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Abstract—This paper proposes a fully decentralized adaptive
re-weighted state estimation (DARSE) scheme for power systems
via network gossiping. The enabling technique is the proposed
Gossip-based Gauss-Newton (GGN) algorithm, which allows to
harness the computation capability of each area (i.e. a database
server that accrues data from local sensors) to collaboratively
solve for an accurate global state. The DARSE scheme mitigates
the influence of bad data by updating their error variances
online and re-weighting their contributions adaptively for state
estimation. Thus, the global state can be estimated and tracked
robustly using near-neighbor communications in each area.
Compared to other distributed state estimation techniques, our
communication model is flexible with respect to reconfigurations
and resilient to random failures as long as the communication
network is connected. Furthermore, we prove that the Jacobian
of the power flow equations satisfies the Lipschitz condition that
is essential for the GGN algorithm to converge to the desired
solution. Simulations of the IEEE-118 system show that the
DARSE scheme can estimate and track online the global power
system state accurately, and degrades gracefully when there are
random failures and bad data.

Index Terms—hybrid state estimation, convergence, gossiping

I. INTRODUCTION

Traditionally, power system state estimation (PSSE) has
been solved by the iterative Gauss-Newton (GN) procedure
(or its variants) using measurements from Supervisory Control
and Data Acquisition (SCADA) systems [3]. Recently, Phasor
Measurement Units (PMU) in the Wide-Area Measurement
Systems (WAMS) are gaining increasing attention since state
estimation using PMU data becomes a linear least squares
problem [4]. However, due to the limited deployment of
PMUs, researchers have proposed hybrid estimation schemes
[5], [6] by integrating WAMS and SCADA measurements.
Some of these methods incorporate the PMU measurements
into the GN update [7]–[9], while others use PMU data to
further refine the estimates from SCADA data [10], [11].

A. Related Work

Driven by the ongoing expansion of the cyber infras-
tructure of power systems and fast sampling rates of PMU
devices, there has been growing concern on distributing the
computations across different areas by fusing information in
various ways [4], [12]–[20]. In most of these methods, each
distributed area solves for a local state and refines the local
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estimates in a hierarchical manner by leveraging on the tie-line
structure and tuning the estimates on boundary buses shared
with neighboring areas. Although these methods considerably
alleviate the computational burdens at control centers, they rely
on aggregation trees that require centralized coordination and
depend on the power grid topology. This is clearly a limitation
in reconfiguring the system, if random failures or attacks call
for it. Last but not least, this class of methods typically requires
local observability provided by redundant local measurements,
which may not be satisfied during contingencies.

Recently, the authors of [21], [22] proposed distributed state
estimation schemes for power systems that do not require local
observability. Specifically, [22] follows a similar formulation
as in [15]–[17] and uses the alternating direction method
of multipliers (AD-MoM) to distribute the state estimation
procedure. The merit of AD-MoM in [22] lies in the fact that
the computation is local and scalable with respect to the num-
ber of variables in each area. However, the communications
required by the AD-MoM scheme are constrained by the grid
topology. Also, the numerical tests performed in [22] are based
exclusively on PMU data and the algorithm convergence in the
presence of SCADA measurements is not discussed in general.
While the advantages of hybrid state estimation schemes are
evident from [5], [6], these papers do not provide analytical
proof nor performance guarantee for the convergence.

In order to obtain the global state, the approach taken in
[21] is inspired by a number of recent advances in network
diffusion algorithms for optimization. Diffusion algorithms are
capable of solving an array of problems in a fully decentralized
manner without any hierarchical aggregation, including linear
filtering [23], convex optimizations [24] and adaptive estima-
tion [25]. These techniques combine a local descent step with a
diffusion step, which is performed via network gossiping. The
convergence of these algorithms relies on the convexity of the
cost function and a small (or diminishing) step-size, which
slows down the algorithm in general. Furthermore, PSSE with
SCADA measurements is non-convex and it is not clear how
these methods will perform in practice.

Compared to other decentralized methods including [1],
[2], another major issue addressed in this paper is bad data
processing. There has been extensive work devoted to the
detection and identification of bad data in power systems,
mainly divided into two categories. The first category is
usually handled by χ2-test and the largest normalized residual
(LNR) test [3], [26]–[29]. There are also specific detection
schemes using PMU measurements in different ways [30],
[31]. To reduce the bad data effects, LNR tests are performed
successively, which re-estimates the state after removing or
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compensating the data entry with the largest residual [17],
[32]. Based on the LNR principle, [33] developed a distributed
scheme where different areas exchange measurement residuals
and successively re-estimate the state, until no further alarms
are triggered. To avoid repetitive computations, [34], [35]
suggested computing χ2 and LNR test statistics as a rule-of-
thumb to identify bad data in one pass, where the state only
needs to be re-estimated one additional time. Furthermore, the
work [22], [36] proposed a convex optimization approach to
directly estimate the bad data jointly with the state variables by
integrating a sparsity constraint on the number of error outliers.
The second approach for bad data processing, on the other
hand, is to suppress their effects on the state estimates instead
of removal. For instance, [37], [38] propose incorporating
different weights for the residuals to limit the impacts of bad
data on the state updates. A more comprehensive literature
review on bad data processing can be found in [39], [40].

B. Contributions

In this paper, we formulate the state estimation problem in
a Maximum Likelihood (ML) framework, and develop the De-
centralized Adaptive Re-weighted State Estimation (DARSE)
scheme specifically for wide-area PSSE. The DARSE scheme
deals with bad data similarly to [37], [38], where the bad data
variances are adaptively updated based on the measurements.
Furthermore, the DARSE scheme generalizes the Gossip-based
Gauss-Newton (GGN) algorithm we proposed in [41] under an
adaptive setting, which exhibits faster convergence than the
distributed state estimation scheme in [21] derived from first
order diffusion algorithms. Another important contribution of
this paper is that we prove sufficient conditions for the con-
vergence of GGN algorithm, by showing that the Jacobian of
power flow equations satisfies strictly the Lipschitz condition.
Furthermore, thanks to the adaptive features of the DARSE
scheme, it automatically adjusts the weights for different
sensor observations based the measurement quality, to reduce
the impacts of bad data on the state estimates. The main benefit
of the DARSE scheme is that it is completely adaptable to both
time-varying measurements quality and network conditions.
The quality of measurements can degrade in a random fashion
and also the communication network can experience failures.
With mild connectivity conditions, DARSE is able to deliver
accurate estimates of the global state at each distributed area.
Our claims are verified numerically on the IEEE-118 system.

C. Notations

In this paper, we used the following notations:
• i: imaginary unit and R and C: real and complex numbers.
• <{·} and ={·}: the real and imaginary part of a number.
• IN : an N ×N identity matrix.
• 1N : an N × 1 vector with all entries equal 1.
• ‖A‖ and ‖A‖F are the 2-norm1 and F -norm of a matrix.
• vec(A) is the vectorization of a matrix A.
• AT , Tr(A), λmin(A) and λmax(A): transpose, trace,

minimum and maximum eigenvalues of matrix A.
• ⊗ is the Kronecker product and E[·] means expectation.

1The 2-norm of a matrix is the maximum of the absolute value of the
eigenvalues and the 2-norm of a vector x ∈ RN is ‖x‖ =

√∑N
n=1 x

2
n.

II. POWER SYSTEM STATE ESTIMATION

The power grid is characterized by buses that represents
interconnections, generators or loads, denoted by the set N ,
{1, · · · , N}. The grid topology is determined by the edge set
E , {{n,m}} with cardinality |E| = E, which corresponds
to the transmission line between bus n and m. The Energy
Management Systems (EMS) collect measurements on certain
buses and transmission lines to estimate the state of the power
system, i.e., the voltage phasor Vn ∈ C at each bus n ∈ N . In
this paper, we consider the Cartesian coordinate representation
using the real and imaginary components of the complex volt-
age phasors v = [<{V1}, · · · ,<{VN},={V1}, · · · ,={VN}]T .
This representation facilitates our derivations because it ex-
presses PMU measurements as a linear mapping and SCADA
measurements as quadratic forms of the state v as in [42].

A. Measurement Model

Since there are 2 complex injection measurements at each
bus and 4 complex flow measurements on each line, this
amounts to twice as many real variables. Thus the measure-
ment ensemble has M = 4N + 8E entries in an aggregate
vector partitioned into four sections2

z[t] = [zTV [t], zTC [t], zTI [t], zTF [t]]T , (1)

containing the length-2N voltage phasor zV [t] and power
injection vector zI [t] at bus n ∈ N , the length-4E current
phasor zC [t] and power flow vector zF [t] on line (n,m) ∈ E
at bus n. These measurements are gathered at a certain
periodicity TSE for state estimation. In contrast to the slow
rate SCADA measurements, since PMU devices also provide
fast samples for dynamic monitoring and control, some pre-
processing is needed to align measurements that come at
widely different rates. This is an important practical issue
prior to the state estimation, however it is unrelated with the
estimation methodology considered here and therefore is left
for future investigation. State estimation is performed using
SCADA measurements {zI [t], zF [t]} and PMU measurements
{zV [t], zC [t]} that have been pre-processed and aligned.

Defining the power flow equations f(·)(v) in Appendix A
and letting v̄[t] be the true state at time t, the individual vector
z(·)[t] = f(·)(v̄[t]) + r(·)[t] contains observations corrupted by
measurement noise r(·)[t] that arises from instrumentation im-
precision and random outliers whose variances are potentially
much larger due to attacks or equipment malfunction. The
entries that have large variances are what we call bad data.
Then we have the measurement model below

z[t] = f(v̄[t]) + r[t], (2)

where

r[t] = [rTV [t], rTC [t], rTI [t], rTF [t]]T (3)

f(v) = [fTV (v), fTC (v), fTI (v), fTF (v)]T . (4)

A practical data collection architecture in power systems
(compatible with WAMS and SCADA) consists of I inter-
connected areas, where each area records a subset of z in

2Subscripts {V, C, I,F} mean voltage, current, injection and flow.
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(2). To describe the measurement selection in each area, we
define a binary mask Ti,(·) ∈ {0, 1}Mi,(·)×M with Mi rows
and M columns, where each row is a canonical basis vector
em = [0, · · · , 1, · · · , 0]T picking the corresponding element
in each category from {V, C, I,F}. Letting

Ti , [TT
i,V ,T

T
i,C ,T

T
i,I ,T

T
i,F ]T

be the selection matrix in the i-th area and applying this mask
on z, the measurements in the i-th area are selected as

ci[t] = fi(v̄[t]) + ri[t], (5)

where ci[t] , Tiz[t] = [cTi,V [t], cTi,C [t], c
T
i,I [t], cTi,F [t]]T and

similarly fi(·) = Tif(·), ri[t] = Tir[t]. We assume that ri[t]’s
are Gaussian and uncorrelated between different areas, which
has an unknown covariance denoted by

Ri[t] , diag[εi,1[t], · · · , εi,Mi
[t]], (6)

where Mi = Mi,V +Mi,C +Mi,I +Mi,F is the total number
of observations from each type of measurements.

B. Maximum Likelihood (ML) Estimation

Using the measurement model in (5), the ML estimate of the
state is obtained by maximizing the likelihood function with
unknown noise covariances {Ri[t]}Ii=1 over the state space V{

v̂[t], R̂i[t]
}

= arg max
v∈V,Ri

logP
(
{ci[t]}Ii=1

∣∣∣v, {Ri[t]}Ii=1

)
,

which is equivalent to minimizing the following cost function

min
v∈V,{Ri}Ii=1

I∑
i=1

‖ci[t]− fi(v)‖2R−1
i

+

I∑
i=1

log |Ri|. (7)

Note that due to the quadratic nature of power flow equations
in Appendix A, the cost function (7) is highly non-convex in
v and there exist multiple stationary points v? in the set V?
that result in local minima of (7). According to [43], these
stationary points can be determined by setting the derivatives
with respect to v and {εi,m}i=1,··· ,I

m=1,··· ,Mi
to zero

I∑
i=1

FTi (v?)R?
i [ci[t]− fi(v

?)] = 0, v? ∈ V? (8)

|ci,m[t]− fi,m(v?)|2 = ε?i,m. (9)

Clearly, the ML estimate v̂[t] achieve the global minimum of
(7) and belongs to the set V?. Solving for the ML estimate v̂[t]
would require substituting ε?i,m (with the unknown v?) back
into R?

i in (8) and searching for the point v? that achieves
the global minimum of (7). Therefore, the joint ML estimates
are obtained by equivalently solving the coupled equations

v̂[t] = arg min
v∈V

I∑
i=1

‖ci[t]− fi(v[t])‖2R̂−1
i [t] (10)

ε̂i,m[t] = |ci,m[t]− fi,m(v̂[t])|2 (11)

R̂i[t] = diag[· · · , ε̂i,m[t], · · · ] (12)

where we have used the fact that given the ML estimate of
the noise variance ε̂i,m[t], the stationary points of the non-
linear least squares (NLLS) problem in (10) are identical to

Algorithm 1 ARSE Scheme

1: Predict outlier covariance Γi = R̂i[t− 1], i = 1, · · · , I
2: Update state estimates

v̂[t] = arg min
v∈V

I∑
i=1

[ci[t]− fi(v)]
T

Γ−1
i [ci[t]− fi(v)]

3: Adjust covariance R̂i[t] = diag[ε̂i,1[t], · · · , ε̂i,Mi [t]]

ε̂i,m[t] = |ci,m[t]− fi,m(v̂[t])|2. (13)

that in (8). This equivalence can be regarded as the non-linear
version of the linear estimation with nuisance parameters in
[43]. However, this approach is still highly non-linear and
complex. In the following, we take advantage of the streaming
measurements to switch adaptively between estimating the
state (10) and estimating the variances (11).

C. Adaptive Re-weighted State Estimation

If the noise covariance is known, the state (10) can be
obtained directly from conventional PSSE [3]. Therefore, we
propose to use the previous covariance estimate as a substitute3

of R̂i[t], i = 1, · · · , I to re-weight the measurements in the
current snapshot, and propose the Adaptive Re-weighted State
Estimation (ARSE) scheme4 in Algorithm 1.

Our objective is to harness the computation capabilities in
each area to perform state estimation (10) and (11) online in
a decentralized fashion, as shown on the right in Fig. 1. Note
that each area estimates the global state v, rather than the
portion that pertains to its local facilities. Since step (1) and
step (3) in Algorithm 1 are decoupled between different areas,
their decentralized implementations are straightforward. Now
we omit the time index t and focus on solving step (2)

v̂ = arg min
v∈V

I∑
i=1

‖c̃i − f̃i(v)‖2, (14)

where f̃i(v) = Γ
− 1

2
i fi(v) and c̃i = Γ

− 1
2

i ci. Note that we
propose to solve (14) in a decentralized setting, where each
area has a local estimate vki that is in consensus with other
areas i′ 6= i and converges to the global estimate v̂.

Traditionally, state estimation solvers attempt to find the
global minimum v̂ numerically by Gauss-Newton (GN) algo-
rithm iterations, whose updates are given by

vk+1
i = PV

[
vki + dki

]
, dki = Q−1(vki )q(vki ), (15)

where PV(·) is a projection on the space V, q(vki ) and Q(vki )

3In general, a better substitute can be predicted using the temporal statistics
of the random process r[t], but here we simply use the previous estimate.

4If desired, one can iterate once again the state estimation after the outlier
covariance has been updated to give a better state.
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Fig. 1. Centralized architecture v.s. the decentralized architecture for DARSE.

are scaled gradients and GN Hessian of the cost function

q(vki ) =
1

I

I∑
p=1

F̃Tp (vki )(c̃p − f̃p(v
k
i )) (16)

Q(vki ) =
1

I

I∑
p=1

F̃Tp (vki )F̃p(v
k
i ),

with F̃i(v) = Γ
− 1

2
i Tidf(v)/dvT = Γ

− 1
2

i TiF(v) computed
from F(v) in Appendix A. However, each area knows only
its own iterate vki and partial measurements c̃i and power
flow equations f̃i(·) in (16), which makes it impossible to
implement step (2) in a decentralized setting.

III. DECENTRALIZED STATE ESTIMATION AND TRACKING

As discussed in Section II-C, it is straightforward to decen-
tralize the computations for step (1) and step (3) in Algorithm
1. The key enabling technique we propose for step (2), is
the Gossip-based Gauss-Newton (GGN) algorithm that we
proposed in [41]. Next we describe the GGN algorithm to
make the paper self-contained. We interchangeably use area
and agent to refer to the entity communicating and performing
the computation. There are two time scales in the GGN
algorithm, one is the time for GN update denoted by the
discrete time index “k” and the other is the gossip exchange
between every two GN updates denoted by another discrete
time index “`”. All the agents have a clock that runs syn-
chronously and determines the instants t = τk for the k-th GN
update across the network. During the interval t ∈ [τk, τk+1),
the agents communicate and exchange information with each
other at random times τk,` ∈ [τk, τk+1) over ` = 1, · · · , `k
interactions. In the following, we describe the local update
model at each agent in Section III-A and introduce in Section
III-B the gossiping model between every two updates.

A. Local Update Model

The idea behind our GGN algorithm is to take advantage of
the structure of the centralized update (16) as a sum of local
terms and obtain an approximation of the sum by computing
the scaled average via gossiping, which is interlaced with
the optimization iterations. Therefore, we use the “network
average” of different areas as surrogates of q(vki ) and Q(vki ),
which can be obtained via gossiping

h̄k =
1

I

I∑
i=1

F̃Ti (vki )
(
c̃i − f̃i(v

k
i )
)

(17)

H̄k =
1

I

I∑
i=1

F̃Ti (vki )F̃i(v
k
i ). (18)

Define local vector at the i-th agent for the `-th gossip

Hk,i(`) =

[
hk,i(`)

vec [Hk,i(`)]

]
, (19)

evolving from initial conditions

hk,i(0) , F̃Ti (vki )(c̃i − f̃i(v
k
i )) (20)

Hk,i(0) , F̃Ti (vki )F̃i(v
k
i ). (21)

Clearly, the surrogates are the averages of the initial conditions

h̄k =

I∑
i=1

hk,i(0)/I, H̄k =

I∑
i=1

Hk,i(0)/I. (22)

To compute this average in the network, all agents exchange
their information Hk,i(`)→Hk,i(`+ 1) using the communi-
cation model, more precisely the gossip exchange equation
(29), as described below in Section III-B. Then after `k
exchanges, the local GGN descent at the (k + 1)-th update
for the i-th agent is

vk+1
i = PV

[
vki + dki (`k)

]
, (23)

dki (`k) = H−1
k,i(`k)hk,i(`k). (24)
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Algorithm 2 DARSE Scheme

1: Predict outlier covariance at each agent Γi = R̂i[t− 1].
2: All agents run the GGN Algorithm via network gossiping.

3: obtain initial variables v0
i at all agents i ∈ I.

4: set k = 0.
5: repeat
6: set k = k + 1.
7: initialization: Obtain Hk,i(0) in (19) at each agent i.
8: gossiping: Each agent i exchanges with neighbors

under URE protocol for 1 ≤ ` ≤ `k according to (29).
9: local update: Each agent i updates according to (23).

10: until k = K or
∥∥vk+1

i − vki
∥∥ ≤ ε and set v̂i = vKi .

11: Adjust covariance R̂i[t] = diag[ε̂i,1[t], · · · , ε̂i,Mi
[t]]

ε̂i,m[t] = |ci,m[t]− fi,m(v̂[t])|2.

Finally, the Decentralized Adaptive Re-weighted State Esti-
mation (DARSE) scheme is described in Algorithm 2.

B. Uncoordinated Random Exchange (URE) Protocol

In this section, we introduce the Uncoordinated Random
Exchange (URE) protocol, a popular gossip algorithm studied
in literature [24], [44], [45]. For each exchange in the URE
protocol, an agent i wakes up and chooses a neighbor agent
j to communicate during [τk, τk+1). The communication net-
work is thus a time-varying graph Gk,` = (I,Mk,`) during
[τk,`, τk,`+1) for every GN update k and gossip exchange `.
The node set I = {1, · · · , I} contains each agent in different
area, and the edge set {i, j} ∈ Mk,` is formed by the commu-
nication links for that particular gossip exchange, which can
be characterized by the adjacency matrix Ak(`) = [A

(k,`)
ij ]I×I

A
(k,`)
ij =

{
1, {i, j} ∈ Mk,`

0, otherwise
. (25)

Condition 1. The composite graph Gk = {I,⋃∞`′=`Mk,`′}
for the k-th update is connected for all ` ≥ 0 and there exists
an integer L ≥ 1 such that for every agent pair {i, j} in the
composite graph, we have for any ` ≥ 0

{i, j} ∈ Mk,`

⋃
Mk,`+1

⋃
· · ·
⋃
Mk,`+L−1. (26)

The above assumption states that all agent pairs {i, j} that
communicate directly infinitely many times constitute a con-
nected network Gk, and furthermore, there exists an active link
between any agent pair {i, j} ∈ Gk every L consecutive time
slots [τk,`, τk,`+L−1] ⊆ (τk, τk+1) for any `.

The gossip exchanges are pairwise and local [46], where
agent i combines the information from agent j with a certain
weight β. Define a weight matrix Wk(`) , [W k

ij(`)]I×I as

W k
ij(`) =


β, j 6= i, j ∈Mk,`

(1− β), j = i

0, otherwise

(27)

representing the weight associated to the edge {i, j}. There-
fore, the weight matrix Wk(`) has the same sparsity pattern as
the communication network graph Ak(`), and it is determined
by the agent connectivity. Suppose agent Ik,` wakes up at
τk,` ∈ [τk, τk+1) and Jk,` is the node picked by node Ik,`
with probability γIk,`,Jk,`

. The weight matrix is then

Wk(`) = I− β
(
eIk,`

+ eJk,`

) (
eIk,`

+ eJk,`

)T
. (28)

Finally, each agent i = 1, · · · , I mixes its local information
with neighbors as

Hk,i(`+ 1) = W k
ii(`)Hk,i(`) +

∑
j 6=i

W k
ij(`)Hk,j(`). (29)

Remark: Note that the typical URE protocol is random and
asynchronous, which may not satisfy Condition 1 due to link
formations and failures. The simulations in [4] show that the
overall delay from substations in a IEEE-14 bus system to
the control center is around 2ms with bandwidth 100-1000
Mbits/s. Thus we bound the worst case hop delay by discount-
ing it with the network diameter 2/7 ≈ 0.6ms. We assume that
the state estimation here is performed every 10 seconds rather
than today’s periodicity (minutes) [4]. If information is stored
with 64-bits per entry, the data packets sent by each agent per
exchange has 64(2N + 4N2)-bits. For a power system with
N = 118 buses with a communication bandwidth 100 Mbits/s,
the maximum exchange that can be accomodated in 10 seconds
is 10×108/(0.6×10−3×108+64(2×118+4×1182)) ≈ 300,
which is sufficiently large to avoid violating Condition 1.
Much fewer exchanges were used in our simulations, but the
algorithm still converges with good performance.

IV. CONVERGENCE AND PERFORMANCE GUARANTEES

Condition 2. First, we impose the following conditions:
(1) The state space V is closed and convex.
(2) The maximum and minimum costs are bounded and finite

εmax = max
v∈V

I∑
i=1

‖c̃i − f̃i(v)‖ <∞ (30)

εmin = min
v∈V

I∑
i=1

‖c̃i − f̃i(v)‖ <∞. (31)

(3) The maximum and minimum eigenvalues of the GN Hes-
sian are non-zero and finite

σmin = min
v∈V

√√√√λmin

(
I∑
i=1

F̃Ti (v)F̃i(v)

)
> 0 (32)

σmax = min
v∈V

√√√√λmax

(
I∑
i=1

F̃Ti (v)F̃i(v)

)
<∞. (33)

Condition 2-(1) is easily satisfied by setting standard voltage
limits and conditions 2-(2) & 2-(3) can be guaranteed if the
power system is observable [47] and the measurement noise
is finite. Next, we prove that the Jacobians {F̃i(v)}Ii=1 satisfy
the Lipschitz condition, which is important for the convergence
of GGN algorithm in the DARSE scheme.
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Lemma 1. The Jacobian matrix F̃i(v) satisfies the Lipschitz
condition for all i and arbitrary v,v′ ∈ V∥∥∥F̃i(v)− F̃i(v

′)
∥∥∥ ≤ ω ‖v − v′‖ , ∀i = 1, · · · , I (34)

where ω is the Lipschitz constant given in (63).

Proof: See Appendix B.

Corollary 1. Given Condition 2, Lemma 1 and [48, Theorem
12.4], the following functions satisfy the Lipschitz conditions
for all v,v′ ∈ V∥∥∥F̃Ti (v)(c̃i − f̃i(v))− F̃Ti (v′)(c̃i − f̃i(v

′))
∥∥∥ ≤ νδ ‖v − v′‖∥∥FTi (v)Fi(v)− FTi (v′)Fi(v
′)
∥∥ ≤ ν∆ ‖v − v′‖ ,

where νδ = ω(εmax + σmax) and ν∆ = 2σmaxω.

A. Convergence Analysis

The GGN algorithm is initialized with v0
i at each agent and

continues until a stopping criterion is met. Since (14) is NLLS
problem that is non-convex similar to (7), the iterate vki may
stop at any fixed point v? of (15) satisfying the first order
condition similar to (8)

I∑
i=1

F̃Ti (v?)
(
c̃i − f̃i(v

?)
)

= 0. (35)

Clearly, the ML estimate v̂ in (14) is one of the fixed points
and it is desirable to have the algorithm converge to this point.
After we have proven Lemma 1 and Corollary 1 for power
systems, the analysis presented in our paper [41] is particularly
useful here. In the following, we impose a condition on the
gossip exchange according to our analysis in [41].

Condition 3. [41] Denote the minimum exchange as `? =
mink {`k}. Let η = min{β, 1−β} be the minimum non-zero
entry in the weight matrix and let the sequence of exchanges
{`k}∞k=0 satisfy5

λ∞ , lim
K→∞

K∑
k=0

λ(`k−`?)
η <∞

λη , (1− ηIL)1/IL.

For any ξ ∈ (0, 1/2), the minimum exchange `? is chosen as

`? =

⌈
log

(
ξ

4D

)
/ log λη

⌉
(36)

D , CC2(νλ∞C1C2 + 1) (37)

where ν = max{νδ, ν∆} and

C , 2Iσmax

√
I(ε2max +Nσ2

max)

(
1 + η−IL

1− ηIL
)

(38)

C1 , 2

(
1 +

σmaxεmax

σ2
min

)
, C2 =

I

σ2
min

(39)

with εmax, σmin and σmax given by Condition 2.

The resultant theorem from [41] can be re-stated as follows.

5A simple choice is `0 = `? and `k = `k−1 +1, then λ∞ = 1/(1−λη).

Theorem 1. [41, Lemma 1, 2, 3 & Theorem 1] Based
on Lemma 1 and Condition 1, 2 & 3, then the discrepancy
between the local update (23) and the exact update (15) is
bounded for all i and k∥∥dki (`k)− dki

∥∥ ≤ κ, κ = 4C1Dλ
(`?+1)
η (40)

and the error between vki generated by (23) and the ML
estimate v̂ defined in (35) satisfies∥∥vk+1

i − v̂
∥∥ ≤ T1

∥∥vki − v̂
∥∥2

+ T2

∥∥vki − v̂
∥∥+ κ, (41)

where T1 , ω/2σmin and T2 ,
√

2ωεmin/σ
2
min. Assuming

that
√

2ωεmin < 3σ2
min, and that κ � (1− T2)2/4T1, then

for any v0
i satisfying∥∥v0

i − v̂
∥∥ < 2σmin

ω
− κ, (42)

the asymptotic estimation error can be bounded as

lim sup
k→∞

∥∥vk+1
i − v̂

∥∥ ≤ κ. (43)

Theorem 1 implies that all the agents will converge to an
arbitrarily small neighborhood of the ML estimate v̂ if each
area is initialized with a value that is sufficiently close to the
ML estimate. Our simulations show that one can converge
to the ML estimate from quite inaccurate initial points, even
violating (42). Also, Condition 3 is imposed on the number of
exchanges `k to control the convergence rate (i.e., determined
by T1 and T2) and lower the numerical error κ. This condition
is influenced by many factors, such as the number of agents.
More specifically, the number of measurements, measurement
type and measurement location can in fact greatly affect the
parameters {εmin, εmax, σmin, σmax} in Condition 2, which in
turn influences T1, T2 and `? that determine the convergence
rate of the algorithm.

B. Performance Guarantee by PMU Initialization

Theorem 1 suggests that if the GGN iterate vki is initialized
in a certain neighborhood of v̂, it converges to v̂ with an
error κ resulting from gossiping. This means that a good
initialization v0

i around the the ML estimate v̂ is important.
In fact, an effective initializer is the re-scaled average of the
voltage measurements ci,V of all areas because it measures
the state directly. Next we propose a heuristic initialization
scheme, which is shown to converge numerically.

1) Centralized PMU Initialization v0: As new measure-
ments become available, a reasonable approach to initialize
the state estimates is to use a combination of the previous
state estimate for the buses where there are no PMU installed
and the direct state measurements given by the PMU when
available. The mathematical expression for this choice stated
below helps describing and motivating the decentralized ini-
tialization scheme that follows.

The PMU data vector zV [t] in (2), records a portion of the
state. By permuting the entries of ci,V [t] with the matrix Ti,V ,
we can relate (2) and the decentralized model (5) as follows

TT
i,Vci,V [t] = TT

i,VTi,VzV [t]. (44)
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where, by virtue of of Ti,V structure, the matrix Ii,V =
TT
i,VTi,V is a masked identity matrix with non-zero entries on

locations that are PMU-instrumented. Letting IV =
∑I
i=1 Ii,V ,

we have IVzV [t] =
∑I
i=1 TT

i,Vci,V [t], Therefore, the central-
ized initializer that merges PMUs measurements and outdated
estimates can be written as

v0 = IVzV [t] + (I− IV)sV [t], (45)

where sV [t] can be chosen arbitrarily (e.g. a stale estimate). It
is of great interest to investigate the placement of PMU devices
so that certain metrics are optimized, such as observability
[47], state estimation accuracy [49], [50] and mutual informa-
tion [51]. This issue is not pursued here and the numerical
results are based on an arbitrary choice.

2) Decentralized Initializer v0
i via Gossiping: The “exact

central initializer” in (45) can be re-written as

v0 =

I∑
i=1

TT
i,Vci,V [t] +

(
I−

I∑
i=1

TT
i,VTi,V

)
sV [t]. (46)

However,
∑I
i=1 TT

i,Vci,V [t] is the aggregated PMU measure-
ments, while the i-th agent can only access its local measure-
ments TT

i,Vci,V [t]. Since
∑I
i=1 TT

i,Vci,V [t] is written as a sum,
it can be obtained via gossiping with the initial state

Vi(0) = TT
i,Vci,V [t], (47)

where the agents proceed the exchange with the URE protocol
Vi(`)→ Vi(`+ 1). Finally, the decentralized initializer is

v0
i = IVi(`) + (I− IV)sV [t], (48)

where IV = sgn[Vi(`)] and sgn[·] is the sign function
sgn[v] = 1 for v 6= 0 and 0 otherwise. If ` is sufficiently
large, v0

i converges to the centralized initializer in (45).

V. NUMERICAL RESULTS

In this section, we illustrate the Mean Square Error (MSE)
performance of the DARSE scheme. Given the distributed
estimate in each area {V̂ (k)

i,n }Nn=1 at each GN update, the MSE
with respect to the voltage magnitude and voltage phase at the
i-th site is

MSE
(k)
V,i =

N∑
n=1

(|V̄n| − |V̂ (k)
i,n |)2,

MSE
(k)
Θ,i =

N∑
n=1

(∠V̄n − ∠V̂ (k)
i,n )2.

In particular, the metric used in our comparisons are the
cost in (14), Valk =

∑I
i=1 ‖c̃i[t]− f̃i(v

k
i [t])‖2 evaluated using

the decentralized estimates at each update, and the global
MSE

(k)
V =

∑I
i=1 MSE

(k)
V,i and MSE

(k)
Θ =

∑I
i=1 MSE

(k)
Θ,i.

In the simulations we used MATPOWER 4.0 test case
IEEE-118 (N = 118) system. We take the load profile from
the UK National Grid load curve from [52] and scale the
base load from MATPOWER on load buses. Then we run
the Optimal Power Flow (OPF) program to determine the
generation dispatch over this period. This gives us the true
state v̄[t] and all the power quantities f(v̄[t]) over this time

horizon, which are all expressed in per unit (p.u.) values.
The sensor observations are generated by adding independent
errors ri,m[t] ∼ N (0, σ2) with σ = 10−3. We divide the
system into I = 10 areas where 9 areas has 12 buses in each
area and 1 area has 10 buses, all chosen at random from 1
to 118. For each area, we randomly choose 50% of all the
available measurements and particularly exploit the 36 PMU
measurements in Area 1, 2 and 3. The optimization of PMU
selection is beyond the scope of this paper and hence not
pursued here. In the first snapshot where there is no previous
state estimate, we choose the flat profile sV [t] = [1TN 0TN ]T .

A. Comparison with Diffusion Algorithms without Bad Data
In this subsection, we evaluate the overall performance

of the DARSE scheme against existing network diffusion
algorithms [21] and its extension to adaptive processing in
[25] over 3 snapshots of measurements. However, the com-
munication protocol in [21], [25] requires agents to exchange
information synchronously, and thus the URE protocol men-
tioned in Section III-B does not fit the context. To make a fair
comparison in terms of communication costs and accuracy, we
modify the URE protocol for this particular comparison to a
synchronous deterministic exchange protocol, where commu-
nication links exist between every two agents {i, j} ∈ M for
∀i, j ∈ I, giving an adjacency matrix A = 1I1

T
I − I. The

weight matrix is doubly stochastic in both cases constructed
according to the Laplacian L = diag(A1I)−A as W = II−
wL with w = α/max(A1I) and α = 0.03. For simplicity,
we also do not simulate measurements that have bad data in
this particular comparison. The step-sizes for the approach in
[21], [25] are chosen as αdiff = 0.01`−1, 0.3`−1, 0.5`−1, `−1,
where ` is the gossip exchange index.

The diffusion algorithm proceeds at each exchange `, while
the DARSE runs `k = `0 = `? = 10 exchanges for each
update. Thus, the comparison is made on the same time scale
by counting the number of gossip exchanges. Because we use
`? = 10 gossip exchanges between every two descent updates
k = 1, · · · , 20, we have a total number of 200 exchanges
per snapshot. It can be seen from Fig. 2(a) to 2(c) that the
DARSE scheme converges to the ML estimate after k = 15
updates (i.e., 150 message exchanges) for every snapshot and
it tracks the state estimate accurately when new measurements
stream in. The spikes observed in the plots are caused by the
new measurements. Since the number of gossip exchanges is
limited, the diffusion algorithm in [21] and [25] suffers from
slow convergence and fails to track the state accurately.

The reason for the fast convergence of the GGN algorithm is
intrinsically that the GGN algorithm achieves the convergence
rate of the GN algorithm, which converges quadratically when
the noise level is low, while the diffusion algorithm is a first
order sub-gradient method that converges sub-linearly. The fast
convergence is partly due to the difference in computation
complexity, where our algorithm is dominated by the matrix
inversion on the order of O(N3), while the diffusion algorithm
scales like O(N). This requires the local processor to have
the capability to maintain such computations on time for each
exchange. There is literature on reducing the computation cost
for matrix inversions, but this is beyond the scope of this paper.



8

0 100 200 300 400 500 600

10
4

10
6

10
8

10
10

10
12

10
14

10
16

Gossip Exchange Index

V
al

k[t
]

 

 
DARSE
Diffusion Algorithm [21][25] α

0
=0.01

Diffusion Algorithm [21][25] α
0
=0.3

Diffusion Algorithm [21][25] α
0
=0.5

Diffusion Algorithm [21][25] α
0
=1

(a) Valk

0 100 200 300 400 500 600
10

−6

10
−4

10
−2

10
0

10
2

Gossip Exchange Index

M
S

E
V

(b) MSE
(k)
V

0 100 200 300 400 500 600
10

−6

10
−4

10
−2

10
0

10
2

Gossip Exchange Index

M
S

E
Θ

(c) MSE
(k)
Θ

Fig. 2. Comparison between DARSE and diffusion algorithms in [21], [25]
using `? = 3 exchanges for every update.

B. Comparison with Centralized GN Approach

In this simulation, we added random outliers errors with
variances εi,m[t] = 100σ2 on 25 randomly selected measure-
ments for 6 measurement snapshots. We examine the MSE
performance of the DARSE scheme where, in each snapshot
t, each agent talks to another agent 20 times on average during
the interval [τk, τk+1) for all k = 1, · · · , 20. In this case, the
network communication volume is on the order of the network
diameter O(N), which implies the number of transmissions
in the centralized scheme as if the local measurements are
relayed and routed through the entire network. Furthermore,
we examine the performance of the DARSE for cases with
random link failures, where any established link {i, j} ∈ M
fails with probability p = 0.1 independently. It is clear that
this communication model with link failures may not satisfy
Condition 1, 2 & 3, but the numerical results show that our
approach is robust and degrades gracefully.

To demonstrate the effectiveness of the DARSE scheme
with bad data, we compare it with the centralized GN pro-
cedure with and without bad data, where the situation without
bad data serves as the ultimate benchmark. Clearly, it can
be seen from Fig. 3(a) to 3(c) that DARSE sometimes has
a certain performance loss compared with the centralized GN
without bad data. Sometimes DARSE outperforms the cen-
tralized GN algorithm because the re-weighting numerically
leads to certain improvement, but this is due to the fact that
the measurements with greater variance influence less the state
estimates rather than an intrinsic behavior of the algorithm. On
the other hand, when bad data are present, the DARSE scheme
outperforms significantly the centralized GN approach without
re-weighting, thanks to the bad data suppression.

VI. CONCLUSIONS

In this paper, we propose a DARSE scheme for hybrid
power system state estimation integrating seamlessly WAMS
an SCADA measurement system, which adaptively estimates
the global state vector along with an updated noise covariance.
The numerical results show that the DARSE scheme is able
to deliver accurate estimates of the entire state vector at each
distributed area, even in the presence of bad data and random
communication link failures.

APPENDIX A
POWER FLOW EQUATIONS AND JACOBIAN MATRIX

Each line is characterized by the admittance matrix Y =
[−Ynm]N×N , which includes line admittances Ynm = Gnm+
iBnm, {n,m} ∈ E , shunt admittances Ȳnm = Ḡnm + iB̄nm
in the Π-model of line {n,m} ∈ E , and self-admittance
Ynn = −∑m6=n(Ȳnm + Ynm). Using the canonical basis
en = [0, · · · , 1, · · · , 0]T and Y, we define the following

Yn , eneTnY, Ynm , (Ynm + Ȳnm)eneTn − YnmeneTm.
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Letting Gn = <{Yn}, Bn = ={Yn}, Gnm = <{Ynm} and
Bnm = ={Ynm}, we define the following matrices

NP,n ,

[
Gn −Bn

Bn Gn

]
NQ,n , −

[
Bn Gn

−Gn Bn

]
EP,nm ,

[
Gnm −Bnm

Bnm Gnm

]
EQ,nm , −

[
Bnm Gnm

−Gnm Bnm

]
CI,nm ,

[
Gnm 0

0 −Bnm

]
CJ,nm ,

[
Bnm 0

0 Gnm

]
.

State estimation mainly uses power injection and flow
measurements from SCADA systems or, if available, PMU
measurements from WAMS. Traditional SCADA systems ag-
gregate data from the so called Remote Terminal Units (RTU),
refreshing the data every TSCADA = 2 to 5 seconds and
collects active/reactive injection (Pn, Qn) at bus n and flow
(Pnm, Qnm) at bus n on line {n,m}

Pn = vTNP,nv, Pnm = vTEP,nmv (49)

Qn = vTNQ,nv, Qnm = vTEQ,nmv, (50)

and stack them in the power flow equations

fI(v) = [· · · , Pn, · · · , · · · , Qn, · · · ]T (51)

fF (v) = [· · · , Pnm, · · · , · · · , Qnm, · · · ]T . (52)

The WAMS generate data at a much faster pace compared
to SCADA systems, with TPMU = 1/120 to 1/30 second. The
PMU data are gathered at Phasor Data Concentrators (PDC),
which collects the voltage (<{Vn},={Vn}) at bus n and the
current (Inm, Jnm) on line {n,m} measured at bus n

Inm = (12 ⊗ en)
T

CI,nmv (53)

Jnm = (12 ⊗ en)
T

CJ,nmv, (54)

where ⊗ is the Kronecker product, and stacks them as

fV(v) = v, fC(v) = [· · · , Inm, · · · , · · · , Jnm, · · · ]T . (55)

The Jacobian F(v) can be derived from (53), (49) and (50)

F(v) =


I2N

HC
(I2N ⊗ v)THI
(I4E ⊗ v)THF


T

(56)

where

HI , [· · · ,NP,n + NT
P,n, · · · ,NQ,n + NT

Q,n, · · · ]T

HF , [· · · ,EP,nm + ET
P,nm, · · · ,EQ,nm + ET

Q,nm, · · · ]T

HC , [· · · ,HT
I,n, · · · , · · · ,HT

J,n, · · · ]T

using Sn , IEn
⊗ (12 ⊗ en)

T with En being the number of
incident lines at bus n and

HI,n , SnCI,n, CI,n , [· · · ,CT
I,nm, · · · ]T (57)

HJ,n , SnCJ,n, CJ,n , [· · · ,CT
J,nm, · · · ]T .
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APPENDIX B
PROOF OF LEMMA 1

The F -norm inequality ‖ · ‖ ≤ ‖ · ‖F gives us

‖F̃i(v)− F̃i(v
′)‖2 ≤ ‖F̃i(v)− F̃i(v

′)‖2F (58)

for all i. Since F̃i(v) = Γ
−1/2
i TiF(v), we further use the

multiplicative norm inequality ‖AB‖F ≤ ‖A‖F ‖B‖F∥∥∥F̃i(v)− F̃i(v
′)
∥∥∥2

F
=
∥∥∥Γ−1/2

i Ti [F(v)− F(v′)]
∥∥∥2

F
(59)

≤ λ−1
min(Γi) ‖F(v)− F(v′)‖2F . (60)

From (56), we have

F(v)− F(v′) =


02N×2N

04E×2N[
I2N ⊗ (v − v′)T

]
HI[

I4E ⊗ (v − v′)T
]
HF

 . (61)

According to the F -norm definition ‖A‖2F = Tr
(
ATA

)
and

the properties of the trace operator, we have for any v,v′

‖F(v)− F(v′)‖2F = Tr
[(

I2N ⊗ (v − v′)(v − v′)T
)
HIH

T
I
]

+ Tr
[(

I4E ⊗ (v − v′)(v − v′)T
)
HFHT

F
]
.

Expanding HI and HF in (56) and using their symmetric
properties, we have

‖F(v)− F(v′)‖2F = (v − v′)TM(v − v′), (62)

where M = HT
IHI + HT

FHF . It is well-known that any
quadratic form of a symmetric matrix can be bounded as

(v − v′)TM(v − v′) ≤ ‖M‖ ‖v − v′‖2 . (63)

The result follows by setting ω = maxi

√
‖M‖λ−1

min(Γi).
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