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Abstract—Smart meters are key elements for the operation

of smart grids. By providing near realtime information on the v
energy consumption of individual users, smart meters incrase (EH) DEVICE
the efficiency in generation, distribution and storage of eergy
in a smart grid. The ability of the utility provider to track
users’ energy consumption inevitably leads to important theats
to privacy. In this paper, privacy in a smart metering systemis
studied from an information theoretic perspective in the presence
of energy harvesting and storage units. It is shown that engy APPLIANCES
harvesting provides increased privacy by diversifying theenergy
source, while a storage device can be used to increase botheth
energy efficiency and the privacy of the user. For given input
load and energy harvesting rates, it is shown that there exis
a trade-off between the information leakage rate, which is sed
to measure the privacy of the user, and the wasted energy rate
which is a measure of the energy-efficiency. The impact of the
energy harvesting rate and the size of the storage device ohi$
trade-off is also studied.
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Fig. 1. A smart-meter (SM) system diagram with energy andrinftion
flows. The user, in addition to its connection to the energgl, glso has an
EH device and an RB at its use. The energy flow in the system imageal
by the energy management unit (EMU). The SM reads only theggrbat
is supplied by the UP at each interval. The readings are t&pdo the UP
. INTRODUCTION correctly without any tempering, but potentially in an gmpted manner.

A smart grid (SG) is an energy network that manages and
controls energy generation and distribution more effityent
and intelligently by following the users’ energy demands ifenerate energy from ambient sources such as solar, thermal
real-time through computer and communication technolgier wind, and reduce the users’ dependence on the igrid [3].
Transition from traditional power grids to SGs are expetted T exploit these potential benefits, the components of an
have a revolutionary effect on future energy networks [2], [ SG are connected through a two-way communication network
SGs can yield energy efficiency through savings in generatighat allows the exchange of information in real time among
and transmission of energy, reduce costs on both the user g ysers and the UP. This enables real-time optimization of
the utility provider (UP) sides, and increase reliabilityda |55 management in SG5][4]. An important component of
robustness. They also provide important environmentaébenhis critical data network for SGs is the advanced metering
fits by reducing the carbon footprint and integrating rertei@a system. Smart meters (SMs) are communication devices that
energy sources into the energy network. Introducing adii&re  measure the energy consumption of the users and transmit
energy sources and energy storage devices into the netwgykir readings to the UP in real time. Currently, a typical
will significantly reduce the load on the energy network angmart-meter reports the energy consumption readings to the
improve its efficiency. For instance, plug-in electric v@as on yp every15 minutes; however, the measuring frequency is
the distribution grid can be used for distributed energyage expected to increase in the near future to provide near real-
by means of their rechargeable batteries (RB5) [1]. Sityilarjme energy consumption data to the UP. Significant energy
renewable energy sources can be integrated into the eneggyings have been reported even solely based on the user’s in
network through energy harvesting (EH) devices, which c@feased awareness of his/her real-time energy consunjblion
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poses by tracking appliance usage patterns, employing naiso ignore inefficiencies and mismatches in providing the
intrusive appliance load monitors and data mining alg@nergy requirement of the appliances from different energy
rithms [8], [C], [10]. At the very least, through SM readingsources, and consider only the energy that is consumed by
it is possible to infer whether a user is at home or nathe appliances. The EMU has access to three different energy
But, through more advanced pattern recognition techniqusesurces the energy grid, the EH device and the energy storage
energy consumption patterns of individual appliances can bnit. At any time instant it can provide the energy requested
identified with high accuracy even when the SM can reduy the appliances from one or more of these sources. The goal
only the aggregated household energy consumption [11]. A6the EMU is to increase both the energy efficiency of the

a striking example[[12] illustrates the possibility of deting system and the privacy of the user.

the channel displayed on a television, and even identifffieg  We employ stochastic battery policies based on the har-
content, just by analyzing the power profile of the householdested energy, energy demand of the appliances and the state
Even assuming that the SM readings are transmitted to ibfethe storage unit. We model the energy generation profile of
UP in an encrypted manner, preventing third parties froah EH device as a stochastic process whose behavior depends
accessing the user’s private energy consumption data, #rethe characteristics of the underlying energy source hed t
UP will receive significant personal information about théevice itself. Therefore, it is likely that the harvestedrgy

user. Thus, even if only partially, assuring the privacy feé t sometimes does not match the energy required by the system
household’s electrical load profile is essential for users.  and the extra energy would be wasted if not stored. Intragyci

In this work, we study SM privacy from the fundamentadn RB for energy storage into the system is essential for
information theoretic perspective. We measure the privacy better utilization of the harvested energy. On the otherdhan
the user’s energy profile with respect to the UP in termgnsidering the increasing use of alternative energy ssurc
of the information leakage ratewhich denotes the mutual(such as solar panels) by households, and the availability
information rate between the real energy consumption ef rechargeable storage units (such as electric vehiclih) w
the appliances and the SM readings. Using Shannon entrejynificantly large storage capacities, it is meaningfuhtploit
to measure privacy is not new. Minimizing the informationmhese devices not only to decrease the dependency on the
leakage rate is equivalent to maximizing tequivocation SG and to increase the energy efficiency, but also to provide
which was introduced by Shannon in [13] in the context of sedditional privacy for the users. The equivocation of the UP
cure communications. Mutual information has previouslgrbe about the real energy consumption can be manipulated by
proposed as a measure of privacy in SMslin| [14]] [15]] [1@harging and discharging the RB and by using the harvested
and [17]. Modeling the input load as a discrete time randoghergy. Hence, the benefits of the RB are twofaldit can
process, information leakage rate measures the amountir@rease the energy efficiency of the system by storing extra
information the UP learns about the input load after obsgyviharvested energy; and) it can increase the privacy of the
the output load, i.e., the energy requested by the user. VWer by hiding the energy consumption profile from the UP.
assume that the UP may know the statistics of the input log¢e show in this paper that there exists a trade-off between
as well as the stochastic behavior of the energy managemenérgy efficiency and privacy for the optimal EMU operation,
policy; however, it cannot observe the input load or hae@stand the operating point on this trade-off can be chosen based
energy directly. The UP has to estimate the realization ef the privacy sensitivity of the underlying input load ahe t
the input load based on its statistical knowledge and igst of energy.
observation of the output load. The user wants to minimize The main contributions of this work can be summarized as
the information leakage rate to achieve the highest level gfilows:
privacy. While cryptographic algorithms rely on matheroati
operations and the complexity of their computation by using
encryption keys, information theoretic security does net d
pend on encryption keys and assures reliable privacy réssad
of the computational power of an intruder, the UP in our
case[[18].

Building on our previous work [19], we study the privacy
of an SM system from the perspective of a single user. In our
system model, depicted in Figl 1, we integrate an EH device
as an alternative energy source and an RB as an energy stora&é
unit. The energy flow is managed by the energy management
unit (EMU). We consider a discrete time system. At each time
instanti, the appliances request a certain amount of energy,
denoted byX;. This amount is reported to the EMU which is
responsible for providing this exact amount to the appksnc
that is, we do not allow energy outages or rescheduling ofWe use the following notation in the rest of the paper.
appliance operations in this work. We also consider ongandom variables are denoted with uppercase letters, e.g.,
the real power consumption of the devices and assume that and their realizations are denoted with lowercase letters
the SM only reads and reports this quantity. Moreover, weg., z. A random variable takes values from a finite gét

1) We introduce an energy efficiency-privacy trade-off in
a smart meter system considering the availability of an
EH device and an RB. To the best of our knowledge,
this is the first work that provides an analytical study on
the effect of an alternative energy source on SM privacy.

2) Focusing on a discrete-time system model we study the

effect of energy harvesting rate on the energy efficiency-

privacy trade-off.

We illustrate numerically that the increased battery ca-

pacity significantly reduces the information leakage rate.

) While no grid energy is allowed to be wasted in the

above analysis, we also study the increased privacy that
can be achieved by wasting the grid energy for very
sensitive applications.



following a probability mass functiopx (z). The subscript to forward smart meter readings. Marmol et al.|[28] propose
X will be omitted when it is obvious from the context. Anusing “additively homomorphic encryption”, which allows

n-length random sequence is denoted®y = X;,...,X,,. the UP to decode only the total energy consumption of a
E[X] denotes the expectation of the random variakleThe group of users while keeping the individual readings secure
entropy of a random variabl& is defined by Rajagopalan et all [29] propose compression of the smart-
. meter data before being transmitted to the UP. Unlike this li
H(X) =~ Z p(w)log p(). (1) of research, we assume that the SM reads the amount of energy
reX

that the user gets from the grid at each time interval and the
H(-|-) and H(-,-) denote conditional entropy and joint endmeter readings are reported to the UP without being tempered
tropy, respectively, which are defined similarly. The muitu®dy the user. Hence, privacy in our model is achieved by
information between random variablésandY is defined as differentiating the output load, i.e., the energy receitmin
the UP, from the input load, i.e., the real energy consumptio
I(X;Y) = H(X) - H(X]Y). () of the user, as much as possible.
The rest of the paper is organized as follows. In Sedfibn I, A similar approach has been taken in some other previous

we summarize some of the related work on privacy issues 'k @s well. RBs have been proposed to partially obscure
SM systems. In Sectiofilll, we introduce the system modd® €nergy consumption of the user inl[14].1[16].1[24].][25]
SectiorfI¥ describes the technique to compute the infornati2nd [30]. The main goal of the proposed energy management

leakage rate. In Sectiéf V, we present our results and camp@d°rithms in these papers is to protect the privacy of tie.us
them with the existing results in the literature. Finallye wReferences([14] and [30] study variational distance, elust
conclude our work in Sectiof VI. similarity and regression analysis to measure privacy and

propose various heuristic techniques, such as the best-eff
and power mixing algorithms. A discrete-time system model
is considered in[16] and stochastic battery policies ardist
In recent years SMs have gained increasing popularity withith mutual information between the input and output loasls a
growing support from the UPs and governments with thtae measure of privacy. 1A [81] a similar information thetire
promise of increased energy efficiency. This also has raisedvacy analysis is carried out in the presence of an EH @evic
privacy issues, and the literature in this field is growingidly. that can provide energy limited by peak and average power
Various techniques have recently been proposed to provideanstraints.
certain level of privacy for SM users. Anonymization [20§-a
gregation([[21], homomorphism [22] and obfuscationl [23] are
some of the techniques that have been studied in the literatu
In [24], the authors present a method for establishing pyiva We study the energy input/output system illustrated in
assurances in terms of differential privacy, i.e., RB isdusdrig. I under a discrete-time system model. The input load
to modify the energy consumption by adding or subtracting; represents the total energy demand of the appliances at
noise and thereby, the energy consumption of the individu&he instanti. The output loadY; denotes the amount of
appliances can be hidden. Moreover, they also considesugri energy that the system requests from the UP, whjldenotes
constraints on the RB such as capacity and throughput. jn [2Be amount of harvested energy at time instari/e assume
a method to provide privacy against potential non-intresithat there is a minimum unit of energy; and hence, at each
load monitoring techniques is proposed. A non-intrusivadlo time instanti, the input load, harvested energy and output
leveling algorithm is used to flatten the consumption of tHead are all integer multiples of this energy unit. Over tjime
user by means of an RB. Similarly, [17] proposes threge assume that the input load” = X;, Xo,..., X, is
techniques, i.e., fuzzing, targeted entropy maximizatow an independent and identically distributed (i.i.d.) setpee
targeted fuzzing. The authors intend to obfuscate the lgad With marginal distributionpx over X = {0,1,...,N}. The
masking the individual loads with the use of an RB. Basigalljarvested energy is also modelled as a discrete time stirhas
fuzzing changes the load randomly over an interval, th@ocess, wher&Z” = 7,,7,,...,Z, is an i.i.d. sequence
targeted entropy maximization technique chooses theatksiwith marginal distributionp; over 2 = {0,1,...,M}. The
load level that maximizes the entropy of possible individugharacteristics of the EH distributionz, depend on the design
events, and targeted fuzzing builds a probability distidou of the energy harvester. For example, for a solar energy
to do so. harvester the average harvested energy can be increased by
Most of the earlier work on SM privacy assumes thatcaling the size and the efficiency of the solar panel. Note
the user has control over the smart-meter readings and ¢hat the energy consumed by the appliances and the harvested
manipulate these readings before sending the data to the elrergy are independent of each other.
For example, Bohli et al [21] propose sending the aggregate The output load is the amount of energy that is demanded
energy consumption of a group of users to the UP. Li &om the UP, and is denoted By = Y7,Y5,...,Y, with Y;
al. [26] consider using compressed sensing techniques faking values iny = {0,1,..., L}. We denote the energy in
the transmission of the SM reading of active users based the battery at time instant by B;. We assume that the RB
the assumption that SM data transmission is bursty. Bartbls a maximum capacity df energy units, i.e.B; < K, Vi,
et al. [27] propose data aggregation together with enasyptiwhile the system is not bounded by the maximum amount of
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energy that can be provided by the UP, iB.> (N + K)@ by an energy management policy, we defineulzsted energy
We consider stochastic energy management policies at thee as follows:

EMU that depend on the instantaneous input load, harvested n

energy and the battery state. An energy management policy E, 2 lim 1 Z (Z; +Yi — X). (6)

maps the energy requested by the appliansesthe harvested n—oon

energy, Z;, and the battery state3;_,, to the output load,

Y;, and the next battery staté3;. Note that in general a We say that an information leakage-wasted energy rate pair

larger set of energy management policies is possible. T(g, E,,) is achievableif there exists an energy management

EMU can decide its actions based on all the past input/outmdglicy satisfying [5) and[{6). The closure of the set of all

loads, harvested energy amounts and the battery states. dabtievable rate pairs is called thate regionI'. In general

example [16] considers policies that take into account thiee energy management policy that minimizes the informatio

previous output load};_;. Similarly, the best effort policy leakage rate does not necessarily minimize the wasted energ

proposed in[[30], in which the EMU aims to keep the outputte. From the classical time-sharing arguments [32] we can

load value as stable as possible, is simply a special case of teadily see that the rate regidhis convex. Since the region

battery/output load conditioned policies in_[16]. To keée t is also closed by definition, it is sufficient to identify the

complexity of possible energy management policies simpleoundary of regiol”, which characterizes the optimal trade-

we restrict our attention to energy management policies thgff between privacy and energy efficiency.

depend only on(X;, Z;, B;—1), and satisfy To illustrate the privacy benefits of having an EH device, we
first consider a system without an RB. In this case, the EMU

Zi+(Bi— Bi-1) +Yi 2 Xi, ) Uses as much as possible from the harvested energy, and asks
which guarantees that the energy demand of the appliance®rsenergy from the UP only when the harvested energy is
always satisfied. not sufficient. Therefore, we can defidg as a deterministic
We assume that the SM provides the output Ibadt each function of X; and Z; as follows:

time instant to the UP perfectly. That is, we do not allow the _

user to manipulate the SM reading. Moreover, we also assumey, _ (Xi — Z))t 2 { Xi — Z, !f X —2Z; >0, @

thatpx andpz are known by the UP, whereas no information C 0, if X; —2; <0.

about the realizations of either the input proce8s or the

EH process:”, is available at the UP, which observes only o _

the output loady™. The equivocationH (X™|Y™), measures In general, it is poss_|blg to ask for energy from the UP even

the uncertainty of the UP about the real energy consumpti$fien X; = 0. This will increase the privacy by confusing

i=1

after observing the output load. We have, the UP, but waste energy. We do not allow wasting energy
from the UP unless otherwise stated, as this would be costly
H(X"Y™) = H(X") — I(X";Y™). () in practical systems. Obviously, when there is no harvested

energy, i.e.,Pr{Z = 0} = 1, then we haveY; = X, for
- _ 1 ny __ i
Since H(X™) is a characteristic of the appliances and is ag-l’ and I, = ,H(X") = H(X), ie., the. ol kno_ws the
sumed to be known, the EMU tries to minimizeX™; Y™ in input load perfectly. On the other hand, if Fhere is always
order to maximize the equivocation. Accordingly, the peciya harvested energy sufficient to supply the appllancesMe.——,
achieved by an energy management policy is measured by fhendPr{Z = N} = 1, thenY; = 0 for Vi, and we have

information leakage ratedefined as 1, = 0. WhenI, = 0 we say thaperfect privacyis achieved.
Basically, as we harvest more and more energy, we reduce our

I 2 lim lI(X”- ¥ ) dependence on the grid energy, and decrease the information
P nseon ’ ’ leaked to the UP about our real energy consumption. However,
note that, at each time instant harvested energy that isseat u
where X" = (X1, X,..., Xp), Y™ = (Y1,Y2,...,Yy), and  py the consumer is wasted. For example, wRefiZ = N} =
I(X™;Y™) is the mutual information between vecto¥$' and 1, we haveE, = N — E[X] while E,, = 0 whenPr{Z =
Y. 0} = 1. In other words, there is a trade-off between privacy
Due to the finite capacity of the RB and the stochastic natusgg energy efficiency provided by the EH unit. Introducing
of the input and EH processes, some of the harvested enesgyrB into this system will have a dual use and improve this
will be wasted. To measure the proportion of the energy wastgade-off. RBs can act as a filter for the energy usage profile

o _ and decreasé, further while reducing the wasted energy at
1The energy we consider in this model is the real energy medsy the

smart meter and we ignore the reactive power or the poweorfadbich can the same time. . . .
also be used to make deductions about the input load. Mareoee also Due to the discrete time nature of the system, it can be

assume that the energy demand of the appliances is satigfigdrtsferring represented by a finite state model (FSM) [16]. The ESM
an equivalent amount of energy from the RB, EH unit or UP; thatve do >

not consider the effect of the supply voltage, frequencyherdharacteristics repre_sentatlon of the SyS'Fem with all the tra_nsmons antest

of the appliances on the amount of energy that needs to bestglifom evolving as a Markov chain depends on the input load I&kel
_the corresponding energy source. Such quantities cod:ﬂﬂsincqrporated the output load leveL, the harvested energy leva!l and the
into our model by considering vector-valued measuremenis,this added RB . A h . d i id
complexity is not necessary for studying the fundamengaldroffs considered capacityK’. As we have mentioned earlier, we consider

here. energy management policies that depend only on the current



input load X;, harvested energy;, and the previous batten (0,0,1)
(1= p N1~ p.)p5,

(0,0,0)

state B;_1. We haves £ (K + 1) states in our FSM, where (0,0,0) ey
_p;\' _pz

stateb; denotes the state of the RB, i.e., the amount of ene (1—px)(1—pz)(1—pgl)
stored in the RB at timé. We assumé, = 0. The battery

conditioned transitions occur from staieto b;; depending (0,1,0)
on the battery staté;, the input loadz;,; and the harvestec  (1,0,1) (1-p,)p.
energyz;+1. The FSM is simply a Markov chain, and th  p (1-p.) (energywasted )

transitions specify the map to proceed in the chain. Pass
transitions are depicted in Filgl 2 for differefat, z, y) triplets

" S 1,1,0
and transition probabilities. (L.L0)

(131’0) PP

A. A Simplified Binary Model p.p.1- ) (10.0) (10.1)

Similarly to [1€] to keep the presentation and the numeri 2.(1-2.)ps p1-p.X1-py)
analysis simple, we initially consider a binary model; tist
we assumeV = L=M=K-=1 Howe_'ver’ we '_the here Fig. 2. Finite state diagram for the battery conditionedrgypenanagement
that the following arguments and evaluation techniquesrakt policy with s = 2 states. Each triplet in the figure corresponds to the
to non-binary models directly. Erom a practical perspectiv(xvzv_y) value_s for thp corresponding transition. Transition pholiiees are

. . . . ffllso included in the figure.
this binary model corresponds to a system with a single
appliance that can be ON or OFF at various time instants with

a certain probability, and both the capacity of the RB and thg,e unit of energy to fulfill the energy demand and the

energy gengrated by f[hg EH are equiv_alent to the energy uggsl remains discharged, i.e(yi;1 = 1,bi41 = 0). If the

by this device when it is ON. In Sectiofs V-C abd V-D weyppjiances demand one unit of energy and one unit of energy

will consider non-binary battery capacity cases as well. s harvested at the same time, i.€x1 = 1,241 = 1),
While the energy management policies can be time-varyiggher the RB is charged by means of the output load, i.e.,

in general, we consider time-invariant fixed policies in i (yir1 = 1,bis1 = 1) with probability p},, or it remains

the transition probabilities and parameters of the polioy adischarged, i.e.(yiy1 = 0,bi .1 = 0) with probability

fixed throughout the operation. The probability distribas of | _ 5)).

the input load and the harvested energy are chosen as BﬁarnouISim"a”y, let the RB be charged at time instaiti.e.,

distributions, i.e.Pr{X = 1} = Do andPr{Z = 1} = p=, p, — 1. In this case, there are five possible transitions that
respectively. The output loadl™ is also a binary sequencecan occur as depicted in Fig. 2. If the appliances demand zero
which can provide) or 1 units of energy to the input load atenergy and no energy is harvested, i(@;,1 = 0, z;41 = 0)

any time instant. Battery stateh; = 0 denotes that the RB the Up does not provide energy so as not to cause waste
is empty whileb; = 1 denotes that the RB is fully charged;g the RB remains charged, i.€yi 1 = 0,bi1 = 1). If

at time instanti. We assume that within each time durationy, appliances demand zero energy and one unit of energy
i to i+ 1, the RB can be charged to battery state= 1, s harvested, iefri1 = 0,241 = 1), the UP is not

discharged to battery staté; = 0, or remain in the same gypected to provide any energy and the RB remains charged,
state depending on the transition probabilities. We doalc¢ t ; o (yis1 = 0,bisy = 1), while the harvested energy is

into consideration the charging and discharging rates ef thagted in this situation. If the appliances demand one Unit o
RB, and assume that this time duration is enough for fu'B’nergy and no energy is harvested, i(@:y1 = 1, 2.1 = 0),
charging or discharging. N the EMU chooses between keeping the RB charged, i.e.,
Let the R_B be d_|scharge(_j_at time instanti.e., b; = 0. (yir1 = 1,bi41 = 1) with probability (1—p10), or discharging
There are six possible transitions that can occur as ittestr it, i.e., (yis1 = 0,bip1 = 0) with probability pio. If the
in Fig.[2. If the appliances demand zero energy and no enetgyjiances demand one unit of energy and one unit of energy
is harvested, ez = 0,2i11 = 0), the EMU chooses g harvested, i.e(zit1 = 1,241 = 1), there is no need to
either to charge the RB by asking energy from the UP, i,k for energy from the UP and the RB remains charged, i.e.,
(yi+1 = 1,bix1 = 1) with probability p§,, or keeps the (. ~_ (4~ '~ 1),
RB discharged, i.e.(y;+1 = 0,b;11 = 0) with probability
(1 —pg,). If the appliances demand zero energy and one unit
of energy is harvested, i.e(z;+1 = 0,241 = 1), the UP . . . .
does not provide any energy to prevent waste and the RB _ién this section we focus on the cor_nputaﬂon (_)f the |nforma-
charged with harvested energy, i.&yis1 = 0,bis; = 1). If tion Ieakage ratel,,. From an |nformat|(_)n theoretic perspective
the appliances demand one unit of energy and no energyf§ oPeration of the EMU which decides on the energy flow
harvested, i.e.(z;41 = 1,241 = 0), the UP must provide N the system using the EH and_ RB units regembles data
compression where the compression is accomplished through
2In [16] in addition to battery conditioned policies, bajteutput load a finite state machine. In this analogy, the input lo&¢

conditioned policies are also studied. However, the astiraticate that they corresponds to an i.i.d. data sequence to be Compressed and
have not found any battery/output load conditioned poli@t performs better ’

than the optimal policy that acts solely based on the batéate. We have .the _Ol'_'tpUt loady™ 'S. the _compressed.vers[on. The proplem
made the same observation in our numerical analysis. is similar to a rate-distortion problem in which the goalds t

IV. INFORMATION LEAKAGE RATE COMPUTATION



Equiprobable input load (p, = 0.5 .
1 quiprobable tnpyt load (p =0.5) computation of the probabilitiesp(y1,ys,---,y.) and
g System with harvesting wnit DAY, Y2, Y
= ---dystem with (EIliﬁl'gy larves lIlg uni - - H . H
g 5 0.751 — System with energy harvesting and battery unit | p(CCl, 2, » Tns Y1, Y2, ) yn) ThlS Co_mpUtatlon 1S
54 basically the forward sum-product recursion of the BCJR
e 08 1 algorithm [34]. We define the state metrics as follows:
= a0
= £025 1
i 3 G L L L L L T E— el
0 01 02 03 04 05 06 07 08 09 1 .y
. 05 Energy Harvesting Rate - p. Mk (Sk) - p(ska Y1, 92, yk)? (9)
L? . H—Sy;teln \vitjh energ;' harves‘ting uni‘t ‘ ‘ _____—"'——‘ Vk(Sk) é p(Sk7ZC1,I2, e 7£Ck,y17y2, e ayk)- (10)
e 0.4r| —System with energy harvesting and battery unit P N
z 03 Initially, we set the state metrics as follows:
= 02F 1
= -
=
£ o0ar 1

% o1 o0z 03 o4 05 06 07 08 09 1 10(0) =1, v0(0) = 1, po(m) = 0, vo(m) =0, for m # 0.
Energy Harvesting Rate - p.

Fig. 3. Minimum information leakage raté,, and the corresponding wasted ~Here, we emphasize that the initial values of the state

energy rate E,,, With respect to harvested energy rate for an EH system witmetrics do not affect the final values P@l, Yo, yn) and

and without an RB. p(x1, T2, -+ ,&n,Y1,Y2, - ,Yn) due to the convergence for

long sequences.

minimize the mutual information between the source segeienc We_ _then Comp,L,‘t,e the state metrics recursively using the
and the compressed version while satisfying the distortidinsition probabilities(zx+1, 2k+1, Yr+1, sk+1/sx). For the
requirement. In our model, the energy provided from tr,;()_,’p_nary system we use the transition probabilities labeled i
EH device is similar to a distortion requirement. While wé&'9:[2- We have,

want to minimize the mutual information between the origjina
data sequence and the compressed version, we are limited _
by the allowed distortion, the available harvested energy iuk“(sk“) =2 2 2 me(sp(irn, 2, v, snn i),

Zk+1 Tk+1 Sk

our case. A different rate-distortion approach for the SM (11)

privacy problem is taken in_[29]. In_[29] the SM is allowed to

: . . . . . = , , , . (12

introduce a certain amount of distortion to its readingobef Vi1 (si41) %:1 %:Vk(sk)p(xk“ Zett Yer, Siepalsi). (12)

reporting them to the UP, while in our setting distortion is

introduced on the real energy consumption values, makiag {}e can compute the probabilities(y:, vz, - ,yn) and
. . . . . b b) ) n

rate-dlstortl(_)n for_mulatlon Iesg eXp!ICIt. See [31] for remn P&, T2, Ty Y1, Yo+ 5 yn) @S the sum of all the final

the connection with the rate-distortion theory, where @I iate metrics as follows:

letter information theoretic expression is obtained foe th

optimal privacy in the absence of an RB. Due to the memory o _ 13
introduced into the system through the battery, a singterlet Py Y27 s Yn) ;Hﬂ(sn)’ (13)
expression is elusive for our problem. However, for a fixed B 14
EMU policy, the information leakage raté, between the P(@1, @2, Ty Y1, Y2, 3 Yn) = Z”"(S")' (14)

Sn

input and the output loads can be estimated numericallygusin
the computation method studied in [33]. In the following We o largen values, the state metrigs, (-) and 4 (+) tend to

summarize this computation method. . : L .
We first set th I for the t " babiliti zero. Therefore, in practice the recursion is computed with
e first set the values for the transition probabilitieg . o tactors as follows:

and the number of states in the FSM. For instance, we

specify {p&,,p;,p10} labeled on Fig[R2 fors = 2, ie.,

b; € {0,1}. Afterwards, we sample very long sequences (larg@u+1(se+1) = Mupyy Do D D mk(8k)P(@rt1,s 2641, Yot 15 Skt [sk),
n) of X" Z"™ andY"™ by using the FSM. We then com- Fhtl Tkl Sk
pute p(y1, v, -+ ,yn) ANAP(T1, T2, -+, T, Y1, Y2, 5 Yn)-
Finally, the information leakage ratg betweenX™ andY™
is estimated as follows:

(15)

Vir1(Se41) = Av iy SO vk (sk)P(Trt1s Zht1s Ukt1s Skralsk), (16)
2ol Sk

1 . . o where positive scale factors{\,,,\,,,---,A,,} and
I =— [H(X")+H(Y™) - H(X",Y")] {A1s Ay -+ 5 Ay, + are chosen such that,
1
~ H(X) - 1ng(y17y27 T 73/71)

n
1 a(sn) =1 17
+510gp(1'1,l'2,"' sy Ty Y1, Y2, - 73/71) (8) SZN (S ) ’ ( )
The FSM can be represented as a trellis diagram Zl/n(sn) =1 (18)

with the state sequence{sg,si, --,s,} for the sn
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Fig. 4. Information leakage ratd,, versus wasted energy ratg,,, for ~Fig. 5. The Pareto optimaﬂlw Ew) pairs forp; = 0.5 and for different
pz = 0.5 andp, = 0.5. p. values. Optimal pairs for differen, values are illustrated with different
markers.

Finally, the joint probabilities can be computed from the

following equations: A. Effects of energy harvesting rate on privacy and energy
efficiency
1 1<
- Elogp(ylay% S Un) = n Zl"g Apucs (190 We illustrate the effects of EH rate on both privacy and
=t energy efficiency for an EH system with and without an RB,

- 10g P(T1, T2, - T Y1s Y2, -+ 3 Yn) = - Z log Au, and also show how privacy and energy efficiency change in the
=1

presence of an RB. Fifl 3 illustrates the minimum infornmatio
(20) leakage ratd, and the corresponding wasted energy t&fe
with respect to the EH ratp, for an EH system with and

We note here that this computation method applies to a@ithout an RB. The results are obtained for an equiprobable
discrete model, including an input load with memory, and iﬁput loadp, = 0.5 and differentp. values. In a system with
not limited to the binary system model considered in this pan EH device the privacy improves with increasing values
per. However, identification of the optimal system paramseteof .. This is expected since more energy is provided from
becomes computationally intractable with an increase & tkhe energy harvester as increases; and hence, the UP can
size of the input and output alphabets, or the battery size. |earn less about the actual energy consumption of the user.
On the other hand, an increase in the EH rate leads to an
increase in the wasted energy rate as well. This is due to the
independence of the energy generation process and the input

In this section, we analyze the trade-off between the infdead. When the EH device harvests a unit of energy, if there is
mation leakage rate and energy efficiency numerically usifi@ demand from the appliances and the RB is already charged,
the computation method presented in Secfioh IV. Based BHs harvested energy will be wasted. Therefore, we caryeasi
these numerical results we provide various observatiods diptice the trade-off between the information leakage rgte
conclusions regarding the optimal operation of the Em®@nd the wasted energy rat, in the system when there is no
from a joint privacy-energy efficiency perspective. In ougtorage unit.
simulations we focus on the binary model illustrated in Blg. Comparing the two curves in Fid.] 3, we observe that
We focus on a binary system for its simplicity, as otherwis@troducing an RB into the system improves the trade-off to
the transitions in the state diagram get very complicatedl aa certain extent. It reduces both the minimum information
the numerical computation outlined in Section] IV becomdsakage ratd,, and the corresponding wasted energy &ie
intractable. Later in Sectidn VIC we also consider the sgysteWhen there is no energy harvesting, irg,= 0, the system
with K > 2 in the absence of an EH unit, and study the effecteduces to the model studied [n [16]. In this case, the minimu
of the battery capacity on the performance. Furthermoiaformation leakage rate is found to lbg = 0.5 for p, = 0.5.
in Section[V-D we consider a system with high privacjHowever, when there is an alternative energy source in the
requirements in the absence of an EH unit, and allow tlsgstem, i.e.,p. # 0, the information leakage rate can be
user to waste grid energy in order to increase privacy. heduced significantly. The EH rate can be considered as a
our simulations, we perform an exhaustive search by varyisgstem parameter that defines the achievable privacysgnerg
the transition probabilities in Fidl 2 with.1 increments and efficiency trade-off, and needs to be chosen by the system
calculate the information leakage rate for each EMU policgesigner depending on the input load and the desired opgrati
We usen = 106 for the computations. point.

V. RESULTS AND OBSERVATIONS



B. Privacy-energy efficiency trade-off Line of

Sym|metry

TABLE | ! p? (1-pt)
RESULTS FROM THE TRADE-OFF PAIRS FOR DIFFERENT v
VALUES i
p. | minl, E, forminl, | minE, I for min Ey, b=0 p=1) 1 (p=2 b=3
0 05 0 0 05 i
02| 0.213 0.055 0.02 0.462 |
0.4 | 0.118 0.12 0.081 0.243 (I-p) (i-p?) ol
0.6 | 0.062 0.213 0.185 0.088 _
0.8 | 0.02 0.332 0.32 0.032 St
1 0 0.5 0.5 0 ] S . ,
Py pi b (=p) (1-pt)
1
i
In Section[V-A we have found the wasted energy rate o b s b3 -
corresponding to the battery policy that minimizes the iinfo
mation leakage rate. Here, we characterize the whole w#de- i
. .. . 1 N
between the privacy and energy efficiency for given EH rates. (1-p) (-p2) * i Pi

The trade-off for the values qf, = p, = 0.5 is illustrated in
Fig.[4. Each circle in the figure marks d,, E,,) pair that
can be achieved by assigning different transition proli@sl Fig. 6. Finite state diagrams for battery-conditioned gpemanagement

labeled on Fig[2. The Pareto optimal trade-off curve is tH@licies with battery capacitiedc = 3 and K' = 4. Symmefric and
mplementary transition probabilities are illustrated the computation of

) ; c
one t.hat IS _formed by .the points on the lower-left corner Qfe minimum information leakage rate in case of an equipstbaput load,
the figure, i.e., the points for whictf, and E,, cannot be ie. p. =05.

improved simultaneously. The minimum information leakage

rate value isf, = 0.088 for which we haveF,, = 0.163. )
The minimum wasted energy rate k&, — 0.125 for which input load for both the heavy and light load case#ligX) =

we havel, = 0.171. These two pairs correspond to thd-5- Note that the input load is biased towards = 1 for,
corner points of the trade-off curve in FIg. 4. Accordinghet "€ heavy load system, i.e., the appliances are more likely
requirements of the system, the operating point can be oho%® demand energy. For the heavy load case when we do not
anywhere on the trade-off curve. Note that, we can applyqve an EH unit in the system, i, = 0, we find the
convexification operation on the set of achievablg, E,,) minimum information leakage rz_;\te to ip = 0.23 [1_6]' When
pairs using time-sharing arguments. there is an energy ha_rvester in the system vmh_: 05

We also study the trade-off between the information leakalf¥® Minimum information leakage rate reduces significantly
rate, I, and the wasted energy rat,, for differentp. values 0 I, =0.026 whlle.the corresponding wasted gnergy_rate is
to observe the effect of the EH rate on the achievable privatgw = 0.043. The minimum wasted energy rate is obtained as
energy efficiency trade-off. Fifl] 5 illustrates the Pargitroal w = 0-011 for which we havel, = 0.105. It is obvious that
(Ip7Ew) pairs for p, = 0.5 and for differentp, values. wasting energy is less likely in the heavy load case. Theggner

Each marker in the figure marks i, E,,) pair achieved 'S wasted only when we havig = 1,41 = 0,211 =1 as
by assigning different transition probabilities, and welirle shown in Fig[2. Thus, when the appliances have higher energy
only the points that are not Pareto dominated by any othégmands, the user is less likely to face the condition forgyne
point. We obtain a different privacy-energy efficiency weaff Wasting. Similarly, in the light load case, i.@, = 0.11, E,
for eachp, value as illustrated in Fig5. The corner pointdicréases as less energy is required by the appliances. For
of these trade-off curves are listed in TaHle | for differppt €X@mple, the minimum information leakage rate is found to
values. Since there is no harvested energy in the system B6r/» = 0.027 with E,, = 0.088, and the minimum wasted
p. = 0, there is no wasted energy and as a result, the optinf€'9y rate is found to bé&,, = 0.087 for I, = 0.03. We
operating point is found as the minimum information leakagdSeve that both the heavy and light load systems can ahiev
rate, I, = 0.5 and wasted energy ratdj,, = 0, which is almost the same Ieyel of maximum privacy while the wasted
the same as the model studied inl[16]. Note that while tff&1€rgy rate of the light load system is double the rate of the
minimum information leakage rate decreases with increpsii€avy load system at this point of operation.
values ofp., the minimum wasted energy rate increases. When ) .
energy is harvested with, = 1, the optimal point is found C- Effects of battery capacity on privacy
to be I, = 0 and E,, = 0.5, that is, perfect privacy can be We have observed that alternative energy sources can help
achieved at the expense of wasting half of the harvesteggnereduce the information leakage rate significantly while RBs
on average. In this case, there is no information leakagesimelp improve the energy efficiency as well as privacy. Next,
the user never asks energy from the UP and the wasted enewgy study the effects of the RB capacity on privacy. It is
rate converges t&#r{X =0} =1 — p,. expected that if we increase the RB capadiy the trade-

We also study biased input loads by considering the tvadf curve illustrated in Fig[4 will move toward the origin,
cases withp, = 0.89 and p, = 0.11, which we call the i.e., the privacy and energy efficiency will be improved si-
heavy loadand light load scenarios. The entropy rate of thenultaneously. For example, in the asymptotic limit of irténi
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Fig. 7. Minimum information leakage raté,, versus battery capacith’.  rjg g |nformation leakage ratd,,, versus wasted energy raté,,, for the
case of wasting grid energy.

storage capacity, perfect privacy can be achieved by ahgrgi
the battery initially, and never asking for any energy frdra t
UP afterwards. To highlight the effects of the battery céyac . S .
on the achievable privacy we consider an RB with capacliﬁﬁmand from the appliances, i.¢;,= 0, and the RB is already

K, and no EH device. While the complexity of the numer. l, i.e., b; = K. Through wasting additional energy from the

ical analysis grows quickly with the battery size, we hang, which is likely to be more expensive than the harvested

observed that for an equiprobable input load, ie..= 0.5, energy, the energy consumption profile of the appliances can

there is a symmetry and complementarity among the op'ﬂ-e further hiddgn from the upP gnd privacy can be increased
mal transition probabilities in the finite state diagram ethi Up to perfect privacy by increasing the energy waste level.
significantly reduces the computation time of the minimum To study the effects of wasting grid energy on privacy, we
information leakage rate. The minimum information leakageonsider battery conditioned policies with binary inputfaut
rate is achieved when,) the sum of transition probabilitiesload values and an RB with capacity & units. Let RB
between two states is equal to one, @ndhere is a symmetry be fully charged at time instant i.e., b; = K. Even if the

in the transition probabilities of the two sides of the firstate appliances do not consume any energy at time instant,
diagram separated by the line of symmetry. Eig. 6 depicts thi€-, zi+1 = 0, we allow the EMU to demand energy from
symmetry and complementarity on a finite state diagram fét¢ UP, i.e.y;11 = 1, with probability p,,, andy;i1 = 0
battery capacityk = 3 and K = 4, respectively. Using this With probability (1 — p,,). In other words, we allow wasting
observation which reduces the complexity of the computatiothe grid energy with probability,,, by which we obscure
we have increased the battery capadifyand obtained the the information of the UP about the real energy consumption.
minimum information leakage rates corresponding to differ Fig. [8 illustrates the achievable points on ttig, £,,) trade-
values of K. For moderate battery capacity values Fig. @ff. obtained for an equiprobable input load, = 0.5, and for
illustrates the effects of the battery capacity on the mimim increasing RB capacity values’ = 1, K = 2, and K = 3.
information leakage ratd, for p, = 0.5. The minimum In this simulation, to keep the simulation time reasonable
information leakage rate falls belovl even with an RB oy We find the achievable points for each capacity vakie
units of capacity. This result shows that even a small irsgedy considering only complementary transition probaleiiti

in the RB capacity leads to a significant reduction in th@s depicted in Figl16, such that the sum of the transition
minimum information leakage rate. As RB capacity increas®sobabilities between two states is equalltoMoreover, we

more, the minimum information leakage ratg continues to compute the wasted energy rate by using Egh. (6), but we
decrease, but with a decreasing slope. chooseZ; = 0 in the equation since there is no EH unit

in the current scenario. We can see that the privacy can
be significantly improved by wasting more energy, i.e., by
increasingp,,. For instance, when perfect privacy is required
We have already shown that whenever the user has higbgrthe system, the information leakage rate can be reduced to
privacy requirements, the system with EH and RB units ca®ro by wasting energy with,, = 1. The wasted energy rate
provide strong privacy assurances by simply increasing thenverges toPr{X = 0} = 1 — p,, on average fop,, = 1,
EH rate,p.. When there is no EH unit in the system, we.e., F,, = 0.5, because we waste energy only when the RB
need to increase the capacity of the RB to cope with high fully chargedp;, = K, and there is no input loadY; = 0.
privacy requirements. However, increasing the capacitthef If we increase the RB capaciti, as we can see in Figl 8,
RB can be costly or even physically impossible. In this casgmth the information leakage rate and the wasted energy rate
the privacy of the user can be improved by allowing the usare improved for the same energy waste probabifity, The

to demand energy from the UP even when there is no energy

D. Privacy at the expense of wasting grid energy



operating point on the trade-off curve can be chosen aaegrdi[4] z. Fan, P. Kulkarni, S. Gormus, C. Efthymiou, G. Kalogsid
to the privacy requirement of the system and the cost of gnerg
provided by the UP.

VI. CONCLUSIONS

(5]

We have studied the privacy-energy efficiency trade-off ing
smart meter systems in the presence of energy harvesting and Research Network=eb. 2009.
storage units. We have considered an EH unit that providdd S- Cui, Z. Han, S. Kar, T. Kim, H. V. Poor, and A. Tajer, “Quinated
energy packets at each time instant in an i.i.d. fashion,aand

finite capacity rechargeable battery that provides bothiggne

efficiency by storing extra energy for future use, and inseela (8]

privacy by hiding the load signature of the appliances fram t 4

utility provider. We have used a finite state model to repnese
the whole system, and studied the information leakage rate

between the input and output loads to measure the privacy[]cﬂa

the user from an information theoretic perspective.

We have used a numerical method to calculate the inforniét]

tion leakage rate. Due to the memory introduced by the RB,
obtaining a closed-form expression for the informatiorkéege

rate is elusive. For the sake of simplicity, we have consift2]

ered binary input and output loads and focused on battery-

dependent energy management policies in our simulations

and numerically searched for the energy management sfrateg

that achieves the best trade-off between privacy and enerfy!

efficiency. We have shown that the information leakage rate
can be significantly reduced when both an energy harvester

and an RB are present. As the EH rate increases, we h&#

observed that the privacy of the system significantly impsov

On the other hand, this also increases the amount of wasted

energy. For a fixed EH rate, we have numerically obtained
the optimal trade-off curve between the achievable infdiona 16]
leakage and wasted energy rates. Different points on gnietr
off curve can be achieved by changing the stochastic battery
policy used by the energy management unit. According
the needs and priorities of the system, an operating poimt ca
be chosen on this trade-off curve. We have also obtained the
corresponding trade-off curves for different EH rates.
We have studied the effects of the battery capacity on the
achievable privacy by focusing on a system with only an RB.9]

We have observed that increasing the capacity of the RB has a

significant impact on the reduction of the information legéa
rate, and thereby, on the privacy. Moreover, we have exammirio]
the wasting of grid energy to fulfill the increased privacy

requirements of the user when there is only an RB in thg,

system. We have observed that even in the absence of an EH

device and with a finite capacity RB, the privacy level can

increased up to perfect privacy by wasting more energy fro

the grid.

(1]
(2]
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