
On Budgeted Influence Maximization
in Social Networks

Huy Nguyen Rong Zheng
Department of Computer Science Department of Computing and Software

University of Houston McMaster University
Houston, TX 77204 Hamilton, ON, L8S 4K1, Canada
hanguyen5@uh.edu rzheng@mcmaster.ca

Abstract—Given a budget and arbitrary cost for selecting
each node, the budgeted influence maximization (BIM) problem
concerns selecting a set of seed nodes to disseminate some
information that maximizes the total number of nodes influenced
(termed as influence spread) in social networks at a total cost no
more than the budget. Our proposed seed selection algorithm
for the BIM problem guarantees an approximation ratio of
(1− 1/

√
e). The seed selection algorithm needs to calculate the

influence spread of candidate seed sets, which is known to be
#P-complex. Identifying the linkage between the computation of
marginal probabilities in Bayesian networks and the influence
spread, we devise efficient heuristic algorithms for the latter
problem. Experiments using both large-scale social networks and
synthetically generated networks demonstrate superior perfor-
mance of the proposed algorithm with moderate computation
costs. Moreover, synthetic datasets allow us to vary the network
parameters and gain important insights on the impact of graph
structures on the performance of different algorithms.

Index Terms—Budgeted influence maximization, social net-
work, information diffusion, belief propagation.

I. INTRODUCTION

The social network of interactions among a group of indi-
viduals plays a fundamental role in the spread of information,
ideas, and influence. Such effects have been observed in real
life, when an idea or an action gains sudden widespread
popularity through “word-of-mouth” or “viral marketing”
effects. For example, free e-mail services such as Microsoft’s
Hotmail, later Google’s Gmail, and most recently Google’s
Google+ achieved wide usage largely through referrals, rather
than direct advertising.

In viral marketing, one important question is given lim-
ited advertisement resources, which set of customers should
be targeted such that the resulting influenced population is
maximized. Consider a social network modeled as a graph
with vertices representing individuals and edges representing
connections or relationship between two individuals. The
influence maximization (IM) problem tries to find a seed set
S with cardinality |S| = k in the graph such that the expected
number of nodes influenced by S is maximized [1], [2], [3].
With the cardinality constraint, the submodularity nature of the
influence spread renders a greedy algorithm with (1 − 1/e)
approximate ratio that in each round picks the seed with
maximum influence spread and runs for k rounds. However
the assumption of equal costs for all seed nodes seldom holds
in practice. With the proliferation of influence score services

such as Klout and PeerIndex1, one can easily measure his
influence in the social sphere and use that to negotiate the
price for services he provides. The higher the influence score
of a user, the more costly it is to persuade him.

We consider in this paper a generalized version of the IM
problem, namely, the budgeted influence maximization (BIM)
problem: given a fixed budget b and a random cost function c,
find a seed set S which fits the budget

∑
si∈S c(si) ≤ b and

maximizes the number of influenced nodes. Clearly, BIM is
more relevant in practice as there is typically a price associated
with initializing the dissemination of information. With the
budget constraint, we prove that direct application of the
simple greedy algorithm may result in unbounded performance
gap.

In this paper, we present a seed selection algorithm that can
attain an approximation guarantee of (1 − 1/

√
e) (∼ 0.394).

One critical component of the seed selection process is the
determination of influence spread of a set of seeds. Exact
computation of influence spread is proven to be of #P-
complete [3]. Thus, efficient algorithms need to be devised.
More specifically, we first establish the linkage between influ-
ence spread computation and belief propagation on a Bayesian
network (modeled as a directed acyclic graph [DAG]), where
the marginal conditional dependency corresponds to the in-
fluence probabilities. Belief propagation has been extensively
studied in literatures, and thus many exact or approximation
algorithms can be leveraged to estimate the influence spread.
For a general graph that contains loops, we propose two
approximation algorithms that prune some edges in the graph
to obtain a DAG that captures the bulk of influence spread. To
reduce the number of candidate seed nodes, we localize the
influence spread region such that at each round, only nodes
that are affected by the previously selected seed need to be
evaluated. Empirical study shows that the proposed algorithms
can scale up to large-scale graphs with millions of edges
with high accuracy. On real-world social network graphs,
our methods achieve influence spread comparable to that by
Greedy algorithm [3] and incur significant less computation
costs. In the unit-cost IM problem, the proposed methods
outperform PMIA [4] in achievable influence spread at the
expense of marginal increase in computation time. In the BIM
problem, the proposed methods outperform CELF [5] in term
of scalability and performance on dense graphs. We further

1http://www.klout.com and http://www.peerindex.com

ar
X

iv
:1

20
4.

44
91

v3
 [

cs
.S

I]
 2

2
Ja

n
20

13

study the effect of network structures on the performance of
the algorithms.

The main contributions of this paper are summarized as
follows:
• We propose a greedy algorithm for BIM with a constant

approximation ratio.
• We cast the problem of inference spread computation on

a DAG as an instance of belief propagation on a Bayesian
network.

• We prove the #P-hardness of inference spread computa-
tion on a DAG.

• Two heuristics are proposed to construct DAGs from a
general graph that capture the bulk of influence spread.

• We provide important insights on the impact of graph
structures on performance of different algorithms.

The rest of this paper is organized as follows. In Section II,
we give a comprehensive review of the related literatures.
Section III presents the seed selection algorithm and proves its
performance bound. Theoretical results concerning influence
spread on DAGs are in Section IV. In Section V, we devise
two heuristics to reduce a general directed graph into a DAG
which captures the majority of influence spread. From the
presented theoretical results, we have the main algorithm in
Section VI. In Section VII, extensive experiment results are
presented. Finally we conclude the paper and discuss future
research directions in Section VIII.

II. RELATED WORK

Kempe et al. in [3] are the first to formulate the IM problem.
The authors proved the submodularity of the influence spread
function and suggested a greedy scheme (henceforth referred
to as Greedy algorithm) with an incremental oracle that
identifies, in each iteration, a new seed that maximizes the
incremental spread. The approach was proven to be a (1−1/e)-
approximation of the IM problem. However, Greedy suffers
from two sources of computational deficiency: 1) the need to
evaluate many candidate nodes before selecting a new seed in
each round, and 2) the calculation of the influence spread of
any seed set relies on Monte-Carlo simulations.

In an effort to improve Greedy, Leskovec et al. [5] recog-
nized that not all remaining nodes need to be evaluated in
each round and proposed the “Cost-Effective Lazy Forward”
(CELF) scheme. Experimental results demonstrate that CELF
optimization could achieve as much as 700-time speed-up in
selecting seeds. However, even with CELF mechanism, the
number of candidate seeds is still large. Recently, Goyal et al.
proposed CELF++ [6] that has been shown to run from 35%
to 55% faster than CELF. However, the improvement comes at
the cost of higher space complexity to maintain a larger data
structure to store the look-ahead marginal gains of each node.

Chen et al. devises several heuristic algorithms for influence
spread computation [7], [4], [8]. In Degree Discount [7], the
expected number of additional vertices influenced by adding
a node v in the seed set is estimated based on v’s one hop
neighborhoods. It also assumes that the influence probability
is identical on all edges. In [4] and [8], two approximation
algorithms, PMIA and LDAG are proposed to compute the

maximum influence set under IC and LT models, respectively.
In LDAG, it has been proven that under the LT model, comput-
ing influence spread in a DAG has linear time complexity, and
a heuristic on local DAG construction is provided to further
reduce the compute time. We have proven in Section IV that
computing influence spread in a DAG under the IC model
remains #P-hard. The marked difference between the two
results arises from the fact that in the LT model, the activation
of incoming edges is coupled so that in each instance, only one
neighbor can influence the node of interest in an equivalent
random graph model.

Another line of work explores diffusion models beyond LT
and IC. Even-Dar et al. [9] argue that the most natural model
to represent diffusion of opinions in a social network is the
probabilistic voter model where in each round, each person
changes his opinion by choosing one of his neighbors at ran-
dom and adopting the neighbor’s opinion. Interestingly, they
show that the straightforward greedy solution, which picks
the nodes in the network with the highest degree, is optimal.
Sylvester [10] studies the spread maximization problem on
dynamic networks and examines the use of dynamic measures
with Greedy algorithm on both LT and IC models. Chen et
al. [11] consider a new model that incorporates negativity
bias and design an algorithm to compute influence on tree
structures.

Inapproximability results of problems related to IM have
also been investigated in literature. MINSEED is the problem
of finding the minimized seed set size to activate all or a
portion of vertices. Chen [12] proves that under LT model
with a general threshold, MINSEED can not be approximated
within a ratio of O(2log

1−ε n), for any fixed ε > 0, unless
NP ⊆ DTIME(npolylog(n)). In the case when the threshold
equals two, the author proves that it is as hard as the case
with a general threshold, even for constant degree graphs.
Ackerman et al. [13] cast MINSEED and IM as maximization
problems making them amenable to optimization techniques.
However, since the number of variables and constraints grow
in O(n2) and O(n3) respectively – n being the number of
vertices in the graph – this approach is only tractable in small-
size problems. MINTIME is the problem of finding a target
size k such that all or a portion of vertices are activated in the
minimum possible time (in terms of spread time or hop count).
With a given coverage threshold η, Goyal et al. [14] prove
that under both IC and LT model, the greedy algorithm can
produce the result covering η−ε vertices (ε > 0) in min time,
with seed size |S| ≤ k(1 + ln(η/ε)). Ni et al. [15] investigate
the MINTIME problem by proposing a new spread model and
proving various timing bounds on the proposed model.

Literatures on epidemiology are also related to the IM
problem that identifies nodes that can initiate viral propagation
to most part of the network. Under the proposed model,
the authors of [16] proved that the epidemic threshold for
a network is exactly the inverse of the largest eigenvalue of
its adjacency matrix. In a follow-up work [17], the authors
used the previously defined epidemic threshold to quantify the
vulnerability of a given network and devised a fast algorithm
to choose the best k nodes to be immunized (removed) so as
to minimize network vulnerability. [18] considered the immu-

nization problem on dynamic networks. The key differences
between work on viral immunization literatures and IM lie in
the spreading model adopted (e.g.: SIS [susceptible-infected-
susceptible] or SIR [susceptible-infected-recovered] vs. IC or
LT) and whether the dynamics in the evolution of influence
are of interest.

Most existing work on the IM problem only considers car-
dinality constraints. CELF [5] is the only applicable approach
to the BIM problem. We will later show in our evaluation that
the proposed methods outperform CELF in term of running
time (several orders of magnitude faster) and performance on
dense networks.

This article is an extended version of our conference paper
in [19]. We modified our main algorithm to solve the BIM
problem and prove its approximation factor. We added detailed
algorithm description, complexity analysis, and report more
comprehensive results regarding algorithm performance on
different real datasets. We also conducted new experiment sets
on synthetic networks and provide results on the impact of
graph structure on different IM algorithms which, to the best
of our knowledge, has never been studied before.

III. THE BUDGETED INFLUENCE MAXIMIZATION
PROBLEM

In this section, we consider the BIM problem with the
objective to select the seed set that maximizes influence spread
given a fixed budget and arbitrary node costs.

A. Problem Formulation

Consider the network a directed graph G = (V,E) with
|V | = n vertices and |E| = m edges. For every edge
(u, v) ∈ E, p(u, v) denotes the probability of influence
being propagated on the edge. In this paper, we adopt the
Independent Cascade (IC) model. Given a seed set S ⊆ V ,
the IC model works as follows. Let St ⊆ V be the set of node
(newly) activated at time t, with S0 = S and St∩St−1 = ∅. At
round t+ 1, every node u ∈ St tries to activate its neighbors
in v ∈ V \

⋃
0≤i≤t Si independently with probability p(u, v).

The influence spread of S, denoted by σ(S), is the expected
number of activated nodes given seed set S.

Kempe et al. [3] proved two important properties of the σ(·)
function: 1) σ(·) is submodular, namely, σ(S∪{v})−σ(S) ≥
σ(T ∪ {v}) − σ(T) for all v ∈ V and all subsets S and T
with S ⊆ T ⊆ V ; 2) σ(S) is monotone, i.e. σ(S) ≤ σ(T) for
all set S ≤ T . For any given spread function σ(·) that is both
submodular and monotone, the problem of finding a set S of
size k that maximizes σ(S) can be approximated by a simple
greedy approach.

Budgeted Influence Maximization: In BIM, each node u is
associated with an arbitrary cost c(u). The goal is to select
a seed set S ⊆ V such that the total cost of this set is less
than a budget b. Denote by c(S) the total cost of a set, i.e.,
c(S) =

∑
u∈S c(u). Budgeted IM (BIM) can be formulated

as an optimization problem:

max
S⊆V

σ(S)

s.t. c(S) ≤ b
(1)

TABLE I: Notations

G, V, E the directed graph, its set of vertices and edges
n,m the number of nodes, edges in G
k, b the budget in term of node count and cost

p(u, v) the propagation probability from u to v
p(v) the activation probability of the node v
c(v) the cost of the node v

Par(v) the set of parents of the node v
S the selected seed set
θ the influence threshold

σ(S) the influence spread of the set S
the incremental influence spread of

δ(v) selecting v as a seed node
the directed acyclic graph from G on which

D(S) influence is spread given the seed set S

Algorithm 1: Naive Greedy
input : G = (V,E), b

1 S = ∅
2 repeat
3 δ(v) = (σ(S ∪ v)− σ(S))/c(v),∀v ∈ V
4 u = arg maxv∈V δ(v)
5 if c(S ∪ u) ≤ b then
6 S = S ∪ u
7 V = V \u

until V = ∅;
output: S

When c(u) ≡ 1,∀u ∈ S, BIM degenerates to the original
IM problem. Thus, we call IM the unit-cost BIM. Since IM is
NP-hard, it is easy to see that BIM is NP-hard as well. Key
notations used in this paper are summarized in Table I.

B. The Seed Selection Algorithm

First, we consider an intuitive greedy strategy that selects
at each step a node u that maximizes the spread gained over
cost ratio if the cost of u is less than the remaining budget.
We hereby refer to this scheme as the Naive Greedy approach.
Let r be the number of iterations executed and Sr be the seed
set at step r. Note that |Sr| ≤ r. At step r+ 1, Naive Greedy
calculates the incremental spread-cost ratio.

δ(v) = (σ(S ∪ v)− σ(S))/c(v),∀v ∈ V \S. (2)

The algorithm chooses u if u = arg maxv∈V,c(sr∪v)≤b δ(v).
The algorithm terminates when no budget remains, or no
node can be added to S. Naive Greedy is summarized in
Algorithm 1.

We first observe that Naive Greedy can have unbounded
approximation ratio. Consider a network containing l + 1
nodes V = {u, v1, v2, · · · , vl}. Every pair in v1, v2, · · · , vl
is connected by an edge with influence probability one, while
u is an isolated node. Let the cost c(u) = 1 − ε, c(vi) =
l,∀i = 1, · · · , l and the budget b = l. The optimal solution
will pick any node vi and achieve an influence spread of l.
In contrast, Naive Greedy picks u since it has the maximum

Algorithm 2: Improved Greedy
input : G = (V,E), b

1 S1 = result of Naive Greedy
2 smax = arg maxv∈V σ(v)
3 S = arg max (σ(S1), σ(smax))

output: S

influence-cost ratio 1/1−ε > 1. The resulting influence spread
is 1. Thus, the approximation ratio for Naive Greedy is l.

Next, we show that Naive Greedy can be modified to
achieve a constant approximation ratio. This algorithm is an
adaptation of an algorithm first proposed by Khuller et al. [20].
We assume that there is no node with a cost greater than the
budget b, as it will never be a feasible solution to BIM. Let S1

be the seed set selected by Naive Greedy, we consider another
candidate solution smax, which is the node that has the largest
influence. We compare the spread of S1 and smax, then output
the one with higher influence spread. The process is illustrated
in Algorithm 2.

Theorem 1: Algorithm 2 provides a (1 − 1/
√
e)-

approximation for the BIM problem.

By considering the candidate solution with the maximum
influence spread, Algorithm 2 guarantees the approximation
ratio within a constant factor, while Algorithm 1 is unbounded.
Note that Algorithm 2 is different from CELF presented by
Leskovec et al. in [5]. CELF runs Naive Greedy on the
budgeted and the unit-cost (by setting all costs to one) versions
of the problem, and selects the set with the maximum influence
spread. While finding the seed set to maximize IM consumes
more time than what it takes to select a single node with the
largest spread, CELF can only guarantee a looser bound of
1
2 (1− 1/e) (∼ 0.316).

Complexity: Let T be the maximum time needed to calculate
the value of σ(S),∀S ⊆ V . Algorithm 1 runs in O(n2T)
time where n is the number of nodes (i.e. n = |V |). Finding
S1 therefore costs O(n2T). smax can be determined in in
O(nT) time. Algorithm 2 therefore runs in O(n2T) time.
Note in [20] that Greedy with partial enumeration heuristic can
achieve an approximation guarantee of (1 − 1/e). However,
the improvement is attained at the expense of much higher
computation complexity of O(n4d) [21].

Algorithm 2 calls σ(.) as a subroutine. The efficiency
of σ(.) computation is thus critical to the overall running
time of the algorithm. In the following sections, we develop
efficient algorithms for approximating the spread function
σ(.). We first consider the special case when the network
is a directed acyclic graph (DAG). Then, we provide two
DAG construction algorithms from a general network graph.
Finally, some techniques to further optimize the execution of
Algorithm 2 is presented.

IV. DETERMINING INFLUENCE SPREAD ON DAG

Given a seed set, estimating value of the σ(.) from that
seed set was proven to be a #P-complete problem [3]. We
show in this section that under the IC model, calculation of
σ(.) remains #P-complete even when the underlying network
graph is a DAG. Then we establish the equivalence between
computing σ(.) on a DAG and the computation of marginal
probabilities in a Bayesian network.

A. Hardness of Computing Influence Spread on DAGs

In [3], Kempe et al. proposed an equivalent process of
influence spread under the IC model, where at the initial stage,
an edge (u, v) in G is declared to be live with probability
p(u, v) resulting in a subgraph of G. A node u is active if
and only if there is at least one path from some node in S
to u consisting entirely of live edges. In general graphs, the
influencer-influencee relationship may differ in one realization
to another for bi-directed edges. In a DAG, on the other hand,
such relationship is fixed and is independent of the outcome
of the coin flips at the initial stage (other than the fact that
some of the edges may not be present). Let xu, u ∈ V
denotes the binary random variable of the active state of
node u, namely, P (xu = 1) = p(u). For each node v in
S, P (xv = 1) = 1. If a node u 6∈ S does not have any
parent in G then P (xu = 1) = 0. From G, the conditional
probability p(xu|xPar(u)) is uniquely determined by the edge
probability, where xPar(u) denotes the states of the parents
of node u. In other words, influence spread can be modeled
as a Bayesian network. If node u does not have any parent,
p(xu|xPar(xu)) = p(xu). The joint distribution is thus given
by,

p(x1, x2, . . . , xn) =

n∏
i=1

p(xi|xPar(xi)). (3)

Given the outcome of coin flips C, σC(S) =
∑
u∈V xu.

Therefore,

σ(S) = E(σC(S)) =
∑
u∈V

E(xu) =
∑
u∈V

p(u). (4)

The second equality is due to the linearity of expectations. To
compute p(u), we can sum (3) over all possible configurations
for xv, v ∈ V \u. Clearly, such a naive approach has com-
plexity that is exponential in the network’s treewidth. In fact,
the marginalization problem is known to be #P-complete on a
DAG. However, since computing influence spread on a DAG
can be reduced to a special instance of the marginalization
problem, it remains to be shown if the former problem is
#P-complete. The main result is summarized in the following
theorem2.

Theorem 2: Computing the influence spread σ(S) on a
DAG given a seed set S is #P-complete.

2All proofs are presented in the Appendix

B. Estimating σ(·) via Belief Propagation

Belief propagation (BP) is a message passing algorithm for
performing inference on graphical models, such as Bayesian
networks and Markov random fields. It calculates the marginal
distribution for each unobserved node, conditional on any
observed nodes [22]. For singly-connected DAGs, where be-
tween any two vertices there is only one simple path, the
BP algorithm in [23] computes the exact solution with O(n)
complexity. For multi-connected DAGs, where multiple simple
paths may exist between two vertices, belief propagation and
many of its variants [22], [24], [25] have been shown to work
well in general. Exact solutions such as junction tree [24] may
incur the worst case complexity exponential to the number of
vertices due to the need to enumerate all cliques in the DAG.

BP algorithms take as input a factor graph or a description of
the underlying Bayesian Network. In the context of influence
spreading, each node only has two states: active and inactive.
BP algorithms calculate the probability of each node in either
states. σ(·) can then be determined by summing up the
probability of nodes being active.

Computation complexity: The complexity of σ(·) calculation
is dominated by the execution of the BP algorithm. A variety
of BP algorithms exist. In this work, we adopt the Loopy
Belief Propagation (LBP) algorithm which was shown to
perform well for various problems [26], [27]. LBP takes
O(Md) to estimate the active probability of a node, where
M is the number of possible labels (states) for each variable
(M = 2), and d is the maximum in-degree. We denote by
n0 the number of vertices in a DAG. Thus, the complexity of
LBP is O(n02d).

C. A Single Pass Belief Propagation Heuristic for σ(·) Esti-
mation

Calculating σ(·) with LBP produces highly accurate results,
but the computation time remains to be high when the graph
is multi-connected. The main complexity arises from the fact
that the activation of parents of a node may be correlated in
a multi-connected graph. Thus, in computing the activation
probability of the node, one needs to account for the joint
distribution of its parent nodes. Next, we propose a single
pass belief propagation (SPBP) algorithm that ignores such
correlation in determining σ(·). Note that the heuristic is exact
when the graph is singly-connected.

Let D(·) be the input DAG. Consider a node v ∈ D(·).
Given the activation probabilities of its parents Par(v), we
approximate p(v) as,

p(v) = 1−
∏

u∈Par(v)

(1− p(u)p(u, v)). (5)

The algorithm is summarized in Algorithm 3. It starts with the
seed nodes and proceeds with the topological sorting order.
The total complexity is O(n0d). Clearly, SPBP is much faster
than LBP.

V. DAG CONSTRUCTION

In general, real social networks are not DAGs (with the
exception of advisor-advisee and parent-child relationship, for

Algorithm 3: Single-Pass Belief Propagation (SPBP)
input : D(S)

1 σ(S) = 0;
2 foreach v ∈ D(S) do
3 if v ∈ S then
4 p(v) = 1

else
5 p(v) = 1−

∏
u∈Par(v)(1− p(u)p(u, v))

6 σ(S) = σ(S) + p(v)

output: σ(S)

instance, which exhibit a natural hierarchy). To apply the
BP algorithm in computing influence spread, one needs to
selectively prune edges and reduce the graph to a DAG.
Clearly, there are many ways to do so. The challenge is to find
a DAG that approximates well the original graph in influence
spread. In this section, we introduce two DAG construction
algorithms, both retaining important edges where influences
are likely to travel.

A. Localizing Influence Spread Region

One important observation in [4] is that the influence of
a seed node diminishes quickly along a path away from the
seed node. In other words, the “perimeter” of influence or the
influence region of a seed node is in fact very small. One way
to characterize the influence region of a node v is through the
union of maximum influence paths defined next.

Definition 1: (Path Propagation Probability)
For a given path P (u, v) = {u1, u2, . . . , ul} of length l from
a vertex u to v, with u1 = u, ul = v and u2, . . . , ul−1 are
intermediate vertices, define the propagation probability of the
path, p(P), as:

p(P (u, v)) =

l−1∏
i=1

p(u1, ui+1). (6)

p(P (u, v)) can be thought as the probability that u will
influence v if u is selected as a seed node. Obviously, the
longer the path length l, the smaller the chance that u can
spread its influence to v.

Definition 2: (Maximum Influence Path)
Denote by P(G, u, v) the set of all paths from u to v in G.
The maximum influence path MIP (G, u, v) from u to v is
defined as:

MIP (G, u, v) = arg max
P
{p(P)|P ∈ P(G, u, v)}. (7)

Ties are broken in a predetermined and consistent way such
that MIP (G, u, v) is always unique, and any sub-path in
MIP (G, u, v) from x to y is also the MIP (G, x, y). In
order to localize the influence region of nodes and reduce the
complexity, we only consider influence spread on maximum
influence paths.

Definition 3: (Maximum Influence Out-Arborescence)
For a graph G, an influence threshold θ, the maximum influ-
ence out-arborescence of a node u ∈ V,MIOA(G, u, θ), is

Algorithm 4: Calculate D1(S) from a seed set S
input : G, S, θ

1 Build GR = (VGR , EGR)
2 D1(S) =MIOA(GR, R, θ)\R
3 Calculate r(v), ∀v ∈ VD1 (Eq. (9))
4 foreach (u, v) ∈ VGR do
5 if r(u) < r(v) and (u, v) ∈ E then
6 D1(S) = D1(S) ∪ (u, v)

output: D1(S)

defined as:

MIOA(G, u, θ) =
⋃

v∈V,p(MIP (G,u,v))≥θ

MIP (G, u, v). (8)

MIOA(G, u, θ) is defined as the union of MIP ’s from u
to all other nodes in V . MIP ’s with propagation probabilities
less than a threshold θ are not included to reduce the size of
MIOA. One can think of MIOA(G, u, θ) as a local region
where u can spread its influence to. MIOA(G, u, θ) can be
computed by first finding the Dijkstra tree rooted at u with
edge weight − log(p(u, v)) for edge (u, v), and then removing
the paths whose cumulative weights are too high. By tuning
the parameter θ, influence regions of different sizes can be
obtained. For a single node, its MIOA is clearly a tree. For
multiple seed nodes, we build upon the idea of local influence
region and propose two algorithms.

B. Building DAGs from a Seed Set

DAG 1: We observe that any DAG has at least one topological
ordering. Conversely, given a topological ordering, if only
edges going from a node of low rank to one with high rank
are allowed, the resulting graph is a DAG.

To obtain the topological ordering given seed set S, we first
introduce a (virtual) super root node R that is connected to
all seed nodes with edge probability 1. Let GR = (VGR , EGR)
where VGR = V ∪{R} and EGR = E∪{(R,Sk)|∀Sk ∈ S}. We
build MIOA(GR, R, θ) by calculating a Dijkstra tree from R.
After removing R and its edges from MIOA(GR, R, θ), we
obtain a singly connected DAG D1 = (VD1

, ED1
) on which

BP algorithms can be directly applied and used to estimate the
influence spread from S. However, D1(·) is very sparse (with
n− k edges) since many edges are removed.

We then augment D1(·) with additional edges. Note that
MIOA(GR, R, θ) provides a topology ordering. More specif-
ically, let the rank of node v be the sum weight of the shortest
path from R, namely,

r(v) = min(− log(p(P (s, v)))),∀s ∈ S. (9)

Rank grows as the node is further away from R. We include
in D1(·) all edges in G whose end points are in D1(·) and go
from a node with lower rank to one with higher rank. Clearly,
the resulting graph is a DAG. The DAG constructing procedure
is illustrated in Figure 1 and summarized in Algorithm 4.

S1

A B

C

S2 S1

A B

C

0.
5

0.40.3 0.4

0.5
0.4

0.5

R

S2

p
=

1 p = 1

Node S1 S2 A B C
r(Node) 0 0 0.301 0.398 0.699

Fig. 1: DAG due to Algorithm 4. S1 and S2 are seed nodes. Edges in
MIOA(GR, R, θ) are in bold. (S1, B), (S2, A), (A,B), and (B,C)
are added into D1(S) to improve inference accuracy. θ = 0.0001.

Algorithm 5: Calculate D2(S) from a seed set S
input : G, S,MIOA(G, v, θ), ∀v ∈ V

1 D2(S) =
⋃

∀s∈S MIOA(G, s, θ)
2 Calculate r(v), ∀v ∈ VD2 (Eq. (9))
3 foreach (u, v) ∈ D2(S) do
4 if r(u) ≥ r(v) then
5 D2(S) = D2(S)\(u, v)

output: D2(S)

DAG 2: In the second algorithm, we first compute the
MIOA from each seed node and take the union of
MIOA(G, s, θ),∀s ∈ S. Denote the resulting graph D2(S) =
(VD2

, ED2
). Note that D2(S) is not necessary a DAG as there

could be circles.To break the cycles, certain edges need to be
removed. We adopt a similar approach as in Algorithm 4. A
node v is associated with a rank r(v) as in (9). Only edges
that connect a lower ranked node to higher ranked node are
retained. Clearly, the resulting graph is a DAG. The approach
is summarized in Algorithm 5.

S1

A B

C

S2 S1

A B

C

S2

0.
5

0.40.3 0.4

0.
5

0.4

0.5

Node S1 S2 A B C
r(Node) 0 0 0.301 0.398 0.699

Fig. 2: DAG due to Algorithm 5. S1 and S2 are seed nodes. D2(S)
is the union of MIOA(G, S1, θ) (solid edges) and MIOA(G, S2, θ)
(dashed edges). θ = 0.0001.

The next proposition provides the relationship between
DAGs constructed by Algorithm 4 and 5.

Proposition 1: Given a fixed influence threshold θ, let
D1(·) = (VD1 , ED1) and D2(·) = (VD2 , ED2) be the DAGs
constructed by Algorithm 4 and Algorithm 5. Then, VD1 =
VD2

and ED2
⊆ ED1

.

Computation complexity: Building the Dijkstra tree from
a source node takes O(n0 log n0), where n0 is the maximum
number of vertices in the resulting DAG. Calculating the node
rank r(·) takes O(n0), the union operation in DAG 2 takes
O(n0−1), and the edge augmenting and pruning in DAG 1 and
DAG 2 takes O(m0) and O(min(m0, k(n0−1))), respectively,
where m0 is the maximum number of edges in a DAG and k
is the seed set cardinality.

Thus, the running time of DAG 1 and DAG 2 are
O(n0 log n0) and O(n0), respectively. Note that DAG 2 cal-
culation requires the availability of MIOA(G, v, θ),∀v ∈ V
first, which can be built at the initialization stage at the cost
of O(nn0 log n0). Assuming that k is small and θ is properly
selected, we have n0� n.

VI. OPTIMIZATION OF SEED SELECTION

In each round of Naive Greedy, a seed node with the max-
imum incremental spread-cost ratio is selected, namely, v =
maxv∈V \S δ(v). Recall that δ(v) = (σ(S ∪ v) − σ(S))/c(v)
is the spread increment ratio of v under S. Initially, when
S = ∅, δ(v) = σ(v)/c(v). Evaluating δ(v) at each iteration
for all v ∈ V dominates the overall computation complexity.

To accelerate the execution of Naive Greedy, one can try
to improve on two aspects, namely, 1) limiting the candidate
set of nodes to pick from for the next seed, and 2) reducing
the complexity of computing the spread increments. CELF
algorithm [5] eliminates many nodes from being evaluated.
We focus on the second aspect. The proposed mechanism can
be used in conjunction with the idea from CELF.

Recall in Section V-A, we use MIOA to localize the
influence region of a node. Consider for now that influence
from a node can only reach nodes in its MIOA. Then, we
make the following claim.

Proposition 2: Given the current seed set S, adding u
to S will not change the spread increment of v, namely,
δS(v) = δS∪u(v) if MIOA(G, u, θ) and MIOA(G, v, θ) have
no common vertex.

As a result of Proposition 2, each time we select a new seed,
only the influence increments of nodes that have overlapping
influence regions with the newly selected seed need to be re-
evaluated. Formally, we define the set of Peer Seeds (PS) of
a vertex v ∈ V as follow:

PS(G, v, θ) = {s ∈ V |MIOA(G, s, θ) ∩MIOA(G, v, θ) 6= ∅} .
(10)

PS(G, v, θ) can be computed efficiently just once at the
beginning when all MIOA(G, v, θ)’s are available.

Combining the ideas of 1) limiting the region to be re-
evaluated using PS, 2) limiting the set of nodes to pick from
(adopted from CELF), and 3) picking nodes w.r.t its cost and
the remaining budget (Algorithm 2), we have the complete
procedure to determine the optimal seed set in Algorithm 6.
Figure 3 gives the block diagram of the proposed algorithm.

DAG Construction
Influence Spread

Estimation on DAG

Naive Greedy Algorithm

SPBPLBP DAG2DAG1

Improved Greedy Algorithm

Fig. 3: The building blocks of our proposed algorithm. Details are
presented in the previous sections.

The seed selection algorithm proceed as follow: In the
initialization phase (lines 1 – 8), MIOA’s and PS’es are
constructed. The second candidate solution smax can be de-
termined in O(n) time (line 9). S1 is computed by executing
the loop in lines 10 – 26. Each node in V is ranked by its
incremental spread-cost ratio and can be added to S1 just once.
The node with the highest ratio is included in S1 if it does
not violate the budget b (line 12), and the corresponding nodes
will be re-evaluated (lines 18 – 24). The procedure terminates
once all nodes were considered, or no more budget remains
(line 26). Finally, the algorithm compares the spread of S1,
smax and returns the solution with the larger spread.

Computation complexity: Recall that we denoted by n0 the
largest number of vertices, and by d the largest in-degree of
a node in a DAG. For each node v ∈ V in the initialization
phase, building MIOA(G, v, θ) takes O(n0 log n0), and esti-
mating σ(v) takes O(n0d) using SPBP and O(n02d) using
LBP, respectively. Thus, depending on the algorithm used,
the running time of initialization is O(nn0(log n0 + d)) or
O(nn0(log n0 + 2d)).

Let k be the number of seeds selected in the main loop
(lines 10 – 26) and v0 be the cardinality of the largest set of
peer seeds, namely, v0 = max∀v∈V {|PS(G, v, θ)|} = O(n0).
Therefore, nodal influence spread is updated O(kn0) times.
Note that this is much less than the number of updates required
by Algorithm 1 (O(n2)) as we do not naively re-evaluate every
node. Each time when the influence spread is updated, we need
to rebuild the DAG (line 20 – takes O(n0 log n0) with DAG
1 or O(n0) with DAG 2) and calculate the influence spread
(line 21 – takes O(n02d) with LBP or O(n0d) with SPBP).
The total computation complexity for different combinations
of algorithms is summarized as follows:

DAG 1 DAG 2
LBP n0(n+ kn0)(logn0 + 2d) n0(2d(kn0 + n) + n logn0)

SPBP n0(n+ kn0)(logn0 + d) n0(n(logn0 + d) + kn0(1 + d))

Clearly, combining DAG 1 and LBP incurs the highest
complexity while the combination of DAG 2 and SPBP is the

Algorithm 6: The Proposed Algorithm
input : network graph G(V,E) and budget b

// initialization
1 S = S1 = smax = ∅, σ0 = 0, θ = influence threshold
2 foreach v ∈ V do
3 build MIOA(G, v, θ)
4 D(v) =MIOA(G, v, θ)
5 calculate σ(v) (LBP or Algorithm 3)
6 δ(v) = σ(v)/c(v)
7 δold(v) = 0

8 build PS(G, v, θ), ∀v ∈ V
// select smax

9 smax = argmaxv∈V σ(v)

// select S1

10 while true do
// select a new seed

11 u = argmaxv∈V \S(δ(v))
12 if c(S1 ∪ u) ≤ B then
13 S1 = S1 ∪ {u}
14 σ0 = σ(S)
15 δold(v) = δ(v), ∀v ∈ V \S1

16 b = b− c(u)
// update incremental influence spread

17 δmax = 0
18 foreach v ∈ PS(G, u, θ)\S1 do
19 if δold(v) > δmax then
20 build D(S1 ∪ {v}) (Algorithm 4 and 5)
21 calculate σ(S1 ∪ {v}) (LBP or Algorithm 3)
22 δ(v) = (σ(S1 ∪ {v})− σ0)/c(v)
23 if δ(v) > δmax then
24 δmax = δ(v)

25 V = V \u
26 if V = ∅ or b = 0 then

break

27 S = argmax (σ(S1), σ(smax))

output: selected seed set S

fastest. From the analysis, it is easy to see that the computation
complexity depends on n0 and d. The proposed approach is
more efficient with smaller n0 and d; that is, when the graph is
sparse and the edge propagation probabilities are small, both
are likely true in social networks.

VII. EVALUATION

In this section, we evaluate the performance of the pro-
posed framework. First, an illustrative example is provided
to highlight the difference in the two DAG construction
models, and spread computation methods. Next, we present
the implementation details and experimental setup. Finally,
we present the results on 1) performance on real-world social
networks and 2) impact of network structures using synthetic
graphs.

A. An Illustrative Example

Here, we consider a small scale network as shown in
Figure 4(a). Figure 4(b) and (c) show the DAG constructed
by the two models, and the activation probabilities by the

two methods. DAG 1 retains all the edges in the network
(since the original graph is in fact a DAG), while DAG 2
has fewer edges. When LBP is used to compute the influence
spread (the numbers on top next to each node), DAG 1
yields higher activation probability compared to DAG 2 for
node B and node C since A has a large influence to B
(0.5), which is not considered in DAG 2. In both DAGs,
ignoring the possible correlation among parent nodes in SPBP,
the activation probabilities tend to be bigger. Interestingly,
though DAG 2 is a multi-connected graph, the activation
probabilities computed by both methods are identical. Upon a
close examination, we find that even though the graph is multi-
connected, the activations of A and B are in fact independent
since both are direct descendents of seed nodes with activation
probability one.

B. Experiment Setup

The algorithms and implementation: In addition to the
two DAG models and two methods to compute influence
spread (a total of 4 combinations DAG1–LBP, DAG1–SPBP,
DAG2–LBP, and DAG2–SPBP), we make comparison with the
following algorithms:
• PMIA(θ) [4]: a very fast heuristic algorithm that builds a

tree-like structure model on which influence is spread.
θ is the influence threshold. We will set θ = 1/160
in all experiments as it was reported to yield the best
performance. The PMIA implementation provided by the
authors is optimized for IM, and thus its performance for
BIM is excluded.

• Greedy/CELF: The greedy approach from [3] with CELF
optimization in [5]. The number of simulation rounds for
each σ(·) estimation is 10,000.

• Weighted Degree: The simple heuristic that selects k
seeds that have maximum total out-connection weight.
Weighted Degree has been reported to be working very
well in practice.

We do not compare with other heuristics such as SP1M,
SPM [28], PageRank [29], Random, DegreeDiscountIC [7] or
Betweenness centrality [30] since they have been reported in
previous studies [4], [3] to be either unscalable or have poorer
performance.

We have implemented the proposed algorithms in C++. All
experiments are conducted on a workstation running Ubuntu
11.04 with an Intel Core i5 CPU and 2GB memory. In order to
implement LBP algorithm, we use libDAI [31] and Boost [32]
libraries. We find out through the implementation that running
LBP on networks with high in-degree nodes is very costly.
Therefore when running LBP, we prune incoming edges on
high in-degree nodes such that only ten edges with the highest
propagation probabilities are retained. The implementation
of PMIA is obtained from its authors. Note that with code
optimization, the running time of our algorithms can be further
reduced.

Datasets: We use four real-world network datasets from [33]
and [34] to compare performance of different algorithms. The
four datasets were selected so as they are representative of the

S1

A B

C

0.
5

0.40.3 0.4

0.
5

0.4

S21.0 1.0

0.757

0.5319

0.5
0.65

S1

B

C

S2
1.0
1.0

1.0
1.0

0.65
0.65

0.757
0.82

0.5319
0.5634

A

S1

B

C

S2
1.0
1.0

1.0
1.0

0.65
0.65

0.64
0.64

0.4968
0.4968

A

(a) Real active probabilities (b) Inference on DAG 1 (c) Inference on DAG 2

Fig. 4: Inference result on 2 DAG models. The real active probabilities are in green, LBP results are on top, in blue, and SPBP results are
below, in red.

TABLE II: Network datasets

Name Type Nodes Edges Density Max Degree Mean Degree Description
Email communication withinEmail Email exchange network 447 5,731 0.04 195 25.64 a research lab during a year

Gnutella peer to peerp2p-Gnutella P2P network 6,301 20,777 1e-03 97 6.59 network from August 8 2002
Slashdot social networksoc-Slashdot Social network 82,168 948,464 1.6e-03 5,064 23.09 from February 2009

Amazon product co-purchasingAmazon Product co-purchasing network 262,111 1,234,877 2.6e-05 425 9.42 network from March 2 2003

structural features of large-scale social networks, and are of
different scales – from several thousands to millions of edges.
The first one is an email exchange network in a research lab,
denoted by Email. Each researcher is a vertex and an email
from a researcher u to v constitutes an edge. The second
network, denoted by p2p-Gnutella is a snapshot of the Gnutella
peer-to-peer file sharing network from August 2002. Nodes
represent hosts in the Gnutella network and edges represent
connections between the Gnutella hosts. The third network
comes from Slashdot.org, a technology-related news website,
denoted by soc-Slashdot. In 2002, Slashdot introduced the
Slashdot Zoo feature that allows users to tag each other as
friends or foes. The network contains friend/foe links between
Slashdot users obtained in February 2009. Finally, Amazon
dataset is the product co-purchasing network collected by
crawling Amazon website on March 2, 2003. Details of the
datasets are summarized in Table II.

In addition to real social networks, we modified DIGG [35]
source code and generated scale-free networks with different
network densities and node out-degree distributions. The pur-
pose which allows us to study the impact of graph structures
and network property on the algorithm performance.

Probability generation models: Two models that have been
used in previous work [3], [4] are: 1) the Weighted Cascade
(WC) model where p(u, v) = 1/d(v) where d(v) is the in-
degree of v and 2) the Trivalency (TV) model where p(u, v) is
assigned a small value for any (u, v) ∈ E. We argue that both
models are not truthful reflections of the probability model
in practice. The WC model assign a very high probability
for a connections to nodes with small number of incoming
connections while the TV model assigns a similar probability
to all edges. In the evaluation, we consider two additional

models: 1) Random (RA) where p(u, v) is randomly selected
in the range [0.001, 0.2]. RA is useful when no prior infor-
mation regarding the influence is available; and 2) Power Law
(PL) where p(u, v) follows the power law distribution with
the density function p(x) = α/xβ , with x be the propagation
probability between two random edges p(u, v). Parameters
α = 0.05 and β = 0.9 are selected so that p(u, v) has the
mean value 0.1 in the range [0.001, 0.2].

C. Real Social Networks

Unit-cost version of BIM: BIM with unit-cost is the tradi-
tional IM problem where the seed set size k is fixed. In this
experiment, we run 7 algorithms: Greedy, PMIA, Weighted
Degree, and the 4 proposed methods on 4 datasets presented
in Table II. k varies from 1 to 50, and we adopt the RA
probability generation model.

Figure 5 shows the influence spread generated by the best
seed sets in different algorithms as the seed size changes. Since
Greedy does not scale with large datasets, we only run Greedy
on Email and p2p-Gnutella. The influence spread from the
seed set selected by each algorithm is determined by 10,000
rounds of Monte Carlo simulations on the original graphs.

In Figure 5(a), the performance of DAG1–LBP and Greedy
(known to be within a constant ratio of the optimal) are not
distinguishable (and thus are represented in one curve). The
influence spread of DAG1–SPBP and DAG2–LBP/SPBP are
shortly behind, all outperforming PMIA and Weighted Degree.
We observe on Email dataset (a small but dense network) that
both the structure of the DAG (DAG 1 vs. DAG 2) as well as
the BP algorithm used (LBP vs. SPBP) will affect performance
of the proposed methods. In contrast, as shown in Figure 5(b)
– (d), the influence spreads of the four approaches DAG1/2–

0 10 20 30 40 50

140

150

160

170

180

190

200

Seed Size

In
flu

en
ce

 S
pr

ea
d

Greedy/DAG1−LBP
DAG1−SPBP
DAG2−LBP/SPBP
PMIA
Weighted Degree

0 10 20 30 40 50
0

50

100

150

200

250

Seed Size

In
flu

en
ce

 S
pr

ea
d

Greedy/DAG1/2−LBP/SPBP
PMIA/Weighted Degree

0 10 20 30 40 50
0

100

200

300

400

500

Seed Size

In
flu

en
ce

 S
pr

ea
d

DAG1/2−LBP/SPBP
PMIA/Weighted Degree

0 10 20 30 40 50
0

20

40

60

80

100

120

Seed Size

In
flu

en
ce

 S
pr

ea
d

DAG1/2−LBP/SPBP
PMIA
Weighted Degree

(a) Email (b) p2p-Gnutella (c) soc-Slashdot (d) Amazon

Fig. 5: Influence spread with node unit-cost on 4 datasets. DAG 1 results are in red curves, DAG 2 are in blue curves, and other methods
are in black curves.

0 10 20 30 40 50

10
−2

10
0

10
2

10
4

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

Seed Size

Greedy
DAG1−LBP
DAG1−SPBP

DAG2−LBP
DAG2−SPBP

PMIA
Weighted Degree

0 10 20 30 40 50

10
−2

10
0

10
2

10
4

10
6

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

Seed Size

Greedy
DAG1−LBP
DAG1−SPBP

DAG2−LBP
DAG2−SPBP

PMIA
Weighted Degree

0 10 20 30 40 50

10
0

10
2

10
4

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

Seed Size

DAG1−LBP
DAG1−SPBP
DAG2−LBP

DAG2−SPBP/PMIA
Weighted Degree

0 10 20 30 40 50

10
0

10
2

10
4

10
6

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

Seed Size

DAG1−LBP
DAG1−SPBP
DAG2−LBP

DAG2−SPBP/PMIA
Weighted Degree

(a) Email (b) p2p-Gnutella (c) soc-Slashdot (d) Amazon

Fig. 6: Computation time with node unit-cost on 4 datasets.

LBP/SPBP are identical for sparser networks, and is the same
as Greedy in p2p-Gnutella dataset.

In terms of running time, Weighted Degree is the fastest.
Among the four proposed approaches, DAG2–SPBP is the
fastest, next are DAG2–LBP, DAG1–SPBP, and finally DAG1–
LBP. DAG2–SPBP and PMIA have comparable order in
running time with DAG2–SPBP being 30-40% slower than
PMIA in most cases. Again, this may be primarily attributed
to the lack of code optimization in our proposed methods.

Interestingly, influence spread on Amazon grows linearly
with the seed size. Our result matches with that in [4]. This
can be explained by the sheer scale of the network, and thus
the small number of selected seeds are likely to have non-
overlapping influence regions.

General cost version of BIM: In this set of experiments,
we compare only 4 algorithms: Greedy/CELF, Weighted De-
gree, and DAG1/DAG2–SPBP on 4 datasets presented in
Table II. We also omit the two methods that use LBP
(DAG1/DAG2–LBP) from the result since they have com-
parable performance as the SPBP approaches. The budget
b = {10, 15, 25, 40, 60, 100}, and the RA probability gener-
ation model is used. Nodal costs are selected uniformly in
[1.0, 3.0].

Results in Figures 7 and 8 are similar to that in Fig-
ures 5 and 6. In most cases, DAG1 has better perfor-
mance compared to DAG2. Notably, DAG1–SPBP outper-
forms Greedy/CELF on p2p-Gnutella dataset. Figure 8 shows
that the proposed methods are several orders of magnitude
faster than Greedy/CELF. Weighted Degree while being the
fastest algorithm, does not perform nearly as well as the others
on a dense graph (Email).

Comparison of Influence Spread on Two DAG Models:
To understand the behavior of the proposed algorithms, we
conduct further experiments on Email dataset as it gives the
largest performance difference between the algorithms.

Figure 9(a) gives the number of vertices and edges as the

result of the two DAG models with varying sizes of seed sets.
Since both have the same number of vertices, only one curve
is shown. It is clear that DAG1 is much denser than DAG2
due to the inclusion of more edges. As the seed set grows, the
gap becomes smaller.

We use Root Mean Square Error (RMSE) to compare the
activation probabilities on nodes. RMSE is defined as,

RMSE(p, p′) =

√∑
∀v∈V (p′(v)− p(v))2

n
/

∑n
∀v∈V p(v)

n
,

where p′(·) is the inferred result from the propose algorithms.
The ground truth p(·) is determined by Monte Carlo simula-
tions. When p′(v) = p(v),∀v ∈ V then RMSE(p, p′) = 0.

Figure 9(b) shows that DAG1 has smaller RMSE since
it constructs a denser graph. More edges clearly improves
the quality of the seed selection process. In the comparing
LBP and SPBP, LBP is slightly better since SPBP ignores
the correlation among node states. The combination of DAG1
and LBP yields the best inference result, but incurs higher
computation complexity. The results are consistent with those
in Figure 5(a).

D. Synthetic Networks

In this section, we conduct three sets of experiment with
5 methods: CELF, PMIA, Weighted Degree and DAG1/2–
SPBP. Synthetically generated networks are used to study
the impact of network structures and probability generation
models on performance of the algorithms. To isolate the effects
of network properties, we only consider the unit cost BIM
problem.

Impact of network density: Results from Figure 5 and 7
indicate that our proposed methods perform best on dense
networks (Email and p2p-Guntella). To further validate this
observation, we generate 4 networks with 20k, 50k, 100k, and
200k edges using DIGG [35]. The number of vertices is fixed
at 5,000. Seed set size k = 50 and probability model is RA. We

10 15 25 40 60 100

200

210

220

230

240

250

260

Budget

In
flu

en
ce

 S
pr

ea
d

DAG2−SPBP
DAG1−SPBP
CELF
Weighted Degree

10 15 25 40 60 100

50

100

150

200

Budget

In
flu

en
ce

 S
pr

ea
d

DAG2−SPBP
DAG1−SPBP
CELF
Weighted Degree

10 15 25 40 60 100

400

600

800

1000

1200

1400

Budget

In
flu

en
ce

 S
pr

ea
d

DAG2−SPBP
DAG1−SPBP
Weighted Degree

10 15 25 40 60 100

20

40

60

80

100

120

140

160

Budget

In
flu

en
ce

 S
pr

ea
d

DAG2−SPBP
DAG1−SPBP
Weighted Degree

(a) Email (b) p2p-Gnutella (c) soc-Slashdot (d) Amazon

Fig. 7: Influence spread with random node costs on 4 datasets.

10 15 25 40 60 100

10
0

10
5

Budget

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

DAG2−SPBP
DAG1−SPBP
CELF
Weighted Degree

10 15 25 40 60 100

10
0

10
5

Budget

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

DAG2−SPBP
DAG1−SPBP
CELF
Weighted Degree

10 15 25 40 60 100

10
0

10
2

10
4

10
6

10
8

Budget

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

DAG2−SPBP
DAG1−SPBP
Weighted Degree

10 15 25 40 60 100

10
0

10
2

10
4

10
6

10
8

Budget

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

DAG2−SPBP
DAG1−SPBP
Weighted Degree

(a) Email (b) p2p-Gnutella (c) soc-Slashdot (d) Amazon

Fig. 8: Computation time with random node costs on 4 datasets.

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

4000

Seed Set Size (nodes)

DAG 1 Edges
DAG 2 Edges
DAG Nodes

0 10 20 30 40 50

0.4

0.6

0.8

1

1.2

1.4

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Seed Set Size (nodes)

DAG1−LBP
DAG2−SPBP
DAG1−SPBP
DAG2−LBP

(a) Number of nodes and edges in DAG (b) RMSE

Fig. 9: Size of DAGs and RMSE of activation probabilities. Results are averages of 50 runs with different seed selections and symmetric
error bars indicate standard deviations.

evaluate the spread ratio of various algorithms, defined as the
ratio of the spread attained to that by Greedy/CELF algorithm.
From Figure 10(a), as the network density increases, the
performance gap between the proposed algorithms and existing
algorithms including CELF increases. CELF relies on many
rounds of simulations to determine the spread. For dense
networks, more rounds of simulations are needed to produce a
spread estimation that is close enough to the ground truth. As
a result, with a fixed number of simulation rounds, CELF has
worse performance at high network densities. We also observe
that PMIA, which was designed to take advantage of network
sparsity; and Weighted Degree, which only uses local node
information, do not perform well on densely connected graphs.

Impact of probability generation model: In this set of
experiments, we run 5 algorithms on a synthetic network with
5,000 nodes and 50,000 edges. Each algorithm selects a seed
set with size k = 50 under 4 propagation probability models:
RA, TV, PL and WC. All models give similar performance
except Weighted Degree on WC model. Recall that WC

generates the propagation probabilities based on the in-degree
of nodes, thus strong connections are established between
nodes with low in-degree. Weighted Degree can’t “see” those
strong ties beyond the local edges, and therefore, has the worst
performance.

Impact of node out-degree distribution: It is known that
node out-degree in real social networks follows the power-
law distribution [36]. Let y be the percentage of nodes with
degree x, then we have y ∼ α/xβ .α and β can be seen as
the intercept and the (negative) slope when degree sequence
is plotted on a log-log scale. While varying α only scales
the distribution up or down, changing β alters the “shape” of
the distribution. More specifically, a high value of β means the
node out-degree distribution exhibits larger skew. The network
in this case contains few “hubs” that are connected to many
other nodes. On the other hand, a small β means that the
distribution is fat-tailed and the max out-degree in the network
is not much larger than the average out-degree. We run 5
algorithms to solve the unit-cost BIM problem on 4 generated

20k 50k 100k 200k
90

95

100

105

110

115

Edges

S
pr

ea
d

R
at

io
 (

%
)

DAG2−SPBP
DAG1−SPBP
CELF
PMIA
Weighted Degree

RA TV PL WC
60

70

80

90

100

110

Model

S
pr

ea
d

R
at

io
 (

%
)

DAG2−SPBP
DAG1−SPBP
CELF
PMIA
Weighted Degree

0.5 1.0 1.5 2.0
90

92

94

96

98

100

102

Beta

S
pr

ea
d

R
at

io
 (

%
)

DAG2−SPBP
DAG1−SPBP
CELF
PMIA
Weighted Degree

(a) Varying network densities (b) Varying probability generation models (c) Varying out-degree distributions

Fig. 10: Algorithm performance on different network conditions.

networks with β = {0.5, 1.0, 1.5, 2.0}. The network size is
5,000 and α is adjusted accordingly such that the total number
of edges is roughly 50,000. We see from Figure 10(c) that the
performance gap among the algorithms reduces with larger
β. This is because with a large degree distribution skewness,
nodes with high out-degree (hub) will almost certainly be one
of the best seed candidates (unless their costs are too high,
which is not this case). Simple algorithms such as Weighted
Degree can easily identify such hub nodes. On the other hand,
when the network is more “flattened”, more sophisticated
algorithms are necessary.

E. Summary

From the experiments results, Weighted Degree gives the
best efficiency in terms of spread/complexity. However, its
performance degrades significantly on dense networks or more
heavy tailed power law graphs. The same conclusion is applied
to PMIA. Even though being faster than our algorithms,
PMIA shows little improvement in term of attainable spread
compared to Weighted Degree, except under the WC model.
Our proposed schemes surpass the others in all the experi-
mented datasets. They also offer more application flexibility:
one would apply the best performed algorithm (DAG1–LBP)
on static networks (e.g.: network of connections between co-
workers) to identify the most influential nodes, or apply the
fastest algorithm (DAG2–SPBP) on rapidly changing commu-
nities (e.g.: network of connections between people in a social
group) to obtain immediate result.

VIII. CONCLUSION

While recent researches focus on solving the IM problem,
we considered in this paper the BIM problem, which is a gen-
eralization of the former one. The study on real world datasets
and synthetic datasets with controllable network parameters
provides convincing evidences the proposed algorithms have
superior performance. Furthermore, we gain some insights on
the choice of algorithms in trading computation complexity
with performance given the network structure.

IX. ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under grants CNS-1117560 and CNS-0832084.

REFERENCES

[1] P. Domingos and M. Richardson, “Mining the network value of cus-
tomers,” in Proceedings of the seventh ACM SIGKDD KDD ’01. New
York, NY, USA: ACM, 2001, pp. 57–66.

[2] M. Richardson and P. Domingos, “Mining knowledge-sharing sites for
viral marketing,” in Proceedings of the eighth ACM SIGKDD KDD ’02.
New York, NY, USA: ACM, 2002, pp. 61–70.

[3] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the KDD ’03.
New York, NY, USA: ACM, 2003, pp. 137–146.

[4] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proceedings
of the KDD ’10. New York, NY, USA: ACM, 2010, pp. 1029–1038.

[5] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance, “Cost-effective outbreak detection in networks,” in
Proceedings of the 13th ACM SIGKDD KDD ’07. New York, NY,
USA: ACM, 2007, pp. 420–429.

[6] A. Goyal, W. Lu, and L. V. Lakshmanan, “Celf++: optimizing the greedy
algorithm for influence maximization in social networks,” in Proceedings
of the WWW ’11. New York, NY, USA: ACM, 2011, pp. 47–48.

[7] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in Proceedings of the KDD ’09. New York, NY,
USA: ACM, 2009, pp. 199–208.

[8] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in
social networks under the linear threshold model,” in Proceedings of the
2010 IEEE ICDM ’10, 2010, pp. 88–97.

[9] E. Even-Dar and A. Shapira, “A note on maximizing the spread of
influence in social networks,” Inf. Process. Lett., vol. 111, pp. 184–187,
January 2011.

[10] J. Sylvester, “Maximizing diffusion on dynamic social networks,” Sci-
ence, 2009.

[11] W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincon, X. Sun,
Y. Wang, W. Wei, and Y. Yuan, “Influence maximization in social
networks when negative opinions may emerge and propagate.” in SDM.
SIAM / Omnipress, 2011, pp. 379–390.

[12] N. Chen, “On the approximability of influence in social networks,”
in Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms, ser. SODA ’08. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2008, pp. 1029–1037.

[13] E. Ackerman, O. Ben-Zwi, and G. Wolfovitz, “Note: Combinatorial
model and bounds for target set selection,” Theor. Comput. Sci., vol.
411, pp. 4017–4022, October 2010.

[14] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Approximation analysis
of influence spread in social networks,” CoRR, vol. abs/1008.2005, 2010.

[15] Y. Ni, L. Xie, and Z.-Q. Liu, “Minimizing the expected complete
influence time of a social network,” Inf. Sci., vol. 180, pp. 2514–2527,
July 2010.

[16] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos,
“Epidemic thresholds in real networks,” ACM Trans. Inf. Syst. Secur.,
vol. 10, no. 4, pp. 1:1–1:26, Jan. 2008.

[17] H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, and
D. Chau, “On the vulnerability of large graphs,” in IEEE 10th ICDM,
dec. 2010, pp. 1091 –1096.

[18] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos,
“Virus propagation on time-varying networks: theory and immunization
algorithms,” in Proceedings of the 2010 ECML PKDD: Part III. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 99–114.

[19] H. Nguyen and R. Zheng, “Influence spread in large-scale social
networks — a belief propagation approach,” in Proceedings of the ECML
PKDD’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 515–530.

[20] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage
problem,” in Infor. Proc. Letters, vol. 70, no. 1, pp. 39 – 45, 1999.

[21] C. Chekuri and A. Kumar, “Maximum coverage problem with group
budget constraints and applications,” in Proceedings of the 7th APPROX,
2004, pp. 72–83.

[22] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Understanding belief
propagation and its generalizations. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2003, pp. 239–269.

[23] J. Pearl, “Reverend Bayes on inference engines: A distributed hierarchi-
cal approach,” in Proceedings of the American Association of Artificial
Intelligence National Conf. on AI, Pittsburgh, PA, 1982, pp. 133–136.

[24] S. L. Lauritzen and D. J. Spiegelhalter, “Local Computations with
Probabilities on Graphical Structures and Their Application to Expert
Systems,” Journal of the Royal Statistical Society. Series B (Method-
ological), vol. 50, no. 2, 1988.

[25] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy Belief Propagation
for Approximate Inference: An Empirical Study,” in In Proceedings of
Uncertainty in AI, 1999, pp. 467–475.

[26] B. J. Frey, R. Koetter, and N. Petrovic, Very loopy belief propagation
for unwrapping phase images. MIT Press, 2001, vol. 14, p. 737743.

[27] R. McEliece, D. MacKay, and J.-F. Cheng, “Turbo decoding as an
instance of pearl’s ldquo;belief propagation rdquo; algorithm,” in JSAC,
vol. 16, no. 2, pp. 140 –152, feb 1998.

[28] M. Kimura and K. Saito, “Tractable models for information diffusion in
social networks,” in Knowledge Discovery in Databases: PKDD 2006,
2006, vol. 4213, pp. 259–271.

[29] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Comput. Netw. ISDN Syst., vol. 30, pp. 107–117, April
1998.

[30] L. Freeman, “Centrality in social networks conceptual clarification,”
Social Networks, vol. 1, no. 3, pp. 215–239, 1979.

[31] J. M. Mooij, “libDAI: A free and open source C++ library for discrete
approximate inference in graphical models,” Journal of Machine Learn-
ing Research, vol. 11, pp. 2169–2173, Aug. 2010.

[32] Boost c++ libraries. [Online]. Available: http://http://www.boost.org/
[33] J. Leskovec. Stanford large network dataset collection. [Online].

Available: http://snap.stanford.edu/data/
[34] I. Wiki. Social network generation. [Online]. Available:

http://www.infovis-wiki.net/index.php/Social Network Generation
[35] L. Dignan. (2006) Dynamic graph generator. [Online]. Available:

http://digg.cs.tufts.edu/
[36] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distribu-

tions in empirical data,” SIAM Rev., vol. 51, no. 4, pp. 661–703, Nov.
2009.

[37] L. G. Valiant, “The complexity of enumeration and reliability
problems,” SIAM Journal on Computing, vol. 8, no. 3, pp. 410–421,
1979. [Online]. Available: http://link.aip.org/link/?SMJCAT/8/410/1

[38] A. Krause and C. Guestrin, “A note on the budgeted maximization
of submodular functions,” Carnegie Mellon University - School of
Computer Science, Tech. Rep. CMU-CALD-05-103, June 2005.

APPENDIX

Proof of Theorem 1:
Proof: The proof is an adaption of the proof in [4] and

Valiant’s original proofs of the #P-completeness of the s-t
connectedness in a direct graph [37]. First, we define a few
problems that are known or to be proven to be #P-complete.

Definition 4: (SAT’)
Input: F = c1∧c2∧. . . cr, where ci = (yi1∨yi2) and yij ∈ X ,
Output: |{(x, t)|t = (t1, t2, . . . , tn) ∈ {1, 2}n; for 1 ≤ i ≤ r,

x make yi,k true for k = ti.
Definition 5: (S-SET CONNECTEDNESS on DAG)

Input: A DAG D = (V,E); s ∈ V ;V ′ ∈ V .
Output: Number of subgraphs of D in which for each u ∈ V ′,

there is a (directed) path from s to u.
Definition 6: (S-T CONNECTEDNESS on DAG)

Input: A DAG D = (V,E); s, t ∈ V .

Output: Number of subgraphs of D in which there is a
directed path from s to t.

To prove Theorem 1, we first establish the following lemma.
Lemma 1: SAT ′ �p S-T CONNECTEDNESS on DAG.

Proof: Given F construct a DAG D = (V,E1∪E2) where
V = {c1, c2, . . . , cr+1, x1, . . . , xn, x̄1, . . . , x̄n, s}, E1 =
{(xi, cj)|xi appears in clause cj in F}

⋃
{(xn, cr+1), (x̄n, cr+1)},

and E2 = {(xi, xi+1), (x̄i, xi+1), (x̄i, x̄i+1), (xi, x̄i+1)|1 ≤
i ≤ n}

⋃
{(s, x1), (s, x̄1)}. The direction of each edge follows

the order of the pairs. D is a DAG as edges only go from x’s
of smaller index to larger ones, and from x’s to c’s. Note the
D is multi-connected. The rest of the proof follows that in
[37].
Theorem 1 can then be proved using the same argument as
in [4] with the exception that the reduction is from the S-T
CONNECTEDNESS on DAGs due to Lemma 1.

Proof of Proposition 1:
Proof: In both algorithms, a node v is not included in the

DAG if and only if r(v) > θ. Thus, VD1 = VD2 .
To show ED2 ⊆ ED1 , it suffices to show that ∀(u, v) ∈

ED2
, (u, v) ∈ ED1

. Since (u, v) ∈ ED2
, (u, v) ∈ E and

r(u) ≤ r(v). Therefore, according to Algorithm 2, (u, v) ∈
ED2

. Clearly, the converse is not true as some edges in ED1

may not be part of the MIOA from any seed node.

Proof of Proposition 2:
Proof: It is easy to see that by limiting the spread from

u in MIOA(G, u, θ), then p(w),∀w ∈ MIOA(G, v, θ) will
not be affected by the inclusion of u in the seed set.

Proof of Theorem 2:
First we establish the following lemma. Let r be the number

of iterations executed by the repeat loop in Algorithm 1. Let
S be the current seed set and S∗ be the optimal seed set.
Without loss of generality, we may renumber nodes that was
added to S follow the chronicle order S = {u1, u2, · · · , ul}.
Let Si =

⋃i
j=1 uj and let ji be the index of the iteration in

which ui was considered.

Lemma 2: After each iteration ji, i = 1, · · · , l + 1, the
following holds:

σ(Si) ≥

[
1−

i∏
k=1

(
1− c(k)

b

)]
σ(S∗). (11)

Proof: The proof of Lemma 2 was first presented by
Khuller et al. in [20] for the budgeted maximum coverage
problem, which is a special case of BIM where all the active
edge probabilities are 1. Later, it was extended by Krause et
al. (Lemma 3 in [38]) for general submodular functions.

Now we’re in position to prove Theorem 2:
Proof: (Adapted from [20]) We prove Theorem 1 by case

analyzing Algorithm 2.
• Case 1: If there exist at lease a node u ∈ V which

has spread greater than 1
2σ(S∗), then u or any other

nodes which possess a greater spread, will be selected
as the second candidate S2. Algorithm 2 will therefore
guarantee at least 1

2σ(S∗).

• Case 2: If there is no such node.
– Case 2.1: If c(S) < 1

2b, then we have c(u) > 1
2b,∀u 6∈

S since there is no more node that can be added to
S without violating the budget constrain. W.l.o.g, we
assume S 6= S∗. Therefore, S∗\S contains at most
1 node v, otherwise c(S∗) > b. By submodularity
definition we have,

σ(S∗ ∩ S) + σ(v) ≥ σ((S∗ ∩ S) ∪ v) + σ((S∗ ∩ S) ∩ v)
≥ σ(S∗) + σ(∅)
≥ σ(S∗).

By assumption, we have σ(v) < 1
2σ(S∗), therefore

σ(S∗ ∩ S) ≥ 1
2σ(S∗). It follows that σ(S) ≥ 1

2σ(S∗).
– Case 2.2: If c(S) ≥ 1

2b. We first observe that for
a1, · · · an ∈ R and

∑n
i=1 ai ≥ αA, the function,

n∏
i=1

(
1− ai

A

)
is maximized when ai = αA

n . By Lemma 2, we have,

σ(Si) ≥

[
1−

i∏
k=1

(
1− c(k)

b

)]
σ(S∗)

≥

[
1−

(
1− 1

2i

)i]
σ(S∗)

≥
(

1− 1√
e

)
σ(S∗).

Thus, in the worst case, Algorithm 2 provides a (1 −
1/
√
e)-approximation.

