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Abstract—Smart meters are key elements for the operation
of smart grids. By providing near realtime information on th e
energy consumption of individual users, smart meters increase
the efficiency in generation, distribution and storage of energy
in a smart grid. The ability of the utility provider to track
users’ energy consumption inevitably leads to important threats
to privacy. In this paper, privacy in a smart metering system is
studied from an information theoretic perspective in the presence
of energy harvesting and storage units. It is shown that energy
harvesting provides increased privacy by diversifying theenergy
source, while a storage device can be used to increase both the
energy efficiency and the privacy of the user. For given input
load and energy harvesting rates, it is shown that there exists
a trade-off between the information leakage rate, which is used
to measure the privacy of the user, and the wasted energy rate,
which is a measure of the energy-efficiency. The impact of the
energy harvesting rate and the size of the storage device on this
trade-off is also studied.

Index Terms—Data privacy, energy-efficiency, energy harvest-
ing, information theoretic security, rechargeable batteries, smart
meters, smart grids.

I. I NTRODUCTION

A smart grid (SG) is an energy network that manages and
controls energy generation and distribution more efficiently
and intelligently by following the users’ energy demands in
real-time through computer and communication technologies.
Transition from traditional power grids to SGs are expectedto
have a revolutionary effect on future energy networks [1], [2].
SGs can yield energy efficiency through savings in generation
and transmission of energy, reduce costs on both the user and
the utility provider (UP) sides, and increase reliability and
robustness. They also provide important environmental bene-
fits by reducing the carbon footprint and integrating renewable
energy sources into the energy network. Introducing alternative
energy sources and energy storage devices into the network
will significantly reduce the load on the energy network and
improve its efficiency. For instance, plug-in electric vehicles on
the distribution grid can be used for distributed energy storage
by means of their rechargeable batteries (RBs) [1]. Similarly,
renewable energy sources can be integrated into the energy
network through energy harvesting (EH) devices, which can

This work was supported in part by the Spanish Government under
project TEC2010-17816 (JUNTOS), and in part by the U.S. National Science
Foundation under Grant CCF-1016671. This work was presented in part at
the 2012 IEEE International Conference on Smart Grid Communications in
the Cognitive and M2M Communications and Networking for Smart Grid
Workshop.

º

ENERGY MANAGEMENT 

UNIT (EMU)
APPLIANCES

ENERGY 

HARVESTING 

(EH) DEVICE

C
h

a
rg

in
g

D
is

ch
a

rg
in

g

H
a

rv
e

st
e

d

E
n

e
rg

y

Output LoadInput Load

UTILITY

 PROVIDER

(UP)

RECHARGEABLE   

BATTERY (RB)

iX iY

iZ

S
M

A
R

T
 

M
E

T
E

R
 (

S
M

)

Fig. 1. A smart-meter (SM) system diagram with energy and information
flows. The user, in addition to its connection to the energy grid, also has an
EH device and an RB at its use. The energy flow in the system is managed
by the energy management unit (EMU). The SM reads only the energy that
is supplied by the UP at each interval. The readings are reported to the UP
correctly without any tempering, but potentially in an encrypted manner.

generate energy from ambient sources such as solar, thermal
or wind, and reduce the users’ dependence on the grid [3].

To exploit these potential benefits, the components of an
SG are connected through a two-way communication network
that allows the exchange of information in real time among
the users and the UP. This enables real-time optimization of
load management in SGs [4]. An important component of
this critical data network for SGs is the advanced metering
system. Smart meters (SMs) are communication devices that
measure the energy consumption of the users and transmit
their readings to the UP in real time. Currently, a typical
smart-meter reports the energy consumption readings to the
UP every15 minutes; however, the measuring frequency is
expected to increase in the near future to provide near real-
time energy consumption data to the UP. Significant energy
savings have been reported even solely based on the user’s in-
creased awareness of his/her real-time energy consumption[5].
However, despite their potential for increasing the efficiency
of energy distribution networks, SG technologies, in particular
smart metering systems, raise important privacy and security
concerns for the users [2], [6], [7].

SM data can be easily analyzed for surveillance pur-
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poses by tracking appliance usage patterns, employing non-
intrusive appliance load monitors and data mining algo-
rithms [8], [9], [10]. At the very least, through SM readings
it is possible to infer whether a user is at home or not.
But, through more advanced pattern recognition techniques,
energy consumption patterns of individual appliances can be
identified with high accuracy even when the SM can read
only the aggregated household energy consumption [11]. As
a striking example, [12] illustrates the possibility of detecting
the channel displayed on a television, and even identifyingthe
content, just by analyzing the power profile of the household.
Even assuming that the SM readings are transmitted to the
UP in an encrypted manner, preventing third parties from
accessing the user’s private energy consumption data, the
UP will receive significant personal information about the
user. Thus, even if only partially, assuring the privacy of the
household’s electrical load profile is essential for users.

In this work, we study SM privacy from the fundamental
information theoretic perspective. We measure the privacyof
the user’s energy profile with respect to the UP in terms
of the information leakage rate, which denotes the mutual
information rate between the real energy consumption of
the appliances and the SM readings. Using Shannon entropy
to measure privacy is not new. Minimizing the information
leakage rate is equivalent to maximizing theequivocation,
which was introduced by Shannon in [13] in the context of se-
cure communications. Mutual information has previously been
proposed as a measure of privacy in SMs in [14], [15], [16]
and [17]. Modeling the input load as a discrete time random
process, information leakage rate measures the amount of
information the UP learns about the input load after observing
the output load, i.e., the energy requested by the user. We
assume that the UP may know the statistics of the input load
as well as the stochastic behavior of the energy management
policy; however, it cannot observe the input load or harvested
energy directly. The UP has to estimate the realization of
the input load based on its statistical knowledge and its
observation of the output load. The user wants to minimize
the information leakage rate to achieve the highest level of
privacy. While cryptographic algorithms rely on mathematical
operations and the complexity of their computation by using
encryption keys, information theoretic security does not de-
pend on encryption keys and assures reliable privacy regardless
of the computational power of an intruder, the UP in our
case [18].

Building on our previous work [19], we study the privacy
of an SM system from the perspective of a single user. In our
system model, depicted in Fig. 1, we integrate an EH device
as an alternative energy source and an RB as an energy storage
unit. The energy flow is managed by the energy management
unit (EMU). We consider a discrete time system. At each time
instant i, the appliances request a certain amount of energy,
denoted byXi. This amount is reported to the EMU which is
responsible for providing this exact amount to the appliances;
that is, we do not allow energy outages or rescheduling of
appliance operations in this work. We also consider only
the real power consumption of the devices and assume that
the SM only reads and reports this quantity. Moreover, we

also ignore inefficiencies and mismatches in providing the
energy requirement of the appliances from different energy
sources, and consider only the energy that is consumed by
the appliances. The EMU has access to three different energy
sources: the energy grid, the EH device and the energy storage
unit. At any time instant it can provide the energy requested
by the appliances from one or more of these sources. The goal
of the EMU is to increase both the energy efficiency of the
system and the privacy of the user.

We employ stochastic battery policies based on the har-
vested energy, energy demand of the appliances and the state
of the storage unit. We model the energy generation profile of
an EH device as a stochastic process whose behavior depends
on the characteristics of the underlying energy source and the
device itself. Therefore, it is likely that the harvested energy
sometimes does not match the energy required by the system
and the extra energy would be wasted if not stored. Introducing
an RB for energy storage into the system is essential for
better utilization of the harvested energy. On the other hand,
considering the increasing use of alternative energy sources
(such as solar panels) by households, and the availability
of rechargeable storage units (such as electric vehicles) with
significantly large storage capacities, it is meaningful toexploit
these devices not only to decrease the dependency on the
SG and to increase the energy efficiency, but also to provide
additional privacy for the users. The equivocation of the UP
about the real energy consumption can be manipulated by
charging and discharging the RB and by using the harvested
energy. Hence, the benefits of the RB are twofold: i) it can
increase the energy efficiency of the system by storing extra
harvested energy; andii) it can increase the privacy of the
user by hiding the energy consumption profile from the UP.
We show in this paper that there exists a trade-off between
energy efficiency and privacy for the optimal EMU operation,
and the operating point on this trade-off can be chosen based
on the privacy sensitivity of the underlying input load and the
cost of energy.

The main contributions of this work can be summarized as
follows:

1) We introduce an energy efficiency-privacy trade-off in
a smart meter system considering the availability of an
EH device and an RB. To the best of our knowledge,
this is the first work that provides an analytical study on
the effect of an alternative energy source on SM privacy.

2) Focusing on a discrete-time system model we study the
effect of energy harvesting rate on the energy efficiency-
privacy trade-off.

3) We illustrate numerically that the increased battery ca-
pacity significantly reduces the information leakage rate.

4) While no grid energy is allowed to be wasted in the
above analysis, we also study the increased privacy that
can be achieved by wasting the grid energy for very
sensitive applications.

We use the following notation in the rest of the paper.
Random variables are denoted with uppercase letters, e.g.,
X , and their realizations are denoted with lowercase letters,
e.g.,x. A random variable takes values from a finite setX



following a probability mass functionpX(x). The subscript
X will be omitted when it is obvious from the context. An
n-length random sequence is denoted byXn = X1, . . . , Xn.
E[X ] denotes the expectation of the random variableX . The
entropy of a random variableX is defined by

H(X) , −
∑

x∈X

p(x) log p(x). (1)

H(·|·) and H(·, ·) denote conditional entropy and joint en-
tropy, respectively, which are defined similarly. The mutual
information between random variablesX andY is defined as

I(X ;Y ) = H(X)−H(X |Y ). (2)

The rest of the paper is organized as follows. In Section II,
we summarize some of the related work on privacy issues in
SM systems. In Section III, we introduce the system model.
Section IV describes the technique to compute the information
leakage rate. In Section V, we present our results and compare
them with the existing results in the literature. Finally, we
conclude our work in Section VI.

II. RELATED WORK

In recent years SMs have gained increasing popularity with
growing support from the UPs and governments with the
promise of increased energy efficiency. This also has raised
privacy issues, and the literature in this field is growing rapidly.
Various techniques have recently been proposed to provide a
certain level of privacy for SM users. Anonymization [20], ag-
gregation [21], homomorphism [22] and obfuscation [23] are
some of the techniques that have been studied in the literature.
In [24], the authors present a method for establishing privacy
assurances in terms of differential privacy, i.e., RB is used
to modify the energy consumption by adding or subtracting
noise and thereby, the energy consumption of the individual
appliances can be hidden. Moreover, they also consider various
constraints on the RB such as capacity and throughput. In [25]
a method to provide privacy against potential non-intrusive
load monitoring techniques is proposed. A non-intrusive load-
leveling algorithm is used to flatten the consumption of the
user by means of an RB. Similarly, [17] proposes three
techniques, i.e., fuzzing, targeted entropy maximizationand
targeted fuzzing. The authors intend to obfuscate the load by
masking the individual loads with the use of an RB. Basically,
fuzzing changes the load randomly over an interval, the
targeted entropy maximization technique chooses the desired
load level that maximizes the entropy of possible individual
events, and targeted fuzzing builds a probability distribution
to do so.

Most of the earlier work on SM privacy assumes that
the user has control over the smart-meter readings and can
manipulate these readings before sending the data to the UP.
For example, Bohli et al. [21] propose sending the aggregated
energy consumption of a group of users to the UP. Li et
al. [26] consider using compressed sensing techniques for
the transmission of the SM reading of active users based on
the assumption that SM data transmission is bursty. Bartoli
et al. [27] propose data aggregation together with encryption

to forward smart meter readings. Marmol et al. [28] propose
using “additively homomorphic encryption”, which allows
the UP to decode only the total energy consumption of a
group of users while keeping the individual readings secure.
Rajagopalan et al. [29] propose compression of the smart-
meter data before being transmitted to the UP. Unlike this line
of research, we assume that the SM reads the amount of energy
that the user gets from the grid at each time interval and the
meter readings are reported to the UP without being tempered
by the user. Hence, privacy in our model is achieved by
differentiating the output load, i.e., the energy receivedfrom
the UP, from the input load, i.e., the real energy consumption
of the user, as much as possible.

A similar approach has been taken in some other previous
work as well. RBs have been proposed to partially obscure
the energy consumption of the user in [14], [16], [24], [25]
and [30]. The main goal of the proposed energy management
algorithms in these papers is to protect the privacy of the user.
References [14] and [30] study variational distance, cluster
similarity and regression analysis to measure privacy and
propose various heuristic techniques, such as the best-effort
and power mixing algorithms. A discrete-time system model
is considered in [16] and stochastic battery policies are studied
with mutual information between the input and output loads as
the measure of privacy. In [31] a similar information theoretic
privacy analysis is carried out in the presence of an EH device
that can provide energy limited by peak and average power
constraints.

III. SYSTEM MODEL

We study the energy input/output system illustrated in
Fig. 1 under a discrete-time system model. The input load
Xi represents the total energy demand of the appliances at
time instant i. The output loadYi denotes the amount of
energy that the system requests from the UP, whileZi denotes
the amount of harvested energy at time instanti. We assume
that there is a minimum unit of energy; and hence, at each
time instanti, the input load, harvested energy and output
load are all integer multiples of this energy unit. Over time,
we assume that the input loadXn = X1, X2, . . . , Xn is
an independent and identically distributed (i.i.d.) sequence
with marginal distributionpX over X = {0, 1, . . . , N}. The
harvested energy is also modelled as a discrete time stochastic
process, whereZn = Z1, Z2, . . . , Zn is an i.i.d. sequence
with marginal distributionpZ over Z = {0, 1, . . . ,M}. The
characteristics of the EH distribution,pZ , depend on the design
of the energy harvester. For example, for a solar energy
harvester the average harvested energy can be increased by
scaling the size and the efficiency of the solar panel. Note
that the energy consumed by the appliances and the harvested
energy are independent of each other.

The output load is the amount of energy that is demanded
from the UP, and is denoted byY n = Y1, Y2, . . . , Yn with Yi

taking values inY = {0, 1, . . . , L}. We denote the energy in
the battery at time instanti by Bi. We assume that the RB
has a maximum capacity ofK energy units, i.e.,Bi ≤ K, ∀i,
while the system is not bounded by the maximum amount of



energy that can be provided by the UP, i.e.,L ≥ (N +K)1.
We consider stochastic energy management policies at the

EMU that depend on the instantaneous input load, harvested
energy and the battery state. An energy management policy
maps the energy requested by the appliances,Xi, the harvested
energy,Zi, and the battery state,Bi−1, to the output load,
Yi, and the next battery state,Bi. Note that in general a
larger set of energy management policies is possible. The
EMU can decide its actions based on all the past input/output
loads, harvested energy amounts and the battery states. For
example [16] considers policies that take into account the
previous output load,Yi−1. Similarly, the best effort policy
proposed in [30], in which the EMU aims to keep the output
load value as stable as possible, is simply a special case of the
battery/output load conditioned policies in [16]. To keep the
complexity of possible energy management policies simple,
we restrict our attention to energy management policies that
depend only on(Xi, Zi, Bi−1), and satisfy

Zi + (Bi −Bi−1) + Yi ≥ Xi, (3)

which guarantees that the energy demand of the appliances is
always satisfied.

We assume that the SM provides the output loadYi at each
time instant to the UP perfectly. That is, we do not allow the
user to manipulate the SM reading. Moreover, we also assume
thatpX andpZ are known by the UP, whereas no information
about the realizations of either the input processxn, or the
EH processzn, is available at the UP, which observes only
the output load,yn. The equivocation,H(Xn|Y n), measures
the uncertainty of the UP about the real energy consumption
after observing the output load. We have,

H(Xn|Y n) = H(Xn)− I(Xn;Y n). (4)

SinceH(Xn) is a characteristic of the appliances and is as-
sumed to be known, the EMU tries to minimizeI(Xn;Y n) in
order to maximize the equivocation. Accordingly, the privacy
achieved by an energy management policy is measured by the
information leakage rate, defined as

Ip , lim
n→∞

1

n
I(Xn;Y n), (5)

whereXn = (X1, X2, . . . , Xn), Y n = (Y1, Y2, . . . , Yn), and
I(Xn;Y n) is the mutual information between vectorsXn and
Y n.

Due to the finite capacity of the RB and the stochastic nature
of the input and EH processes, some of the harvested energy
will be wasted. To measure the proportion of the energy wasted

1The energy we consider in this model is the real energy measured by the
smart meter and we ignore the reactive power or the power factor which can
also be used to make deductions about the input load. Moreover, we also
assume that the energy demand of the appliances is satisfied by transferring
an equivalent amount of energy from the RB, EH unit or UP; thatis, we do
not consider the effect of the supply voltage, frequency or the characteristics
of the appliances on the amount of energy that needs to be requested from
the corresponding energy source. Such quantities could also be incorporated
into our model by considering vector-valued measurements,but this added
complexity is not necessary for studying the fundamental trade-offs considered
here.

by an energy management policy, we define thewasted energy
rate as follows:

Ew , lim
n→∞

1

n

n
∑

i=1

(Zi + Yi −Xi). (6)

We say that an information leakage-wasted energy rate pair
(Ip, Ew) is achievableif there exists an energy management
policy satisfying (5) and (6). The closure of the set of all
achievable rate pairs is called therate regionΓ. In general
the energy management policy that minimizes the information
leakage rate does not necessarily minimize the wasted energy
rate. From the classical time-sharing arguments [32] we can
readily see that the rate regionΓ is convex. Since the region
is also closed by definition, it is sufficient to identify the
boundary of regionΓ, which characterizes the optimal trade-
off between privacy and energy efficiency.

To illustrate the privacy benefits of having an EH device, we
first consider a system without an RB. In this case, the EMU
uses as much as possible from the harvested energy, and asks
for energy from the UP only when the harvested energy is
not sufficient. Therefore, we can defineYi as a deterministic
function ofXi andZi as follows:

Yi = (Xi − Zi)
+ ,

{

Xi − Zi, if Xi − Zi > 0,
0, if Xi − Zi ≤ 0.

(7)

In general, it is possible to ask for energy from the UP even
when Xi = 0. This will increase the privacy by confusing
the UP, but waste energy. We do not allow wasting energy
from the UP unless otherwise stated, as this would be costly
in practical systems. Obviously, when there is no harvested
energy, i.e.,Pr{Z = 0} = 1, then we haveYi = Xi for
∀i, and Ip = 1

n
H(Xn) = H(X), i.e., the UP knows the

input load perfectly. On the other hand, if there is always
harvested energy sufficient to supply the appliances, i.e.,M =
N andPr{Z = N} = 1, thenYi = 0 for ∀i, and we have
Ip = 0. WhenIp = 0 we say thatperfect privacyis achieved.
Basically, as we harvest more and more energy, we reduce our
dependence on the grid energy, and decrease the information
leaked to the UP about our real energy consumption. However,
note that, at each time instant harvested energy that is not used
by the consumer is wasted. For example, whenPr{Z = N} =
1, we haveEw = N − E[X ] while Ew = 0 whenPr{Z =
0} = 1. In other words, there is a trade-off between privacy
and energy efficiency provided by the EH unit. Introducing
an RB into this system will have a dual use and improve this
trade-off. RBs can act as a filter for the energy usage profile
and decreaseIp further while reducing the wasted energy at
the same time.

Due to the discrete time nature of the system, it can be
represented by a finite state model (FSM) [16]. The FSM
representation of the system with all the transitions and states
evolving as a Markov chain depends on the input load levelN ,
the output load levelL, the harvested energy levelM and the
RB capacityK. As we have mentioned earlier, we consider
energy management policies that depend only on the current



input loadXi, harvested energyZi, and the previous battery
stateBi−1

2. We haves , (K + 1) states in our FSM, where
statebi denotes the state of the RB, i.e., the amount of energy
stored in the RB at timei. We assumeb0 = 0. The battery
conditioned transitions occur from statebi to bi+1 depending
on the battery statebi, the input loadxi+1 and the harvested
energyzi+1. The FSM is simply a Markov chain, and the
transitions specify the map to proceed in the chain. Possible
transitions are depicted in Fig. 2 for different(x, z, y) triplets
and transition probabilities.

A. A Simplified Binary Model

Similarly to [16] to keep the presentation and the numerical
analysis simple, we initially consider a binary model; thatis,
we assumeN = L = M = K = 1. However, we note here
that the following arguments and evaluation techniques extend
to non-binary models directly. From a practical perspective,
this binary model corresponds to a system with a single
appliance that can be ON or OFF at various time instants with
a certain probability, and both the capacity of the RB and the
energy generated by the EH are equivalent to the energy used
by this device when it is ON. In Sections V-C and V-D we
will consider non-binary battery capacity cases as well.

While the energy management policies can be time-varying
in general, we consider time-invariant fixed policies in which
the transition probabilities and parameters of the policy are
fixed throughout the operation. The probability distributions of
the input load and the harvested energy are chosen as Bernoulli
distributions, i.e.,Pr{X = 1} = px andPr{Z = 1} = pz,
respectively. The output loadY n is also a binary sequence
which can provide0 or 1 units of energy to the input load at
any time instanti. Battery statebi = 0 denotes that the RB
is empty whilebi = 1 denotes that the RB is fully charged
at time instanti. We assume that within each time duration,
i to i + 1, the RB can be charged to battery state,bi = 1,
discharged to battery state,bi = 0, or remain in the same
state depending on the transition probabilities. We do not take
into consideration the charging and discharging rates of the
RB, and assume that this time duration is enough for fully
charging or discharging.

Let the RB be discharged at time instanti, i.e., bi = 0.
There are six possible transitions that can occur as illustrated
in Fig. 2. If the appliances demand zero energy and no energy
is harvested, i.e.,(xi+1 = 0, zi+1 = 0), the EMU chooses
either to charge the RB by asking energy from the UP, i.e.,
(yi+1 = 1, bi+1 = 1) with probability pa01, or keeps the
RB discharged, i.e.,(yi+1 = 0, bi+1 = 0) with probability
(1− pa01). If the appliances demand zero energy and one unit
of energy is harvested, i.e.,(xi+1 = 0, zi+1 = 1), the UP
does not provide any energy to prevent waste and the RB is
charged with harvested energy, i.e.,(yi+1 = 0, bi+1 = 1). If
the appliances demand one unit of energy and no energy is
harvested, i.e.,(xi+1 = 1, zi+1 = 0), the UP must provide

2In [16] in addition to battery conditioned policies, battery/output load
conditioned policies are also studied. However, the authors indicate that they
have not found any battery/output load conditioned policy that performs better
than the optimal policy that acts solely based on the batterystate. We have
made the same observation in our numerical analysis.

Fig. 2. Finite state diagram for the battery conditioned energy management
policy with s = 2 states. Each triplet in the figure corresponds to the
(x, z, y) values for the corresponding transition. Transition probabilities are
also included in the figure.

one unit of energy to fulfill the energy demand and the
RB remains discharged, i.e.,(yi+1 = 1, bi+1 = 0). If the
appliances demand one unit of energy and one unit of energy
is harvested at the same time, i.e.,(xi+1 = 1, zi+1 = 1),
either the RB is charged by means of the output load, i.e.,
(yi+1 = 1, bi+1 = 1) with probability pb01, or it remains
discharged, i.e.,(yi+1 = 0, bi+1 = 0) with probability
(1− pb01).

Similarly, let the RB be charged at time instanti, i.e.,
bi = 1. In this case, there are five possible transitions that
can occur as depicted in Fig. 2. If the appliances demand zero
energy and no energy is harvested, i.e.,(xi+1 = 0, zi+1 = 0),
the UP does not provide energy so as not to cause waste
and the RB remains charged, i.e.,(yi+1 = 0, bi+1 = 1). If
the appliances demand zero energy and one unit of energy
is harvested, i.e.,(xi+1 = 0, zi+1 = 1), the UP is not
expected to provide any energy and the RB remains charged,
i.e., (yi+1 = 0, bi+1 = 1), while the harvested energy is
wasted in this situation. If the appliances demand one unit of
energy and no energy is harvested, i.e.,(xi+1 = 1, zi+1 = 0),
the EMU chooses between keeping the RB charged, i.e.,
(yi+1 = 1, bi+1 = 1) with probability(1−p10), or discharging
it, i.e., (yi+1 = 0, bi+1 = 0) with probability p10. If the
appliances demand one unit of energy and one unit of energy
is harvested, i.e.,(xi+1 = 1, zi+1 = 1), there is no need to
ask for energy from the UP and the RB remains charged, i.e.,
(yi+1 = 0, bi+1 = 1).

IV. I NFORMATION LEAKAGE RATE COMPUTATION

In this section we focus on the computation of the informa-
tion leakage rate,Ip. From an information theoretic perspective
the operation of the EMU which decides on the energy flow
in the system using the EH and RB units resembles data
compression where the compression is accomplished through
a finite state machine. In this analogy, the input loadXn

corresponds to an i.i.d. data sequence to be compressed, and
the output loadY n is the compressed version. The problem
is similar to a rate-distortion problem in which the goal is to
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Fig. 3. Minimum information leakage rate,Ip, and the corresponding wasted
energy rate,Ew, with respect to harvested energy rate for an EH system with
and without an RB.

minimize the mutual information between the source sequence
and the compressed version while satisfying the distortion
requirement. In our model, the energy provided from the
EH device is similar to a distortion requirement. While we
want to minimize the mutual information between the original
data sequence and the compressed version, we are limited
by the allowed distortion, the available harvested energy in
our case. A different rate-distortion approach for the SM
privacy problem is taken in [29]. In [29] the SM is allowed to
introduce a certain amount of distortion to its readings before
reporting them to the UP, while in our setting distortion is
introduced on the real energy consumption values, making the
rate-distortion formulation less explicit. See [31] for more on
the connection with the rate-distortion theory, where a single-
letter information theoretic expression is obtained for the
optimal privacy in the absence of an RB. Due to the memory
introduced into the system through the battery, a single letter
expression is elusive for our problem. However, for a fixed
EMU policy, the information leakage rateIp between the
input and the output loads can be estimated numerically using
the computation method studied in [33]. In the following we
summarize this computation method.

We first set the values for the transition probabilities
and the number of statess in the FSM. For instance, we
specify {pa01, p

b
01, p10} labeled on Fig. 2 fors = 2, i.e.,

bi ∈ {0, 1}. Afterwards, we sample very long sequences (large
n) of Xn, Zn and Y n by using the FSM. We then com-
pute p(y1, y2, · · · , yn) and p(x1, x2, · · · , xn, y1, y2, · · · , yn).
Finally, the information leakage rateIp betweenXn andY n

is estimated as follows:

Ip =
1

n

[

H(Xn) +H(Y n)−H(Xn, Y n)
]

≈ H(X)−
1

n
log p(y1, y2, · · · , yn)

+
1

n
log p(x1, x2, · · · , xn, y1, y2, · · · , yn). (8)

The FSM can be represented as a trellis diagram
with the state sequence{s0, s1, · · · , sn} for the

computation of the probabilitiesp(y1, y2, · · · , yn) and
p(x1, x2, · · · , xn, y1, y2, · · · , yn). This computation is
basically the forward sum-product recursion of the BCJR
algorithm [34]. We define the state metrics as follows:

µk(sk) , p(sk, y1, y2, · · · , yk), (9)

νk(sk) , p(sk, x1, x2, · · · , xk, y1, y2, · · · , yk). (10)

Initially, we set the state metrics as follows:

µ0(0) = 1, ν0(0) = 1, µ0(m) = 0, ν0(m) = 0, for m 6= 0.

Here, we emphasize that the initial values of the state
metrics do not affect the final values ofp(y1, y2, · · · , yn) and
p(x1, x2, · · · , xn, y1, y2, · · · , yn) due to the convergence for
long sequences.

We then compute the state metrics recursively using the
transition probabilitiesp(xk+1, zk+1, yk+1, sk+1|sk). For the
binary system we use the transition probabilities labeled in
Fig. 2. We have,

µk+1(sk+1) =
∑

zk+1

∑

xk+1

∑

sk

µk(sk)p(xk+1, zk+1, yk+1, sk+1|sk),

(11)

νk+1(sk+1) =
∑

zk+1

∑

sk

νk(sk)p(xk+1, zk+1, yk+1, sk+1|sk). (12)

We can compute the probabilitiesp(y1, y2, · · · , yn) and
p(x1, x2, · · · , xn, y1, y2, · · · , yn) as the sum of all the final
state metrics as follows:

p(y1, y2, · · · , yn) =
∑

sn

µn(sn), (13)

p(x1, x2, · · · , xn, y1, y2, · · · , yn) =
∑

sn

νn(sn). (14)

For largen values, the state metricsµk(·) and νk(·) tend to
zero. Therefore, in practice the recursion is computed with
scale factors as follows:

µk+1(sk+1) = λµk+1

∑

zk+1

∑

xk+1

∑

sk

µk(sk)p(xk+1, zk+1, yk+1, sk+1|sk),

(15)

νk+1(sk+1) = λνk+1

∑

zk+1

∑

sk

νk(sk)p(xk+1, zk+1, yk+1, sk+1|sk), (16)

where positive scale factors{λµ1
, λµ2

, · · · , λµn
} and

{λν1 , λν2 , · · · , λνn} are chosen such that,

∑

sn

µn(sn) = 1, (17)

∑

sn

νn(sn) = 1. (18)
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Fig. 4. Information leakage rate,Ip, versus wasted energy rate,Ew, for
px = 0.5 andpz = 0.5.

Finally, the joint probabilities can be computed from the
following equations:

−
1

n
log p(y1, y2, · · · , yn) =

1

n

n
∑

i=1

logλµi
, (19)

−
1

n
log p(x1, x2, · · · , xn, y1, y2, · · · , yn) =

1

n

n
∑

i=1

logλνi .

(20)

We note here that this computation method applies to any
discrete model, including an input load with memory, and is
not limited to the binary system model considered in this pa-
per. However, identification of the optimal system parameters
becomes computationally intractable with an increase in the
size of the input and output alphabets, or the battery size.

V. RESULTS AND OBSERVATIONS

In this section, we analyze the trade-off between the infor-
mation leakage rate and energy efficiency numerically using
the computation method presented in Section IV. Based on
these numerical results we provide various observations and
conclusions regarding the optimal operation of the EMU
from a joint privacy-energy efficiency perspective. In our
simulations we focus on the binary model illustrated in Fig.2.
We focus on a binary system for its simplicity, as otherwise,
the transitions in the state diagram get very complicated and
the numerical computation outlined in Section IV becomes
intractable. Later in Section V-C we also consider the system
with K > 2 in the absence of an EH unit, and study the effects
of the battery capacity on the performance. Furthermore,
in Section V-D we consider a system with high privacy
requirements in the absence of an EH unit, and allow the
user to waste grid energy in order to increase privacy. In
our simulations, we perform an exhaustive search by varying
the transition probabilities in Fig. 2 with0.1 increments and
calculate the information leakage rate for each EMU policy.
We usen = 106 for the computations.
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Fig. 5. The Pareto optimal
(

Ip, Ew

)

pairs for px = 0.5 and for different
pz values. Optimal pairs for differentpz values are illustrated with different
markers.

A. Effects of energy harvesting rate on privacy and energy
efficiency

We illustrate the effects of EH rate on both privacy and
energy efficiency for an EH system with and without an RB,
and also show how privacy and energy efficiency change in the
presence of an RB. Fig. 3 illustrates the minimum information
leakage rateIp and the corresponding wasted energy rateEw

with respect to the EH ratepz for an EH system with and
without an RB. The results are obtained for an equiprobable
input loadpx = 0.5 and differentpz values. In a system with
an EH device the privacy improves with increasing values
of pz. This is expected since more energy is provided from
the energy harvester aspz increases; and hence, the UP can
learn less about the actual energy consumption of the user.
On the other hand, an increase in the EH rate leads to an
increase in the wasted energy rate as well. This is due to the
independence of the energy generation process and the input
load. When the EH device harvests a unit of energy, if there is
no demand from the appliances and the RB is already charged,
this harvested energy will be wasted. Therefore, we can easily
notice the trade-off between the information leakage rateIp
and the wasted energy rateEw in the system when there is no
storage unit.

Comparing the two curves in Fig. 3, we observe that
introducing an RB into the system improves the trade-off to
a certain extent. It reduces both the minimum information
leakage rateIp and the corresponding wasted energy rateEw.
When there is no energy harvesting, i.e,pz = 0, the system
reduces to the model studied in [16]. In this case, the minimum
information leakage rate is found to beIp = 0.5 for px = 0.5.
However, when there is an alternative energy source in the
system, i.e.,pz 6= 0, the information leakage rate can be
reduced significantly. The EH rate can be considered as a
system parameter that defines the achievable privacy-energy
efficiency trade-off, and needs to be chosen by the system
designer depending on the input load and the desired operating
point.



B. Privacy-energy efficiency trade-off

TABLE I
RESULTS FROM THE TRADE-OFF PAIRS FOR DIFFERENTpz

VALUES

pz min Ip Ew for min Ip minEw Ip for minEw

0 0.5 0 0 0.5
0.2 0.213 0.055 0.02 0.462
0.4 0.118 0.12 0.081 0.243
0.6 0.062 0.213 0.185 0.088
0.8 0.02 0.332 0.32 0.032
1 0 0.5 0.5 0

In Section V-A we have found the wasted energy rate
corresponding to the battery policy that minimizes the infor-
mation leakage rate. Here, we characterize the whole trade-off
between the privacy and energy efficiency for given EH rates.
The trade-off for the values ofpx = pz = 0.5 is illustrated in
Fig. 4. Each circle in the figure marks an

(

Ip, Ew

)

pair that
can be achieved by assigning different transition probabilities
labeled on Fig. 2. The Pareto optimal trade-off curve is the
one that is formed by the points on the lower-left corner of
the figure, i.e., the points for whichIp and Ew cannot be
improved simultaneously. The minimum information leakage
rate value isIp = 0.088 for which we haveEw = 0.163.
The minimum wasted energy rate isEw = 0.125 for which
we have Ip = 0.171. These two pairs correspond to the
corner points of the trade-off curve in Fig. 4. According to the
requirements of the system, the operating point can be chosen
anywhere on the trade-off curve. Note that, we can apply a
convexification operation on the set of achievable(Ip, Ew)
pairs using time-sharing arguments.

We also study the trade-off between the information leakage
rate,Ip, and the wasted energy rate,Ew, for differentpz values
to observe the effect of the EH rate on the achievable privacy-
energy efficiency trade-off. Fig. 5 illustrates the Pareto optimal
(

Ip, Ew

)

pairs for px = 0.5 and for differentpz values.
Each marker in the figure marks an

(

Ip, Ew

)

pair achieved
by assigning different transition probabilities, and we include
only the points that are not Pareto dominated by any other
point. We obtain a different privacy-energy efficiency trade-off
for eachpz value as illustrated in Fig. 5. The corner points
of these trade-off curves are listed in Table I for differentpz
values. Since there is no harvested energy in the system for
pz = 0, there is no wasted energy and as a result, the optimal
operating point is found as the minimum information leakage
rate, Ip = 0.5 and wasted energy rate,Ew = 0, which is
the same as the model studied in [16]. Note that while the
minimum information leakage rate decreases with increasing
values ofpz, the minimum wasted energy rate increases. When
energy is harvested withpz = 1, the optimal point is found
to be Ip = 0 andEw = 0.5, that is, perfect privacy can be
achieved at the expense of wasting half of the harvested energy
on average. In this case, there is no information leakage since
the user never asks energy from the UP and the wasted energy
rate converges toPr{X = 0} = 1− px.

We also study biased input loads by considering the two
cases withpx = 0.89 and px = 0.11, which we call the
heavy loadand light load scenarios. The entropy rate of the
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Fig. 6. Finite state diagrams for battery-conditioned energy management
policies with battery capacitiesK = 3 and K = 4. Symmetric and
complementary transition probabilities are illustrated for the computation of
the minimum information leakage rate in case of an equiprobable input load,
i.e., px = 0.5.

input load for both the heavy and light load cases isH(X) =
0.5. Note that the input load is biased towardsX = 1 for
the heavy load system, i.e., the appliances are more likely
to demand energy. For the heavy load case when we do not
have an EH unit in the system, i.e.,pz = 0, we find the
minimum information leakage rate to beIp = 0.23 [16]. When
there is an energy harvester in the system withpz = 0.5,
the minimum information leakage rate reduces significantly
to Ip = 0.026 while the corresponding wasted energy rate is
Ew = 0.043. The minimum wasted energy rate is obtained as
Ew = 0.011 for which we haveIp = 0.105. It is obvious that
wasting energy is less likely in the heavy load case. The energy
is wasted only when we havebi = 1, xi+1 = 0, zi+1 = 1 as
shown in Fig. 2. Thus, when the appliances have higher energy
demands, the user is less likely to face the condition for energy
wasting. Similarly, in the light load case, i.e.,px = 0.11, Ew

increases as less energy is required by the appliances. For
example, the minimum information leakage rate is found to
be Ip = 0.027 with Ew = 0.088, and the minimum wasted
energy rate is found to beEw = 0.087 for Ip = 0.03. We
observe that both the heavy and light load systems can achieve
almost the same level of maximum privacy while the wasted
energy rate of the light load system is double the rate of the
heavy load system at this point of operation.

C. Effects of battery capacity on privacy

We have observed that alternative energy sources can help
reduce the information leakage rate significantly while RBs
help improve the energy efficiency as well as privacy. Next,
we study the effects of the RB capacity on privacy. It is
expected that if we increase the RB capacityK, the trade-
off curve illustrated in Fig. 4 will move toward the origin,
i.e., the privacy and energy efficiency will be improved si-
multaneously. For example, in the asymptotic limit of infinite
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Fig. 7. Minimum information leakage rate,Ip, versus battery capacity,K.

storage capacity, perfect privacy can be achieved by charging
the battery initially, and never asking for any energy from the
UP afterwards. To highlight the effects of the battery capacity
on the achievable privacy we consider an RB with capacity
K, and no EH device. While the complexity of the numer-
ical analysis grows quickly with the battery size, we have
observed that for an equiprobable input load, i.e.,px = 0.5,
there is a symmetry and complementarity among the opti-
mal transition probabilities in the finite state diagram which
significantly reduces the computation time of the minimum
information leakage rate. The minimum information leakage
rate is achieved when,1) the sum of transition probabilities
between two states is equal to one, and2) there is a symmetry
in the transition probabilities of the two sides of the finitestate
diagram separated by the line of symmetry. Fig. 6 depicts this
symmetry and complementarity on a finite state diagram for
battery capacityK = 3 andK = 4, respectively. Using this
observation which reduces the complexity of the computation,
we have increased the battery capacityK and obtained the
minimum information leakage rates corresponding to different
values of K. For moderate battery capacity values Fig. 7
illustrates the effects of the battery capacity on the minimum
information leakage rateIp for px = 0.5. The minimum
information leakage rate falls below0.1 even with an RB of6
units of capacity. This result shows that even a small increase
in the RB capacity leads to a significant reduction in the
minimum information leakage rate. As RB capacity increases
more, the minimum information leakage rateIp continues to
decrease, but with a decreasing slope.

D. Privacy at the expense of wasting grid energy

We have already shown that whenever the user has higher
privacy requirements, the system with EH and RB units can
provide strong privacy assurances by simply increasing the
EH rate, pz. When there is no EH unit in the system, we
need to increase the capacity of the RB to cope with high
privacy requirements. However, increasing the capacity ofthe
RB can be costly or even physically impossible. In this case
the privacy of the user can be improved by allowing the user
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Fig. 8. Information leakage rate,Ip, versus wasted energy rate,Ew, for the
case of wasting grid energy.

to demand energy from the UP even when there is no energy
demand from the appliances, i.e.,xi = 0, and the RB is already
full, i.e., bi = K. Through wasting additional energy from the
UP, which is likely to be more expensive than the harvested
energy, the energy consumption profile of the appliances can
be further hidden from the UP and privacy can be increased
up to perfect privacy by increasing the energy waste level.

To study the effects of wasting grid energy on privacy, we
consider battery conditioned policies with binary input/output
load values and an RB with capacity ofK units. Let RB
be fully charged at time instanti, i.e., bi = K. Even if the
appliances do not consume any energy at time instanti + 1,
i.e., xi+1 = 0, we allow the EMU to demand energy from
the UP, i.e.,yi+1 = 1, with probability pw, and yi+1 = 0
with probability (1 − pw). In other words, we allow wasting
the grid energy with probabilitypw, by which we obscure
the information of the UP about the real energy consumption.
Fig. 8 illustrates the achievable points on the

(

Ip, Ew

)

trade-
off, obtained for an equiprobable input load,px = 0.5, and for
increasing RB capacity values,K = 1, K = 2, andK = 3.
In this simulation, to keep the simulation time reasonable
we find the achievable points for each capacity valueK,
by considering only complementary transition probabilities
as depicted in Fig. 6, such that the sum of the transition
probabilities between two states is equal to1. Moreover, we
compute the wasted energy rate by using Eqn. (6), but we
chooseZi = 0 in the equation since there is no EH unit
in the current scenario. We can see that the privacy can
be significantly improved by wasting more energy, i.e., by
increasingpw. For instance, when perfect privacy is required
by the system, the information leakage rate can be reduced to
zero by wasting energy withpw = 1. The wasted energy rate
converges toPr{X = 0} = 1 − px on average forpw = 1,
i.e., Ew = 0.5, because we waste energy only when the RB
is fully charged,bi = K, and there is no input load,Xi = 0.
If we increase the RB capacityK, as we can see in Fig. 8,
both the information leakage rate and the wasted energy rate
are improved for the same energy waste probability,pw. The



operating point on the trade-off curve can be chosen according
to the privacy requirement of the system and the cost of energy
provided by the UP.

VI. CONCLUSIONS

We have studied the privacy-energy efficiency trade-off in
smart meter systems in the presence of energy harvesting and
storage units. We have considered an EH unit that provides
energy packets at each time instant in an i.i.d. fashion, anda
finite capacity rechargeable battery that provides both energy
efficiency by storing extra energy for future use, and increased
privacy by hiding the load signature of the appliances from the
utility provider. We have used a finite state model to represent
the whole system, and studied the information leakage rate
between the input and output loads to measure the privacy of
the user from an information theoretic perspective.

We have used a numerical method to calculate the informa-
tion leakage rate. Due to the memory introduced by the RB,
obtaining a closed-form expression for the information leakage
rate is elusive. For the sake of simplicity, we have consid-
ered binary input and output loads and focused on battery-
dependent energy management policies in our simulations,
and numerically searched for the energy management strategy
that achieves the best trade-off between privacy and energy-
efficiency. We have shown that the information leakage rate
can be significantly reduced when both an energy harvester
and an RB are present. As the EH rate increases, we have
observed that the privacy of the system significantly improves.
On the other hand, this also increases the amount of wasted
energy. For a fixed EH rate, we have numerically obtained
the optimal trade-off curve between the achievable information
leakage and wasted energy rates. Different points on this trade-
off curve can be achieved by changing the stochastic battery
policy used by the energy management unit. According to
the needs and priorities of the system, an operating point can
be chosen on this trade-off curve. We have also obtained the
corresponding trade-off curves for different EH rates.

We have studied the effects of the battery capacity on the
achievable privacy by focusing on a system with only an RB.
We have observed that increasing the capacity of the RB has a
significant impact on the reduction of the information leakage
rate, and thereby, on the privacy. Moreover, we have examined
the wasting of grid energy to fulfill the increased privacy
requirements of the user when there is only an RB in the
system. We have observed that even in the absence of an EH
device and with a finite capacity RB, the privacy level can be
increased up to perfect privacy by wasting more energy from
the grid.
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