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Abstract—In this paper we develop a low-complexity coding modulation and channel coding schemes must be designed
scheme and system design framework for the half duplex relay for various terminals. Rate adaptation mechanisms must be
channel based on the Quantize-Map-and-Forward (QMF) relay -, gigered to account for changes in availability of relays

ing scheme. The proposed framework allows linear complexit . .
operations at all network terminals. We propose the use of lnary channel strengths. Practical constraints must be coresideg.

LDPC codes for encoding at the source and LDGM codes for Minimizing the overall system complexity, reuse of builglin
mapping at the relay. We expresgoint decoding at the destination blocks from traditional (non-cooperative) systems as much

as a belief propagation algorithm over a factor graph. This gaph  as possible, compatibility with protocols at higher layers
has the LDPC and LDGM codes as subgraphs connected via g handling of system imperfections like synchronization

probabilistic constraints that model the QMF relay operations. h | estimati tc. In thi f th
We show that this coding framework extends naturally to the tigh channel estimation errors efc. In this paper, we focus on the

SNR regime using bit interleaved coded modulation (BICM). ¢ coding and signaling aspects of cooperative relaying. Othe
develop density evolution analysis tools for this factor giph and components are discussed in brief towards the end of the pape
demonstrate the design of practical codes for the half-dugix

relay channel that perform within 1dB of information theoretic ]
QMF threshold. B. Relaying Schemes

I. INTRODUCTION

Cooperative relaying has been proposed as a promising
technique to resolve the increasing demand for data thimutgh
in wireless networks. Recently a lot of progress has been
made in establishing the theoretical foundations of coaper
communication. To apply these principles towards the daesig
of practical wireless systems, various system design ofésle
must be taken into consideration. This paper presents @segr
towards this goal. We propose a system design and coding
framework for quantize-map-and-forward (QMFE) [1] relayin Fig. 1. Example relay network. With multiple antennas atidation, source-
that has low complexity and performs close to informatio?‘f'ay cooperation provides additional degrees of freedoantdmmunication.
theoretic bounds.

Most wireless systems operate at moderate to high SNR i.e.
, in a regime where transmit power is not the major limiting
A. Cooperative Systems factor for link capacity. At high SNR, the link capacity is
A cooperative wireless link typically consists of an infor{imited by spatial degrees of freedom. Relay cooperation is
mation source, a destination and one or more cooperhtifg of special interest for practical systems because it has the
duplexrelays. The relays are usually assumed to opérate potential to provide additional spatial degrees of freedom
band i.e. no additional channel resources are allocated fBor illustration, consider a relay channel with singleesmta
cooperation. Without loss of generality, it is assumed that source, a half-duplex single antenna relay and a destinatio
lays use time-division-duplexingi.e. they listen to tnauission with two antennas shown in Fif] 1. Since the destination has
from the source for some fraction of total time, then forwarghultiple antennas, the source can spatially multiplexitraé
a description of their observation in the remaining frattio the destination using relay cooperation. If the sourceetay
There are several aspects involved in the design ofchannel is strong, this network can approach the high-SNR
cooperative relaying system. Listening fractions and fodv  performance of th@ x 2 MIMO channel [2].
ing schemes must be determined for each relay. Suitablevarious strategies for relay cooperation are proposed in
o , literature. Among these amplify-and-forward (AF), decode
The material in this paper was presented in part at the AnAllatton d-f d d d-f d (C 3]
Conference on Communication, Control, and Computing, detio, lllinois, an -orwa_r (DF) an comp_ress—an -forward (CF) [8], [4]
USA, September 2010. have received the most attention. Under DF, the relay decode
At the time of submission, all authors were with the Deparitne the source’s message and forwards a hard estimate of it
of EECS, University of California at Berkeley, Berkeley, li@ania . . . ’
94720 USA. e-mail: vinayak.nagpal@nokia.com, i-hsiamgg@epfl.ch, Whe_re_as under AF a_nd CF it forwards a soft estimate Wlthout
{milos,dtse,borh@eecs.berkeley.edu. explicitly decoding it. In DF and CF, the relay maps its
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estimate to a random codeword before forwarding, whereasd side information (from relay<)|[1]. This presents a uriq
in AF it forwards an uncoded signal. The QMF scheme [Idhallenge because joint decoding typically requires highe
also uses soft estimate forwarding with random coding similcomplexity and makes it harder to design a practical coop-
to CF. For the example network in Figl 1, the CF and QMErative coding scheme. The key contribution of this paper is
schemes are close to optimal at high SNR. In fact they achigeedevelop a low-complexity cooperative coding framework
within one bit/sec/Hz to the information-theoretic capad], for QMF that significantly reduces the complexity of joint
[1]. An intuitive explanation for why QMF/CF performs bette decoding and yet performs close to information theoretic
than both AF and DF is given in the context of the exampleounds.
in Fig.[ below.
In.the example network of Fidll 1, the dest|nat|on recewec%. Related Work
continuously from the source. The relay receives a strongér
version, when it is listening. Since the destination has two Majority of previous work on code design for cooperative
antennas, it can resolve simultaneous transmissions fnem telaying is focused on the DF scheme. DF relays fully decode
source and relay. In order to achieve spatial multiplexing)e source’s message. Therefore, DF coding schemes involve
the relay should extract the less significant bits (from ifgartitioning a large codebook into two parts. The source
observation), which the destination cannot resolve, amd féransmits one part of the codeword and the relay transmits
ward them. Under AF, the relay only forwards the morthe remaining part’]8],]9],[[10]. Turbo code designs which
significant bits, which the destination can already resolveerform ~ 1dB away from the DF information theoretic
Therefore AF cooperation provides limited benefit. Unddhreshold are demonstrated in [11], [12]. LDPC profiles are
DF, the relay decodes the entire message before it forwaftgyeloped for DF in[[13]. A bilayer LDPC structuré [14]
anything. Since the listening time is limited, this apptoée and the protograph method [15] has been used to get LDPC
inefficient. The QMF/CF schemes implicitly extract the lesgesigns< 0.5dB from the DF threshold. The bilayer structure
significant bits from the relay’s observation by using quaris extended for use at high SNR using bit-interleaved coded
tization/compression and random mapping. Therefore thggedulation (BICM) [16]. As for CF relaying, a coding scheme
schemes provide the most cooperation gain. using a combination of LDPC and irregular repeat accumulate
Despite having similar performance for the single relaffRA) codes is presented in [17]. Rateless coding schemees ar
network, the CF and QMF schemes have significant diffeleveloped in[[18]. As for QMF relaying, a coding scheme is
ences. In the conventional CF scheme, the relay compresgegposed in independent work [19] based on lattice stresegi
its observed signal and performs a random code mappihge scheme in [19] reduces the complexity of mapping at the
before forwarding. The compression rate is chosen in ord@lay to polynomial-time while the joint decoding compligxi
for the destination to performwo-step decoding.e. first remains exponential-time.
decode compressed signals from relay and then use it as
side information to decode the message from source. Flgr
configurations that involve multiple relays, two-step déiog '
is sub-optimal and conventional CF is not within bounded gap!n this paper, a coding scheme for QMF relaying with
from information-theoretic capacity|[1]. Even for the sieg linear complexity encoding at the source, mapping at the
relay configuration, conventional CF requires that theyreld€lays and joint decoding at the destination is developedaF
have full knowledge of the quality of its forward channeln€twork with one relay, the proposed scheme performs within
This introduces a large estimation and feedback overhead (8-5—1)dB gap from the information-theoretic QUF threshold.
fading channels and increases the complexity of rate atiapta FOr the code design example considered in §éc. V, the QMF
schemes. threshold isx~ 1.5dB better than DF. The key techniques used
Under QMF, the relay quantizes its received signal at noidethis paper are summarized as follows:
level, randomly maps it to a codeword and forwards it. Unlike 1) BICM: Design of binary channel codes with standard
CF, the quantization and mapping is performed without régar higher order signal constellations is considered based
to the quality of forward channel at the relay. This reduces on the widely used BICM techniqug [20].
the channel estimation and feedback overhead for the Iltnk. 1 2) LDPC-LDGM: The scheme uses low density parity
also simplifies rate adaptation protocols. AdditionallyyR check (LDPC) codes at the source for channel coding
usesjoint decoding(as opposed to successive decoding) and and low density generator matrix (LDGM) codes at the
performs within bounded gap from capacity for networks relays for mapping.
having an arbitrary number of relays! [1]. QMF has played 3) Joint Factor Graph: The joint decoding procedure at
a key role in several recent information theoretic resutts o the destination is formulated as a belief propagation

Summary of Results

cooperative networks [6]. 5]/ [2][_[7]. Due to these faviolea algorithm over a factor graph. This graph contains the
properties, the QMF scheme is superior to CF from the original channel code (LDPC) and relay mapping func-
perspective of practical cooperative systems. tions (LDGM) as subgraphs connected via probabilistic

Since mapping at a QMF relay is performed without any  constraints that model the QMF relay operations.
knowledge of forward channel strength, side informatiamfr ~ 4) Practical Decoding Algorithmtsing a DBLAST space-
relays cannot be decoded at the destination independently. time architecture, scalar quantization procedure at selay
QMF requiresjoint decodingof the message (from source) and specific choice of component codes, the resulting



factor graph is greatly simplified, making it suitable for Here hy, hs, hp denote the corresponding channel gains.

practical decoder implementation. rp; = 0andhy = 0 for i € {1,2,..., fNs} when R

5) Code DesignDensity evolution analysis tools [21]. [22]is listening. For the remaining timey,, = zgr.-fns,
are developed for the systematic design of joint LDPG- € {fNgs + 1,...,Ng}. z; and zg ; are i.i.d. zero-mean
LDGM factor graphs. Gaussian noise vectors with identity covariance matriéds.

the channel observations &t are denoted byy € CM*Ns
E. Organization i.,e.Y =[y1 y2 ... yns|. Observations aR are denoted as
In Sec.[dl, the coding framework for QMF and correYRr € C'*/Ns ie.yr = [yr1 .- yrsns)- The channel

sponding joint decoding algorithm is developed. The treatm 1S characterized by the following paramete&NRsr =
focusses on a canonical system model with one relay ahalhel*, SNRsp = Ps|[hi[|* andSNRgp = Pg]|hy|[*.

binary inputs. In Sed_1ll, density evolution and code desig .

tools are developed. In SeC.IV, the framework is extend&d Quantize-Map-Forward Scheme

to the high SNR regime i.e. for high order modulation inputs The quantize-map-and-forward schemle [1] is summarized as
using BICM. In Sec[V, the design of codes for an exampfellows. S has a sequence of messages < {1,...,2VsR},
cooperative link is demonstrated. Finally in SEc] VI a sketdt = 1,2,... to be transmitted. At botly and R, codebooks

is provided for extending the proposed framework to scesariCs and Cr are created respectivelyy maps each message

with multiple relays. to one of its codewords and transmits it using symbols
resulting in an overall transmission rate Bf Relay listens

II. CODING FRAMEWORK to the first f Ng time symbols of each block. It quantizes its
A. System Model observation at noise level i.e. the quantization distarti®

ec.‘qual to the noise power at the relay. Relay maps the quadntize

Initially, this paper focuses on the design of codes for . ' - X
y bap 9 bits to a codeword irCg. It transmits this codeword using

binary memoryless symmetri@MS) relay channel as de- N bols. The destinatiom decod
scribed below. In SEc 1V, this model is extended to high ord%}rI — f)Ns symbols. The est|_nat|o . attempts to decode
modulation inputs for use at high SNR. the message sent Ify from received signal§Y). In order to

The BMS Gaussian relay channel has three haIf—dupIQQCOde’D must know all channel paramet&8iR s p, SNRrp
terminals: source ), relay () and destination 1) with andSNRgr, the relay listening fractiorf and both codebooks
binary input additive white Gaussian (BIAWGN) channelgsI qndCR. d thaSNR< SNR d &b and
between them, as shown in Fig. & listens for a fraction N:?IS assumed t q anD’ . R’.:f are mgalsurtle ic 1 ar;]

f € 10,1] of the total communication time and transmits fopNRsr :jstrrgz;ure i f usw:jg dp;%iy”]]% OTSH t ":'. ur:_ er
the fraction(1 — f). The block lengths for the transmitted®>SUMe BlVRsp IS forwarded 1ol by It. The estimation
codewords atS and R are N and Ny respectively. They and fo_rwardmg ove_rhegd of these steps is ignored for the
satisfy the half-duplex constrailvy = (1 — f)Ng. The analysis presented in this paper.

codeword messages sent fréshand R arebgs € {0,1}"s and . .
br € {0,1}"r respectively. The corresponding transmitteg' Factor Graph for Joint Decoding

signals arexs € {+v/Ps}Vs andxp € {+vPz}V* where In the context of the system model and cooperation scheme
Ps and Py, areper-node symbol constraints average power outlined above, let us focus on bindiyear codebookg? and

i.e. Elz%,| < Ps and E|2% ;| < Pg. Bold-face lower case C%. These can be represented as bipartite Tanner graphs using

letters are used to denote a sequence of symbols. respective parity check matrices. In such a representéiion
(variable) nodes represent the codeword and check (furjctio

ZR nodes represent parity constraints that must be satisfied in
| YR order for the codeword to be valid. Let us consider the

X : A - :
R i maximuma posteriori (MAP) rule for joint decoding atD.

In this subsection, joint decoding is expressed as a sum-
product algorithm over a factor graph that contains the &ann
Y graphs of component codes’( C%) as sub-graphs connected
> D via probabilistic constraints that represent the QMF rielgy
operation[[24][25][26].
Fig. 2. Half-Duplex Binary Input Gaussian Relay Channel Joint decoding involves searching for the codewbrd €
) ) _C% that maximizes the posteriori probability p (bs|Y). An
Multiple (M) receive antennas are assumed at the destigficient way to do this search is to consider the bitwise maxi
tion. This permits consideration of network scenarios whepyma posteriori(MAP) decoder, where the aim is to compute
cooperative spatial multiplexingg possible [[2B][2]. An ex- p(bsiY) = S, p(bg|Y)foralli=12.. Ng.
ample scenario with\/ = 2 is discussed in the Appendix. ’ s
The received signals ab and R are denoted ay; € CM p(bs|Y) = Z [ (Y|bs,br)p(bs,br)
andyg ; for each symbol time € {1,2,...,Ng} andj € n f(Y)
{1,2,..., fNgs} respectively. They are modeled as follows: N Zf (Y [bs, br) p (bs. br)

!
yi=hizs; +howlp,; +2zi, yr; = hrts; + 2R, br

XS
S ¢ >

PN




For the first fNg bits, R is listening andD observes an (point-to-point) LDPC codes do not allow close-to-optimal
interference-free signal frony. During the remaining trans- performance over cooperative channels. An information-
missions,D observes a superposition of signals frérandR. theoretic understanding of this observation is presented i
Therefore, the first ternf (Y |bs, br) factorizes as follows: [27]. The authors point out that capacity-achieving codes f
the point-to-point channel exhibit higher estimation esro

F(Y[bs,br) whenever the SNR is below the Shannon limit. Therefore, in
INs Nr cooperative networks where the operating SNR is below the
- H F(yilbs.i) H FY(Ns+3) |05, (FNs+5), OR.5) point-to-point Shannon limit, such off-the-shelf codes ao
=1 i=1 longer suitable to utilize side information from the relaytize
The codesC% and C% have characteristic functiors(bs € destination. As a consequence, specialized codes araedqui
cg) and1(bg € c%) respectively. for cooperative channels. For sparse graph codes, sedali
code profiles that are optimized for relaying can be designed
p(bs,br) =p(bs)p (br|bs) using standard tools such as density evolution analysik [21
x 1 (bs € C%)p(brlbs) [22]. However, for the LDPC-LDPC combination [24] density
(a) b b evolution does not extend readily to QMF joint factor graphs
= 1(bs €C3) 1 (br €Cp) p(brlbs). In this paper, the use of LDPC codesSand LDGM codes
(a) is due to the fact thabz must be a codeword iGY%. at R is proposed. LDPC codes are known to perform very
close to information theoretic limits when used for channel
oHK p(bg|bs) oHK coding. Similarly LDGM codes are commonly used for lossy

data compressiorl_[28] and the LDPC-LDGM combination
is a good fit for the QMF relay channel. Moreover, density
evolution analysis tools can be extended to LDPC-LDGM joint
factor graphs. Such an extension is developed in[Séc. ll& Th
permits explicit construction of code profiles optimized fo

relaying.
P 2 5 Based on the LDPC-LDGM choice, let us introduce aux-
f(y1lbs1) f(y2lbs.2) NV NN iliary variable nodesbg = {bg;}X% in the factor graph.

AN RN bo represents ther bits after quantization af?. These
W W oeeeTW W are mapped to the codewolg of length Ny obtained after
TN lbs (sxs+1),bra) eee Fynslbs.ns:bsva) passing through a low density generator matrix haviig
rows, Nr columns and characteristic functidribg € C%).
Sincebp, is a deterministic function dbg, p (br|bs) can be

The resulting factor graph in Figl 3 shows that in additiofpctorized as follows (Figl4):
to nodes representing channel observationg{;|bs,:, br,;) brlba) = n(br. balb
the subgraphs (bs € C%) and1 (b € C%) are connected by p(balbs) B pEbRibdbS; (bo|bs)
p(bg|bs) that represents the quantization operatiodkat = P\PR Q’b 5/P\BQIPs
If the component code€, and C% are sparse, the overall = 1(br € Cg)p(bg|bs)
factor graph is also sparse. A sum-product algorithm fqrhe LDGM mapping can eithezompressor expandthe &

qlecodmg over such a factor graph has complexity that 9r%%Santized bits i.e. the LDGM coding rate can be greater than
linearly with the length of component codes. However, t

sum-product update rules at the function ngd@s|bs) is he br nodes always have degreeand they simply perform

very complex due to its high degred¢ + Nz). Moreover, it forwarding of messages under the sum-product algorithm.
introduces very short cycles in the graph, which deterazrat
the performance of sum-product decoding. In order to gBt Scalar Quantizer

reasonably close to MAP performance and low decoding|, general, a vector quantizer can be used&aHowever, it

complexity, thep (br|bs) node must be factorized further.is shown [1] that QMF performs within bounded gap of capac-

In the following subsections, choice for component codlgs ity even with a scalar quantizer. Under scalar quantizatioe

andcC?, and specific techniques for factorization are discusseghservation for every bit fron§ is quantized independently.
If eachyr,; is quantized intobg[A;] for i = 1,2,... fNg,

D. Choice of component codes then thep (bg|byg) function node factorizes intpNg separate

d hodes each representing a scalar quantization operation.

Fig. 3. Factor Graph for Joint Decoding.

In the discussion above, general binary linear catfean
Cb are considered. A natural choice is to use sparse graph fNs
codes (like LDPC) that are known to have good performance p (bg|bs) = H p (bgolAi]|bs,:), where
and linear complexity decoding/encoding operations. i=1

In a previous communication [24], preliminary results for fNs
such factor graphs were presented using off-the-shelf LDPC U A, ={1,2,...,Kg}, AnA;=0VYi#j
codes at bothS and R. As observed in[[24], off-the-shelf i=1



where A4; denotes the subset of indicesbg, that observation general principle outlined in_[25]. It is shown that for a i@

YR, IS quantized into. As a result, the variable nodes of the tvame-bit quantizer each Q node further factorizes into a CHK
constraint and a dummy VAR node. This reduces the factor
graph to a Tanner graph that does not have any special nodes.
Such a property is useful to leverage existing techniqued us
for the design of low-power, high-throughput LDPC decoders

LDGM Check Constraints

LDPC Check Constraints

. N N bra ) br2 oo (brn,

S LT ‘\,i'\ v
oss W W eee W "H
F(y(sns+ b (sNst1), bRL) eee [(YnNs|bs,Ns,bs Ng)

i
1 Dummy Variable
Nodes

'

-’ :

H

B Hos B OB [ I ] [

flylbs) f(y2lbs2)  f(ys,.nslbs,ng) f(yralbr1) f(yrNg bR NR)

Fig. 4. Factor graph: LDPC code &t LDGM code atR with 1 bit scalar

quantizer. . o ) ) .
Fig. 6. Simplified factor graph with one-bit scalar quantiaad DBLAST.

Tanner graphs are connected by function nodes representing

the stochastic relations (bg[4;]|bs,;) among them. Hence- Decoding Algorithm
forth, these are callequantize(Q) nodes, as they are induced . . . .y .
by the quantization procedure at the relay. An example facto For the point-to-point systenhelief-propagationis an it-

graph showing the LDPC-LDGM construction is illustrated ir(?rative algorithm that_computes tha_e posteriori probapility
Fig @ where each symbol observatign ; is quantized into to decode message bits. The algorithm computes this exactly

one bit (i.e.Kr = fNs andAfi] = {i}). As shown, there are if the factor graph has no cycles. Otherwise, it computes the
four kinds of nodes in the resulting factor graph:’ obseorati approximatea posterioriprobability for each bit/[25]. For the

(OBS) nodes, variable (VAR) nodes, check (CHK) nodes, arﬁ?iftor graph in Fig)6, messages being passed on the edges
quantize (Q) nodes. Some VAR nodes in g subgraph of the factor graph and the update rule_s at tr_le vgrlablek:hef:
share OBS nodes with VAR nodes in ttié subgraph. This nodes stay unchanged. The only new ingredient in the mix is
is because of multiple access At the Q nodes |ntrc_)duced by our framework.
Let the subscriptd/, C, and Q denote VAR nodes, CHK
nodes, and Q nodes respectively. Fore {C,Q}, let w\(,l@
F. DBLAST Scheme denote the message sent from variable néde function node
F in the [ iteration. Every edge in the graph is connected to
ZSR exactly one variable node and a message on the edge regresent
Ysr XR the a posteriori probability for the respective variable. The
R ZRp messages can be represented as LLRs, but for the sake of
Yrp simplicity we represent the messages as a two-dimensional
vector in this subsectidn wyr = [po p1], wherewye(1l) =
> > po € [0,1] represents the probability that the bit Gsand
XS f Ysp wvr(2) = p1 € [0, 1] represents the probability that the bit is
Zsp 1 (po+p1=1).
The message sent fromto F € {C,Q} is the normalized
Fig. 5. Channel model using DBLAST product of all incoming messages inté except for the
message fronfk. The normalization ensures thag + p; = 1

The factor graph shown in Fig] 4 can be simplified furfor the outgoing message. The message sent GooV’ is the
ther using the Diagonal Bell Labs Space-Time architectutdicator function that the check is satisfied, marginalipe
(DBLAST) [29]. As discussed in the Appendix, the degrethe bit represented by’. The message sent fro@ito V is the
2 OBS nodes (representing multiple access) are factoriz@@rginalization of the functiop (bg[A:]|bs,:) on the symbol
using DBLAST. Under DBLAST, the destination observes twegpresented by. bg is computed from a noisy observation
orthogonal sets of observations (see Flg. 5). The factibmiza Of bs.:, the nodeQ imposes a probabilistic constraint on the
is shown in equatior{1) wher& := [Ysp Yrp]. variables. Since the quantization is scatar:€ {0,1}/4i and

An example of the simplified factor graph is depicted in € {0,1},
Fig. [6. In this graph, VAR nodes in thg two Tanner graphs g(u,v) == p (bo[A:] = ulbs.; = v).
are connectednly through Q nodes. Sincgrp,; = 0 for _ T _
i=1,...,fNs, We renameypp (sns4j) = YrD,j, fOF j = This function is fully represented by a lookup table with
1,...,Ng. ’ ' 2l4:+1 values, which is used to derive the update rule for

The resulting graph has a structure similar to an irregul@r-

LDPC code but with special Q constraints. In Sec 1I-G, 1 ater we will replaces by w, the commonly used messalge; 22 (LLR)
sum-product updates for this graph are derived followirgy thn belief propagation.



fNs Ngr
f(X|bs,bg) = H f(ysp,ilbs,i) H f(YSD,(st+j)aYRD,(st+j)|bQ,,jabS,(stJrj))

i=1 j=1
fNs Nr
= [ r&sp.ilbss) [T Fsp.snstn s, rvssn) S rD.( Nt B0.5)
i=1 j=1
Ns NR
= [ f(ysp.ilbs) [[ F & r.(rvssi bi), 1)
i=1 j=1
=y ” f]* LDGM Check Constrints and LDGM codes at source and relay respectivaly. and
] ps are polynomials representing variable and check degree
o distributions for the LDPC code:
br2 oo (bp s i1 © i1
NS : A = izt = T
: : : : : :DummyVanab\e: S(x) Z)\SZ'I ’ pS(I) ZPSJ'I
i | | | E E Nodes E 1=2 =2
oo oW L u Here \s; andpgs,; denote the fraction of edges with degree
Filbs.) fy2lbs2)  fiys nelbsne) F(yr1lbr1) FYRNwlbRNR) 5id Ps.i g 9

at a variable node and at a check node respectively. For the
Fig. 7. Equivalent factor graph of that in F[d. 6. TRenodes are factorized LDGM code, we have the sn‘_mlar definition forr and. PR
into a CHK node and a dummy variable. except that these are regarding the edges connecting check
nodes and variable nodes fbg, (notbg).
These profiles must satisfy the following constraints:
As an example, let us consider a one-bit scalar quantizer at 1 1
the relay and derive the update rule. For this case, the Q nodej — 1 _ Jops@)dz  Kp _ Jy prlx)dz __f

can be further factorized into a CHK node and a dummy VAR fol As(z)de’ Nr fol Ap(z)de 1= F
node that sends a constant message. NoteAhat_{z‘}, i = As(1) = Agr(1) = ps(1) = pr(1) =1
1,2,...,fNs and Kr = fNg. The factor graph is depicted
in Figure[®. Considevu € {0,1} andv € {0,1}, In addition to the sub-graphs representing the two compionen
codes, the joint factor graph shown in F[d. 7 also includes
g(u,v) :==p (bg,; = ulbs,; =) edges connecting them (via Q nodes). As discussed preyiousl|
=1 —pp)1{u =2} +ps1{u # v} in Sec[Il-G, let us consider a fixed one bit scalar quantizer.

The edges connecting with Q nodes are considéresdi in
herepy := %erfc,/% denotes the probability of bit errorthe rest of this section. In contrast, the edges in LDPC and
for scalar one-bit quantization over a BIAWGN channel. 8ind-DGM subgraphs are drawn randomly from the ensemble
the functiong is symmetric inu andw, it can be assumed thatusing construction procedure describedLinl [22].
the VAR node is of the source, and the marginalization is on In point-to-point channels, the typical method to analyze a
v. Let the other VAR node b&’. This leads to the following design sparse graph codes is to compute the ensemble average

update rule: performance for given degree profiles assuming infinitelbloc
length €onvergence to computation tr¢e$he ensemble aver-
wav(1) = (1 = pr)wva(l) +provia(2) age performance (decoding error probability for given SNRs
wqv(2) = (1 — pylwvq(2) + prwviq(l), is calculated usinglensity evolutiordeveloped in[[21],[122].

.r;l'he two key elements of classical density evolution, namely
Bncentration around ensemble averagied convergence to

messagesi-q and[l —py py]. Therefore, the Q node in thlsl&omputation tree channefsr sufficiently large block length
set-up specializes to a CHK node with additional dummy VA .
hold for the proposed QMF relaying system as well. The

glc\)ldRes simiﬁgscuﬁgﬁtapécﬁ?ssgbi ?Sf ozljef]i(t:t:;tj ?:%‘ds on proofs can be readily extended from those of point-to-point
SR- g grap p "' channels[[22][121].

Without loss of generality it is assumed that the all-zero
l1l. CoDE DESIGN codeword is transmitted fronf. This is a result of the
In this section, design of specific codes for QMF relayingymmetry of the relay channel. Howevét,does not transmit
is discussed. Typically sparse graph codes like LDPC attie all-zero codeword because the source-to-relay chasnel
LDGM are drawn randomly from ensembles, which are de&wisy. For sufficiently large block lengths and a given value
scribed using degree profiles. In the point-to-point céefstiiei  of SNRgr there is atypical sequencebg that is mapped
block-length is sufficiently large, the decoding performan to a typical by based on the LDGM code. The probability
of such codes converges to taesemble averag2?]. Let us of occurrence for atypical codewords vanishes as the block
consider degree profilgs\s, ps) and (\g, pr) for the LDPC length becomes large. Therefore, it is ignored for computin



the ensemble average performance. A typigalcomprises of ~ Function nodes to variable nodes:
Kr(1—py) 0's andKgpy 1's. py is defined in Sed_II-G. For _

a given degree profile(\g, pr), €ach bit of the typicabp P(l+1) _ Zps ( ( ))®(J71)
is i.i.d. Bernoull(q), whereq is the probability of having an CsVs ’J VsCs

odd number ofi’s in a column of the generator matrix (drawn

randomly from the LDGM ensemble). (141 . ®(—1) .
o _ Pc:vc)g = ZPRJ ( ( \s(;cR)) Qr (P\(/,ECR)
=3 ( pr(4)/J > 1-(1—2py)
—~\ X, pr(i)/i 2

PG =T~ (P GAEN (5 . f))
To develop density evolution rules for QMF relaying, we it
consider the belief-propagation algorithm with log-likelod p(l+1> -t (1" (p(l> ) @T (5 lpf))

ratios as the messages passed among variable nodes ahd” o8

various function nodes. Lebé@ andw\(}g denote the message \variable nodes to function nodes:

sent from the function node to the variable nod® and vice- ®i-1)

versa, at thé-th iteration.F € {Cs, Cr, Q, 05, Or} represent szls)cs =R, ® Z {f)\S,i (Pc(ls)vs) ® pél\)/s+
the LDPC CHK nodes, LDGM CHK nodes, Q nodes, OBS i

nodes atS and R respectivelyV € {Vg,Vq,VRr} represent @ &6
the VAR nodes corresponding tey, bg andbp respectively. (1= /f)As,i (PCSVS)
The sum-product update rules in terms of the commonly 0 0 ®(i—1) 0
used LLR’s are written as follows: PvQcR ZZ AR,i (PCRVQ) ® PQVQ
W _ 0] ‘
Wye = w 2 1
VF y Z Y 2) P\slicR =R,
ENM\{F} ,
0 P(l) =P A ) ®()
wly =wy, (0,V) ={(Os,Vs), (On, Vr)} Vsq =Fs @3 s (Feivs
_ ®()
wélvﬂ) = 2tanh™! H tanh (2w\(,l,)F) 3) P\ng _Z AR.i ( CRVQ)
V' eN(F)
if F=Cs,Cr HereJ,(-) denotes the Dirac delta function at point R.
51 e, shows up in the expressions because the Q node
(+1) _ -1 ) A
wiy ) =2tanh ™ [ (1-2ps) ] tanh( wa) is equivalent to a CHK node connected tocanstant The
VIEN(F) differences in evolution rules between the QMF relaying
if F=Q and point-to-point channel arise due to the probabilistic Q

. . constraints in the joint factor graph.
Here A/(-) here denote the set of neighboring nodes agd As in the point-to-point caseR, . is the conditional density

represents the LLR from channgl observation. . f the LLR of the source to destination channel, given that
Compared to the point-to-point case where there is onl)épl all-zero codeword is sent froi. Ry, is the marginal
- R

one kind of variable node\() and one kind of CHK node : L
: nsity of the LLR of the relay to destination channel under
(C) the update rules can be expressed simply[by (2) &hd marginal law thaby, is i.i.d. Bernoull{g).

whereF = C. Density evolution analysis tracking the density The density evolution rules derived above are used to
of these messages in each iteration. For the point-to-pas# compute the probability of error in decoding dfs. For
with degree d|_str|put|orQ)\ p) ther_e s onl)_/ one type of .edgesuccesswe interference cancellation using DBLAB#, must
and th_e evolution is expressed using a pair of coupled raeurs also be reliably decoded. Density evolution rules to comput
equations as follows: probability of decoding error fobr can be similarly derived.

®@G-1)
Pc(z+1) r-! ij (F (P\slc))) IV. BIT INTERLEAVED CODED MODULATION
J ‘ So far, the discussion has focussed on the BMS Gaussian
P\Sg B Z/\i (P((ZO)@“_I) relay defined in Sed_I[JA. For the high SNR regime, input
alphabetxs € ANs andxp € AN where A represents

nstellation points in a high-order modulation schemetmus

HereT (-) denotes a transformation on the density as demea considered. In practice many systems use BICM [20] to
in [21], @ denotes the convolution operatoraﬁ‘é" denotes compine channel codes designed for binary alphabet with
the density of message:(l_)}. Py represents the conditionalhigh-order signal constellations. BICM has also been psedo
density of the LLR of the point-to-point channel. for various cooperative channel scenar(os [30][31][3&][1n

For the QMF relaying case, there atdypes of edges and this subsection, a procedure is discussed for extending the
densities for messages along all of them must be tracked. Tdueling framework from the BMS relay channel to a relay
recursive density updates are derived similarly: channel with inputs from high-order alphabets.



Under classical BICM [[20], a point to point Gaussian 4) Transmit the resultant codewordbr ;}Z , using a
channel is decomposed inparallel independent memoryless PBICM modulator.

“sub-channels”. Every “sub-channepy s s(y[b,s) has bi- yUsing this definition of QMF, the Gaussian relay channel is
nary inputsb € {0,1} and depends on statec {1,2,...,L} decomposed into parallel BMS relay channels. The BMS relay
which is chosen uniformly and known to both the terminalghannel is shown in Fi§i_10. It is characterized by congteia

(2% is the cardinality of the chosen signal constellation).l& t size atS and R and theSNR of the underlying AWGN links
receiver, LLR for a bit that was mapped to statis calculated j.e. SNRgr, SNRsp, SNRrp.

from symbol observatiory € C (in case of MIMO receiver

y € CM),
d s
Ppjy,s(b =0y, s) v 3
LLR =1 ’ : b b}
(y’S) g PB\Y,S(b: 1|y,8) mi ENC 1 L >® Ly ~
L . . Inter- | B

However, this binary channel is not guaranteed to be outp! dr leaver | Mapper 1>*
§ymmetric i.e. t_he crossover probability for a bit is no ,, . gng L - ,é o
independent of its value. Lef(\) represent the PDF of L L
LLR(y, s). The channel is output symmetric if the following PBICM Modulator
condition holds:

(a) PBICM Transmitter
fa(Ab=0) = fap(=Alb=1)

Conventional methods for designing linear coding schem s ci’l
such as dens_|ty.evolut.|on etc. cannot be _used with asymme MR 2, DEC 1 o
channels. This issue is resolved by adding random dithers LLR | g | De- .
every bit to make the channel output-symmetric as propos Y—t| Calcu- —>| inter- | : (illL
in [20], [33], [34]. Dithers are i.i.dBernoulli (3) variables lation leaver |, & T DEC L > s
known to both the transmitter and receiver. For a ditfier nr v
{0,1} the channepy|s s,p(y[b, s,d) is binary, memoryless PBICM Demodulator

and symmetric (BMS).

(b) PBICM Receiver
LLR(y,s,d) = (-1)*LLR(y, s)

) . ) Fig. 8. PBICM architecture{d,}~_, are dithers, andl, = 1 — 2d,.
This method is called parallel BICM (PBICM) in_[34] and

Fig.[8 shows the architecture for a PBICM point to point link
having L states i.e. signal constellation of si2é. {m;}L ,
represent messages abg and b’; the transmit codewords

) . . (Ds,ss) (Dr,sr)
before and after dithering. The equivalent BMS channel ci v v
be characterized by., the SNR of the underlying AWGN nSR{} Qu. 1 }"LR{} ENC 1 }EL»
channel and the symbol mapping in modulation. In the rest Ysr | PBICM : : PBICM | X*r
this paper we consider thm_ray mapping is used. o Demod R maL — b Mod
In order to use PBICM with the relay channel, a definitiol —> Qu. L }—»‘ ENC L }—5

of quantize-and-map operation under PBICM is requiredhWi
a PBICM modulator at sourcé, the observations at relay
R (yg) representL interleaved codewords. IR performs Fig. 9. QMF relaying with PBICM.
guantization at thesymbollevel, then the decomposition into
independent binary sub-channels will be lost. As an alterea
it is proposed thafk perform quantization at thkit level.

S and R both use PBICM modulator blocks with con- In Sec. [Tl tensi ¢ densi lution tool
stellation size2” having state and dither vectors given by n Sec. an extension of density evolution tools was

ss,sp Dg and Dy, respectively. The QMF operation & developed[21][222] for joint LDPC-LDGM factor graphs based

is described below (depicted in Fig. 9): on QMF relaying. In this section, a link design example
- with construction of explicit codes is shown for a DBLAST-

— SN _ ) . .
1) fForobserved jymbgl Teguerj;cgheR = {ysr,j}j—1 PE™ equivalent channel shown in Figl 5 BMS relay channel. The
orm PBICM demodulation. The output is represente erformance of designed codes is presented using simmsatio

AL R oSN, ) ) . 2
as {nsr,};=; where ?ﬁ‘ChnSRﬂ = {nsrij};=  with high order modulation based on PBICM principles de-
represents LLRs for thé" codeword. scribed in Sed V.

2) Quantize every LLR ifngr;}Z ;. As an example, for

a one bit scalar quantizer this simply involves observing
the sign of LLRs. . System Parameters

V. LINK DESIGN EXAMPLE

3) Encode the quantizer outp{it:z ; }~ ; using an LDGM The capacity advantage of cooperative relaying is most
code. pronounced when the source to relay link is significantly



d s .
il

L SNR; d
BICM U )sz

(ysr,ss,ds) _br d b Subchannel

/L |
d

SNR

bs [ PBICM \ s L !
BICM ] BICM N vy
Broadcast X Y b B> <ub-channel y Subchannel 3%
(© D D L SNR L— s
(a) Equivalent relay channel. (b) Equivalent point-to-point channel. (c) Equivalent broadcast channel.

Fig. 10. Equivalent binary-input system.

better than the direct link between source and destinaidm. both 64 QAM and 256 QAM are potentially good choices for
therefore consider an example scenario whereStihe R link  modulation having QMF information theoretic thresholds at
is 10 dB stronger than the others. 14.18 dB and13.47 dB respectively. Let us choosd QAM
(6 coded bits per symbol) for the example design, which means
SNRSD = SNRRD, SNRSR =10 x SNRSD (4)

that S should use an LDPC code of rdfe = %4 =0.9. The
1) Modulation Order: As a guideline for system designoptimal Iistezning_fraction corresponding &\NRsp = 14.18
use the following information-theoretic bound on maximdiB is /* =~ 5. This determines the LDGM coding rate

achievable rate using QMF relaying with continuous Gaussia Kr ¥

inputszg andxr and a vector Gaussian quantizer at the noise — =&
Nrp 1-f

level.

Rqur,c = (5)

Inln{ (1_f)Q:G (SNRSD)+fQ:G (%—FSNRSD)’ } 11
(1= f)€c (SNRrp) +€c (SNRsp) — f

Here € (z) := log(l+z) is the AWGN paint-to-point
capacity at signal-to-noise ratio If the inputs are constrained
to structured constellations such B QAM, 64 QAM, then
the achievable rate witB?”-QAM modulation and BICM is
computed as follows:

RQMF,n = (6)

mm{ (1— f)€, (SNRsp) + f€, (2MBsz 4 SNRgp), }
(1 = f)€. (SNRrp) + €, (SNRsp) — f

Here too we use a vector Gaussian quantizer at the noise le  1p==" 3500, 154 QA
Note thatn € {2,3,4} and €, (x) denotes the2?"-QAM 0 a
constellation-constrained point-to-point capacity amsi-to-

noise ratiox under BICM.

2) Listening-time Fraction:For QMF, the listening-time Fig. 11. Maximum achievable rate for QMF relaying with maatidn
fraction f at R can be independently optimized to maximizéonstraints on channel inputs plotted $8IRsp for SNR relationships in
system throughput [35]/[2][[5]. The optimgf* is found by Ea.
balancing the two terms in the minimization &1 (5):

’’’’’’
-
.
-
e

5.4 Bits/sec/Hz

,,,,

_______________

Maximum Achievable Rate (Bits/sec/Hz)

2 4 6 8 10 12 14 16 18 20 22 25

SNR (dB)

(1 - f")€: (SNRsp) + f*€q <SN¥ + SNRSD) B. Code Design

_ * % CodesC?% andC% optimized for the above system parame-
= (1= /7)€ (SNRrp) + €6 (SNRsp) — f ters can bSe desigR;led using density evolution tdol$ [21]s Thi

Alternatively a sub-optimal listening fractioh can be used involves finding good degree profiles that have the lowest
based on reduced channel knowledge at relay. It is shownpiessible decoding SNR threshold and randomly generating
[2] that this does not have a significant impact on throughpdinite block length codes from them.

For system parameters in EQl (4Rqur,c and Rqmre,n In order to reduce the computational complexity of density
are plotted forn = 2,3,4 in Fig[11 vs.SNRgp. For each evolution we use the Gaussian approximation to density evo-
point, the optimized listening fractiofi* is used. To design lution developed in[[36]. Additionally, we use the follovgin
a link with throughput of5.4 information bits per symbol, heuristics to reduce the search space for profiles.
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1) For C% we consider check degree profiles that ar ’
concentrated[ [36] i.e. all check degrees (from edc
perspective) are eithéror k+1 for some integek > 2. B

2) ForC% we consider variable degree profiles with maxi
mum degree oR.

3) ForC% we limit ourselves to regular LDGM profiles.

Using these heuristics we design the following degre _ -
profile for the system parameters in this example.

log (BER)
4
g

!! I“-“ Block Length ~ 1074
As(z) = 0.282 + 0.3222 + 0.2823 + 0.122° + 0.000927 ’ H
pS(l’) = 0-04x28 + 0.961'29 Block Length ~ 10A5 ; "._l

Ar(@) = o, pr(x) = 2° aur T

DF Threshold| AF Threshold No Cooperation
15.7dB 16.1dB 17.7dB

&
E e R

Simulation results for the bit error rate in decoding lo§
using codes (with block lengths: 10* and ~ 105) drawn
from above profiles are shown in Fig. I3(a) using PBICH
with 64QAM modulation, one bit scalar quantizer and an idei
interleaver. As shown the_ BER performant_:eﬁsldl? of the_ (a) BER forbg using design rate of.4bits/sec/Hz with 64QAM.
QMF threshold. For the single relay scenario, the infororati

theoretic thresholds for QMF and CF are identical, themfo
as a reference for comparison thresholds for DF, AF, ai

SNR_SD(dB)

the no-cooperation case are also shown. The DF and = | ; H T Block Lepoth - 199
. . . “3‘, Block Length ~ 1pA4

AF thresholds are computed using the following expressior LY

Derivations follow standard analysis of the schemes and ¢ ‘\‘

omitted here.

4
. i
Rorn = }
DF,n = IaX ! \
fel0,1] E |
min {fe:n (SN RSR) ) (1 - f)Q:n (SN RRD) + Q:n (SN RSD)} ; QUF Threshold “ DF Threshold| AF Threshold No Coopération
. L 14.184B \ 15.748 16.1dB 17.7dB
Rarn = 5€ (SNRsp) + 5, (SNReqr) |

SNRsrSNRRD
1+ SNRsgr + SNRRgp

The optimal listening time for DF is determined by the chdnn
parameters, while that for AF is alwayg2. SNR_SD(B)

For the DBLAST architecturéy r must also be reliably de- (b) BER simulation forb using design rate d.4bits/sec/Hz with 64QAM.
coded at or below the target SNR (for successive interferenc S )
cancellation to work). Fig- 12(b) shows the BER fog which 719 12 Code design simulation results.

is also within< 1dB of the QMF threshold for both of the
block-lengths.

SNR.t = SNRgp +

-7
12.5 13 135 14 14.5 15 15.5 16 16.5 17 17.5 18

A. Multiple Relays
VI. CONCLUSIONS

. . When there is more than one relay in the system, the
The QMF relaying scheme has the following key advantagggoposed factor graph extends in a straightforward manner

over other known relaying schemes such as AF, DF, and Gfptimal listening schedules can be computed for each of
1) For the single relay network, it outperforms AF and Dkhe relays. As proposed, the source would use an LDPC
at high SNR. code and each relay would use an LDGM code based on
2) For the single relay network, it achieves the same péts respective schedule. The joint factor graph would idelu
formance as CF but reduces channel feedback overheadiltiple LDGM sub-graphs.
Unlike CF, QMF does not require knowledge of forward The DBLAST architecture proposed in this paper extends
channel strength at the relay. naturally to networks with one level of multiple non-interihg
3) For arbitrary relay networks with multiple relays, QMFrelays e.g. the diamond network. As discussed previously,
achieves better high SNR performance than AF, DF amBLAST significantly reduces the complexity of the factor
CF. graph. DBLAST requires that all codewords from relays are
In this paper, a low-complexity channel coding framework idecoded correctly at destination in order to permit sudeess
developed for QMF relaying. For the single relay networle, thinterference cancellation. This additional constrainesimot
framework performs withir{0.5 — 1)dB of fundamental limits. lead to a reduction in the QMF information-theoretic achiev
The techniques presented here can be extended to complebe rate. In fact, such a requirement is explicitly conside
system scenarios, which are discussed below. in the probability of error analysis for the QMF schemelin [6]
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However, some challenges for multiple relay networks re- « signal from the relay containing the side information
main to be addressed. When the relays can hear one another about the source’s codeword at bloégk— 1, namely,
or the source can reach the destination maltiple hops xr(qr-1)
it is unclear how the DBLAST architecture can be appliedvessages sent from the source are independent across blocks
In such scenarios, an alternate space-time architectust mat the k-th block, the destination jointly decodes blokk- 1
be considered. Moreover as the number of relays increag@essagen,_; and side informationy(gx_1)) by treating
the channel knowledge overhead required to compute optilal(m,) as Gaussian noise. The receiver subtracts relay’s
listening schedules becomes large. Practical techniquescédewordxr(q._1) from its received signa¥ [k] and keeps
the physical and MAC layers are required to address thise residualy [k] for decoding the next block. This architecture
complexity. These are considered as directions for futw allows the use of a simplified equivalent channel model. Note
that the one-block delay introducedAthas the added benefit
B. Rate Adaptation and Hybrid ARQ of allowing time for QMF processing ag.
In the link design example, suitable coding rates, constel-1) Simplified Channel Model:The equivalent channel
lation and listening fraction are computed for a given s&t0delis shownin Fid.J5. For decoding the bldck1 message
of operating channel conditions. However, optimizing edé”+-1. the decoder takes two inpul[k] and Y[k —1]. We
based on instantaneous channel conditions is not feasiblecn think of Y[k] and Y[k — 1] as two orthogonal links with
practice. Under commonly used rate adaptation mechanisifélépendent Gaussian noise. Therefore, for the purpose of
terminals switch between a few candidate codes and a fé@de design we can alternatively investigate a simpler mode
candidate constellations based on channel conditionsp-Cogepicted in Figuréls. In this model,
erative links need to consider multiple channel parameters Y. = hix; + Zij, (i,5) = (R, D), (S, D),
determine transmission rates i.e. for a single relay thi¢R S
parameters are required as opposed to just one for a point-
to-point link. This makes rate adaptation schedules famyrelAs an example, let us consider a scenario whérehas
networks more complex. An advantage of QMF relaying isvo receive antenna§\/ = 2). In that case, the DBLAST
that rate adaptation schedules depend only on the ability efuivalent channel becomeés [37]:
the destination to decode as opposed to DF, where adaptation .
must consider decoding at relays as well. Yij = hij%i + 25, (i,5) = (R, D), (S, D),
Modern adaptation mechanisms like hybrid automatic Ihere,
peat request (HARQ) can be incorporated into the proposed
framework. Additional parity bits for refinement sent frohet gy |[2
source after receiving a repeat request from the destmatio  vsp = [[hil, hrp = 4 [[[h211|]* + T+ Ps|[m?
It can be cooperatively delivered to the destination using SI
QMF relaying. The joint decoding factor graph is expandda1 and hy; denote the perpendicular and parallel com-
to incorporate these refinement parity bits and the decodipgnents ofh, with respect toh,, respectively. The signal-

Ysr = hsrXs + Zsr

a|gorithm remains unchanged_ to-noise ratios of the three links afNRgr = |h5’R|2PS,
SNRsp = |hsp|?Ps, andSNRgp = |hrp|?Pr respectively.
ACKNOWLEDGEMENTS Remark 1: Consider the original channel and the DBLAST-

The authors acknowledge Prof. Rudiger Urbanke for frhitﬂ?qu'valent char)ngl. Note_that the capacmes. OT these two
hannels are within two bits of each other. This is based on

discussions leading to the choice of LDPC-LDGM structure§. . S
We also acknowledge the students, faculty and sponsorgof te fllowing observations: o
Berkeley Wireless Research Center and support of the Centet) The min-cut upper bound for both channels are within
for Circuit & System Solutions (C2S2) Focus Center, one of ~ ©ne bit of each other (for any listening fractiofi

six research centers funded under the Focus Center Research [0 1])-

Program, a Semiconductor Research Corporation program. The mutual information across c(i§'}, { iz, D} remains
unchanged between the two channels. Consider the
APPENDIX mutual information across the cytS, R}, {D}. It is

known that SIC achieves the sum capacity of multiple-
access channels. In the original channel (ElgS2and

R have unlimited cooperation. As a result, the min-cut
bound for DBLAST incurs a power-gain loss of at most

(1 - f) bits.

QMF relaying scheme achieves the min-cut upper bound
to within one bit for the two channe[4].

The QMF relaying scheme introduces correlation between
xg andxg, which can be thought of as coding across transmit
antennas in a MIMO channel. A natural space-time architec-
ture for such a channel is DBLAST. Using DBLAST for the
relay channel has also been proposed_in [12][11][29][30]. | 2)
relies on introducing a delay of one block at the relay andgisi
successive interference cancellation (SIC) at the dd&ima
At the k-th block the destination receives the superposition of

the following:
. | f h . h d d 6{%] A. Avestimehr, S. Diggavi, and D. Tse, “Wireless netwanformation
« signal from the source containing the codeword sent flow: A deterministic approach/nformation Theory, IEEE Transactions

block k, namely,xs(my) on, vol. 57, no. 4, pp. 1872 —1905, april 2011.
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