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A Measurement Framework for Directed Networks

Mostafa Salehi and Hamid R. Rabiee

Abstract—Partially-observed network data collected by link- network, can be computed by the average of the target functio
tracing based sampling methods is often being studied to obin 7 f(z) = 1, if nodex has desired characteristic (respectively,

the characteristics of a large complex network. However, file s intected with that virus, is a sport website, has a copy of
attention has been paid to sampling from directed networks . ’ . ’
that file), andf(z) = 0, otherwise.

such as WWW and Peer-to-Peer networks. In this paper, we .
propose a novel two-step (sampling/estimation) frameworkto A measurement framework for computing the average of
measure nodal characteristics which can be defined by an avege such functions can be achieved in two steps; (1) Samplirdy, an

target function in an arbitrary directed network. To this end, (2) Estimation. In many cases (e.g. the Internet), the globa
we propose a personalized PageRank-based algorithm to Misi girctyre of a network is initially unknown and there is no

and sample nodes. This algorithm only uses already visited ling f . list of all d ithi work
nodes as local information without any prior knowledge abot sampling frame (i.e., a list of all nodes within a network,

the latent structure of the network. Moreover, we introduce a  from _WhiCh nodes can be directly sampled). There_zfore, us?ng
new estimator based on the approximate importance sampling classical sampling methods such as random sampling aer eith

to estimate average target functions. The proposed estimat jmpossible or impractical, and link-tracing based sanplin
utilizes calculated PageRank value of each sampled node asgethods are the only feasible solutions to collect data from
an approximation for the exact visiting probability. To the .
best of our knowledge, this is the first study on correcting such networks. In these methods, one Can ;ee the ne_'ghbors of
the bias of a sampling method by re-weighting of measured already sampled nodes and make a decision on which nodes
values that considers the effect of approximation of visitig to visit next. Snowball (which is similar to breadth-firsaseh
probabilities. Comprehensive theoretical and empirical aalysis in computer science) [2] and Random walk based methdds [3]
of the estimator demonstrate that it is asymptotically unbased 518 among the most popular link-tracing based methods.
even in situations where stationary distribution of PageRak is - . . . .
poorly approximated. In the Estimation step, an estimator is us_ed to approximate
the network characteristics. An estimator is a functiort tha
accepts a summary of the sampled data as input and outputs
an estimate of an unknown network characteristic. Spettifica
the selection bias of a sampling method can be corrected by
using the general idea of Hansen-Hurwitz estimator [4], i.e
ANY real-world communication systems such as ththe measured value is weighted inversely proportional é th
Internet, World Wide Web (WWW), Peer-to-Peer sysvisiting probability of the corresponding nodé [5]. Theed,
tems, and Online Social Networks (OSNs) can be modeledws need to compute (or approximate) the visiting probaddlit
a complex network of interacting dynamical nodes. In thé lasf each sampled node. In particular, in undirected networks
decade, a considerable amount of research has been donevleen data from snowballs with more than one wave are
measuring the characteristics of complex networks in warioavailable, it might be comparatively easy to compute the
domains [[1]. To extract useful knowledge from a networkjisiting probabilities of each sampled node based on the firs
one should study the collected network data. However, tf@v waves, but it is more complicated to find the required
tremendous growth of the Internet and its applications@ene visiting probabilities for snowballs of many waves [2]] [6]
years has resulted in creation of large-scale complex m&svoFor random walk based sampling methods, in a sufficiently
involving tens or hundreds of millions of nodes and linkdong ergodic walk on an undirected network, we would expect
Thus, it may be impossible or costly to obtain a complethat the probability that a node is visited is proportiormaits
picture of these large networks, and partially-observad &a degreel[[7].
often being studied for network characterization. The nekw  Many of the networks around us such as WWW, Twitter, and
resulting from such measurements may be thought of as a s@wver-to-Peer networks contain directed links, or linksolvhi
ple from a larger underlying network. However, sampling ido not have the same strength in each direction. However,
a network context introduces various potential complaai despite recent efforts on characterizing undirected nedsvo
such as the bias of selecting the nodes in the procedurebaked on the sampled dalta [8], [9].][10],][11], little atient
sampling [2]. has been made on the statistical properties of sampledeiirec
Many network characterization metrics we are aware @ktworks [12], [18]. The directed links pose a considerable
can be expressed as averages of some target functions. df@ilenge to the process of network measurement (i.e., un-
example, the density of infected computers with a virus & ttknown bias in the sampled nodes). In summary, computing
Internet, the ratio of sport websites in the WWW networkgor approximating) the visiting probabilities of sampleades
and the average number of copies of a file in a Peer-to-Pé@r directed networks still remains as an open problem. For
_ . example, the stationary distribution for random walks on
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a strongly connected directed network has a unique stationa In general, the probability of selecting the next node de-
distribution (but, there is no analytical solution for ittye termines the probability that nodes are visited in sampling
However, most real-world directed networks are not strpngprocedure. Metropolis-Hastings techniglie![22] can be used
connected. Without this property, the limiting distrilartiof to modify the probabilities of the node selection in random
a random walk is sensitive to the starting distribution, #&sd walk in order to have the uniform stationary distribution
analysis can be very complicated. A modification of randofor visiting each node. This technique is a general Markov
walk which overcomes this problem allows for a jump witlChain Monte Carlo (MCMC) method [23] for sampling from
small probability to a node at random from the whole networkrobability distributions based on constructing a Markda
That is called PageRank in the Internet search literaiudg [1that has the desired distribution as its stationary distigin.
It's clear that according to our assumptions about the atesehis approach, known as Metropolis-Hastings Random Walk
of sampling frame, jumping to a random node from the wholHRW), has been applied to Peer-to-Peer netwofks [19],
network may not be possible. Therefore, PageRank can notHacebook([10], and Twitter [24].
applied to our problem in its global definition. Alternatively, one can use the unmodified classic RW
In this paper, we propose a complete framework to measunethod to sample from a graph and correct the degree bias
nodal characteristics which can be defined by average tarbgtre-weighting the sampled values. The Respondent-driven
functions in an arbitrary directed network. In the samplingampling (RDS) [[B], [[16] is an example of this approach.
step, we introduced a novel link-tracing algorithm by atilig  Actually, this is a framework in the field of social sciences t
the general idea of PageRank. We employ a modified versisaimple and infer in hard-to-reach populations such astiojec
of PageRank, called personalized PageRanK [15], usingdmug users. In these populations, a sampling frame for the
specific set of nodes as a seed vector. Jumping is limitetget population is not available. Sampling from OSNs or
to this seed vector. Thus, personalized PageRank detesmiW&NVW network graph is analogous to the sampling of hidden
the importance of every node to the seed by using logabpulation in the social sciences. In the context of graph
information. In particular, the proposed method samples tsampling, the RDS method has been used for Facehbook [10],
underlying network by moving from a node to one of itSwitter [24], and Peer-to-Peer networks [19].
neighbors through an outgoing link, based on the approxichat One of the main assumptions of the above mentioned studies
probability of personalized PageRank. is that the underlying network is undirected. Since moskrea
Since these probabilities represent an approximationef tvorld networks (such as WWW, Twitter, and Peer-to-Peer
exact visiting probabilities, we utilize the idea of appraate networks) are directed, this assumption is not easily met in
ratio importance sampling to propose a new estimator. Theal life. However, little attention has been paid to diegct
previous well-known work [[5], [[16] on the estimators fometworks by considering the effect of directed links. The
correcting the bias, does not consider the effect of appraxathors in [[25] consider directed links in the Peer-to-Peer
imation of visiting probabilities which we address in thisetwork while maintaining desirable statistical propestii.e.,
paper. Importance sampling is one of the methods of Montaiformity) for the sampling procedure. The main idea of
Carlo simulation[[1/7] in which instead of generating a sanpthis RW based method is to avoid the calculation of each
from the target distribution (e.g., uniform distributiom our node’s visiting probability, and instead to adjust the sitian
case), the estimator generates a sample from a differaht tgprobabilities iteratively, converging to a state in whidhet
distribution (e.g., the distribution generated by the sgr sum of transition probabilities into each node equialshe
sampling algorithm). We evaluate our framework over largesulting transition matrix is said to be doubly stochastitd
synthetic and real datasets in terms of estimated averageimefuces uniform stationary distribution.
a target function (here, we focus on the infection ratio and In [12], it is shown that when the sample size is relatively
outdegree distribution) and its bias. Our results show that small, the RDS method may generate relatively large biases
proposed method performs well even in low sampling ratesand errors if the studied networks are directed, indicatiiadg
estimates from previous RDS studies should be interpreted
Il. RELATED WORK and generalized with caution. In[13], a random walk sangplin
Link-tracing based sampling methods in the context of netlgorithm with jumps, called Directed Unbiased Random Walk
works are somewhat distinct from classical sampling metho(OURW), is proposed that achieves asymptotically unbiased
[2]. Random walk (RW)[[7] is one of the most important an@éstimates of the outdegree distribution of a directed graph
widely used sampling methods in different kind of networRhe authors construct an undirected graph using the nodes th
contexts such as uniformly sampling Web pages from tlae selected by the random walker on the directed graph. The
Internet [18], content density in Peer-to-Peer networld],[1 undirected graph is built to allow the walker to traversewwno
degree distributions of the Facebook social gréph [10], aodtgoing links backwards, and guarantees that the pratyabil
collecting data from information diffusion networks [2(@1]. of sampling a node can be approximated, even though incom-
A classic RW, samples a graph by moving from a nadge, ing links are not observed. However, this method is based on
to a neighboring nodey, through an outgoing link, chosenthe assumption that nodes can be sampled uniformly at random
uniformly at random from the neighbors of By this process from the original graph (i.e., there is some means of ohtgini
links and nodes are sampled. In any given connected and narlist of nodes in the network) which is not always feasible.
bipartite undirected graph, the classic RW is biased tosvarBor example, while it is feasible for Wikipedia and Twittér,
node with higher degree. is not feasible for the WWW graph.



In conclusion, while the effect of directed links have beerate. With smallery, the random walks spread further from the
studied, there is no efficient measurement framework foritial nodes before performing a random jump. Traditidyal
directed networks in the literature. Moreover, no anadjticthe value ofa is chosen to b@.15.
solution for the visiting probabilities of the nodes is dable Let A be the adjacency matrix of a graph The PageRank

for a general directed network. vectorp(s) of this graph is a visiting probability distribution
on the nodes ofy that can be defined as the solution of the
[1l. PRELIMINARIES following equation:

A. Basic Notations and Definitions

Let G = (V,E) with n = |V| and m = |E| be the
graph representing a complex network, whéfeis the set wheres is a seed vector that includes the initial distribution for
of nodes, andtl = {(i,j) : i,j € V,A;; = 1} is the starting nodes. We use the notatibn* to indicate the diago-
set of unweighted directed links between pairs of nodgs. nal matrix with the inverse outdegree for each node. Glgball
indicates the presence-(1) or absence=( 0) of relation of uniform's = 1/n is considered for computing PageRank.
interest (such as a hyper-link in WWW, friendship in a socighowever, an arbitrary distributios can lead to creation of
network, and file transferring in a Peer-to-Peer networdfr personalized PageRank [26]. Specifically, the random walk
i to j. The aboven x n matrix A is called an adjacency in the personalized PageRank only jump to a few nodes of
matrix. The indegree of a node, di,(z), is the number personal interest. It can be shown that for angnd o, there
of distinct ingoing links (y1, ), ..., (yx, ) into @, and its is an unique vectop(s) satisfying EqulR)[[15].
outdegreed,..(z), is the number of distinct outgoing links  There are various algorithms for computing global PageR-
(z,y1), .., (z,y) out of z. ank and personalized PageRanK [15]] [27]] [28]. As a stahdar

Alink is called reciprocal if a connected pair of nodes haveageRank algorithm, we can efficiently compute the solution
both an ingoing and an outgoing link between each other. The Equ.[2) by applying the power method [29]. Given some

proportion of reciprocal links in a network called recipitgc initial distributions, the power method is defined as following
r (i.e. r = 1 when the network is undirected, and= 0 jteration:

when the network is directed in a way such that there are no

reciprocal links). p*t = (1-a)p® Dy A
Let S be a sample of nodes whefe c V, and G(S) is p* ) = p®) + (1 — [[p*TD]1)s

the induced subgraph @F based on the samplg. Let N(.5)

denote the neighborhood &f,

p(s)=as+ (1-— a)pD;llA (2)

where||.||; denotes thel-norm. As an algorithm, the power
method continues this iteration untip*+* — p*+1||; < §
NS)={weV-5:FweS st. (v,w)eE} (1) for a user-provided stopping toleranéeBased on the idea of
) . the power method, Gleich and Polifo [28] present an efficient
Therefore,N(5) is the set of nodes that we know exist dugqorithm, called boundary-restricted personalized Ragé
to other outgoing links but have not yet visited. algorithm (BRPPR), to compute an approximation of the
Let L be a set of real-valued labels. For instance, a labﬁfrsonalized PageRank vects(s) by examining only a small
can be the degree of a node. We assume that alalell is  fraction of the input web graph near the starting veator
assigned to each nodec V by a target functiory : V- — L,  gpecifically, this algorithm iteratively divide the web g
ie. f C {(z,lz) : # € Vil, € L}. We can express manyjn, an active and inactive set. At each iteration, the set of
network characterization metrics as averages of somettarggive web pages is expanded to include more web pages
functions overV’. Given a target functiorf, the average of  that are likely to have a high personalized PageRank value.
is: avg(f) = Xpev f(@)/IV]. Specifically, it expands pages until the total rank on the
Our main goal in this paper is to propose a measuremegginrier set (the set of pages that we know exist due to other
framework to computewg(f) (based on the sampled nodeg,;tqoing links but have not yet visited) of pages is less than

S) for a general target functiorf (that defines a nodal 5 expansion tolerance. Therefore, only the set of actigepa
characteristic) in an arbitrary directed netwatk Our only 4nq their outgoing link information are actually involved i
assumption on’x is that it is weakly connected, i.e. everyihe computation. Moreover, a stopping tolerance threshold
node can be reached from every other node by traversing {h€;qnsidered in order to determine the termination of the
links without considering the direction of the links. approximation algorithm. The analysis of BRPPR leads to the
following theorem (theorem 3.3 and remark 3.4 [0f|[28]):
B. Personalized PageRank Vectors Theorem 1The BRPPR algorithm with expansion tolerance
PageRank was first introduced by Brin and P&ge [14] fer and stopping tolerance yields an approximate PageRank
search algorithms in the WWW network. However, it can beectorp, where||p — p|; < @.n +225
defined for any graph as a stationary distribution of a certai
random walk over that graph. At each step, with probabilitwhere ||p — p||: gives the Manhattan distance between two
(1—«), the random walk follows a randomly outgoing link of adistribution vectors op andp. Although, the authors ir [28]
node, and with probability the random walk makes a jump toaddress the problem of calculating the PageRank score of a
a new node chosen uniformly among all nodes in the netwothkternet webpage in the field of search engines, we utilizé th
The jumping constant (0 < « < 1), controls the diffusion general idea here in the context of network sampling.



C. Importance Sampling that E;s(X) is an unbiased estimator feums(f). Imple-

As mentioned, we are interested in measurement of qu entation of an importance sampling estimator requires: (1
’ ility to sample efficiently from the trial distributiop; and

tities that can be written as averages of some target fumsti . . : .
9 9 (2) Ability to compute the importance weight(z) (or its

f over a finite set (i.e., the set of all nodes). Let: V — . . .

[0,00) be the target distribution on a skt In our problem, estimator) and_ the function valug(z), for any given node

the desiredr is the uniform distribution or?/, then all nodes * < V. There is no need to know the r_‘lormahza_ltmn constant
Zs or to be able to sample from. This basic importance

x are equally likely to be selected, i.e(x) = 1/|V]. Let . | ) X T
#:V = [0,00) be a target measure that is unnormalized fOrﬁ,ﬁlmpllng estimator is only suitable for estimating sums. We
’ next extend it for estimating averages.

of m, i.e. 7(z) = w(x).Zz whereZ; > 0 is the normalization | . S ling f “Recall that th "
constant oft. We say that measureinduces a corresponding mportance Sampling for average. Recall that the est-
mator for averages estimatesg:(f) = sum.(f). If we

robability distribution orl/. Therefores is a relative weight,
P y . 9" are able to compute (z) for eachxz € V, we can use the

which represents the probability of to be chosen in the . . i imator d ibed ab ‘ timat
distribution. In our problem, we havé =1 (for all x € V) importance sampliing estimator described above 1o estimate

- average of a function relative to. However, in many cases
and Zz = |V, we can only computé(z) and not For example, in our
The average of a target function relativeitds essentially y puté (z m(z). pi€,

. o casegr(x) = 1/|V|, where|V] is the number of nodes, that is
a sum where the target measure is the probability distobuti ™ T S .
. typically unknown. Ratio importance sampling is a techeiqu
m. Hence, we can write

for estimating averages relative to any target measumen
avg(f) = avgs(f) = sumx(f) = Y f(z)m(x) (3) Whenn(z) is unknown. o
oyt The ratio importance sampling estimator computes two
sum estimatorsi/; of sumz(f), and My of sumz(w), and
For example, in our previous example of infection in gen outputsis; /M,. However, there is one problem: the
population, the infection ratio is an average of the targgkpectation of a ratio is not the ratio of the expectatiores, i
function relative to an uniform target measure. Alternality E(M, /M) # E(M;)/E(Ms,). To solve this problem, ratio
it is a sum of the same function relative to the Unifo”ﬂnportance sampling utilize the following idea: if we repda
distribution onV’ (i.e., 7(x) = 1/|V| for all z). E(M;) and E(M,) by averages of multiple independent
The naive estimator fogvg: (f) works as follows[[1F]: (1) instances of the estimator df(M;) and E(M,), the dif-
Generate a random sample from the distributionr induced ference betweet (), /M,) and E(M;)/E(M,) diminishes
by #, (2) Compute the function of for sampledX (i.e., to 0. Therefore, the ratio importance sampling estimator for
f(X)). It is easy to check that this estimator is unbiasegyg. (f) is then defined as follows:
However, since we assume that there is no sampling frame in

our problem, uniform sampling from the distribution may %Z Ers(X5)
be hard or costly. Consequently, this simple estimatoreaffiin Errs(X1, Xo, ..., X,) = 127117 (5)
cient. To solve this problem, we can useportance Sampling %Z w(X;)

i=1

(IS), as one of the methods of monte carlo simulation [17]. =
In the following, we state some theorems about the genevahereX;, X, ..., X,, aren independent samples from the trial
idea of importance sampling_[30]. Although, the authors idistributionp.
[30] address the problem of externally measuring aggregate?) Approximate Importance Sampling (Al$)nfortunately,
functions over documents indexed by search engines, we irsemany cases we are unable to accurately compute the
them here in the context of network sampling. importance weight functionv. This problem arises, e.g. in

1) Importance Sampling (IS)The basic idea of importanceour case, due to complexity of analysing a RW based sampling
sampling is: instead of generating a sampldrom the target method on a directed network. In the following, we address th
distribution 7, the estimator generates a samplefrom a effect of the approximate importance weights on importance
different trial distributiorp on V' to directly estimate statistical Sampling. Approximate importance sampling method employ
sums relative to the target measute Specifically, given a an “approximate importance weight functiar{’:) rather than
target functionf, importance sampling estimator estimatethe exact onev(z). This estimator can be defined as:
Eum;r(f) = .Zz_ev f(z).#(x). The trial distributionp can Ears(X) = f(X)u(X) 6)

e any distribution, as long asupp(w) C supp(p) (here,
supp(p) = {z € V|p(z) > 0} and supp(n) is defined WhereX is distributed according to the trial distributipnThe
similarly). In particular, we can choogeto be a distribution estimation generated by approximate importance sampéing i
that is easy to sample from. By considerigs unnormalized close to the true value as long as the importance weight func-

form of p, the importance sampling estimator is then defindtPn w(z) and the approximate importance weight function
as follows: u(x) are similar. To analyse the bias of this estimator, we

+(X) consider the following theorem.

") px)w(X), XeV (4  Theorem 2([30]) Supposesupp(u) C supp(w)

PIX) E(Ears(X)) - suma(f(V)B(203)  +
where w(X) is called the importance weight. Functiogh Z;.cov(f(Y), Z((S;)))

is computed by samples of distributign It can be shown

Ers(X) = f(X).




where X ~ p, Y ~ 7, and Z; is the normalization constant.sampling for average€y4v ¢, is then defined as follows:
Therefore, there are two types of bias in this estimator: (1)

multiplicative bias, depending on the expectation wfw %i F(X).u(X5)
relative tor. It may have a significant effect on the estimator’s Eavg = =1 (9)
bias, and thus must be removed. (2) additive bias, depending lzn: u(X;)

on the correlation betweefi andu/w and on the normaliza- i=1

tion constantZ;. It is typically less significant, as in manywhereX1 .. X,, aren independent samples from the trial

?r?;t:aclo?:::gf?jﬁ cft;ligﬂ ué 13” izr?hgnggsr;elviit;]dié?é%'t’iovr\]'hg:%stribution p. The following theorem shows the bias and the
example) ' variance of this estimator.

Theorem 3:([30]) The bias and variance d@ equ.
To remove the multiplicative bias, we assume that it is POSte defined ag[ ) ave (equid)

sible to estimate the multiplicative bias, and divila;s(X) Bias(E — X, X X)) — X _
by this estimate. For an instaneec V, the ratiou(z)/w(x) Zfiig(f?%?)1b<y(>y)) Avcl( 1 Xy Xn) = avgs({)
is called the weight skew at. The multiplicative bias factor is = u(Y)w“”;g +0(5)

wavg (Y)

the expected weight skew relative to the target distritsutio var(Eave(X1, Xo, oy Xp)) = O(2)
To remove this bias, we need to estimate the expected weight e n
skew. Let Eysg(X) be an unbiased weight skew estimator

for ]E(Z((’Q)) It follows from Theoremi R that: IV. PROPOSEDMEASUREMENTFRAMEWORK

v The pseudo code of proposed framework, called Directed-
E(EA15(X)) Zz.cov(f(Y), Z((Y)) Network-Measurement (DNM), is shown in Algorithm IV.1.
= sumz(f(Y)) + Y (7)  our main goal is to approximate the probability of each eit
E(Ewse(X)) B(XY)) 'ain goal pP P Y .
node in sampling procedure, and correct the bias of sampling

w(Y)
Thus, the ratio of the expectations of the two estimat0|Jgy using the idea of approximate importance sampling. The

ESTars(X) and ESTywss(X), gives us the desired re_pt‘oposed framework is designed through two steps; sampling

sult sum.(f), modulo an additive bias factor that depend%nd estimation. The sampling step initially starts with an

on the correlation betweeri and «/w. The additive bias stgtg dsasTjﬁlsesﬁgﬁta:g d:sddosf ;éa;]::qmmng?f t(?hcl)ts:r? based
can be consideref since f is often a constant function. ' q P

Ignoring this additive bias, it would seem that the ratiﬁgigtﬁso:ﬁggg'r;? aF;rrgggsusT:\ﬁ]:)rl]egar?: détser?\t;;), tgr? d Slte; of
ESTars(X)/ESTwse(X) is a good estimator forum (f). ) T S A .
Although the expectation of a ratio is not the ratio of the e%oir;etshpeogﬂ'.g%;cé'v?nlgl:ix”}?rr':I“I’ (I)Su'??)ri]r?ralti?lgs -l]:rhoemm:;g)é S
pectations, one applies the ratio estimation techniquéasisn in S but rria refirence nodes thatgaregnotSn We then

to what we did in the ratio importance sampling. Therefdre, t ’ y

approximate ratio importance sampling estimatorstoi.; ( f) con:pufe lc\;net PageRda(ljnk |tderat|ct>rr]1 ?nfrorlrjkal VTCtﬁrp 0 ‘1. h
can be defined as follows: vectorp. Next, we add nodes (that are likely to have a hig

personalized PageRank value) Sountil the total probability
on the remainder of the neighborhood is less than an expansio

3

%izl Ears(Xi) ratio of k.
Earis(X1, X2,..., Xn) = PR (8) As we mentioned earlier, the essential property of a sam-
P Ewse(Xi) pling method that makes it appropriate for network infeeenc

Il
=

3

is that its visiting probabilities are known or estimable fo

where X1, ..., X,, are n independent samples from the triathe sampled nodes. In the estimation step, we use computed
distribution p. PageRank value of each sampled node @g. as an ap-

Approximate importance sampling for averages:Here, proximation of the exact visiting probability. Then, welizé

we employE.4 rrs to design an importance sampling estimatdf'® idéa of approximate importance sampling to design a
for averages. Recall that the estimator for averages estimd'€W estimator and study its performance for a general target
avgs(f) = sumx(f). Thus, we need to compute the imporfunctlorj. Specm.cally, we_con5|der the obtaingdr) as an
tance weight functionua,,(z) = «(x)/p(z). However,x(x) aPProximate weight function(z). _ _
cannot be calculated exactly. For solving this problem, we According to the general ratio importance sampling esti-
use an approximate weight functianz) ~ w,,,(z) instead mator (refer to Eql]9), we propose the following estimator

of waye(x), and then fixing the bias using approximate ratifr computing the average of a general target funciion a
importance sampling estimator (i.€2,1 z7s) described above. directed network.

To this end, we need to come up with the weight skew n )
_ . w2 J(Xi)-p(X0)
estimator whose expectation equBlg:(Y) /wavg (Y)), Where n i i
Y is distributed according ta. It can be shown that with a Eprr = L (10)
constant functionf, the approximate weight(X) itself is 72 b(Xi)

=1

an unbiased estimator fdt(u(Y')/wavgvy) [30] . We thus
set Ewse(X) = u(X). Therefore, approximate importancevhere X1, Xo, ..., X,, are n samples extracted by sampling



procedure. (k-nearest neighbors’ connection) and clockwise links. Each
link will be rewired with two randomly selected nodes with

Algorithm IV.1: DNM(y, a, &, 8) probability po € (0,1). In simulation, we generate networks
with |V| = 2000 nodes by setting: = 20 andpy = 0.1.
S = {y}; L = matrix ofy to its outgoing links Directed Scale Free (DSF) [33]: Network starts with,
SUM =0 nodes, which link to each other with probabilips (as in
WSE =0 an Erdos-Renyi random graph). At each time step, one node
p=0:p(y) =1 and m links are added to the network. The endpoints of the
% Sampling step links are randomly selected among all nodes according to the
repeat following probability: p1 (z) = £ dj’}’éf) + B2 dj@ﬁ‘””’ + B3y
where 3 + B2 + 83 = 1. We generate networks witf'| =
p=(1-a)pD;'L 1000 and average degree of nodes;0. We leave the number
p=p+(1—|plH) of links, |E|, unconstrained. For attaching probability, we set
while p(N(9)) > & 51 =0.7,8, = 0.2, 83 = 0.1. Moreover, we seiny = 2 for
Find z € N(S) with max value inp generating initial Erdos-Renyi graph and consiggr= 1 to
Add z to S have them fully connected.
do do Removex from N(S) Real-world Networks: Moreover, we considered some real-
Updatep(N(S)) world directed network:
UpdateD; and L An Online Social Network (OSN): This is a Facebook-like
w=|p-plh Social Network[[34] that originate from an online community
p=p for students at University of California, Irvine. The daths
until w < 6 includes the 1,899 users that sent or received at least one
% Estimation step message. There are 20,296 directed links among these users.
for x € S A Peer-to-Peer Network (P2P): We use a snapshot of the
d SUM = SUM + f(z).p(x) Gnutella Peer-to-Peer file sharing network collected inusig
© \WsE = wsE +p(z) 2002 [35]. Nodes and links represent hosts and connections
return (SUM/WSE) between them in this network, respectively. The dataset in-

cludes the 10,876 hosts and 39,994 directed links.
The following theorem shows the bias and variance of the The Internet Autonomous System (AS): The network of

proposed estimator. routers comprising the Internet can be organized into sub-

Theorem 4:The bias and variance dfp;x (equ.[I0) are Networks called Autonomous Systems (AS). Each AS ex-
defined as changes traffic flows with some neighbors. We use a CAIDA
Bias(Epir) = Epir(X1,Xo, ... Xn) — avga(f) = A_S graph collected in February _2004 [36]. The dataset con-
IV\-COEESQML:) +0(L) tains 16,493 nodes and 66,744 links.

UCLT‘(ED]R(Xl,XQ, ceey Xn)) = O(%)
B. Target Function

whereY ~x =1/|V|, andZ; is the normalization constant. ¢ fast growth of Internet and other communication net-

, proof: By substitutingu = 1/|_V|’ Wavg = P, aNdZ; = |V works makes them a suitable target for malicious activities
Into TheoreerEB,fthe thﬁorehm IS pr0\;]ed..f ffici IAn infection spreads through the links of such networks
We conclude from this theorem that if we use sufficientl, g4 cteq by computers and their communication channels

large number of samples, then we are likely to obtain afhe rocess by which malicious objects such as worms,
estimate obvgs (f), which has only additive bias that Oleloend?rojan horses, and computer viruses travel through compute

on the correlation betweefi and p/p. networks is analogous to the process of spreading epidemics
through a population. In this paper, we study the infection

V. EXPERIMENTAL EVALUATION S . : . .
ratio in spreading of a disease in a population as a network

A. Datasets characteristic. It is an example of family of binary propest
Synthetic Networks: We utilize three kinds of random of a network where each node is tagged by labelr 1. In
models for generating directed networks: particular, infection ratio can be considered as the awerdg

Directed Erdos-Renyi (DER) networks [31]: The modeh target functionf: f(x) = 1, if individual x is infected, and
starts with|V'| nodes, which link to each other with probabilityf (z) = 0, otherwise.
po € (0,1). The reciprocity of these network equals 1o To spread disease on the test datasets, we use the
In order to decrease the reciprocity, reciprocal links ie thsusceptible-infectious-recovery (SIR) epidemic spnegdi
base network are randomly chosen and converted to irrecipedel [37]. This is an epidemiological model widely used to
rocal links. We generate networks by using this model witsimulate the spreading of epidemics, i.e. number of people
|V| = 2000, pp = 0.1, andr = 0.6. infected with a contagious disease, in a population as a

Directed Watts-Strogatz (DWS) networks [32]: The moddunction of time. At every time step, the model assumes a
starts from a completely regular network with identical &g transition ratef; for a susceptible person to become infected,
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Fig. 1. The relation between expansion toleranceof the proposed sampling 07 ‘

method and sampling rate for all test networks.

0.6

if an infected neighbor is present, and a ré&tdor an infected
person to become recovered or die. The recovered person w g %4
never be infected again. In the simulations, we @se= 0.2 © 04
and 6, = 0.05. We run the simulation until desired ratio of

infected nodes obtained.

0.2

0.1

C. Experimental Setups 0005 01 015

0 0.25 0.3 0.35 04

Samgiﬁwg Rate
We evaluate the performance of the DNM framework in (b)

various situations and in terms of different aspects. We- con

sider two metrics;1) estimated infection ratio, anl) bias Fig 2. The performance of the proposed framework in tern{a)pEstimated

(which is defined by the absolute difference between estichatnfection Ratio (the true value i80%) and (b) Bias.

and true infection ratio). For each sampling rates in thgean

of 0.01% to 40%, we repeated the simulations 100 times ] ]

by selecting random nodes as seed, and finally, averaged $hd'umber of samples). Moreover, the bias decreases with

obtained values. We set jumping facter= 0.15 and stopping "créasing the sampling rate. , _ ,
tolerances = 10~7 as the inputs of the proposed framework. 2) Convergence analysisDeriving valid population esti-

Moreover, we set expansion tolerancbased on the desired mates from sampled nodes is based on the assumption that the
sampling rates. Since, the parametecontrols the accuracy samples are derived from the equilibrium distribution, ehiis

of the approximation of PageRank values (i.e., the visitifgu€ asymptotically. In this section, we study the convecge
probabilities of the sampled nodes), different values of of the DNM estimates to equilibrium distribution during the

provides different sampling rates. Specifically, the legsads data collection step.
to more samples, and consequently the more accuracy idn general, the starting nodes (the seeds) are not selected

obtained. We study the obtainedper various sampling ratesTom a sampling frame, but instead are ad-hoc samples. One
for all test networks. Our result is demonstrated in Figuras WaY to reduce the dependence of final estimates to seed nodes
we can see, the desired sampling rate depends on the serucff© US€ a burn-in period by discarding large numbers ofinit

of underlying network. According to Theordth 1, the maximurﬁ‘_”‘mmed nlodes before.analyzmg the collected gata. Gl\en.th
error of the approximating visiting probabilities is in trenge high cost in terms of time and effort of collecting data, this

of (0,6.8). This means that the proposed sampling methdd2y not be adesw_able approach. Moreover, the aut_hors]n _[38
computes the visiting probabilities of the sampled nodek widémonstrate that in a without-replacement sampling gttin

reasonable accuracy even in low and medium sampling rafédS approach can even introduce more bias. In fact, the only
real way to apply a burn-in to ensure accuracy would be to

) repeat the burn-in after every sampled node.

D. Evaluation Results An alternative approach would be to estimate the relative
1) Main Results: The results of our study on the perforvisiting probabilities of all sampled nodes, conditioned o
mance of proposed framework is shown in Figlire 2. As wbe composition of the seeds, and compute the estimates
can see, in general, the error in terms of estimated infectibased on those probabilities. We follow this approach in the

ratio and bias decreases significantly by increasing the@kain proposed framework. In particular, since jumping in peeon
nodes. In particular, we reach desirable result in mediuized PageRank is limited to the seed vector, we approximate
sample rates (estimated infection ratio and bias convergbe importance of every node to the seed, i.e. the visiting
to 20% and 0, respectively). However, we found differentprobability, which is used in the Estimation step to correct
behaviour in DWS networks; the estimated infection ratio e bias to the seeds.

close to true value in all sampling rates (i.e. it's indepmmtd  To monitor the convergence of the proposed framework, we



use a standard diagnostic test developed within the MCM ‘
literature, namely Geweke [B9]. This test was applied fo °9 e
the first time in the context of network sampling in [10]. § =08

] ’ 4 —-r=09
The Geweke diagnostic detects the convergence of a sin¢g */| :
Markov chain by comparing the location of the samplecg

parameter on two different time intervals of the chain. Theg *% ]

test is a standard Z-score with the standard errors adjust.g
for autocorrelation. We used this diagnostic in differeams “%4  ©— B
of the proposed framework (generated by selecting son
random nodes as seed) for the OSN dataset, and compa o 066 o 0% _ oz 0% 03 0% 04
the difference between the firdst0% and the last50% of ema T

the samples. FigurE] 3 presents the results of the Geweke o ) )
diagnosiic for the infection ratio as a network characteris /. The efectof secrectydon he perormance ol D n uncerin
We observe that after sampling approximat2ly) nodes, the in the grey dotted line.

Z-scores are strictly betwegp-1, 1]. This indicates that the

proposed framework has achieved a good mixing with our

initial selection of the random seeds. sampling rate in various infection ratios (In terms of bias,
observe the same pattern; higher infection ratio leadsghdri
15 : bias in lower sampling rates). In second group, that indude

the DWS networks, the infection ratio dose not have major
impact on the estimated values and their biases.

We found an inverse pattern in third group which is com-
posed of the DSF and OSN (we observe the same results in the
] P2P and AS networks). In particular, lower true infectiotiora
leads to higher error in estimation of infection ratio (damll,

8 for obtained bias) for lower sampling rates. However, thisre
reduces by increasing the number of samples. The deduction
o 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 600 1700 7e0  rate is higher for the populations with lower infection oati

Number of Sampled Nodes . . . .

As a general conclusion, in a scale free network with higher
o ' _ - infection ratio, lower sampling rates are sufficient andilteis
2 o i s e oo o 2o s i 2 reasonable bias. More specifcally, increasing the sappi
different random nodes as seed. rate does not have significant impact on the bias.
5) Estimating Outdegree Distributionstn what follows

3) The effect of network reciprocitytHere, we study the we compare the performance of DNM against the DURW
performance of the proposed framework in networks wittampling algorithm proposed by Ribeiro et al.|[13] (presdnt
different levels of reciprocityr which is an important pa- in Section[]). This is the most closely related method to
rameter in characterization of directed networks. To thiurs that achieves asymptotically unbiased estimates ef th
end, we generate some underlying directed networks withitdegree distribution of a directed graph. However, there
r € {0.6,0.7,0.8,0.9} by DER model. As we can see thea fundamental difference between the proposed framework
results in Figurd 14, in lower sampling rates, the amount eahd DURW,; DNM only uses already visited nodes as local
error in estimation of infection ratio decreases with dasieg information without any prior knowledge about the latent
reciprocity (we observe the same pattern in terms of bias). Atructure of the network. In addition, the DURW algorithm is
a general conclusion, if we have to sample a few nodes fronbased on the assumption that nodes can be sampled uniformly
network, lower proportion of reciprocal links in that netiko at random from the original graph, which is not always
leads to more accurate outputs. feasible.

4) Sensitivity to true infection ratioFigure[5 shows the There are two controlling parameters in DURW. The first
sensitivity of DNM to infection ratio in DER, DWS, DSF, andone is denoted by, which is the cost of a random jump (i.e.
OSN datasets (due to page limitation, we did not demonstrdite average number of sampling steps required to perform the
the results for P2P and AS networks). We run the simulatigmmp). The second oney, is the random jump weight that
of disease spreading until the true ratio of infected nodeentrols the probability of performing a random jump. Figur
reaches to desired values (specificall9%, 30%, 40%, and shows the comparison between estimates of the bias (in log
50%). These ratios are used as the ground truth to performarscale) of DNM and DURW for all outdegrees in the OSN
evaluation. dataset (we observed the same results for other test nefjvork

According to the results, one can categorize the networkbe bias was obtained over 100 runs. In all simulations we
into three groups. The first group includes the networlsampledl 0% of the network. The DURW random jump weight
generated by the DER model. In this group, the estimatedd cost wasy = 10 andc € {1, 10, 50}, respectively.
infection ratio is more farther from the true value by inwieg We found that both methods obtain accurate estimates.
the true infection ratio. This error converge to zero forieig However, the fraction of nodes with large outdegrees can be

Geweke Z-score

-1
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Fig. 5. The performance of the DNM framework in the networkthwdifferent infection ratios; (a) DER, (b) DWS, (c) DSF,ca(d) OSN.

estimated more accurately than the ones with small outdegrevhich can be defined by average target functions. We proposed
This is because both of them tend to sample nodes with largenovel link-tracing network sampling algorithm by utitizj
outgoing links more frequently; sometimes causing lowehe idea of personalized PageRank. In particular, this atkth
estimation errors for the large outdegree nodes. Moreasger,samples the underlying network by moving from a node to
demonstrated in Figufd 6, DURW outperforms DNM in termsne of its neighbors through an outgoing link based on the
of bias when the cost of a random jump is not significant. Trepproximated probability of Personalized PageRank. Since
cost of a jump effectively reduces the number of total nodéisese probabilities can be considered as an approximation o
that can be sampled, which increases the bias. Therefore,the exact visiting probability, we proposed a new estimator
observe that the bias of the outdegree distribution estisnabased on the idea of approximate importance sampling. Our
in DURW increases withe, and the DNM method is more estimator is able to overcome the effect of approximate sta-

accurate than DURW for larger costs. tionary distribution of random walk-based sampling method
on the accuracy of the estimation. We showed both analitical
10° ‘ and empirically that the proposed framework is asympttyica
= DNM H
« DURW, o=1 unbiased.
» v DURW, c=10
0¥ e + DURW, c=50 |
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