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Abstract—In this paper we develop a low-complexity coding
scheme and system design framework for the half duplex relay
channel based on the Quantize-Map-and-Forward (QMF) relay-
ing scheme. The proposed framework allows linear complexity
operations at all network terminals. We propose the use of binary
LDPC codes for encoding at the source and LDGM codes for
mapping at the relay. We expressjoint decoding at the destination
as a belief propagation algorithm over a factor graph. This graph
has the LDPC and LDGM codes as subgraphs connected via
probabilistic constraints that model the QMF relay operations.
We show that this coding framework extends naturally to the high
SNR regime using bit interleaved coded modulation (BICM). We
develop density evolution analysis tools for this factor graph and
demonstrate the design of practical codes for the half-duplex
relay channel that perform within 1dB of information theoretic
QMF threshold.

I. I NTRODUCTION

Cooperative relaying has been proposed as a promising
technique to resolve the increasing demand for data throughput
in wireless networks. Recently a lot of progress has been
made in establishing the theoretical foundations of cooperative
communication. To apply these principles towards the design
of practical wireless systems, various system design tradeoffs
must be taken into consideration. This paper presents progress
towards this goal. We propose a system design and coding
framework for quantize-map-and-forward (QMF) [1] relaying
that has low complexity and performs close to information
theoretic bounds.

A. Cooperative Systems

A cooperative wireless link typically consists of an infor-
mation source, a destination and one or more cooperatinghalf
duplex relays. The relays are usually assumed to operatein-
band. i.e. no additional channel resources are allocated for
cooperation. Without loss of generality, it is assumed thatre-
lays use time-division-duplexing i.e. they listen to transmission
from the source for some fraction of total time, then forward
a description of their observation in the remaining fraction.

There are several aspects involved in the design of a
cooperative relaying system. Listening fractions and forward-
ing schemes must be determined for each relay. Suitable
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modulation and channel coding schemes must be designed
for various terminals. Rate adaptation mechanisms must be
considered to account for changes in availability of relaysand
channel strengths. Practical constraints must be considered e.g.
minimizing the overall system complexity, reuse of building
blocks from traditional (non-cooperative) systems as much
as possible, compatibility with protocols at higher layers
and handling of system imperfections like synchronization,
channel estimation errors etc. In this paper, we focus on the
coding and signaling aspects of cooperative relaying. Other
components are discussed in brief towards the end of the paper

B. Relaying Schemes
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D

Fig. 1. Example relay network. With multiple antennas at destination, source-
relay cooperation provides additional degrees of freedom for communication.

Most wireless systems operate at moderate to high SNR i.e.
in a regime where transmit power is not the major limiting
factor for link capacity. At high SNR, the link capacity is
limited by spatial degrees of freedom. Relay cooperation is
of special interest for practical systems because it has the
potential to provide additional spatial degrees of freedom.
For illustration, consider a relay channel with single-antenna
source, a half-duplex single antenna relay and a destination
with two antennas shown in Fig. 1. Since the destination has
multiple antennas, the source can spatially multiplex traffic to
the destination using relay cooperation. If the source-to-relay
channel is strong, this network can approach the high-SNR
performance of the2× 2 MIMO channel [2].

Various strategies for relay cooperation are proposed in
literature. Among these amplify-and-forward (AF), decode-
and-forward (DF) and compress-and-forward (CF) [3], [4]
have received the most attention. Under DF, the relay decodes
the source’s message and forwards a hard estimate of it,
whereas under AF and CF it forwards a soft estimate without
explicitly decoding it. In DF and CF, the relay maps its
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estimate to a random codeword before forwarding, whereas
in AF it forwards an uncoded signal. The QMF scheme [1]
also uses soft estimate forwarding with random coding similar
to CF. For the example network in Fig. 1, the CF and QMF
schemes are close to optimal at high SNR. In fact they achieve
within one bit/sec/Hz to the information-theoretic capacity [5],
[1]. An intuitive explanation for why QMF/CF performs better
than both AF and DF is given in the context of the example
in Fig. 1 below.

In the example network of Fig. 1, the destination receives
continuously from the source. The relay receives a stronger
version, when it is listening. Since the destination has two
antennas, it can resolve simultaneous transmissions from the
source and relay. In order to achieve spatial multiplexing,
the relay should extract the less significant bits (from its
observation), which the destination cannot resolve, and for-
ward them. Under AF, the relay only forwards the more
significant bits, which the destination can already resolve.
Therefore AF cooperation provides limited benefit. Under
DF, the relay decodes the entire message before it forwards
anything. Since the listening time is limited, this approach is
inefficient. The QMF/CF schemes implicitly extract the less
significant bits from the relay’s observation by using quan-
tization/compression and random mapping. Therefore these
schemes provide the most cooperation gain.

Despite having similar performance for the single relay
network, the CF and QMF schemes have significant differ-
ences. In the conventional CF scheme, the relay compresses
its observed signal and performs a random code mapping
before forwarding. The compression rate is chosen in order
for the destination to performtwo-step decodingi.e. first
decode compressed signals from relay and then use it as
side information to decode the message from source. For
configurations that involve multiple relays, two-step decoding
is sub-optimal and conventional CF is not within bounded gap
from information-theoretic capacity [1]. Even for the single-
relay configuration, conventional CF requires that the relay
have full knowledge of the quality of its forward channel.
This introduces a large estimation and feedback overhead for
fading channels and increases the complexity of rate adaptation
schemes.

Under QMF, the relay quantizes its received signal at noise
level, randomly maps it to a codeword and forwards it. Unlike
CF, the quantization and mapping is performed without regard
to the quality of forward channel at the relay. This reduces
the channel estimation and feedback overhead for the link. It
also simplifies rate adaptation protocols. Additionally, QMF
usesjoint decoding(as opposed to successive decoding) and
performs within bounded gap from capacity for networks
having an arbitrary number of relays [1]. QMF has played
a key role in several recent information theoretic results on
cooperative networks [6], [5], [2], [7]. Due to these favorable
properties, the QMF scheme is superior to CF from the
perspective of practical cooperative systems.

Since mapping at a QMF relay is performed without any
knowledge of forward channel strength, side information from
relays cannot be decoded at the destination independently.
QMF requiresjoint decodingof the message (from source)

and side information (from relays) [1]. This presents a unique
challenge because joint decoding typically requires higher
complexity and makes it harder to design a practical coop-
erative coding scheme. The key contribution of this paper is
to develop a low-complexity cooperative coding framework
for QMF that significantly reduces the complexity of joint
decoding and yet performs close to information theoretic
bounds.

C. Related Work

Majority of previous work on code design for cooperative
relaying is focused on the DF scheme. DF relays fully decode
the source’s message. Therefore, DF coding schemes involve
partitioning a large codebook into two parts. The source
transmits one part of the codeword and the relay transmits
the remaining part [8], [9], [10]. Turbo code designs which
perform ≈ 1dB away from the DF information theoretic
threshold are demonstrated in [11], [12]. LDPC profiles are
developed for DF in [13]. A bilayer LDPC structure [14]
and the protograph method [15] has been used to get LDPC
designs≤ 0.5dB from the DF threshold. The bilayer structure
is extended for use at high SNR using bit-interleaved coded
modulation (BICM) [16]. As for CF relaying, a coding scheme
using a combination of LDPC and irregular repeat accumulate
(IRA) codes is presented in [17]. Rateless coding schemes are
developed in [18]. As for QMF relaying, a coding scheme is
proposed in independent work [19] based on lattice strategies.
The scheme in [19] reduces the complexity of mapping at the
relay to polynomial-time while the joint decoding complexity
remains exponential-time.

D. Summary of Results

In this paper, a coding scheme for QMF relaying with
linear complexity encoding at the source, mapping at the
relays and joint decoding at the destination is developed. For a
network with one relay, the proposed scheme performs within
(0.5−1)dB gap from the information-theoretic QMF threshold.
For the code design example considered in Sec. V, the QMF
threshold is≈ 1.5dB better than DF. The key techniques used
in this paper are summarized as follows:

1) BICM: Design of binary channel codes with standard
higher order signal constellations is considered based
on the widely used BICM technique [20].

2) LDPC-LDGM: The scheme uses low density parity
check (LDPC) codes at the source for channel coding
and low density generator matrix (LDGM) codes at the
relays for mapping.

3) Joint Factor Graph:The joint decoding procedure at
the destination is formulated as a belief propagation
algorithm over a factor graph. This graph contains the
original channel code (LDPC) and relay mapping func-
tions (LDGM) as subgraphs connected via probabilistic
constraints that model the QMF relay operations.

4) Practical Decoding Algorithm:Using a DBLAST space-
time architecture, scalar quantization procedure at relays
and specific choice of component codes, the resulting
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factor graph is greatly simplified, making it suitable for
practical decoder implementation.

5) Code Design:Density evolution analysis tools [21], [22]
are developed for the systematic design of joint LDPC-
LDGM factor graphs.

E. Organization

In Sec. II, the coding framework for QMF and corre-
sponding joint decoding algorithm is developed. The treatment
focusses on a canonical system model with one relay and
binary inputs. In Sec. III, density evolution and code design
tools are developed. In Sec. IV, the framework is extended
to the high SNR regime i.e. for high order modulation inputs
using BICM. In Sec. V, the design of codes for an example
cooperative link is demonstrated. Finally in Sec. VI a sketch
is provided for extending the proposed framework to scenarios
with multiple relays.

II. CODING FRAMEWORK

A. System Model

Initially, this paper focuses on the design of codes for a
binary memoryless symmetric(BMS) relay channel as de-
scribed below. In Sec IV, this model is extended to high order
modulation inputs for use at high SNR.

The BMS Gaussian relay channel has three half-duplex
terminals: source (S), relay (R) and destination (D) with
binary input additive white Gaussian (BIAWGN) channels
between them, as shown in Fig. 2.R listens for a fraction
f ∈ [0, 1] of the total communication time and transmits for
the fraction(1 − f). The block lengths for the transmitted
codewords atS and R are NS and NR respectively. They
satisfy the half-duplex constraintNR = (1 − f)NS . The
codeword messages sent fromS andR arebS ∈ {0, 1}NS and
bR ∈ {0, 1}NR respectively. The corresponding transmitted
signals arexS ∈ {±√

PS}NS andxR ∈ {±√
PR}NR where

PS andPR areper-node symbol constraintson average power
i.e. E|x2

S,i| ≤ PS andE|x2
R,i| ≤ PR. Bold-face lower case

letters are used to denote a sequence of symbols.

S

R

D

xS

zR

xRyR

Y

Z

Fig. 2. Half-Duplex Binary Input Gaussian Relay Channel

Multiple (M ) receive antennas are assumed at the destina-
tion. This permits consideration of network scenarios where
cooperative spatial multiplexingis possible [23][2]. An ex-
ample scenario withM = 2 is discussed in the Appendix.
The received signals atD and R are denoted asyi ∈ CM

and yR,j for each symbol timei ∈ {1, 2, . . . , NS} and j ∈
{1, 2, . . . , fNS} respectively. They are modeled as follows:

yi = h1xS,i + h2x
′
R,i + zi, yR,j = hRxS,j + zR,j

Here h1,h2, hR denote the corresponding channel gains.
x′
R,i = 0 and h2 = 0 for i ∈ {1, 2, . . . , fNS} when R

is listening. For the remaining timex′
R,i = xR,i−fNS

,
i ∈ {fNS + 1, . . . , NS}. zi and zR,j are i.i.d. zero-mean
Gaussian noise vectors with identity covariance matrices.All
the channel observations atD are denoted byY ∈ C

M×NS

i.e. Y = [y1 y2 . . . yNS
]. Observations atR are denoted as

yR ∈ C1×fNS i.e. yR = [yR,1 . . . yR,fNS
]. The channel

is characterized by the following parameters:SNRSR =
PS |hR|2, SNRSD = PS ||h1||2 andSNRRD = PR||h2||2.

B. Quantize-Map-Forward Scheme

The quantize-map-and-forward scheme [1] is summarized as
follows. S has a sequence of messagesmk ∈ {1, . . . , 2NSR},
k = 1, 2, . . . to be transmitted. At bothS andR, codebooks
CS and CR are created respectively.S maps each message
to one of its codewords and transmits it usingNS symbols
resulting in an overall transmission rate ofR. Relay listens
to the firstfNS time symbols of each block. It quantizes its
observation at noise level i.e. the quantization distortion is
equal to the noise power at the relay. Relay maps the quantized
bits to a codeword inCR. It transmits this codeword using
(1 − f)NS symbols. The destinationD attempts to decode
the message sent byS from received signals(Y). In order to
decode,D must know all channel parametersSNRSD, SNRRD

andSNRSR, the relay listening fractionf and both codebooks
CS andCR.

It is assumed thatSNRSD,SNRRD are measured atD and
SNRSR is measured atR using pilot symbols. It is further
assumed thatSNRSR is forwarded toD by R. The estimation
and forwarding overhead of these steps is ignored for the
analysis presented in this paper.

C. Factor Graph for Joint Decoding

In the context of the system model and cooperation scheme
outlined above, let us focus on binarylinear codebooksCb

S and
Cb
R. These can be represented as bipartite Tanner graphs using

respective parity check matrices. In such a representationbit
(variable) nodes represent the codeword and check (function)
nodes represent parity constraints that must be satisfied in
order for the codeword to be valid. Let us consider the
maximuma posteriori (MAP) rule for joint decoding atD.
In this subsection, joint decoding is expressed as a sum-
product algorithm over a factor graph that contains the Tanner
graphs of component codes (Cb

S, Cb
R) as sub-graphs connected

via probabilistic constraints that represent the QMF relaying
operation [24][25][26].

Joint decoding involves searching for the codewordbS ∈
Cb
S that maximizes thea posterioriprobability p (bS |Y). An

efficient way to do this search is to consider the bitwise maxi-
muma posteriori(MAP) decoder, where the aim is to compute
p (bS,i|Y) =

∑
∼bS,i

p (bS |Y) for all i = 1, 2, . . .NS .

p (bS |Y) =
∑

bR

f (Y|bS ,bR) p (bS ,bR)

f (Y)

∝
∑

bR

f (Y|bS ,bR) p (bS ,bR) .
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For the first fNS bits, R is listening andD observes an
interference-free signal fromS. During the remaining trans-
missions,D observes a superposition of signals fromS andR.
Therefore, the first termf (Y|bS ,bR) factorizes as follows:

f(Y|bS ,bR)

=

fNS∏

i=1

f(yi|bS,i)
NR∏

j=1

f(y(fNS+j)|bS,(fNS+j), bR,j)

The codesCb
S and Cb

R have characteristic functions1(bS ∈
Cb
S) and1(bR ∈ Cb

R) respectively.

p (bS ,bR) = p (bS) p (bR|bS)

∝ 1
(
bS ∈ Cb

S

)
p (bR|bS)

(a)
= 1

(
bS ∈ Cb

S

)
1
(
bR ∈ Cb

R

)
p (bR|bS) .

(a) is due to the fact thatbR must be a codeword inCb
R.

QM

bS,1 bS,2 bR,1 bR,2 bR,NR
bS,NS

f(y1|bS,1) f(y2|bS,2)

f(y(fNS+1)|bS,(fNS+1), bR,1) f(yNS
|bS,NS

, bS,NR
)

CHK CHK

VAR VAR

OBS

OBS

SOURCE RELAY

p(bR|bS)

Fig. 3. Factor Graph for Joint Decoding.

The resulting factor graph in Fig. 3 shows that in addition
to nodes representing channel observations i.e.f(yi|bS,i, bR,j)
the subgraphs1

(
bS ∈ Cb

S

)
and1

(
bR ∈ Cb

R

)
are connected by

p (bR|bS) that represents the quantization operation atR.
If the component codesCb

S and Cb
R are sparse, the overall

factor graph is also sparse. A sum-product algorithm for
decoding over such a factor graph has complexity that grows
linearly with the length of component codes. However, the
sum-product update rules at the function nodep (bR|bS) is
very complex due to its high degree (NS +NR). Moreover, it
introduces very short cycles in the graph, which deteriorates
the performance of sum-product decoding. In order to get
reasonably close to MAP performance and low decoding
complexity, thep (bR|bS) node must be factorized further.
In the following subsections, choice for component codesCb

S

andCb
R and specific techniques for factorization are discussed.

D. Choice of component codes

In the discussion above, general binary linear codesCb
S and

Cb
R are considered. A natural choice is to use sparse graph

codes (like LDPC) that are known to have good performance
and linear complexity decoding/encoding operations.

In a previous communication [24], preliminary results for
such factor graphs were presented using off-the-shelf LDPC
codes at bothS and R. As observed in [24], off-the-shelf

(point-to-point) LDPC codes do not allow close-to-optimal
performance over cooperative channels. An information-
theoretic understanding of this observation is presented in
[27]. The authors point out that capacity-achieving codes for
the point-to-point channel exhibit higher estimation errors
whenever the SNR is below the Shannon limit. Therefore, in
cooperative networks where the operating SNR is below the
point-to-point Shannon limit, such off-the-shelf codes are no
longer suitable to utilize side information from the relay at the
destination. As a consequence, specialized codes are required
for cooperative channels. For sparse graph codes, specialized
code profiles that are optimized for relaying can be designed
using standard tools such as density evolution analysis [21],
[22]. However, for the LDPC-LDPC combination [24] density
evolution does not extend readily to QMF joint factor graphs.

In this paper, the use of LDPC codes atS and LDGM codes
at R is proposed. LDPC codes are known to perform very
close to information theoretic limits when used for channel
coding. Similarly LDGM codes are commonly used for lossy
data compression [28] and the LDPC-LDGM combination
is a good fit for the QMF relay channel. Moreover, density
evolution analysis tools can be extended to LDPC-LDGM joint
factor graphs. Such an extension is developed in Sec. III. This
permits explicit construction of code profiles optimized for
relaying.

Based on the LDPC-LDGM choice, let us introduce aux-
iliary variable nodesbQ = {bQ,i}KR

i=1 in the factor graph.
bQ represents theKR bits after quantization atR. These
are mapped to the codewordbR of lengthNR obtained after
passing through a low density generator matrix havingKR

rows, NR columns and characteristic function1(bR ∈ Cb
R).

SincebR is a deterministic function ofbQ, p (bR|bS) can be
factorized as follows (Fig 4):

p(bR|bS) = p(bR,bQ|bS)

= p(bR|bQ,bS)p(bQ|bS)

= 1(bR ∈ Cb
R)p(bQ|bS)

The LDGM mapping can eithercompressor expandthe KR

quantized bits i.e. the LDGM coding rate can be greater than1.
ThebR nodes always have degree2 and they simply perform
forwarding of messages under the sum-product algorithm.

E. Scalar Quantizer

In general, a vector quantizer can be used atR. However, it
is shown [1] that QMF performs within bounded gap of capac-
ity even with a scalar quantizer. Under scalar quantization, the
observation for every bit fromS is quantized independently.
If each yR,i is quantized intobQ[Ai] for i = 1, 2, . . . fNS,
then thep (bQ|bS) function node factorizes intofNS separate
nodes each representing a scalar quantization operation.

p (bQ|bS) =

fNS∏

i=1

p (bQ[Ai]|bS,i) , where

fNS⋃

i=1

Ai = {1, 2, . . . ,KR}, Ai ∩ Aj = ∅ ∀i 6= j



5

whereAi denotes the subset of indices inbQ that observation
yR,i is quantized into. As a result, the variable nodes of the two

Q Q

bS,1 bS,2
bR,1bQ,2

bR,NRbS,NS

f(y1|bS,1) f(y2|bS,2)

f(y(fNS+1)|bS,(fNS+1), bR,1) f(yNS
|bS,NS

, bS,NR
)

CHK CHK

VAR VAR

OBS

OBS

SOURCE
RELAY

LDGM

bQ,1 bQ,fNS

Q

Fig. 4. Factor graph: LDPC code atS, LDGM code atR with 1 bit scalar
quantizer.

Tanner graphs are connected by function nodes representing
the stochastic relationsp (bQ[Ai]|bS,i) among them. Hence-
forth, these are calledquantize(Q) nodes, as they are induced
by the quantization procedure at the relay. An example factor
graph showing the LDPC-LDGM construction is illustrated in
Fig 4 where each symbol observationyR,i is quantized into
one bit (i.e.KR = fNS andA[i] = {i}). As shown, there are
four kinds of nodes in the resulting factor graph: observation
(OBS) nodes, variable (VAR) nodes, check (CHK) nodes, and
quantize (Q) nodes. Some VAR nodes in theCb

S subgraph
share OBS nodes with VAR nodes in theCb

R subgraph. This
is because of multiple access atD.

F. DBLAST Scheme

S

R

D

xS

zSR

xRySR

ZRD

YRD

YSD

ZSD

Fig. 5. Channel model using DBLAST

The factor graph shown in Fig. 4 can be simplified fur-
ther using the Diagonal Bell Labs Space-Time architecture
(DBLAST) [29]. As discussed in the Appendix, the degree
2 OBS nodes (representing multiple access) are factorized
using DBLAST. Under DBLAST, the destination observes two
orthogonal sets of observations (see Fig. 5). The factorization
is shown in equation (1) whereY := [YSD YRD].

An example of the simplified factor graph is depicted in
Fig. 6. In this graph, VAR nodes in the two Tanner graphs
are connectedonly through Q nodes. SinceyRD,i = 0 for
i = 1, . . . , fNS, we renameyRD,(fNS+j) ≡ yRD,j , for j =
1, . . . , NR.

The resulting graph has a structure similar to an irregular
LDPC code but with special Q constraints. In Sec II-G,
sum-product updates for this graph are derived following the

general principle outlined in [25]. It is shown that for a simple
one-bit quantizer each Q node further factorizes into a CHK
constraint and a dummy VAR node. This reduces the factor
graph to a Tanner graph that does not have any special nodes.
Such a property is useful to leverage existing techniques used
for the design of low-power, high-throughput LDPC decoders.

f(yS,NS
|bS,NS

)

Dummy Variable
Nodes

bS,1 bS,2 bQ,2
bR,NRbS,NS

f(y1|bS,1) f(y2|bS,2)

OBS

bQ,1 bQ,fNS

f(yR,1|bR,1) f(yR,NR
|bR,NR

)

bR,2

LDPC Check Constraints
LDGM Check Constraints

Q Q Q

bR,1

Fig. 6. Simplified factor graph with one-bit scalar quantizer and DBLAST.

G. Decoding Algorithm

For the point-to-point system,belief-propagationis an it-
erative algorithm that computes thea posteriori probability
to decode message bits. The algorithm computes this exactly
if the factor graph has no cycles. Otherwise, it computes the
approximatea posterioriprobability for each bit [25]. For the
factor graph in Fig 6, messages being passed on the edges
of the factor graph and the update rules at the variable/check
nodes stay unchanged. The only new ingredient in the mix is
the Q nodes introduced by our framework.

Let the subscriptsV, C, andQ denote VAR nodes, CHK
nodes, and Q nodes respectively. ForF ∈ {C,Q}, let ω(l)

VF

denote the message sent from variable nodeV to function node
F in the lth iteration. Every edge in the graph is connected to
exactly one variable node and a message on the edge represents
the a posteriori probability for the respective variable. The
messages can be represented as LLRs, but for the sake of
simplicity we represent the messages as a two-dimensional
vector in this subsection1. ωVF := [p0 p1], whereωVF(1) =
p0 ∈ [0, 1] represents the probability that the bit is0 and
ωVF(2) = p1 ∈ [0, 1] represents the probability that the bit is
1 (p0 + p1 = 1).

The message sent fromV to F ∈ {C,Q} is the normalized
product of all incoming messages intoV except for the
message fromF. The normalization ensures thatp0 + p1 = 1
for the outgoing message. The message sent fromC toV′ is the
indicator function that the check is satisfied, marginalized on
the bit represented byV′. The message sent fromQ to V is the
marginalization of the functionp (bQ[Ai]|bS,i) on the symbol
represented byV. bQ is computed from a noisy observation
of bS,i, the nodeQ imposes a probabilistic constraint on the
variables. Since the quantization is scalar:∀u ∈ {0, 1}|Ai| and
v ∈ {0, 1},

g(u, v) := p (bQ[Ai] = u|bS,i = v) .

This function is fully represented by a lookup table with
2|Ai|+1 values, which is used to derive the update rule for
Q.

1Later we will replaceω by w, the commonly used messagelog p0
p1

(LLR)
in belief propagation.
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f(Y|bS ,bQ) =

fNS∏

i=1

f(ySD,i|bS,i)
NR∏

j=1

f(ySD,(fNS+j),yRD,(fNS+j)|bQ,j , bS,(fNS+j))

=

fNS∏

i=1

f(ySD,i|bS,i)
NR∏

j=1

f(ySD,(fNS+j)|bS,(fNS+j))f(yRD,(fNS+j)|bQ,j)

=

NS∏

i=1

f(ySD,i|bS,i)
NR∏

j=1

f(yRD,(fNS+j)|bQ,j), (1)

f(yS,NS
|bS,NS

)

Dummy Variable
Nodes

bS,1 bS,2
bR,1bQ,2

bR,NRbS,NS

f(y1|bS,1) f(y2|bS,2)

OBS

bQ,1 bQ,fNS

f(yR,1|bR,1)
f(yR,NR

|bR,NR
)

[1− pf pf ]

LDPC Check Constraints

LDGM Check Constraints

bR,2

Fig. 7. Equivalent factor graph of that in Fig. 6. TheQ nodes are factorized
into a CHK node and a dummy variable.

As an example, let us consider a one-bit scalar quantizer at
the relay and derive the update rule. For this case, the Q node
can be further factorized into a CHK node and a dummy VAR
node that sends a constant message. Note thatAi = {i}, i =
1, 2, . . . , fNS andKR = fNS . The factor graph is depicted
in Figure 6. Consider∀u ∈ {0, 1} andv ∈ {0, 1},

g(u, v) :=p (bQ,i = u|bS,i = v)

=(1 − pf)1{u = v}+ pf1{u 6= v}

herepf := 1
2 erfc

√
SNRSR

2 denotes the probability of bit error
for scalar one-bit quantization over a BIAWGN channel. Since
the functiong is symmetric inu andv, it can be assumed that
the VAR node is of the source, and the marginalization is on
v. Let the other VAR node beV ′. This leads to the following
update rule:

ωQV(1) = (1 − pf)ωV′Q(1) + pfωV′Q(2)

ωQV(2) = (1 − pf)ωV′Q(2) + pfωV′Q(1),

This takes the same form of a CHK node update with incoming
messagesωV′Q and[1− pf pf ]. Therefore, the Q node in this
set-up specializes to a CHK node with additional dummy VAR
nodes sending constant message[1 − pf pf ] that depends on
SNRSR. The resulting factor graph is depicted in Fig. 7.

III. C ODE DESIGN

In this section, design of specific codes for QMF relaying
is discussed. Typically sparse graph codes like LDPC and
LDGM are drawn randomly from ensembles, which are de-
scribed using degree profiles. In the point-to-point case, if the
block-length is sufficiently large, the decoding performance
of such codes converges to theensemble average[22]. Let us
consider degree profiles(λS , ρS) and(λR, ρR) for the LDPC

and LDGM codes at source and relay respectively.λS and
ρS are polynomials representing variable and check degree
distributions for the LDPC code:

λS(x) =

∞∑

i=2

λS,ix
i−1, ρS(x) =

∞∑

i=2

ρS,ix
i−1

HereλS,i andρS,i denote the fraction of edges with degreei
at a variable node and at a check node respectively. For the
LDGM code, we have the similar definition forλR and ρR
except that these are regarding the edges connecting check
nodes and variable nodes forbQ (not bR).

These profiles must satisfy the following constraints:

R = 1−
∫ 1

0 ρS(x)dx∫ 1

0
λS(x)dx

,
KR

NR

=

∫ 1

0 ρR(x)dx∫ 1

0
λR(x)dx

=
f

1− f
,

λS(1) = λR(1) = ρS(1) = ρR(1) = 1

In addition to the sub-graphs representing the two component
codes, the joint factor graph shown in Fig. 7 also includes
edges connecting them (via Q nodes). As discussed previously
in Sec II-C, let us consider a fixed one bit scalar quantizer.
The edges connecting with Q nodes are consideredfixed in
the rest of this section. In contrast, the edges in LDPC and
LDGM subgraphs are drawn randomly from the ensemble
using construction procedure described in [22].

In point-to-point channels, the typical method to analyze and
design sparse graph codes is to compute the ensemble average
performance for given degree profiles assuming infinite block
length (convergence to computation trees). The ensemble aver-
age performance (decoding error probability for given SNRs)
is calculated usingdensity evolutiondeveloped in [21], [22].
The two key elements of classical density evolution, namely,
concentration around ensemble averageand convergence to
computation tree channelsfor sufficiently large block length
hold for the proposed QMF relaying system as well. The
proofs can be readily extended from those of point-to-point
channels [22] [21].

Without loss of generality it is assumed that the all-zero
codeword is transmitted fromS. This is a result of the
symmetry of the relay channel. However,R does not transmit
the all-zero codeword because the source-to-relay channelis
noisy. For sufficiently large block lengths and a given value
of SNRSR there is atypical sequencebQ that is mapped
to a typical bR based on the LDGM code. The probability
of occurrence for atypical codewords vanishes as the block
length becomes large. Therefore, it is ignored for computing
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the ensemble average performance. A typicalbQ comprises of
KR(1−pf ) 0’s andKRpf 1’s. pf is defined in Sec. II-G. For
a given degree profile,(λR, ρR), each bit of the typicalbR

is i.i.d. Bernoulli(q), whereq is the probability of having an
odd number of1’s in a column of the generator matrix (drawn
randomly from the LDGM ensemble).

q =
∑

j

(
ρR(j)/j∑
i ρR(i)/i

)
1− (1 − 2pf)

j

2

To develop density evolution rules for QMF relaying, we
consider the belief-propagation algorithm with log-likelihood
ratios as the messages passed among variable nodes and
various function nodes. Letw(l)

FV
andw(l)

VF
denote the message

sent from the function nodeF to the variable nodeV and vice-
versa, at thel-th iteration.F ∈ {CS ,CR,Q,OS ,OR} represent
the LDPC CHK nodes, LDGM CHK nodes, Q nodes, OBS
nodes atS andR respectively.V ∈ {VS ,VQ,VR} represent
the VAR nodes corresponding tobS ,bQ andbR respectively.

The sum-product update rules in terms of the commonly
used LLR’s are written as follows:

w
(l)
VF

=
∑

F′∈N (V)\{F}

w
(l)
F′V

(2)

w
(l)
OV

= wV, (O,V) = {(OS ,VS), (OR,VR)}

w
(l+1)
FV

= 2 tanh−1




∏

V′∈N (F)

tanh

(
1

2
w

(l)
V′F

)

 (3)

if F = CS ,CR

w
(l+1)
FV

= 2 tanh−1



(1− 2pf )
∏

V′∈N (F)

tanh

(
1

2
w

(l)
V′F

)



if F = Q

HereN (·) here denote the set of neighboring nodes andwV

represents the LLR from channel observation.
Compared to the point-to-point case where there is only

one kind of variable node (V) and one kind of CHK node
(C) the update rules can be expressed simply by (2) and (3)
whereF = C. Density evolution analysis tracking the density
of these messages in each iteration. For the point-to-pointcase
with degree distribution(λ, ρ), there is only one type of edge
and the evolution is expressed using a pair of coupled recursive
equations as follows:

P
(l+1)
CV

= Γ−1




∑

j

ρj

(
Γ
(
P

(l)
VC

))⊗(j−1)





P
(l)
VC

= PV ⊗
∑

i

λi

(
P

(l)
CV

)⊗(i−1)

HereΓ (·) denotes a transformation on the density as defined
in [21], ⊗ denotes the convolution operator andP (l)

{·} denotes

the density of messagew(l)
{·}. PV represents the conditional

density of the LLR of the point-to-point channel.
For the QMF relaying case, there are4 types of edges and

densities for messages along all of them must be tracked. The
recursive density updates are derived similarly:

Function nodes to variable nodes:

P
(l+1)
CSVS

= Γ−1




∑

j

ρS,j

(
Γ
(
P

(l)
VSCS

))⊗(j−1)





P
(l+1)
CRVQ

= Γ−1




∑

j

ρR,j

(
Γ
(
P

(l)
VQCR

))⊗(j−1)

⊗ Γ
(
P

(l)
VRCR

)




P
(l+1)
QVS

= Γ−1

(
Γ
(
P

(l)
VQQ

)
⊗ Γ

(
δ
log

1−pf
pf

))

P
(l+1)
QVQ

= Γ−1

(
Γ
(
P

(l)
VSQ

)
⊗ Γ

(
δ
log

1−pf
pf

))

Variable nodes to function nodes:

P
(l)
VSCS

=PVS
⊗
∑

i

{
fλS,i

(
P

(l)
CSVS

)⊗(i−1)

⊗ P
(l)
QVS

+

(1− f)λS,i

(
P

(l)
CSVS

)⊗(i−1)
}

P
(l)
VQCR

=
∑

i

λR,i

(
P

(l)
CRVQ

)⊗(i−1)

⊗ P
(l)
QVQ

P
(l)
VRCR

=PVR

P
(l)
VSQ

=PVS
⊗
∑

i

λS,i

(
P

(l)
CSVS

)⊗(i)

P
(l)
VQQ

=
∑

i

λR,i

(
P

(l)
CRVQ

)⊗(i)

Hereδr(·) denotes the Dirac delta function at pointr ∈ R.
δ
log

1−pf
pf

shows up in the expressions because the Q node

is equivalent to a CHK node connected to aconstant. The
differences in evolution rules between the QMF relaying
and point-to-point channel arise due to the probabilistic Q
constraints in the joint factor graph.

As in the point-to-point case,PVS
is the conditional density

of the LLR of the source to destination channel, given that
an all-zero codeword is sent fromS. PVR

is the marginal
density of the LLR of the relay to destination channel under
the marginal law thatbR is i.i.d. Bernoulli(q).

The density evolution rules derived above are used to
compute the probability of error in decoding ofbS . For
successive interference cancellation using DBLAST,bR must
also be reliably decoded. Density evolution rules to compute
probability of decoding error forbR can be similarly derived.

IV. B IT INTERLEAVED CODED MODULATION

So far, the discussion has focussed on the BMS Gaussian
relay defined in Sec. II-A. For the high SNR regime, input
alphabetxS ∈ ANS and xR ∈ ANR where A represents
constellation points in a high-order modulation scheme must
be considered. In practice many systems use BICM [20] to
combine channel codes designed for binary alphabet with
high-order signal constellations. BICM has also been proposed
for various cooperative channel scenarios [30][31][32][16]. In
this subsection, a procedure is discussed for extending the
coding framework from the BMS relay channel to a relay
channel with inputs from high-order alphabets.
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Under classical BICM [20], a point to point Gaussian
channel is decomposed intoparallel independent memoryless
“sub-channels”. Every “sub-channel”pY |B,S(y|b, s) has bi-
nary inputsb ∈ {0, 1} and depends on states ∈ {1, 2, . . . , L}
which is chosen uniformly and known to both the terminals
(2L is the cardinality of the chosen signal constellation). At the
receiver, LLR for a bit that was mapped to states is calculated
from symbol observationy ∈ C (in case of MIMO receiver
y ∈ CM ).

LLR(y, s) = log
PB|Y,S(b = 0|y, s)
PB|Y,S(b = 1|y, s)

However, this binary channel is not guaranteed to be output-
symmetric i.e. the crossover probability for a bit is not
independent of its value. LetfΛ(λ) represent the PDF of
LLR(y, s). The channel is output symmetric if the following
condition holds:

fΛ|B(λ|b = 0) = fΛ|B(−λ|b = 1)

Conventional methods for designing linear coding schemes
such as density evolution etc. cannot be used with asymmetric
channels. This issue is resolved by adding random dithers at
every bit to make the channel output-symmetric as proposed
in [20], [33], [34]. Dithers are i.i.d.Bernoulli

(
1
2

)
variables

known to both the transmitter and receiver. For a ditherd ∈
{0, 1} the channelpY |B,S,D(y|b, s, d) is binary, memoryless
and symmetric (BMS).

LLR(y, s, d) = (−1)dLLR(y, s)

This method is called parallel BICM (PBICM) in [34] and
Fig. 8 shows the architecture for a PBICM point to point link
havingL states i.e. signal constellation of size2L. {mi}Li=1

represent messages andbi and b′
i the transmit codewords

before and after dithering. The equivalent BMS channel can
be characterized byL, the SNR of the underlying AWGN
channel and the symbol mapping in modulation. In the rest of
this paper we consider thatGray mapping is used.

In order to use PBICM with the relay channel, a definition
of quantize-and-map operation under PBICM is required. With
a PBICM modulator at sourceS, the observations at relay
R (yR) representL interleaved codewords. IfR performs
quantization at thesymbollevel, then the decomposition into
independent binary sub-channels will be lost. As an alternative,
it is proposed thatR perform quantization at thebit level.
S and R both use PBICM modulator blocks with con-

stellation size2L having state and dither vectors given by
sS , sR,DS and DR respectively. The QMF operation atR
is described below (depicted in Fig. 9):

1) For observed symbol sequenceySR := {ySR,j}fNS

j=1 per-
form PBICM demodulation. The output is represented
as {nSR,i}Li=1 where eachnSR,i := {nSR,i,j}fNS

j=1

represents LLRs for theith codeword.
2) Quantize every LLR in{nSR,i}Li=1. As an example, for

a one bit scalar quantizer this simply involves observing
the sign of LLRs.

3) Encode the quantizer output{mR,i}Li=1 using an LDGM
code.

4) Transmit the resultant codewords{bR,1}Li=1 using a
PBICM modulator.

Using this definition of QMF, the Gaussian relay channel is
decomposed into parallel BMS relay channels. The BMS relay
channel is shown in Fig. 10. It is characterized by constellation
size atS andR and theSNR of the underlying AWGN links
i.e. SNRSR, SNRSD, SNRRD.
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Fig. 9. QMF relaying with PBICM.

V. L INK DESIGN EXAMPLE

In Sec. III an extension of density evolution tools was
developed [21][22] for joint LDPC-LDGM factor graphs based
on QMF relaying. In this section, a link design example
with construction of explicit codes is shown for a DBLAST-
equivalent channel shown in Fig. 5 BMS relay channel. The
performance of designed codes is presented using simulations
with high order modulation based on PBICM principles de-
scribed in Sec. IV.

A. System Parameters

The capacity advantage of cooperative relaying is most
pronounced when the source to relay link is significantly
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Fig. 10. Equivalent binary-input system.

better than the direct link between source and destination.We
therefore consider an example scenario where theS to R link
is 10 dB stronger than the others.

SNRSD = SNRRD, SNRSR = 10× SNRSD (4)

1) Modulation Order: As a guideline for system design
use the following information-theoretic bound on maximal
achievable rate using QMF relaying with continuous Gaussian
inputsxS andxR and a vector Gaussian quantizer at the noise
level.

RQMF,G = (5)

min

{
(1 − f)CG (SNRSD) + fCG

(
SNRSR

2 + SNRSD

)
,

(1 − f)CG (SNRRD) + CG (SNRSD)− f

}

Here CG (x) := log (1 + x) is the AWGN point-to-point
capacity at signal-to-noise ratiox. If the inputs are constrained
to structured constellations such as16 QAM, 64 QAM, then
the achievable rate with22n-QAM modulation and BICM is
computed as follows:

RQMF,n = (6)

min

{
(1− f)Cn (SNRSD) + fCn

(
SNRSR

2 + SNRSD

)
,

(1− f)Cn (SNRRD) + Cn (SNRSD)− f

}

Here too we use a vector Gaussian quantizer at the noise level.
Note thatn ∈ {2, 3, 4} and Cn (x) denotes the22n-QAM
constellation-constrained point-to-point capacity at signal-to-
noise ratiox under BICM.

2) Listening-time Fraction:For QMF, the listening-time
fraction f at R can be independently optimized to maximize
system throughput [35], [2], [5]. The optimalf∗ is found by
balancing the two terms in the minimization of (5):

(1 − f∗)CG (SNRSD) + f∗
CG

(
SNRSR

2
+ SNRSD

)

= (1− f∗)CG (SNRRD) + CG (SNRSD)− f∗

Alternatively a sub-optimal listening fractionf can be used
based on reduced channel knowledge at relay. It is shown in
[2] that this does not have a significant impact on throughput.

For system parameters in Eq (4),RQMF,G and RQMF,n

are plotted forn = 2, 3, 4 in Fig 11 vs.SNRSD. For each
point, the optimized listening fractionf∗ is used. To design
a link with throughput of5.4 information bits per symbol,

both64 QAM and256 QAM are potentially good choices for
modulation having QMF information theoretic thresholds at
14.18 dB and13.47 dB respectively. Let us choose64 QAM
(6 coded bits per symbol) for the example design, which means
thatS should use an LDPC code of rateR = 5.4

6 = 0.9. The
optimal listening fraction corresponding toSNRSD = 14.18
dB is f∗ ≈ 2

3 . This determines the LDGM coding rate

KR

NR

=
f

1− f
≈ 2
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Fig. 11. Maximum achievable rate for QMF relaying with modulation
constraints on channel inputs plotted vsSNRSD for SNR relationships in
Eq. (4)

B. Code Design

CodesCb
S andCb

R optimized for the above system parame-
ters can be designed using density evolution tools [21]. This
involves finding good degree profiles that have the lowest
possible decoding SNR threshold and randomly generating
finite block length codes from them.

In order to reduce the computational complexity of density
evolution we use the Gaussian approximation to density evo-
lution developed in [36]. Additionally, we use the following
heuristics to reduce the search space for profiles.
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1) For Cb
S we consider check degree profiles that are

concentrated [36] i.e. all check degrees (from edge
perspective) are eitherk or k+1 for some integerk ≥ 2.

2) For Cb
S we consider variable degree profiles with maxi-

mum degree of8.
3) For Cb

R we limit ourselves to regular LDGM profiles.
Using these heuristics we design the following degree

profile for the system parameters in this example.

λS(x) = 0.28x+ 0.32x2 + 0.28x3 + 0.12x6 + 0.0009x7

ρS(x) = 0.04x28 + 0.96x29

λR(x) = x4, ρR(x) = x9

Simulation results for the bit error rate in decoding ofbS

using codes (with block lengths≈ 104 and ≈ 105) drawn
from above profiles are shown in Fig. 12(a) using PBICM
with 64QAM modulation, one bit scalar quantizer and an ideal
interleaver. As shown the BER performance is≤ 1dB of the
QMF threshold. For the single relay scenario, the information-
theoretic thresholds for QMF and CF are identical, therefore
as a reference for comparison thresholds for DF, AF, and
the no-cooperation case are also shown. The DF and the
AF thresholds are computed using the following expressions.
Derivations follow standard analysis of the schemes and are
omitted here.

RDF,n = max
f∈[0,1]

min {fCn (SNRSR) , (1 − f)Cn (SNRRD) + Cn (SNRSD)}

RAF,n =
1

2
Cn (SNRSD) +

1

2
Cn (SNReff)

SNReff = SNRSD +
SNRSRSNRRD

1 + SNRSR + SNRRD

The optimal listening time for DF is determined by the channel
parameters, while that for AF is always1/2.

For the DBLAST architecture,bR must also be reliably de-
coded at or below the target SNR (for successive interference
cancellation to work). Fig. 12(b) shows the BER forbR which
is also within≤ 1dB of the QMF threshold for both of the
block-lengths.

VI. CONCLUSIONS

The QMF relaying scheme has the following key advantages
over other known relaying schemes such as AF, DF, and CF.

1) For the single relay network, it outperforms AF and DF
at high SNR.

2) For the single relay network, it achieves the same per-
formance as CF but reduces channel feedback overhead.
Unlike CF, QMF does not require knowledge of forward
channel strength at the relay.

3) For arbitrary relay networks with multiple relays, QMF
achieves better high SNR performance than AF, DF and
CF.

In this paper, a low-complexity channel coding framework is
developed for QMF relaying. For the single relay network, the
framework performs within(0.5−1)dB of fundamental limits.

The techniques presented here can be extended to complex
system scenarios, which are discussed below.
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Fig. 12. Code design simulation results.

A. Multiple Relays

When there is more than one relay in the system, the
proposed factor graph extends in a straightforward manner.
Optimal listening schedules can be computed for each of
the relays. As proposed, the source would use an LDPC
code and each relay would use an LDGM code based on
its respective schedule. The joint factor graph would include
multiple LDGM sub-graphs.

The DBLAST architecture proposed in this paper extends
naturally to networks with one level of multiple non-interfering
relays e.g. the diamond network. As discussed previously,
DBLAST significantly reduces the complexity of the factor
graph. DBLAST requires that all codewords from relays are
decoded correctly at destination in order to permit successive
interference cancellation. This additional constraint does not
lead to a reduction in the QMF information-theoretic achiev-
able rate. In fact, such a requirement is explicitly considered
in the probability of error analysis for the QMF scheme in [6].
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However, some challenges for multiple relay networks re-
main to be addressed. When the relays can hear one another
or the source can reach the destination viamultiple hops,
it is unclear how the DBLAST architecture can be applied.
In such scenarios, an alternate space-time architecture must
be considered. Moreover as the number of relays increase,
the channel knowledge overhead required to compute optimal
listening schedules becomes large. Practical techniques at
the physical and MAC layers are required to address this
complexity. These are considered as directions for future work.

B. Rate Adaptation and Hybrid ARQ

In the link design example, suitable coding rates, constel-
lation and listening fraction are computed for a given set
of operating channel conditions. However, optimizing codes
based on instantaneous channel conditions is not feasible in
practice. Under commonly used rate adaptation mechanisms,
terminals switch between a few candidate codes and a few
candidate constellations based on channel conditions. Coop-
erative links need to consider multiple channel parametersto
determine transmission rates i.e. for a single relay three SNR
parameters are required as opposed to just one for a point-
to-point link. This makes rate adaptation schedules for relay
networks more complex. An advantage of QMF relaying is
that rate adaptation schedules depend only on the ability of
the destination to decode as opposed to DF, where adaptation
must consider decoding at relays as well.

Modern adaptation mechanisms like hybrid automatic re-
peat request (HARQ) can be incorporated into the proposed
framework. Additional parity bits for refinement sent from the
source after receiving a repeat request from the destination.
It can be cooperatively delivered to the destination using
QMF relaying. The joint decoding factor graph is expanded
to incorporate these refinement parity bits and the decoding
algorithm remains unchanged.
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APPENDIX

The QMF relaying scheme introduces correlation between
xS andxR, which can be thought of as coding across transmit
antennas in a MIMO channel. A natural space-time architec-
ture for such a channel is DBLAST. Using DBLAST for the
relay channel has also been proposed in [12][11][29][30]. It
relies on introducing a delay of one block at the relay and using
successive interference cancellation (SIC) at the destination.
At the k-th block the destination receives the superposition of
the following:

• signal from the source containing the codeword sent at
block k, namely,xS(mk)

• signal from the relay containing the side information
about the source’s codeword at blockk − 1, namely,
xR(qk−1)

Messages sent from the source are independent across blocks.
At the k-th block, the destination jointly decodes blockk− 1
(messagemk−1 and side informationxR(qk−1)) by treating
xS(mk) as Gaussian noise. The receiver subtracts relay’s
codewordxR(qk−1) from its received signalY[k] and keeps
the residual̃Y[k] for decoding the next block. This architecture
allows the use of a simplified equivalent channel model. Note
that the one-block delay introduced atR has the added benefit
of allowing time for QMF processing atR.

1) Simplified Channel Model:The equivalent channel
model is shown in Fig. 5. For decoding the blockk−1 message
mk−1, the decoder takes two inputsY[k] and Ỹ[k − 1]. We
can think ofY[k] andỸ[k − 1] as two orthogonal links with
independent Gaussian noise. Therefore, for the purpose of
code design we can alternatively investigate a simpler model
depicted in Figure 5. In this model,

Yij = hijxi + Zij , (i, j) = (R,D), (S,D),

ySR = hSRxS + zSR

As an example, let us consider a scenario whereD has
two receive antennas(M = 2). In that case, the DBLAST
equivalent channel becomes [37]:

yij = hijxi + zij , (i, j) = (R,D), (S,D),

where,

hSD = ||h1||, hRD =

√

||h2⊥1||2 +
||h2‖1||2

1 + PS ||h1||2

h2⊥1 and h2‖1 denote the perpendicular and parallel com-
ponents ofh2 with respect toh1, respectively. The signal-
to-noise ratios of the three links areSNRSR = |hSR|2PS ,
SNRSD = |hSD|2PS , andSNRRD = |hRD|2PR respectively.

Remark 1:Consider the original channel and the DBLAST-
equivalent channel. Note that the capacities of these two
channels are within two bits of each other. This is based on
the following observations:

1) The min-cut upper bound for both channels are within
one bit of each other (for any listening fractionf ∈
[0, 1]).
The mutual information across cut{S}, {R,D} remains
unchanged between the two channels. Consider the
mutual information across the cut{S,R}, {D}. It is
known that SIC achieves the sum capacity of multiple-
access channels. In the original channel (Fig. 2)S and
R have unlimited cooperation. As a result, the min-cut
bound for DBLAST incurs a power-gain loss of at most
(1− f) bits.

2) QMF relaying scheme achieves the min-cut upper bound
to within one bit for the two channels[1].
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