranceδ. Based on the idea of
the power method, Gleich and Polito [28] present an efficient
algorithm, called boundary-restricted personalized PageRank
algorithm (BRPPR), to compute an approximation of the
personalized PageRank vectorp(s) by examining only a small
fraction of the input web graph near the starting vectors.
Specifically, this algorithm iteratively divide the web pages
into an active and inactive set. At each iteration, the set of
active web pages is expanded to include more web pages
that are likely to have a high personalized PageRank value.
Specifically, it expands pages until the total rank on the
frontier set (the set of pages that we know exist due to other
outgoing links but have not yet visited) of pages is less than
an expansion tolerance. Therefore, only the set of active pages
and their outgoing link information are actually involved in
the computation. Moreover, a stopping tolerance threshold
is considered in order to determine the termination of the
approximation algorithm. The analysis of BRPPR leads to the
following theorem (theorem 3.3 and remark 3.4 of [28]):

Theorem 1:The BRPPR algorithm with expansion tolerance
κ and stopping toleranceδ yields an approximate PageRank
vector p̂, where‖p− p̂‖1 ≤ 2(1−α)

α .κ+ 2−α
α2 .δ

where ‖p− p̂‖1 gives the Manhattan distance between two
distribution vectors ofp andp̂. Although, the authors in [28]
address the problem of calculating the PageRank score of a
Internet webpage in the field of search engines, we utilize their
general idea here in the context of network sampling.
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C. Importance Sampling

As mentioned, we are interested in measurement of quan-
tities that can be written as averages of some target functions
f over a finite setV (i.e., the set of all nodes). Letπ : V →
[0,∞) be the target distribution on a setV . In our problem,
the desiredπ is the uniform distribution onV , then all nodes
x are equally likely to be selected, i.e.π(x) = 1/|V |. Let
π̂ : V → [0,∞) be a target measure that is unnormalized form
of π, i.e. π̂(x) = π(x).Zπ̂ whereZπ̂ > 0 is the normalization
constant of̂π. We say that measurêπ induces a corresponding
probability distribution onV . Therefore,̂π is a relative weight,
which represents the probability ofx to be chosen in the
distributionπ. In our problem, we havêπ = 1 (for all x ∈ V )
andZπ̂ = |V |.

The average of a target function relative toπ̂ is essentially
a sum where the target measure is the probability distribution
π. Hence, we can write

avg(f) = avgπ̂(f) = sumπ(f) =
∑

x∈V

f(x).π(x) (3)

For example, in our previous example of infection in a
population, the infection ratio is an average of the target
function relative to an uniform target measure. Alternatively,
it is a sum of the same function relative to the uniform
distribution onV (i.e., π(x) = 1/|V | for all x).

The naive estimator foravgπ̂(f) works as follows [17]: (1)
Generate a random sampleX from the distributionπ induced
by π̂, (2) Compute the function off for sampledX (i.e.,
f(X)). It is easy to check that this estimator is unbiased.
However, since we assume that there is no sampling frame in
our problem, uniform sampling from the distributionπ may
be hard or costly. Consequently, this simple estimator is ineffi-
cient. To solve this problem, we can useImportance Sampling
(IS), as one of the methods of monte carlo simulation [17].
In the following, we state some theorems about the general
idea of importance sampling [30]. Although, the authors in
[30] address the problem of externally measuring aggregate
functions over documents indexed by search engines, we use
them here in the context of network sampling.

1) Importance Sampling (IS):The basic idea of importance
sampling is: instead of generating a sampleY from the target
distribution π, the estimator generates a sampleX from a
different trial distributionp onV to directly estimate statistical
sums relative to the target measureπ̂. Specifically, given a
target functionf , importance sampling estimator estimates
sumπ̂(f) =

∑

x∈V f(x).π̂(x). The trial distributionp can
be any distribution, as long assupp(π) ⊆ supp(p) (here,
supp(p) = {x ∈ V |p(x) > 0} and supp(π) is defined
similarly). In particular, we can choosep to be a distribution
that is easy to sample from. By consideringp̂ as unnormalized
form of p, the importance sampling estimator is then defined
as follows:

EIS(X) = f(X).
π̂(X)

p̂(X)
= f(X).w(X), X ∈ V (4)

where w(X) is called the importance weight. Functionf
is computed by samples of distributionp. It can be shown

that EIS(X) is an unbiased estimator forsumπ̂(f). Imple-
mentation of an importance sampling estimator requires: (1)
Ability to sample efficiently from the trial distributionp; and
(2) Ability to compute the importance weightw(x) (or its
estimator) and the function valuef(x), for any given node
x ∈ V . There is no need to know the normalization constant
Zπ̂ or to be able to sample fromπ. This basic importance
sampling estimator is only suitable for estimating sums. We
next extend it for estimating averages.

Importance Sampling for average: Recall that the esti-
mator for averages estimatesavgπ̂(f) = sumπ(f). If we
are able to computeπ(x) for eachx ∈ V , we can use the
importance sampling estimator described above to estimate
average of a function relative tôπ. However, in many cases
we can only computêπ(x) and notπ(x). For example, in our
case,π(x) = 1/|V |, where|V | is the number of nodes, that is
typically unknown. Ratio importance sampling is a technique
for estimating averages relative to any target measureπ̂, even
whenπ(x) is unknown.

The ratio importance sampling estimator computes two
sum estimators:M1 of sumπ̂(f), andM2 of sumπ̂(w), and
then outputsM1/M2. However, there is one problem: the
expectation of a ratio is not the ratio of the expectations, i.e.,
E(M1/M2) 6= E(M1)/E(M2). To solve this problem, ratio
importance sampling utilize the following idea: if we replace
E(M1) and E(M2) by averages of multiple independent
instances of the estimator ofE(M1) and E(M2), the dif-
ference betweenE(M1/M2) andE(M1)/E(M2) diminishes
to 0. Therefore, the ratio importance sampling estimator for
avgπ̂(f) is then defined as follows:

ERIS(X1, X2, ..., Xn) =

1
n

n
∑

i=1

EIS(Xi)

1
n

n
∑

i=1

w(Xi)
(5)

whereX1, X2, ..., Xn aren independent samples from the trial
distributionp.

2) Approximate Importance Sampling (AIS):Unfortunately,
in many cases we are unable to accurately compute the
importance weight functionw. This problem arises, e.g. in
our case, due to complexity of analysing a RW based sampling
method on a directed network. In the following, we address the
effect of the approximate importance weights on importance
sampling. Approximate importance sampling method employ
an “approximate importance weight function”u(x) rather than
the exact onew(x). This estimator can be defined as:

EAIS(X) = f(X).u(X) (6)

whereX is distributed according to the trial distribution̂p. The
estimation generated by approximate importance sampling is
close to the true value as long as the importance weight func-
tion w(x) and the approximate importance weight function
u(x) are similar. To analyse the bias of this estimator, we
consider the following theorem.

Theorem 2:([30]) Supposesupp(u) ⊆ supp(w)

E(EAIS(X)) = sumπ̂(f(Y )).E( u(Y )
w(Y ) ) +

Zπ̂.cov(f(Y ), u(Y )
w(Y ) )
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whereX ∼ p̂, Y ∼ π, andZπ̂ is the normalization constant.
Therefore, there are two types of bias in this estimator: (1)
multiplicative bias, depending on the expectation ofu/w
relative toπ. It may have a significant effect on the estimator’s
bias, and thus must be removed. (2) additive bias, depending
on the correlation betweenf andu/w and on the normaliza-
tion constantZπ̂. It is typically less significant, as in many
practical situationsf and u/w are uncorrelated (e.g., when
f is a constant function, as is the case with infection ratio
example).

To remove the multiplicative bias, we assume that it is pos-
sible to estimate the multiplicative bias, and divideEAIS(X)
by this estimate. For an instancex ∈ V , the ratiou(x)/w(x)
is called the weight skew atx. The multiplicative bias factor is
the expected weight skew relative to the target distribution π.
To remove this bias, we need to estimate the expected weight
skew. LetEWSE(X) be an unbiased weight skew estimator
for E( u(Y )

w(Y ) ). It follows from Theorem 2 that:

E(EAIS(X))

E(EWSE(X))
= sumπ̂(f(Y )) +

Zπ̂.cov(f(Y ), u(Y )
w(Y )

E( u(Y )
w(Y ) )

(7)

Thus, the ratio of the expectations of the two estimators,
ESTAIS(X) and ESTWSE(X), gives us the desired re-
sult sumπ̂(f), modulo an additive bias factor that depends
on the correlation betweenf and u/w. The additive bias
can be considered0 since f is often a constant function.
Ignoring this additive bias, it would seem that the ratio
ESTAIS(X)/ESTWSE(X) is a good estimator forsumπ̂(f).
Although the expectation of a ratio is not the ratio of the ex-
pectations, one applies the ratio estimation technique similarly
to what we did in the ratio importance sampling. Therefore, the
approximate ratio importance sampling estimator forsumπ̂(f)
can be defined as follows:

EARIS(X1, X2, ..., Xn) =

1
n

n
∑

i=1

EAIS(Xi)

1
n

n
∑

i=1

EWSE(Xi)
(8)

whereX1, ..., Xn are n independent samples from the trial
distribution p̂.

Approximate importance sampling for averages:Here,
we employEARIS to design an importance sampling estimator
for averages. Recall that the estimator for averages estimates
avgπ̂(f) = sumπ(f). Thus, we need to compute the impor-
tance weight functionwavg(x) = π(x)/p̂(x). However,π(x)
cannot be calculated exactly. For solving this problem, we
use an approximate weight functionu(x) ≈ wavg(x) instead
of wavg(x), and then fixing the bias using approximate ratio
importance sampling estimator (i.e.,EARIS) described above.
To this end, we need to come up with the weight skew
estimator whose expectation equalsE(u(Y )/wavg(Y )), where
Y is distributed according toπ. It can be shown that with a
constant functionf , the approximate weightu(X) itself is
an unbiased estimator forE(u(Y )/wavg(Y )) [30] . We thus
set EWSE(X) = u(X). Therefore, approximate importance

sampling for averages,EAV G, is then defined as follows:

EAV G =

1
n

n
∑

i=1

f(Xi).u(Xi)

1
n

n
∑

i=1

u(Xi)
(9)

whereX1, ..., Xn are n independent samples from the trial
distribution p̂. The following theorem shows the bias and the
variance of this estimator.

Theorem 3:([30]) The bias and variance ofEAV G (equ. 9)
are defined as
Bias(EAVG) = EAVG(X1, X2, ..., Xn) − avgπ̂(f) =
Zπ̂.cov(f(Y ), u(Y )

wavg (Y )
)

E( u(Y )
wavg(Y )

)
+O( 1n )

var(EAV G(X1, X2, ..., Xn)) = O( 1
n )

IV. PROPOSEDMEASUREMENTFRAMEWORK

The pseudo code of proposed framework, called Directed-
Network-Measurement (DNM), is shown in Algorithm IV.1.
Our main goal is to approximate the probability of each visited
node in sampling procedure, and correct the bias of sampling
by using the idea of approximate importance sampling. The
proposed framework is designed through two steps; sampling
and estimation. The sampling step initially starts with an
empty sample setS, and adds a random nodey to it as
a seed. Subsequent nodes of the sample are chosen based
on the following procedure. In each iteration, the set of
neighborhood of already sampled nodes, i.e.N(S), and its
corresponding active link matrix,L, is generated. The matrix
L is the adjacency matrix for all outgoing links from nodes
in S, but may reference nodes that are not inS. We then
compute one PageRank iteration onL from a vectorp̂ to a
vector p̃. Next, we add nodes (that are likely to have a high
personalized PageRank value) toS until the total probability
on the remainder of the neighborhood is less than an expansion
ratio of κ.

As we mentioned earlier, the essential property of a sam-
pling method that makes it appropriate for network inference
is that its visiting probabilities are known or estimable for
the sampled nodes. In the estimation step, we use computed
PageRank value of each sampled node (i.e.p̂), as an ap-
proximation of the exact visiting probability. Then, we utilize
the idea of approximate importance sampling to design a
new estimator and study its performance for a general target
function. Specifically, we consider the obtainedp̂(x) as an
approximate weight functionu(x).

According to the general ratio importance sampling esti-
mator (refer to Equ.9), we propose the following estimator
for computing the average of a general target functionf in a
directed network.

EDIR =

1
n

n
∑

i=1

f(Xi).p̂(Xi)

1
n

n
∑

i=1

p̂(Xi)
(10)

whereX1, X2, ..., Xn are n samples extracted by sampling
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procedure.

Algorithm IV.1: DNM(y, α, κ, δ)

S = {y}; L = matrix of y to its outgoing links
SUM = 0
WSE = 0
p̂ = 0; p̂(y) = 1
% Sampling step
repeat

do































































p̃ = (1 − α)p̂D−1
L L

p̃ = p̃+ (1− ‖p̃‖1)
while p̃(N(S)) > κ

do















Find x ∈ N(S) with max value inp̃
Add x to S
Removex from N(S)
Updatep̃(N(S))

UpdateDL andL
ω = ‖p̃− p̂‖1
p̂ = p̃

until ω < δ
% Estimation step
for x ∈ S

do
{

SUM = SUM + f(x).p̂(x)
WSE = WSE +p̂(x)

return (SUM/WSE)

The following theorem shows the bias and variance of the
proposed estimator.

Theorem 4:The bias and variance ofEDIR (equ. 10) are
defined as
Bias(EDIR) = EDIR(X1, X2, ..., Xn) − avgπ̂(f) =
|V |.cov(f(Y ),p̂/p)

E(p̂/p) +O( 1
n )

var(EDIR(X1, X2, ..., Xn)) = O( 1
n )

whereY ∼ π = 1/|V |, andZπ̂ is the normalization constant.
proof: By substitutingu = 1/|V |, wavg = p, andZπ̂ = |V |

into Theorem 3, the theorem is proved.
We conclude from this theorem that if we use sufficiently

large number of samples, then we are likely to obtain an
estimate ofavgπ̂(f), which has only additive bias that depends
on the correlation betweenf and p̂/p.

V. EXPERIMENTAL EVALUATION

A. Datasets

Synthetic Networks: We utilize three kinds of random
models for generating directed networks:

Directed Erdos-Renyi (DER) networks [31]: The model
starts with|V | nodes, which link to each other with probability
p0 ∈ (0, 1). The reciprocity of these network equals to1.
In order to decrease the reciprocity, reciprocal links in the
base network are randomly chosen and converted to irrecip-
rocal links. We generate networks by using this model with
|V | = 2000, p0 = 0.1, andr = 0.6.

Directed Watts-Strogatz (DWS) networks [32]: The model
starts from a completely regular network with identical degree

(k-nearest neighbors’ connection) and clockwise links. Each
link will be rewired with two randomly selected nodes with
probability p0 ∈ (0, 1). In simulation, we generate networks
with |V | = 2000 nodes by settingk = 20 andp0 = 0.1.

Directed Scale Free (DSF) [33]: Network starts withm0

nodes, which link to each other with probabilityp0 (as in
an Erdos-Renyi random graph). At each time step, one node
andm links are added to the network. The endpoints of the
links are randomly selected among all nodes according to the
following probability:p1(x) = β1

din(x)
|E| + β2

dout(x)
|E| + β3

1
|V | ,

whereβ1 + β2 + β3 = 1. We generate networks with|V | =
1000 and average degree of nodes= 50. We leave the number
of links, |E|, unconstrained. For attaching probability, we set
β1 = 0.7, β2 = 0.2, β3 = 0.1. Moreover, we setm0 = 2 for
generating initial Erdos-Renyi graph and considerp0 = 1 to
have them fully connected.

Real-world Networks: Moreover, we considered some real-
world directed network:

An Online Social Network (OSN): This is a Facebook-like
Social Network [34] that originate from an online community
for students at University of California, Irvine. The dataset
includes the 1,899 users that sent or received at least one
message. There are 20,296 directed links among these users.

A Peer-to-Peer Network (P2P): We use a snapshot of the
Gnutella Peer-to-Peer file sharing network collected in August
2002 [35]. Nodes and links represent hosts and connections
between them in this network, respectively. The dataset in-
cludes the 10,876 hosts and 39,994 directed links.

The Internet Autonomous System (AS): The network of
routers comprising the Internet can be organized into sub-
networks called Autonomous Systems (AS). Each AS ex-
changes traffic flows with some neighbors. We use a CAIDA
AS graph collected in February 2004 [36]. The dataset con-
tains 16,493 nodes and 66,744 links.

B. Target Function

The fast growth of Internet and other communication net-
works makes them a suitable target for malicious activities.
An infection spreads through the links of such networks
constructed by computers and their communication channels.
The process by which malicious objects such as worms,
trojan horses, and computer viruses travel through computer
networks is analogous to the process of spreading epidemics
through a population. In this paper, we study the infection
ratio in spreading of a disease in a population as a network
characteristic. It is an example of family of binary properties
of a network where each node is tagged by label0 or 1. In
particular, infection ratio can be considered as the average of
a target functionf : f(x) = 1, if individual x is infected, and
f(x) = 0, otherwise.

To spread disease on the test datasets, we use the
susceptible-infectious-recovery (SIR) epidemic spreading
model [37]. This is an epidemiological model widely used to
simulate the spreading of epidemics, i.e. number of people
infected with a contagious disease, in a population as a
function of time. At every time step, the model assumes a
transition rateθ1 for a susceptible person to become infected,
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Fig. 1. The relation between expansion tolerance (κ) of the proposed sampling
method and sampling rate for all test networks.

if an infected neighbor is present, and a rateθ2 for an infected
person to become recovered or die. The recovered person will
never be infected again. In the simulations, we useθ1 = 0.2
and θ2 = 0.05. We run the simulation until desired ratio of
infected nodes obtained.

C. Experimental Setups

We evaluate the performance of the DNM framework in
various situations and in terms of different aspects. We con-
sider two metrics;1) estimated infection ratio, and2) bias
(which is defined by the absolute difference between estimated
and true infection ratio). For each sampling rates in the range
of 0.01% to 40%, we repeated the simulations 100 times
by selecting random nodes as seed, and finally, averaged the
obtained values. We set jumping factorα = 0.15 and stopping
toleranceδ = 10−7 as the inputs of the proposed framework.

Moreover, we set expansion toleranceκ based on the desired
sampling rates. Since, the parameterκ controls the accuracy
of the approximation of PageRank values (i.e., the visiting
probabilities of the sampled nodes), different values ofκ
provides different sampling rates. Specifically, the lessκ leads
to more samples, and consequently the more accuracy is
obtained. We study the obtainedκ per various sampling rates
for all test networks. Our result is demonstrated in Figure1. As
we can see, the desired sampling rate depends on the structure
of underlying network. According to Theorem 1, the maximum
error of the approximating visiting probabilities is in therange
of (0, 6.8). This means that the proposed sampling method
computes the visiting probabilities of the sampled nodes with
reasonable accuracy even in low and medium sampling rates.

D. Evaluation Results

1) Main Results:The results of our study on the perfor-
mance of proposed framework is shown in Figure 2. As we
can see, in general, the error in terms of estimated infection
ratio and bias decreases significantly by increasing the sampled
nodes. In particular, we reach desirable result in medium
sample rates (estimated infection ratio and bias converges
to 20% and 0, respectively). However, we found different
behaviour in DWS networks; the estimated infection ratio is
close to true value in all sampling rates (i.e. it’s independent
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Fig. 2. The performance of the proposed framework in terms of(a) Estimated
Infection Ratio (the true value is20%) and (b) Bias.

of number of samples). Moreover, the bias decreases with
increasing the sampling rate.

2) Convergence analysis:Deriving valid population esti-
mates from sampled nodes is based on the assumption that the
samples are derived from the equilibrium distribution, which is
true asymptotically. In this section, we study the convergence
of the DNM estimates to equilibrium distribution during the
data collection step.

In general, the starting nodes (the seeds) are not selected
from a sampling frame, but instead are ad-hoc samples. One
way to reduce the dependence of final estimates to seed nodes
is to use a burn-in period by discarding large numbers of initial
sampled nodes before analyzing the collected data. Given the
high cost in terms of time and effort of collecting data, this
may not be a desirable approach. Moreover, the authors in [38]
demonstrate that in a without-replacement sampling setting,
this approach can even introduce more bias. In fact, the only
real way to apply a burn-in to ensure accuracy would be to
repeat the burn-in after every sampled node.

An alternative approach would be to estimate the relative
visiting probabilities of all sampled nodes, conditioned on
the composition of the seeds, and compute the estimates
based on those probabilities. We follow this approach in the
proposed framework. In particular, since jumping in personal-
ized PageRank is limited to the seed vector, we approximate
the importance of every node to the seed, i.e. the visiting
probability, which is used in the Estimation step to correct
the bias to the seeds.

To monitor the convergence of the proposed framework, we



8

use a standard diagnostic test developed within the MCMC
literature, namely Geweke [39]. This test was applied for
the first time in the context of network sampling in [10].
The Geweke diagnostic detects the convergence of a single
Markov chain by comparing the location of the sampled
parameter on two different time intervals of the chain. The
test is a standard Z-score with the standard errors adjusted
for autocorrelation. We used this diagnostic in different runs
of the proposed framework (generated by selecting some
random nodes as seed) for the OSN dataset, and compares
the difference between the first10% and the last50% of
the samples. Figure 3 presents the results of the Geweke
diagnostic for the infection ratio as a network characteristic.
We observe that after sampling approximately200 nodes, the
Z-scores are strictly between[−1, 1]. This indicates that the
proposed framework has achieved a good mixing with our
initial selection of the random seeds.
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Fig. 3. The Geweke convergence diagnostic of DNM for infection ratio in
the OSN dataset. The lines show the GewekeZ-score for some runs with
different random nodes as seed.

3) The effect of network reciprocity:Here, we study the
performance of the proposed framework in networks with
different levels of reciprocityr which is an important pa-
rameter in characterization of directed networks. To this
end, we generate some underlying directed networks with
r ∈ {0.6, 0.7, 0.8, 0.9} by DER model. As we can see the
results in Figure 4, in lower sampling rates, the amount of
error in estimation of infection ratio decreases with decreasing
reciprocity (we observe the same pattern in terms of bias). As
a general conclusion, if we have to sample a few nodes from a
network, lower proportion of reciprocal links in that network
leads to more accurate outputs.

4) Sensitivity to true infection ratio:Figure 5 shows the
sensitivity of DNM to infection ratio in DER, DWS, DSF, and
OSN datasets (due to page limitation, we did not demonstrate
the results for P2P and AS networks). We run the simulation
of disease spreading until the true ratio of infected nodes
reaches to desired values (specifically,20%, 30%, 40%, and
50%). These ratios are used as the ground truth to performance
evaluation.

According to the results, one can categorize the networks
into three groups. The first group includes the networks
generated by the DER model. In this group, the estimated
infection ratio is more farther from the true value by increasing
the true infection ratio. This error converge to zero for higher
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Fig. 4. The effect of reciprocity (r) on the performance of DNM in underlying
networks generated by DER model. True value of infection ratio (= 0.2) shown
in the grey dotted line.

sampling rate in various infection ratios (In terms of bias,we
observe the same pattern; higher infection ratio leads to higher
bias in lower sampling rates). In second group, that includes
the DWS networks, the infection ratio dose not have major
impact on the estimated values and their biases.

We found an inverse pattern in third group which is com-
posed of the DSF and OSN (we observe the same results in the
P2P and AS networks). In particular, lower true infection ratio
leads to higher error in estimation of infection ratio (similarly,
for obtained bias) for lower sampling rates. However, this error
reduces by increasing the number of samples. The deduction
rate is higher for the populations with lower infection ratio.
As a general conclusion, in a scale free network with higher
infection ratio, lower sampling rates are sufficient and result in
a reasonable bias. More specifically, increasing the sampling
rate does not have significant impact on the bias.

5) Estimating Outdegree Distributions:In what follows
we compare the performance of DNM against the DURW
sampling algorithm proposed by Ribeiro et al. [13] (presented
in Section II). This is the most closely related method to
ours that achieves asymptotically unbiased estimates of the
outdegree distribution of a directed graph. However, thereis
a fundamental difference between the proposed framework
and DURW; DNM only uses already visited nodes as local
information without any prior knowledge about the latent
structure of the network. In addition, the DURW algorithm is
based on the assumption that nodes can be sampled uniformly
at random from the original graph, which is not always
feasible.

There are two controlling parameters in DURW. The first
one is denoted byc, which is the cost of a random jump (i.e.
the average number of sampling steps required to perform the
jump). The second one,w, is the random jump weight that
controls the probability of performing a random jump. Figure
6 shows the comparison between estimates of the bias (in log
scale) of DNM and DURW for all outdegrees in the OSN
dataset (we observed the same results for other test networks).
The bias was obtained over 100 runs. In all simulations we
sampled10% of the network. The DURW random jump weight
and cost wasw = 10 andc ∈ {1, 10, 50}, respectively.

We found that both methods obtain accurate estimates.
However, the fraction of nodes with large outdegrees can be
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Fig. 5. The performance of the DNM framework in the networks with different infection ratios; (a) DER, (b) DWS, (c) DSF, and (d) OSN.

estimated more accurately than the ones with small outdegrees.
This is because both of them tend to sample nodes with larger
outgoing links more frequently; sometimes causing lower
estimation errors for the large outdegree nodes. Moreover,as
demonstrated in Figure 6, DURW outperforms DNM in terms
of bias when the cost of a random jump is not significant. The
cost of a jump effectively reduces the number of total nodes
that can be sampled, which increases the bias. Therefore, we
observe that the bias of the outdegree distribution estimates
in DURW increases withc, and the DNM method is more
accurate than DURW for larger costs.
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Fig. 6. Bias of DNM compared with DURW (w = 10 andc ∈ {1, 10, 50})
for all outdegrees in OSN dataset for sampling rate= 10%.

VI. CONCLUSION

In this paper, we introduced a novel two-step framework to
measure nodal characteristics of large scale directed networks

which can be defined by average target functions. We proposed
a novel link-tracing network sampling algorithm by utilizing
the idea of personalized PageRank. In particular, this method
samples the underlying network by moving from a node to
one of its neighbors through an outgoing link based on the
approximated probability of Personalized PageRank. Since
these probabilities can be considered as an approximation of
the exact visiting probability, we proposed a new estimator
based on the idea of approximate importance sampling. Our
estimator is able to overcome the effect of approximate sta-
tionary distribution of random walk-based sampling methods
on the accuracy of the estimation. We showed both analytically
and empirically that the proposed framework is asymptotically
unbiased.
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[31] P. Erdös and A. Rényi, “On random graphs, I,”Publicationes Mathe-
maticae (Debrecen), vol. 6, pp. 290–297, 1959.

[32] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,”Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[33] D. M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, andC. L. Giles,
“Winners don’t take all: Characterizing the competition for links on the

web,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 99, no. 8, pp. 5207–5211, Apr. 2002.

[34] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social
Networks, vol. 31, no. 2, pp. 155–163, 2009.

[35] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,”ACM Trans. Knowl. Discov. Data,
vol. 1, no. 1, pp. 2+, Mar. 2007.

[36] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over Time: Den-
sification Laws, Shrinking Diameters and Possible Explanations,” in In
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), 2005, pp. 177–187.

[37] Y. Moreno, R. Pastor-Satorras, and A. Vespignani, “Epidemic outbreaks
in complex heterogeneous networks,”The European Physical Journal
B, vol. 26, no. 4, pp. 521–529, Apr. 2002.

[38] K. Gile and M. S. Handcock, “Respondent-Driven Sampling: An As-
sessment of Current Methodology,”Sociological Methodology, vol. 40,
pp. 285–327, 2010.

[39] J. Geweke, “Evaluating the accuracy of sampling-basedapproaches
to the calculation of posterior moments,” inIn Bayesian Statistics.
University Press, 1992, pp. 169–193.


	I Introduction
	II Related Work
	III Preliminaries
	III-A Basic Notations and Definitions
	III-B Personalized PageRank Vectors
	III-C Importance Sampling
	III-C1 Importance Sampling (IS)
	III-C2 Approximate Importance Sampling (AIS)


	IV Proposed Measurement Framework
	V Experimental Evaluation
	V-A Datasets
	V-B Target Function
	V-C Experimental Setups
	V-D Evaluation Results
	V-D1 Main Results
	V-D2 Convergence analysis
	V-D3 The effect of network reciprocity
	V-D4 Sensitivity to true infection ratio
	V-D5 Estimating Outdegree Distributions


	VI Conclusion
	References

