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Buffer-Aided Relaying with Adaptive Link Selection

Nikola Zlatanov, Robert Schober, and Petar Popovski

Abstract

In this paper, we consider a simple network consisting of @re® a half-duplex decode-and-forward relay,
and a destination. We propose a new relaying protocol enmgogdaptive link selection, i.e., in any given time
slot, based on the channel state information of the sowles-rand the relay-destination link a decision is made
whether the source or the relay transmits. In order to avaid tbss at the relay, adaptive link selection requires
the relay to be equipped with a buffer such that data can baeglantil the relay-destination link is selected for
transmission. We study both delay constrained and delagnsti@ined transmission. For the delay unconstrained
case, we characterize the optimal link selection policyiveéghe corresponding throughput, and develop an optimal
power allocation scheme. For the delay constrained casprepose to starve the buffer of the relay by choosing the
decision threshold of the link selection policy smallerrttihe optimal one and derive a corresponding upper bound
on the average delay. Furthermore, we propose a modifiedskhdction protocol which avoids buffer overflow
by limiting the queue size. Our analytical and numericaulissshow that buffer-aided relaying with adaptive link
selection achieves significant throughput gains comparedriventional relaying protocols with and without buffers

where the relay employs a fixed schedule for reception amgmnéssion.

. INTRODUCTION

The classical three-node relay channel was originally icemed by van der Meulen [1]. Cover and El
Gamal [2] investigated the capacity of a memoryless relanokl consisting of a source, a destination, and
a single full-duplex relay. Recently, renewed interestdlay-assisted communication was sparked by [3]
and [4]. Since then, the simple three-node system has beadmiding block for more sophisticated relay
networks and a host of cooperative communication techsidiage been proposed [5]-[12]. The capacity
of a three-node relay channel comprised of a source, a déstin and a single half-duplex decode-and-
forward (DF) relay was investigated in [5]. Under the asstiompof full channel state information (CSI)
at every node, it was shown in [5] that the capacity of a thmege DF network without a direct source-

destination link is given by the minimum of the source-retand the relay-destination link capacities for

This paper has been presented in part at IEEE Globecom 2Qiistéh, December 2011.
N. Zlatanov and R. Schober are with the Department of Elmdtand Computer Engineering, University of British Coluayb/ancouver,
BC V6T 174, Canada, E-mail: zlatanov@ece.ubc.ca, rsci@bee.ubc.ca

Petar Popovski is with the Department of Electronic Systehasborg University, Denmark, E-mail: petarp@es.aau.dk.


http://arxiv.org/abs/1202.5349v2

the case when the relay employs a fixed schedule for receptidntransmission. In [5]-[12] and most
of the existing literature on half-duplex relaying, it issamed that the relays receive a packet from the
source in one time slot and forward it to the destination i miext time slot. Relay protocols operating
under this restriction are referred to as “conventionalayeprotocols in the following. In this paper, we
abandon this paradigm and give relays the freedom to deoidéhich time slot to receive and in which
time slot to transmit. This new approach requires the relaysave buffers. Relays with buffers were also
considered in [13] and [14]. In [13], the buffer at the relagsmsed to enable the relay to receive for
a fixed number of time slots before retransmitting the reambilnformation. In [14], relay selection was
considered and buffers enable the selection of the reldy thi#¢ best source-relay channel for reception
and the relay with the best relay-destination channel fangmission. However, similar to conventional
relay selection without buffers [15], the source transrmtevery other time slot. Thus, both [13] and [14]
do not fully exploit the flexibility offered by relays with fiers since the schedule of when the source
transmits and when a relay transmits is a priori fixed.

In this paper, we consider buffer-aided relaying with atl@dink selection, where in any given time slot
based on the CSI of the source-relay and the relay-destimktk a decision is made whether the source or
the relay transmits. We consider the cases of delay constiaand delay unconstrained transmission. For
the delay unconstrained case, we optimize the link selegiotocol and the power allocated to the source
and the relay. Interestingly, the optimal link selectioni@orequires only knowledge of the instantaneous
CSI of the considered time slot and the statistical CSI ofitivelved links. However, the instantaneous
CSI of past and future time slots and the state of the relayféeb are not required for optimal link
selection, which facilitates the implementation of theimal policy. For the delay constrained case, we
propose two alternative link selection protocols and pevén upper bound for the average delay of one
of them. Our analytical and simulation results show, in gagdeement, that buffer-aided relaying with
adaptive link selection can achieve large performancesgaompared to conventional relaying with or
without buffer [13], as long as a certain delay can be toéetat

The remainder of the paper is organized as follows. In Sedfiothe considered system and channel
models are presented. The proposed link selection profocdbuffer-aided relaying is introduced and
optimized in Sectiof Ill, and optimal power allocation fausce and relay is discussed in Section IV. In
Section[V, we propose two protocols for buffer-aided redgywith delay constraints. Numerical results

are presented in Section|VI, and some conclusions are dmagedtior VII.



1. SYSTEM MODEL

We consider a three-node communication system comprissmuecesS, a half-duplex relayR, and a
destinationD, cf. Fig.[1. The source can communicate with the destinatioly through the relay, i.e.,
there is no direcS-D link. The source sends packets to the relay, which decodse thackets, possibly
stores them in its buffer, and eventually sends them to ts&rdgion. Throughout this paper, we assume

that the source has always data to transmit.

A. Channel Model

We assume that time is divided into slots of equal lengthghénith time slot, the transmit powers of
source and relay are denoted By(i) and Pr(7), respectively, and the instantaneous (squared) channel
gains of theS-R and R-D links are denoted by:s(i) and hg(i), respectively.hg(i) and hy(i) are
modeled as mutually independent, non-negative, statypaad ergodic random processes with expected
valuesE{hs(i)} £ Qg and E{hy(i)} £ Qgr, whereE{-} denotes expectation. We assume that the channel
gains are constant during one time slot but change from ome s$iot to the next due to e.g. the mobility
of the involved nodes and/or frequency hopping.

The instantaneous link signal-to-noise ratios (SNRs) ef $hR and R-D channels in theth time
slot are given bys(i) £ vs(i)hs(i) andr(i) £ vr(i)hg(i), respectively. Hereys(i) = Ps(i)/o2, and
vr(i) = Pg(i)/o?, denote the transmit SNRs of the source and the relay, résplgcando?, . ando? = are
the variances of the additive white Gaussian noise (AWGNhatrelay and the destination, respectively.
The average link SNRs are denoted @y = E{s(i)} andQy = E{r(i)}.

B. Link Adaptive Transmission Protocol

In the proposed link adaptive transmission protocol, onthefnodes of the network is responsible for
deciding whether the source or the relay should transmit givan time sloti. This node is referred to
as the central node in the following. The central node brasidcits decision to the other nodes before
transmission in time slot begins. If they are selected for transmission, the sourcethe relay adapt
their transmission rates to the capacity of the respecinkednd transmit codewords spanning one time
slot. We assume that source and relay employ capacityaaogieodes. For both link selection and rate
adaptation, the nodes require CSI knowledge as will be leetan the following.

CSl requirements: The central node requires knowledge of the instantaneocaisneth gainsis (i) and

hr(i). In addition, regardless of which node is the central nodiei S-R link is selected, the source and



the relay require knowledge dfs(:) for rate adaptation and decoding, respectively. On therdihed,

if the R-D link is selected, the relay and the destination require kedge ofhz(i) for rate adaptation
and decoding, respectively. Nodes can obtain the instaatechannel gains through estimation based on
pilot symbols emitted by other nodes and/or CSI feedbaak fother nodes. Furthermore, we assume that
the central node knows the noise varianegs ando;. , and regardless of which node is the central node,

source, relay, and destination knawy_, (0. ,07 ), ando;. , respectively. Also, if the transmit power

2
ns’ - ngR ng’
is a priori fixed, i.e.,Ps(i) = Ps and Pg(i) = Pg, Vi, the central node requires knowledge &f and
Pr, and source, relay, and destination require knowledgBsof( Ps, Pr), and Pg, respectively. If power
allocation is employedPs(i) and Pr(i) are computed by the nodes based on their respective knogvledg
of the instantaneous channel gains and statistical CSI leulge (cf. Sectiof 1V,[(28)[(29)).

Which node serves as the central node depends on the netgbiteature. For example, in the downlink
of a cellular network, the source (base station) can serwbesentral node as it typically acquires the
full CSI of all links anyways and can afford the complexity pérforming adaptive link selection and
power allocation. On the other hand, if the relay serves ascémtral node, source and destination have
to acquire only the CSI of th&-R andR-D links, respectively.

For convenience we normalize the number of bits transmitteshe time slot by the number of symbols
per time slot. Thus, throughout the remainder of this pagher,number of bits refers to the number of
bits divided by the number of symbols in a codeword. In théofaing, we discuss the network dynamics
when source and relay transmit, respectively.

Source transmits; If the source is selected for transmission in time g|at transmits with rate
Ssr(1) = logy(1 + s(i)). (1)

Hence, the relay receive$sk (i) data bits from the source and appends them to the queue inffer.b
The (normalized) number of bits in the buffer of the relay ls &nd of time slot is denoted byQ ()
and given by

Qi) = Q(i — 1) + Ssr(i). (2)

Relay transmits: If the relay transmits in time slot, the number of bits transmitted by the relay is
given by

Rep(i) = minflogy (1 + (i), Qi — 1)}, @)



where we take into account that the maximal number of bitsdha be send by the relay is limited by the
number of bits in its buffer and the instantaneous capadith@R-D link. The number of bits remaining

in the buffer at the end of time slatis given by

Qi) = Q(i — 1) — Rrp(i), (4)

which is always non-negative because[df (3).
Because of the half-duplex constraint, we ha¥gp(i) = 0 when the source transmits (and the relay

listens), and we hav&sz (i) = 0 when the relay transmits.

C. Throughput

Since we assume the source has always data to transmit, éhegav(normalized) number of bits that
arrive at the destination per time slot is given by

N
7= lim i Z Rzp(i), (5)

N—=oo NV

i.e., 7 is the throughput of the considered communication systeme. Joal of the following sections is
the maximization ofr by optimizing the adaptive link selection protocol and trensmit power allocated

to source and relay.

D. Conventional Relaying

For comparison purpose, we provide the throughput of twelibes schemes. Thereby, we assume that
the transmit powers at the source and the relay are fixed,Hs€i) = Pg, Pr(i) = Pg, Vi.

1) Conventional relaying without buffeifhe instantaneous throughput of conventional relayin@avit
buffer, where the relay receives a packet in one time slottearsmits it in the next, is given in [5], and

the corresponding average throughput is

N/2
Fema £ Jim %;min{log2(1+s(2i—1)),10g2(1—|—7’(2i))}
= S B{min{logy(1 + (1)), logs(1 + (1)} }, ©)

where the ergodicity ofs(:) and (i) was exploited. Note that conventional relaying without feuf
introduces a delay of one time slot since the relay has to watil the entire codeword is received

and decoded before sending the codeword to the destination.



2) Conventional relaying with buffer [13]in conventional relaying with buffer as proposed in [13],
the relay receives data from the source in the fiygR (/V is even) time slots and sends this cumulative
information to the destination in the nexX{/2 slots. The corresponding maximum achievable average

throughput is obtained foN — oo and given by

N/2
A
Teconv,2 — ]\}l—rgo_mln Zlog2 1 + 5 %2 10g2 1 ‘|‘T’
1
= 5 min{E{logy(1+ s(2))}, E{logy(1 + (i) }}. ()

Comparing [(6) and (7), we observe thal,, > > Teony.1 holds [13]. However, to realize this performance
gain, the relay has to be equipped with a buffer of infinitee and an infinite delay is introduced.

3) Rayleigh fading:For the numerical results shown in Section VI, we consider ¢chse where the
S-R andR-D links are both Rayleigh faded, i.e., the probability dgnéiinctions (pdfs) ofs(i) andr ()
are given byf,(s) = e=*/%s /Qg and f,.(r) = e7"/?r /Qp, respectively. In this CaSEony,1 AN Tony 2 CaN

be obtained in closed form as

T - ex 2 + L E LR + s (8)
ol = oTn2) TP\ Qs ) T\ Qs0n
and
1 1 1 1 1
conv,2 — ' E =~ | E P , 9
Teom 21ﬂ(2) m {exp (QS) 1 (QS) o (QR) 1 (QR)} ©)
respectively, where?; (x f e~t/tdt, x > 0, denotes the exponential integral function.

[1l. ADAPTIVE LINK SELECTION

To gain some insight, we assume throughout this sectiont@onsource and relay powers, i.€5(i) =
Ps, Pr(i) = Pg, Vi, and a buffer of unlimited size at the relay. For this case desve the optimal link
selection policy and the corresponding throughput. Ogtipoaver allocation and the effect of a limited
buffer size will be discussed in Sections] IV dnd V, respetyiv

A. Problem Formulation

Let d; € {0,1} denote a binary decision variable. We get= 1 if the R-D channel is selected for
transmission in time slat, i.e., the relay transmits and the destination receivanil&iy, we setd; = 0 if

the S-R channel is selected for transmission in time $jate., the source transmits and the relay receives.



Exploiting d;, the number of bits send from the source to the relay and flemrelay to the destination

in time sloti can be written in compact form as
Ssr(i) = (1 —d;)S(i) (10)
and
Rep(i) = dymin{ (i), Q(i — 1)}, (11)

respectively, wheres (i) = log, (1 + s(i)) and R(i) = log,(1 4 7(i)). Consequently, the throughput {0 (5)

can be rewritten as
1 . : :
7= lim N E d; min{R(7),Q(i — 1)}. (12)

The considered problem can now be stated as follows: Fincoptienal link selection policy, i.e., the
optimal sequencé;, i > 1, which maximizes throughput.

Remark 1:Our problem formulation is quite general in the sense thahae introduced no restrictions
concerning the required knowledge regarding the chanreetf@queue states. In other words, the optimal
decision at timej, d;, potentially depends ohg(i), hr(i), and@(i), i > 1, and thus requires non-causal
channel knowledge. Fortunately, as will be shown in the ergsgection, this is not the case and the

optimal policy turns out to be rather simple and easy to immgaet.

B. Optimal Link Selection Policy

Let us first define the average arrival rate of bits per slat the queue of the bufferl, and the average

departure rate of bits per slot out of the queue of the bufferas [16]

fo I |
A% lim N;u—di)S(z) (13)
and
= ngréo—Zd min{R(i), Q(i — 1)}, (14)

respectively. We note that the average departure rate ajubee is equal to the throughput. The queue is
said to be absorbing il > D = 7. The following theorem characterizes the optimal link sgte policy

in terms of the state of the queue in the buffer of the relay.



Theorem 1:A necessary condition for the optimal link selection paliaghich maximizes the through-
put, is that the queue in the buffer of the relay is at the edgeoo-absorbtion, i.e., the queue is non-
absorbing but is at the boundary of a non-absorbing and aorlaibg queue.

Proof: Please refer to Appendix]A. [ |
Exploiting TheorenfIl, we can establish a useful conditicat the optimal link selection policy has to
fulfill and a simplified expression for the throughput. Thestihe subject of the following theorem.

Theorem 2:Assuming non-negative, ergodic, and stationary randoncgssess(i) and (i), for the

optimal link selection policy the identity
E{(1—d;)S(i)} = E{d;R(i)} (15)
holds and the throughput is then given by

7= E{d;R(7)}. (16)
Proof: Please refer to Appendix] B. [
Remark 2:According to Theoreml2, for the optimal link selection pglithe queue is non-absorbing
but is almost always filled to such a level that the number ¢ i the queue exceed the number of
bits that can be transmitted over tiReD channel. In particular, as shown in Appendix B, conditioB)(1
automatically ensures that fo¥ — oo, + 3" &;R(i) = + 32N, d; min{R(i), Q(i — 1)} is valid, i.e.,
the impact of evenf?(i) > Q(i — 1), i =1,..., N, is negligible.
We are now ready to derive the optimal link selection polioy lbuffer-aided relaying. According to
Theoreni®, the policy that maximizes the throughpirnt (18) can only be found inside the set of policies
that produce a queue which satisfies| (15), and not outsidei®fet of policies. Thus, foN — co, we

formulate the following optimization problem:

Maximize : % Zfil d; R(i)
Subject to: Cl: %3N (1—d;)S(i) = %%, d;R(3) 17)
C2:xdi(1—d;) =0 Vi
where constraint C1 ensures that the search for the optiatialygs conducted only among those policies
that satisfy [(I5) and C2 ensures thiate {0,1}. We note that C1 and C2 do not exclude the case that
the relay is chosen for transmission/ifi) > Q(i — 1). However, according to Remalk 2, C1 ensures that
the influence of eveni(i) > Q(i — 1) is negligible. Therefore, an additional constraint deglvith this

event is not required. The solution of probleml(17) leadsh following theorem.



Theorem 3:The optimal policy maximizing the throughput of buffer-adirelaying with adaptive link

selection is given by

1 if F(r(i)) > pF(s(i
L (r(0)) 2 pF(5(0)) (8
0 otherwise
wherep is referred to as the decision threshold and the optimalkaetifunction is given by
F(z) = logy(1 + z). (29)
The optimal decision threshold p.,:, has to satisfy[(15).
Proof: Please refer to Appendix| C. [

Remark 3:Interestingly, we observe from Theordm 3 that the optimalisien, d;, at time slot,
depends only on the instantaneous SNR$) andr (i), of that time slotd; does not depend on the state
of the queue()(i), in any time slot nor on the instantaneous SNRs in previousitare time slots. This
makes the proposed optimal selection policy highly prattid/e note that the optimal decision threshold,
popt, depends on the statistical CSI of both involved links ad bl established in the next section. The
independence of the optimal link selection policy from reausal instantaneous CSI is caused by the
relay being operated at the edge of non-absorbtion, i.e.refay node is practically fully backlogged.
Non-causal knowledge would only help buffer managemeaet, @nsuring that there is a sufficient number
of bits in the buffer for upcoming time slots), which is nogjugred in the considered regime.

Remark 4:In this paper, we assume that the transmitting nodes hafegbe&ZSl and apply adaptive
rate transmission. However, we note that this is not necggea achieving the maximum throughput in
(@8). In fact, the proposed adaptive link selection protd@d8) also achieves the maximum throughput
in (18) if source and relay transmit long codewords that sfideally infinitely) many time slots (and
consequently many channel states). In this case, both tireesand the relay can transmit with constant
rate r = E{(1 — d;)S(i)} = E{d;R(i)} and rate adaptation is not necessary. The first codeword is
transmitted by the source without link adaptation and deddaly the relay. For all subsequent codewords,
link adaptation is performed based 6nl(18) and source aayg telnsmit parts of a long codeword whenever
they are selected for transmission. The disadvantage ©&fiproach is that the long codewords inherently
introduce (ideally infinitely) long delays and the generation of this approach to the delay constrained
case is difficult. Therefore, in this paper, we consider &depate transmission and assume that one

codeword spans only one time slot (and consequently onenehatate).
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C. Generalization of the Decision Function and Optimal Bem Threshold

The optimal decision function in_(119) is intuitively pleasisince it basically means that link selection
is performed based on the instantaneous link capacitiegerieless, for some fading distributions, the
optimal decision function may lead to complicated exp@ssifor the throughput and the optimal decision
thresholdp,,.. In such cases, simpler suboptimal decision functions sisch(z) = + may be preferable
as they generally lead to a similar performancerds) = log,(1 + =) but are analytically more tractable.
Thus, in the following, we generalize the decision functidf{z), to be any non-negative, smooth, and
increasing function, i.e F(z+¢) > F(x) for e > 0. We assume that the inverse Bf-) exists and denote
it by F1(-).

We note that Theorenig 1 aftl 2 also hold for suboptimal decisinctionsF(z). For a givenF(x),
the corresponding decision thresheldhas to satisfy[(15). Thus, the optimal decision threshalgl, for
a given (optimal or suboptimal) decision functiof(z), can be computed based on the following lemma.

Lemma 1:Denote the pdfs of(i) and (i) by f(s) and f,.(r), respectively. For a given decision
function, F(x), the optimalp,, is the solution of

/ h [ / " logy(1+ 9) fs(s)ds] £.(r)dr = / h [ / " dogy (14 ) fu(r)dr | £(s)ds, (20)

0 G(r) 0 H(s)
where the integral limits are given by (r) = F~'(F(r)/p) and H(s) & F~ (pF(s)).

Proof: The left hand side of(15) is the expectation of variaflle- d;) log,(1 + s(4)). This variable

is nonzero only whenl; = 0. From [18) we observe that, = 0 if pF(s(i)) > F(r(i)), which is

equivalent tos(z) > F~1(F(r(i))/p). Therefore, the domain of integration for calculating tkpextation
of (1 — d;)logy(1 + s(i)) is s(i) > F1(F(r(i))/p) andr(i) > 0, which leads to the left hand side of
(20). Using a similar approach, the right hand side[ol (20)b&ained from the right hand side &f(15).

This concludes the proof. [ ]
Remark 5:Eq. (20) reveals that the optimal decision thresholg,, depends indeed on the statistical

properties of both involved links as was already alludednt&emarkB.

D. Rayleigh Fading

For concreteness, we provide in this subsection expressmrp,,, and the corresponding maximum
throughputr,., for Rayleigh fading links. Thereby, the optimal and a subopt decision functionF(-)
are considered.
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1) F(x) = «: In this case, the limit€7(r) and H (s) in (20) are given byG(r) =r/p and H(s) = ps.

Thus, after some elementary manipulatiofis] (20) simplifies

1 1 1 1 QR QR+pQS QR+pQS
— B =) - — VB — ) - =—E ulUBLNUALAS ) S et LG
P (Qs) ' (Qs> o <QR> ' <QR> Qr + pls P ( QsQp ) ' < QsQp
pQls <QR + PQS) (QR + PQS)
+———exp| ——— | B4 | ———— ] =0. 21
Qr + pS2s P P22k ' PSlsSp (21)
The optimal value ofp for F(z) = x, popt.1, Can be obtained froni (21) via a simple one dimensional
search.

The corresponding maximal throughput can be obtained ftom, = F{d;log,(1+r(7))} and is given
by

- 1 1 1 1 pQS Qr + pQS Qp + pQS
Tmax,1 = 111(2) exp <QR) El (QR) 111(2) QR -+ pQg P < stQR ) El ( stQR ’ (22)

wherep = pop.1.
2) F(z) =logy(1+ z): In this case, we havé&'(r) = (1 +r)% —landH(s) = (1+s)”—1in 20).
Thus, after some manipulations, we obtain frdml (20)

/OOO [exp <_%> In ((7‘+ 1)%> +eTs By <(r ;;);> } x QLReXp <_QLR) dr

_/OOO [exp G%) In (s + 1)°) + e E, <(Sg;)p) ] x Qisexp (-Qis) ds = 0. (23)

The optimalp, popt2, can be found numerically froni_(R3). The corresponding mmaxn throughput is

obtained as

1 > (s+1)—1 ) o (s+ 1) LX s
Tmax’g—m/o {exp(—T)xln((stl))%—e ,E1< 0 )}Qse p( QS)als,(24)

where p = pop2.
3) Special case(ls = Qg): For the special cas@s = Qr = , we obtain from [(21) and(23)

Popt,1 = Popt,2 = 1, and the corresponding maximal throughput is

1 1 1 1 2 2
Tmax Tmax,l TmaX,Z 1n(2) CeXp (Q) 1 (Q) 2 11’1(2) P (Q) ! (Q) ( 5)

Comparing this throughput with the throughput achievablé wonventional buffer-aided relaying without

adaptive link selection, cf[{9), the gain of adaptive lirddestion can be characterized by

e/ Teome2 = 2 — €XD (%) By (%) / {exp (é) B (é)} >1, (26)
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where the ration,.x/7conv.2 Monotonically increases from 1 to 1.5 &sdecreases fromo to zero. We
note that the results in SectibnlVI reveal that the gain opéida link selection is minimum fof2g = Qp,
cf. Fig.[2.

Remark 6:From (18) it is easy to see that for= 1 the decision functions”(x) = log,(1 + z) and
F(x) = x are equivalent in the sense that they lead to the same desiditence, both decision functions
lead to identical throughputs,ax = Tmax1 = Tmax,2. HOWever, forQls # Qr, popt1 # pPopt,2 7 1 holds,

and the decision functions are no longer equivalentands > 7.x1 holds.

IV. POWER ALLOCATION

So far, we have assumed that the source and relay transmérp@ne fixed. In this section, we jointly

optimize the power allocation and link selection policies lbuffer-aided relaying.

A. Problem Formulation and Optimal Power Allocation

Our goal is to jointly optimize the link selection variable and the powers’s(i) and Pr(i) in each
time sloti such that the throughput is maximized. For convenience, pteneze in the following the
transmit SNRs without fadings (i) and~z(i), which may be viewed as normalized powers, instead of the
powersPs(i) = vs(i)o,, and Pg(i) = yr(i)o,. themselves. For a fair comparison, we limit the average
(normalized) power consumed by the source and the reldy fthis leads forN — oo to the following

optimization problem:

Maximize : &+ SV d; log, (1 + 1) hr(i
vs(@)>07r()>0d; 2=t 4i1085(1+ 7R (D) A (1))

Subject to:  CL: {35, (1 = di)loga(1 +7s(Dhs(i)) = 5 3oL, dilogy (1 + 1r(Dhr(i) (57
C2: %di(l —d;)=0
C3: % Y (1= di)s(i) + % Xy diym(i) < T
where constraints C1 and C2 are identical to the constrair{fEd) and C3 is the joint source-relay power
constraint. The solution of Probler (27) is summarized m fibllowing theorem.
Theorem 4:The optimal (normalized) powers;(i) and~yg(:) and decision variablé; maximizing the

throughput of buffer-aided relaying with adaptive linkesgtion while satisfying an average source-relay
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power constraint are given by

o - {p/x—l/hsm i hs(i) = \/p 28)
0 otherwise

- {1/)\—1/hR(z’) hnli) > 29)
0 otherwise

1t I (M50) 4 25 = 1> pln (8hs(0)) + 525 — p AND hin(i) > A AND hs(i) > 2|
d; = OR [hR(z’) >\ AND (i) < %} (30)
0 otherwise
where the optimap, p.pt, and the optimal\, \..;, have to satisfy C1 and C3 if_(27) fo¥ — oo with
equality.

Proof: Please refer to AppendixID. [ |
Remark 7:Similar to the case without power allocation discussed intiSe [l it is also possible
for the case with power allocation to simplify the link selen policy in (30). For example, a simple

suboptimal link selection policy which only depends on thstantaneous channel gaihg(i) and hg ()
but is independent of the transmit powergi) and~z(i) may be adopted at the expense of some loss in
performance. However, in this paper, we do not pursue suhaptink selection policies for the case of

power allocation because of space limitation.

B. Finding the Optimal\ and p

The following lemma establishes two equations from whiah eptimal A and p can be found.

Lemma 2:Denote the pdfs ohgs(i) andhg(i) by fns(hs) and f,,(hr), respectively. Let the transmit
powers of the source and the relay in time sidie given by [(2B) and_(29), respectively, and the link
selection variabl@; by (30). Then, the optimal, p.pt, and the optimahl, A, maximizing the throughput

of buffer-aided relaying with adaptive link selection amulygr allocation have to fulfill the following two

equations

/OA [/;: log, (%) fhs(hs)dhs} frg(hr)dhr + /:O [/LOO <%) fhs(hg)dhg] frn(hr)dhg

1

p 00 o -
B /0 M e (hTR) th<hR>th} fus (hs)dhs + A . { /L log, (%R) th<hR>th} fus(hs)dhs .
(31)
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/oA |:/)\: (g B hl ) fhsms)dhs} Ju(h)dhr + /:O {/:> ( ) fhs(hs)dhs} Sun(hr)dhg
4 /0 v { /A N G - hl )th(hR)th} fus(hs)dhs + A Z { / ( ! )th(hR)th} Fo(hs)dhs

= (32)

where

L = - A Ly=— A
b W B ) )T T W (e (3 (phs)))

Here, W (-) is the Lambertl -function [17], which is available as built-in function irofware packages

(33)

such as Mathematica. The maximum throughput is given byedfigdnd right) hand side of (B1).

Proof: Please refer to Appendix E. [ |
To find A\, and p.pe meeting [(31) and (32), a two dimensional search ovenall 0 andp > 0 has to
be conducted or built-in root-finding functions of commealigi available software such as Mathematica
can be used. The optimaland p can be found offline sincé_(B1) and {32) only depend on thésttat
properties of theS-R and theR-D links. Since these statistical properties change on a migeves time

scale than the instantaneous channel gaips,and p.,, can be updated with a low rate.

C. Rayleigh Fading

For the special case of Rayleigh fading with, (hs) = e "/ /Qg and f,,(hg) = e /%1 /Qp, @)
can be simplified to

1 o —)\/QR i o0 —Ll/QS p—[/l & —hR/QR
_ _ oM (p02s) A /Oo “L»/Og Lo & e—hs/Qs
e [(1 e )E1 a )" D (=) + B o o dhg | (34)

and [32) can be simplified to

L1 _ _
(1— /o) | Lem/ons) — M + / TP nns B (g)) e /e
A QS A A QS QR
2 0, _ (L> > 2 <—L—2> —hs/Q
1 1\ 1 | (& s/
1 — o= M(p2s) LN \Or) / J U \ % " P——
+< € ) )\6 o + v )\e o, 5 S . (35)

whereL; and L, are given in[(3B) and the maximum throughput is given by tiie(énd right) hand side
of equation [(34).
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V. DELAY LIMITED TRANSMISSION

So far, we have assumed that there is no delay constrainthandhte size of the buffer at the relay is
infinite. In practice, there is usually some constraint andklay and on the buffer size. In this section, we
investigate how these constraints affect the performaftieeoproposed relaying protocol. For simplicity,
we assume fixed transmit powers, i.Bg(i) = Ps, Pr(i) = Pg, Vi, and consequently, polici (IL8) is used
for link selection.

Since we assume that the source is backlogged and has ahfageation to transmit, for the considered
three-node network, the transmission delay is caused ontyd buffer at the relay. Let’'(:) denote the
delay of a bit that is transmitted by the source in time glahd received at the destination in time slot
i+T(i), i.e., the considered bit is stored i) time slots in the buffer. Then, according to Little’s law

[18] the average delay/{T'(i)} (i.e., the average time that a bit is stored in the buffer)ivemgy by

E{T(i)} = E{Q(i)}/A, (36)

where E{Q(i)} is the average queue length at the buffer anid the average arrival rate into the queue.
E{Q(i)} is given in bits andA is given in bits/slot. Thus, the average delBy7'(i)} is given in time
slots. From [(36), we observe that the delay can be contreil@dhe arrival rate and the queue size. In
the following, we will present two different approaches tjust the arrival rate and the queue size. The
first approach is to “starve” the buffer, i.e., we intentittywdimit the arrival rate by choosing < popt.

The second approach is to limit the buffer size by forcingriday to transmit if the buffer gets full.

A. Satisfying an Average Delay Constraint by “Starving” tBaffer

Starving the buffer is a common approach for limiting averdglays in queueing systems [19], [20]. In
our case, we can decrease the average arrival rate by sglgcti p,,. which leads toE{(1—d;)S(i)} <
E{d;R(i)}. In the following theorem, we establish an upper bound fer réssulting average delay.

Theorem 5:Let p < pope in (A8) such that = E{(1—d;)S(i)}/E{d;R(i)} < 1. In this case, assuming
slot-by-slot uncorrelated fading the average delay inssi®tounded by

ol 1 B0 d)S0) +ER - OE{AR)
SOE(I-d)SW)  B{dRG)) — B{(1 - d)S0))

and the throughput is given by= E{(1 — d;)S(i)}.
Proof: Please refer to Appendix F. [ |

E{T(5) (37)
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Remark 8: Exploiting (37) the required value @f< p,, to ensure a desired average delay can be found.
For example, assuming(z) = = and Rayleigh distributed-R and R-D channel gains the expected

values required in(37) can be obtained as

. o 1 1 1 QR QR+pQS QR+pQS
=0 =g o (57 £ () - e (P ) 2 (e, ) 00
N 1 1 pQls Qr + pS2s Qr + s
BAdRG)} = In(2) [exp (Q—R) b (Q—R> T Ot Y < PsQp ) b ( P58k )] 9)
00 0o —s/Qg —r/Qr
B{(1 — d;)S2(i)} :/O U (logy (1 + 5))2= o ds] ‘ P (40)

/p
0o 00 —r/Qr —s/Qg

plar) = 7| [ tom e nptg i €
0 sp QR QS

Inserting now [(3B)E(411) into[(37), the value pfguaranteeing a certain average delay can be found by

ds. (41)

slowly increasingp from zero until the right hand side df (37) equals the desaegtage delay{7'(7)}.

If the buffer size is limited, there is a non-zero probapititat the bits arriving into the buffer have to
be dropped because the buffer is full, even if the buffer asvetd. However, the probability of this event
happening can be minimized by properly choosing the buffer sompared to the desired average delay.
This issue is addressed in the following lemma.

Lemma 3:Denote the maximum queue size BY,... Then, we can bound the probability that the

queue in the buffer exceeds,., as

Pr{Q(i) > Quax} < E{Q(1)}/CQmasx- (42)
Proof: The proof follows directly from Markov’s inequality. [ ]
We can guarantee any prescribed probability of dropped Bit&Q) (i) > Qm.x}, by selecting appropriate
values forp and Q... based on[(42) and (64) given in Appendix F. The resultingubhput is given by
T = E{(1-d)S()|Q() < Qmax}Pr{Q(i) < Qmax} = E{(1 = d;)S()}Pr{Q(i) < Quax}
= E{(l - dz)S(Z)}(l - PI‘{Q(Z) > Qmax})> (43)
for which a lower bound can be found by combinigl(42).] (43)] #3).

B. Satisfying the Delay Constraint by Limiting the Queuee Siz

For the scheme proposed in the previous subsection drodfedrke unavoidable. In this subsection,
we propose an alternative approach which allows us to avagped bits. Let the buffer size again be

limited to Q... bits. The proposed scheme employs the following link selagbrotocol:
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1) If Quax — Q(i — 1) > S(7), selectd; based on[(18).

2) Otherwise, setl; = 1.
Hence, if there is enough room in the buffer to accommodaebits possibly sent from the source to the
relay, the link selection protocol introduced in Sectiokhisl employed. On the other hand, if there exists
the possibility of a buffer overflow, the relay transmits &mluce the amount of data in the buffer.

Remark 9: Although conceptually simple, a theoretical analysis a# throughput of the queue size
limiting protocol is difficult. In contrast to the buffer stang protocol discussed in Section V-A, for the
queue size limiting protocol, the average arrival rdtedepends on the frequency with which the buffer
has to be emptied due to a full queue. The frequency of theset®wlepends in turn on the average
arrival rate. This mutual dependence of average arrival @aad emptying the buffer makes a meaningful
theoretical analysis difficult. Thus, we will resort to silations to evaluate the performance of the queue
size limiting protocol in Sectioh VI.

Remark 10:We note that both proposed protocols for the delay congidaase are heuristic in nature.
The search for other protocols with possibly superior penmce is an interesting topic for future work.
The proposed protocols for the delay constrained and tregy delconstrained case can serve as benchmark

and performance upper bound for these new protocols, risplgc

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we evaluate the performance of bufferéiB& relaying with adaptive link selection
and compare it with that of conventional relaying. Througihthis section, we assume Rayleigh fading.
All results shown in this section have been confirmed by cdemsimulations. However, the simulations

are not shown in all instances for clarity of presentation.

A. Delay Unconstrained Transmission

First, we assume that there are no delay constraints anstigate the achievable throughputs with and
without power allocation.

1) Throughput of Buffer-Aided Relaying with Adaptive LirddeStion: We first consider the case of
fixed transmit powers. In Fig] 2, we show the ratio of the optithroughput of buffer-aided relaying with
adaptive link selections,.., and the throughput of conventional relaying with a buffey,, », given in [9),
as a function of)y /¢ for several different values d2s. The corresponding optimal decision thresholds,

popt» fOr buffer-aided relaying with adaptive link selectioreashown in Fig[ . For buffer-aided relaying
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with adaptive link selection, we considered the decisioncfions F(z) = = and F(z) = log,(1 + z)
and calculated the corresponding throughputs based_dna(®2)24), respectively. The optimal decision
thresholds were obtained froh_{21) and]1(23), respectivelgarly, buffer-aided relaying with adaptive
link selection leads to substantial throughput gains coegpao conventional relaying. Both considered
decision functions lead to very similar performances, altfh at very high ratio$)z /25 the optimal
decision function(z) = log,(1 + =) yields a small throughput gain. The ratiQ./7onv.2 @pproaches
two asQr/Qs — 0 and Qi /Qs — oo. For Qr/Qs — 0, the source-relay link is selected very rarely for
transmission (ag,,: — 0) since comparatively large amounts of data can be traesféa the relay in a
single time slot. Thus, the relay can almost always tranamgdompared to half of the time in conventional
relaying. On the other hand, fér;/Q2s — oo, it is the relay-destination channel that is used very yaasl
popt — 00 and the source can transmit almost all the time, which resulftwice the throughput compared
to conventional relaying.

2) Throughput with Power Allocationtn Figs.[4 and 5, we investigate the gains achievable withgoow
allocation (PA) for a system witklg = 0.1 and Qz = 1.9. Thereby, we compare the performances of
buffer-aided relaying with adaptive link selection and wemtional relaying with and without a buffer. For
buffer-aided relaying with adaptive link selection and eowallocation the throughput, power allocation,
and link selection policy were obtained as described in Té®d4 and Lemmal2 in Sectidn |IV. For
conventional relaying with buffer, a similar optimal powatocation scheme as for buffer-aided relaying
with adaptive link selection was adopted with variable p@wve(i) = max{0,1/a—1/h;(i)}, j € {S, R},
whereq is chosen such thadt{~;(:)} = I'. For comparison, in Fig&l 4 afdl 5, we also show the performanc
of both considered relaying schemes without power allooafie., we sets(i) = yr(i) = I'. Furthermore,
to highlight the gain compared to conventional relayinghwiit buffer and without power allocation, in
Fig.[4, we normalized the throughput with respectiQ, ; as given by[(B). Fig$.]4 ard 5 show that optimal
power allocation can improve performance of both buffeledi relaying with adaptive link selection and
conventional relaying. For example, for= 0 dB buffer-aided relaying with adaptive link selection and
power allocation leads to a throughput gain of 95 % compapecbtventional relaying with buffer and
power allocation. Nevertheless, the gain achievable bytagalink selection is more significant than the
gain from power allocation. For example, lat= 20 dB, adaptive link selection yields a throughput gain

of 1 bit/slot compared to conventional relaying with buffer
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B. Delay Constrained Transmission

We now turn our attention to delay limited transmission amdestigate the performance of the two
proposed protocols for this case. In the following we assuneorrelated fading. Furthermore, we assume
fixed transmit powers for the source and relay, and adoptubepgimal decision functiotF(z) = z.

1) Starving the Buffer:In Fig.[8, we show the ratio of the throughput of buffer-aidethying with
starved buffer;n,.., and the throughput of conventional relaying without buyfte,,, ;, as given in[(B),
as a function of the upper bound on the average delay. Thesmonding decision thresholds, are
shown in Fig[¥. For the theoretical results shown in Higsné[@ the throughput and the upper bound
on the average delay for buffer-aided relaying with starvefier were obtained based on Theorem 5 and
Remark8. A comparison of the theoretical results with tmeusation results also shown in Fig. 6 reveals
that the derived upper bound on the delay is tight, espgdiatlilarge delays. On the other hand, for very
small delays, buffer-aided relaying with starved buffecdnaes inefficient since the starving of the buffer
decreases the average queue size and increases the prpllahilthe relay is selected for transmission
when R(i) > Q(i — 1). In fact, Fig.L6 shows that for very small delays buffer-aidelaying with starved
buffer may be even outperformed by conventional relayintheuit buffer. As expected, the throughput
of buffer-aided relaying increases with increasing tddgadelay andp approaches the optimal value for
the delay constrained case,,. (computed from[(21)), for large delays. The required detaychieve a
throughput gain compared to conventional relaying inasasith increasings-{2x ratio since for large
Qs/Qr and small tolerable average delays, the arrival rate intobtiffer has to be severely limited (i.e,
p has to be chosen very small) which has a negative impact othtbeghput which, by the conservation
of flow, is equal to the arrival rate.

In Fig. [8, we show the probability of a dropped bit as a functad the buffer sizeQ,,.. for three
different average delays anfels = 2z = 1. These results were obtained via simulations since the doun
obtained in [(4R) is relatively loose due to the looseness afliglv’s inequality. Figl18 shows that the
probability of dropping a bit rapidly decreases with in@ieg buffer size and decreasing average delay.

2) Limiting the Queue Sizeln Fig.[d, we show the throughput achieved by limiting the upisize,
Timit, @and the throughput achieved by starving the buffgr,.., normalized by the throughput of con-
ventional relaying without bufferr...,1, as given in[(B), for symmetric and asymmetric link quaditie
For comparison, Fig.]9 also contains the throughput of delagonstrained buffer-aided relaying with

adaptive link selection, which constitutes an upper bourdtlie throughput in the delay constrained
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case, and conventional relaying with buffer as proposedL8j. [For conventional relaying with buffer,
the relay drops information bits if the achievable rate & SR link in the first NV/2 time slots exceeds
the achievable rate of thR-D link in the secondV/2 time slots. All results shown in Figl] 9 have been
obtained by simulations. Figl 9 reveals that the perforreafdoth delay constrained buffer-aided relaying
protocols is comparable for large delays and approachéstiiae delay unconstrained protocol. For small
delays, limiting the buffer size yields a higher throughth&n starving the buffer. However, both proposed
protocols may be outperformed by conventional relayindgwamd without buffer for very small delays as
for the proposed simple protocols, the relay may be selefttetransmission even iRR(i) > Qi — 1).
While this event has negligible effect for delay unconstedi transmission since the optimal link selection
policy ensures that the queue is sufficiently long such fh@) > Q(: — 1) is avoided (cf. Remark]2),
this is no longer true for the delay constrained case. Thezeffor the delay constrained case, more

sophisticated protocols should be developed that takeaotount thatz(i) > Q(i — 1) may occur.

VIl. CONCLUSIONS

In this paper, we proposed a novel adaptive link selectiatogol for relays with buffers. In contrast
to conventional relaying, where the source and the relaystrét according to a pre-defined schedule
regardless of the channel state, in the proposed schemaysattve node with the stronger link is selected
for transmission. For delay unconstrained transmissian derived the optimal link selection policy for
the cases of fixed and variable source and relay transmitnso®Remarkably, in both cases, the optimal
policy for a given time slot only depends on the instantase®8l of that time slot and the statistical CSI
of the involved links. This makes the optimal policies attinge for implementation. For delay constrained
transmission, we proposed two different methods to corttrel delay introduced by the buffer at the
relay. Furthermore, for the case when the buffer is starwedderived upper bounds on the average delay
and the number of dropped bits for limited buffer size. Oualgiical and simulation results showed that
buffer-aided relaying with adaptive link selection is a pising approach to significantly increase the
throughput compared to conventional relay-assisted mmégsson. Interesting extensions of the presented
work include using the considered simple three-node ndtvasra building block for larger networks,

studying the impact of imperfect CSl, and deriving the oatagobability for fixed rate transmission.
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APPENDIX
A. Proof of Theorem]1

We first note that, because of the law of the conservation of, flb > 7 is always valid and equality
holds if and only if the queue is non-absorbing. Assume fisthave a link selection policy with average
arrival rate A and throughput- with A > 7, i.e., the queue is absorbing. For this policy, we denote the
set of indices withd; = 1 by I and the set of indices with; = 0 by I, i.e., for N — oo we have

A= %;(1 _d)S(i) > T = %iezfdi min{ R(i), Qi — 1)}. (44)
From (44) we observe that the considered protocol cannotplienal as it can be improved by moving
some of the indices in I to I which leads to an increase of at the expense of a decrease 4f
However, once the poiml = 7 is reached, moving more indicégrom I to I will decrease bot andr
because of the conservation of flow. Thus, a necessary comdidtr the optimal policy is that the queue
is non-absorbing but the queue is at the edge of non-absorhte., the queue is at the boundary of a

non-absorbing and an absorbing queue. This completes tod. pr

B. Proof of Theorerl2

We denote the sets of indicégor which d; = 1 andd; = 0 holds byl and I, respectivelys denotes a
subset off and|- | is the cardinality of a set. Throughout the remainder of gmof N — oo is assumed.

If the queue in the buffer of the relay is absorbimy,> 7 holds and on average the number of bits
arriving at the queue exceed the number of bits leaving tleiguThus,R(i) < Q(i — 1) holds almost
always and as a result the throughput can be written as

_— %Zmin{R(i),Q(i 1)y = %ZR(@'). (45)

iel iel
Now, we assume that the queue is at the edge of non-absarptiat is A = 7 holds but moving a

small fractione, where|e|/N — 0, of indices fromI to I will make the queue an absorbing queue with
A > 7. For this case, we wish to determine whether or not
1 . 1 : : : 1 :
NZR(@) >7= Nme{R(@),Q(@— ) =A= NZS(Z) (46)
iel iel iel
holds. To test this, we move a small fractionwhere|e|/N — 0, of indices from/ to I, thus making the
queue an absorbing queue. As a res[lf] (45) holds, [and (4®nies
1 : 1 . : : 1 :
~ > R(i)=7= ~ > min{R(),Q(i — 1)} < A= ~ > S, (47)

iel\e iel\e i€lUe
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From the above we conclude that[if {45) holds, then base@@na@d [(4Y), forie| /N — 0, we must have

SR > 3 80) (48)
iel iel
and
% Z R(i) < % ; S(i). (49)
icl\e icIUe

However, for [48) and[(49) to jointly hold, we require thaetparticular considered moving of indices
.7 R(1) orland a discontinuity int- >~._; S(i) as|e|/N — 0
e S(i)/N — 0 and

limy o Y ;e R(7)/N — 0, such discontinuities are not possible. Therefore, at tige @f non-absorption

from I to I has caused a discontinuity i >~ el

is assumed. Since the capacities of §#& and R-D links are such thalimy .. >

(49) is not true and we must have instead

%Z R() = 7 = %Z min{R(i), Q(i — 1)} = A — %Z S(i) (50)

iel iel el
Using the the ergodicity of(i) andr (i), (50) can be expressed &s](15), and the throughput can Herwrit
as [16). This concludes the proof.

C. Proof of Theorerl3

The Lagrangian for Problenh (IL7) is given by

1 N

N N
L= 5 SR — e SR — (1 - d)S6)] — - D A1~ db), 51)
i=1 i=1 =1

wherep, and g; are Lagrange multipliers. Differentiating with respect tal; and setting the result to zero
leads to

(=14 WRG) + pS() + B

20;

For d;(1 — d;) = 0 to hold, we need eithef; = 0 or d; = 1, which leads to two possible values fgy.

di:

(52)

di=0= Bin = (1—p)R(E) — pS() (53)
di=1= Bip = —fi1 (54)

For the maximum ofZ in (B1), 5; < 0, Vi, has to hold. Furthermoré, < i < 1 has to hold since for

p <0 andu > 1 we have alwaysl; = 1 andd; = 0, respectively, irrespective of the values Bfi) and
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S(i). Hence, we have

. { 1 (1= w)R() — pS(i) = 0 5)

0 if (1 —p)R(E)—pSE) <0
which is identical to[(IB) withF (z) = log,(1+x) if we setp = u/(1— ). p or equivalentlyp are chosen
such that constraint C1 of Problem117) is met. This compléte proof.

D. Proof of Theorenhl4

To solve Problem[(27), we form the Lagrangian
N

L= % Z d;log,(1 + vr()hr(i)) — M% > [di log (1 +vr(i)hr(i)) — (1 — d;) logy(1 + %*(’i)hs(i))]

i=1

N N
. , 1
-V — [(1 — d;)ys(i) + dﬂR(Z)] N ;@'di(l —d;), (56)
where the Lagrange multipliefs (;, andv are chosen such that C1, C2, and C3 are satisfied, respgctivel

By differentiating £ with respect toys(i), vz(7), andd;, and setting the results to zero, we obtain three
equations. Solving this system of equations fefi), yr(7), andd;, and taking into account that < 0,

0 < u < 1,andv > 0, we obtain [(2B),[(29), and (BO) after lettipg= /(1 —p) and X = v1n(2)/(1 — p),
which are chosen such that constraints C1 and C3 are meeequility. This completes the proof.

E. Proof of Lemma&l2

Sinces(i) andr(i) are ergodic random processes, fér— oo, the normalized sums in C1 and C3 in
(Z7) can be replaced by expectations. Therefore, the leftl lIséde of C1 is the expectation of variable
(1 — d;)logy(1 + vs(i)hs(i)). This variable is nonzero only when both — d;) and~s(i) are nonzero.
The domain over whiclil — d;) and~s(i) are jointly nonzero can be obtained from](28) aind (30) and is
given by

(hs(i) > A/p AND hg(i) < A) OR (hg(i) > Ly AND hg(i) > X) (57)
where L, is given by [(38). Variablg1 — d;) log,(1 + vs(i)hs(i)) has to be integrated over domainl(57)
to obtain its average. This leads to the left side[of (31).

Similarly, the right hand side of C1 is the expectation of theiable d; log,(1 + vr(i)hg(7)). This
variable is nonzero only when both and (i) are nonzero. The domain over whidh and vz (i) are
jointly nonzero can be obtained from {29) afd](30) and is mibg

(ha(i) > X AND hs(i) < A/p) OR (hg(i) > Ly AND hs(i) > \/p) (58)
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whereL, is given by [3B). Variablel; log,(1+~vr(i)hr(i)) has to be integrated over domainl(58) to obtain
its average. This leads to the right side [of](31).
Following a similar procedure, we can obtainl(32) from C3[2d)( This completes the proof.

F. Proof of Theorenm]5

For¢ = E{(1—d;)S(i)}/E{d;R(i)} < 1 the queue is non-absorbing, and thus, because of the law of
conservation of flow, the throughput is equal to the arrieéyi.e.,r = E{(1 — d;)S(i)}.
To arrive at an upper bound for the average queue size, werftreduce two auxiliary results from

the literature. Let

q(i) = max{q(i — 1) — u(i),0}, (59)
wherew(7) is a slot by slot uncorrelated random variable wiKu(i)} > 0. Also, leta(i) andb(i) be
non-negative slot by slot uncorrelated random variabléls W{b(i)} > E{a(i)} and setu(:) = b(i) —al(i).
Then, equality [21]

E{u?(i)} — 2B{u(i)} E{q(i)} = E{(max{u(i) - ¢(i),0})*} (60)
and inequality [22]

B((max{u() - 4(0.0)% = (1= T8 ) B0} )
hold. Furthermore, combining (60) arld {61), the followinguhd is obtained [22]
o LE{((i) —a(i)’} — (1 = §)*E{0*(i)}
PO 500 - sy 2

where¢ = E{a(i)}/E{b(i)}.
By rewriting the queue size as
Qi) = max {Q(i — 1) — d;R(:) + (1 — d)5(i), 0}, (63)
we observe thal (63) is in the form df (59) if we lgti) = Q(i), a(i) = (1 — d;)S(i), b(i) = d; R(i) and
¢ =E{(1—-4d;)S(i)}/E{d;R(i)}. Thus, assuming that(i) andr(i) are slot by slot uncorrelated, we can

exploit (62) and upper bound the average size of the queue as
E{O(i)} 1E{(1 —dy)S?(i)} + B{d;2(i)} — 2E{(1 — dy)d;S(i) R(i)} — (1 — §)*E{d:R*(i) }
2 E{d:iR(i)} — E{(1 = d;)S(i)}
1E{(1—dy)S?(i)} + §(2 —  E{d:? (i)}
2 E{diR()} - E{(1 - d)S())}
Since the average arrival rate is given Ay= E{(1 —d;)S(i)}, we obtain [(3) from[(64) and Little’s law

IA

(64)

(38). This completes the proof.
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Fig. 1. System model comprising a sourSe a half-duplex relay equipped with a buff@, and a destinatiorD. s(i) and r(i) are the

instantaneous signal-to-noise ratios (SNRs) of $h& and R-D links in theith time slot, respectively.

Fig. 2. Throughput ratiomax/Tconv,2 VS. Qr /s for buffer-aided relaying with adaptive link selection dinded transmit powers for source

and relay.
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Fig. 3. Optimal decision threshold,p+ vs. Qr/Qs for buffer-aided relaying with adaptive link selection afixed transmit powers for
source and relay.
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Fig. 4. Throughput normalized ta..nv,1 vs. T for buffer-aided relaying with adaptive link selection atmhventional relaying with buffer.

The performance of both schemes with and without power atioa (PA) is shownQs = 0.1 andQr = 1.9
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Fig. 5. Throughput vsI" for buffer-aided relaying with adaptive link selection acohventional relaying with buffer. The performance of

both schemes with and without power allocation (PA) is sha®g = 0.1 andQr = 1.9
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Fig. 6. Throughput ratiormax/7conv,1 VS. Upper bound on the average delay for buffer-aided medawith adaptive link selection and
starved bufferF(z) = x
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F(z) =z
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Fig. 8. Probability of a dropped bit vs. queue si2e..x for buffer-aided relaying with adaptive link selection asi@drved bufferQ2s =
Qr =1. F(z) =x.
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