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Buffer-Aided Relaying with Adaptive Link Selection

Nikola Zlatanov, Robert Schober, and Petar Popovski

Abstract

In this paper, we consider a simple network consisting of a source, a half-duplex decode-and-forward relay,

and a destination. We propose a new relaying protocol employing adaptive link selection, i.e., in any given time

slot, based on the channel state information of the source-relay and the relay-destination link a decision is made

whether the source or the relay transmits. In order to avoid data loss at the relay, adaptive link selection requires

the relay to be equipped with a buffer such that data can be queued until the relay-destination link is selected for

transmission. We study both delay constrained and delay unconstrained transmission. For the delay unconstrained

case, we characterize the optimal link selection policy, derive the corresponding throughput, and develop an optimal

power allocation scheme. For the delay constrained case, wepropose to starve the buffer of the relay by choosing the

decision threshold of the link selection policy smaller than the optimal one and derive a corresponding upper bound

on the average delay. Furthermore, we propose a modified linkselection protocol which avoids buffer overflow

by limiting the queue size. Our analytical and numerical results show that buffer-aided relaying with adaptive link

selection achieves significant throughput gains compared to conventional relaying protocols with and without buffers

where the relay employs a fixed schedule for reception and transmission.

I. INTRODUCTION

The classical three-node relay channel was originally considered by van der Meulen [1]. Cover and El

Gamal [2] investigated the capacity of a memoryless relay channel consisting of a source, a destination, and

a single full-duplex relay. Recently, renewed interest in relay-assisted communication was sparked by [3]

and [4]. Since then, the simple three-node system has becomea building block for more sophisticated relay

networks and a host of cooperative communication techniques have been proposed [5]-[12]. The capacity

of a three-node relay channel comprised of a source, a destination, and a single half-duplex decode-and-

forward (DF) relay was investigated in [5]. Under the assumption of full channel state information (CSI)

at every node, it was shown in [5] that the capacity of a three-node DF network without a direct source-

destination link is given by the minimum of the source-relayand the relay-destination link capacities for
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the case when the relay employs a fixed schedule for receptionand transmission. In [5]-[12] and most

of the existing literature on half-duplex relaying, it is assumed that the relays receive a packet from the

source in one time slot and forward it to the destination in the next time slot. Relay protocols operating

under this restriction are referred to as “conventional” relay protocols in the following. In this paper, we

abandon this paradigm and give relays the freedom to decide in which time slot to receive and in which

time slot to transmit. This new approach requires the relaysto have buffers. Relays with buffers were also

considered in [13] and [14]. In [13], the buffer at the relay was used to enable the relay to receive for

a fixed number of time slots before retransmitting the received information. In [14], relay selection was

considered and buffers enable the selection of the relay with the best source-relay channel for reception

and the relay with the best relay-destination channel for transmission. However, similar to conventional

relay selection without buffers [15], the source transmitsin every other time slot. Thus, both [13] and [14]

do not fully exploit the flexibility offered by relays with buffers since the schedule of when the source

transmits and when a relay transmits is a priori fixed.

In this paper, we consider buffer-aided relaying with adaptive link selection, where in any given time slot

based on the CSI of the source-relay and the relay-destination link a decision is made whether the source or

the relay transmits. We consider the cases of delay constrained and delay unconstrained transmission. For

the delay unconstrained case, we optimize the link selection protocol and the power allocated to the source

and the relay. Interestingly, the optimal link selection policy requires only knowledge of the instantaneous

CSI of the considered time slot and the statistical CSI of theinvolved links. However, the instantaneous

CSI of past and future time slots and the state of the relay’s buffer are not required for optimal link

selection, which facilitates the implementation of the optimal policy. For the delay constrained case, we

propose two alternative link selection protocols and provide an upper bound for the average delay of one

of them. Our analytical and simulation results show, in goodagreement, that buffer-aided relaying with

adaptive link selection can achieve large performance gains compared to conventional relaying with or

without buffer [13], as long as a certain delay can be tolerated.

The remainder of the paper is organized as follows. In Section II, the considered system and channel

models are presented. The proposed link selection protocolfor buffer-aided relaying is introduced and

optimized in Section III, and optimal power allocation for source and relay is discussed in Section IV. In

Section V, we propose two protocols for buffer-aided relaying with delay constraints. Numerical results

are presented in Section VI, and some conclusions are drawn in Section VII.



3

II. SYSTEM MODEL

We consider a three-node communication system comprising asourceS, a half-duplex relayR, and a

destinationD, cf. Fig. 1. The source can communicate with the destinationonly through the relay, i.e.,

there is no directS-D link. The source sends packets to the relay, which decodes these packets, possibly

stores them in its buffer, and eventually sends them to the destination. Throughout this paper, we assume

that the source has always data to transmit.

A. Channel Model

We assume that time is divided into slots of equal lengths. Inthe ith time slot, the transmit powers of

source and relay are denoted byPS(i) andPR(i), respectively, and the instantaneous (squared) channel

gains of theS-R and R-D links are denoted byhS(i) and hR(i), respectively.hS(i) and hR(i) are

modeled as mutually independent, non-negative, stationary, and ergodic random processes with expected

valuesE{hS(i)} , Ω̄S andE{hR(i)} , Ω̄R, whereE{·} denotes expectation. We assume that the channel

gains are constant during one time slot but change from one time slot to the next due to e.g. the mobility

of the involved nodes and/or frequency hopping.

The instantaneous link signal-to-noise ratios (SNRs) of the S-R and R-D channels in theith time

slot are given bys(i) , γS(i)hS(i) and r(i) , γR(i)hR(i), respectively. Here,γS(i) = PS(i)/σ
2
nS

and

γR(i) = PR(i)/σ
2
nR

denote the transmit SNRs of the source and the relay, respectively, andσ2
nS

andσ2
nR

are

the variances of the additive white Gaussian noise (AWGN) atthe relay and the destination, respectively.

The average link SNRs are denoted byΩS , E{s(i)} andΩR , E{r(i)}.

B. Link Adaptive Transmission Protocol

In the proposed link adaptive transmission protocol, one ofthe nodes of the network is responsible for

deciding whether the source or the relay should transmit in agiven time sloti. This node is referred to

as the central node in the following. The central node broadcasts its decision to the other nodes before

transmission in time sloti begins. If they are selected for transmission, the source and the relay adapt

their transmission rates to the capacity of the respective link and transmit codewords spanning one time

slot. We assume that source and relay employ capacity-achieving codes. For both link selection and rate

adaptation, the nodes require CSI knowledge as will be detailed in the following.

CSI requirements: The central node requires knowledge of the instantaneous channel gainshS(i) and

hR(i). In addition, regardless of which node is the central node, if theS-R link is selected, the source and
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the relay require knowledge ofhS(i) for rate adaptation and decoding, respectively. On the other hand,

if the R-D link is selected, the relay and the destination require knowledge ofhR(i) for rate adaptation

and decoding, respectively. Nodes can obtain the instantaneous channel gains through estimation based on

pilot symbols emitted by other nodes and/or CSI feedback from other nodes. Furthermore, we assume that

the central node knows the noise variancesσ2
nS

andσ2
nR

, and regardless of which node is the central node,

source, relay, and destination knowσ2
nS

, (σ2
nS
, σ2

nR
), and σ2

nR
, respectively. Also, if the transmit power

is a priori fixed, i.e.,PS(i) = PS andPR(i) = PR, ∀i, the central node requires knowledge ofPS and

PR, and source, relay, and destination require knowledge ofPS, (PS, PR), andPR, respectively. If power

allocation is employed,PS(i) andPR(i) are computed by the nodes based on their respective knowledge

of the instantaneous channel gains and statistical CSI knowledge (cf. Section IV, (28), (29)).

Which node serves as the central node depends on the network architecture. For example, in the downlink

of a cellular network, the source (base station) can serve asthe central node as it typically acquires the

full CSI of all links anyways and can afford the complexity ofperforming adaptive link selection and

power allocation. On the other hand, if the relay serves as the central node, source and destination have

to acquire only the CSI of theS-R andR-D links, respectively.

For convenience we normalize the number of bits transmittedin one time slot by the number of symbols

per time slot. Thus, throughout the remainder of this paper,the number of bits refers to the number of

bits divided by the number of symbols in a codeword. In the following, we discuss the network dynamics

when source and relay transmit, respectively.

Source transmits: If the source is selected for transmission in time sloti, it transmits with rate

SSR(i) = log2(1 + s(i)). (1)

Hence, the relay receivesSSR(i) data bits from the source and appends them to the queue in its buffer.

The (normalized) number of bits in the buffer of the relay at the end of time sloti is denoted byQ(i)

and given by

Q(i) = Q(i− 1) + SSR(i). (2)

Relay transmits: If the relay transmits in time sloti, the number of bits transmitted by the relay is

given by

RRD(i) = min{log2(1 + r(i)), Q(i− 1)}, (3)
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where we take into account that the maximal number of bits that can be send by the relay is limited by the

number of bits in its buffer and the instantaneous capacity of theR-D link. The number of bits remaining

in the buffer at the end of time sloti is given by

Q(i) = Q(i− 1)− RRD(i), (4)

which is always non-negative because of (3).

Because of the half-duplex constraint, we haveRRD(i) = 0 when the source transmits (and the relay

listens), and we haveSSR(i) = 0 when the relay transmits.

C. Throughput

Since we assume the source has always data to transmit, the average (normalized) number of bits that

arrive at the destination per time slot is given by

τ = lim
N→∞

1

N

N
∑

i=1

RRD(i), (5)

i.e., τ is the throughput of the considered communication system. The goal of the following sections is

the maximization ofτ by optimizing the adaptive link selection protocol and the transmit power allocated

to source and relay.

D. Conventional Relaying

For comparison purpose, we provide the throughput of two baseline schemes. Thereby, we assume that

the transmit powers at the source and the relay are fixed, i.e., PS(i) = PS, PR(i) = PR, ∀i.

1) Conventional relaying without buffer:The instantaneous throughput of conventional relaying without

buffer, where the relay receives a packet in one time slot andtransmits it in the next, is given in [5], and

the corresponding average throughput is

τconv,1 , lim
N→∞

1

N

N/2
∑

i=1

min{log2(1 + s(2i− 1)), log2(1 + r(2i))}

=
1

2
E{min{log2(1 + s(i)), log2(1 + r(i))}}, (6)

where the ergodicity ofs(i) and r(i) was exploited. Note that conventional relaying without buffer

introduces a delay of one time slot since the relay has to waituntil the entire codeword is received

and decoded before sending the codeword to the destination.
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2) Conventional relaying with buffer [13]:In conventional relaying with buffer as proposed in [13],

the relay receives data from the source in the firstN/2 (N is even) time slots and sends this cumulative

information to the destination in the nextN/2 slots. The corresponding maximum achievable average

throughput is obtained forN → ∞ and given by

τconv,2 , lim
N→∞

1

N
min







N/2
∑

i=1

log2(1 + s(i)),
N
∑

i=N/2

log2(1 + r(i))







=
1

2
min{E{log2(1 + s(i))}, E{log2(1 + r(i))}}. (7)

Comparing (6) and (7), we observe thatτconv,2 ≥ τconv,1 holds [13]. However, to realize this performance

gain, the relay has to be equipped with a buffer of infinite size and an infinite delay is introduced.

3) Rayleigh fading:For the numerical results shown in Section VI, we consider the case where the

S-R andR-D links are both Rayleigh faded, i.e., the probability density functions (pdfs) ofs(i) andr(i)

are given byfs(s) = e−s/ΩS/ΩS andfr(r) = e−r/ΩR/ΩR, respectively. In this case,τconv,1 andτconv,2 can

be obtained in closed form as

τconv,1 =
1

2 ln(2)
exp

(

ΩR + ΩS

ΩSΩR

)

E1

(

ΩR + ΩS

ΩSΩR

)

(8)

and

τconv,2 =
1

2 ln(2)
min

{

exp

(

1

ΩS

)

E1

(

1

ΩS

)

, exp

(

1

ΩR

)

E1

(

1

ΩR

)}

, (9)

respectively, whereE1(x) =
∫∞

x
e−t/t dt, x > 0, denotes the exponential integral function.

III. A DAPTIVE L INK SELECTION

To gain some insight, we assume throughout this section constant source and relay powers, i.e.,PS(i) =

PS, PR(i) = PR, ∀i, and a buffer of unlimited size at the relay. For this case, wederive the optimal link

selection policy and the corresponding throughput. Optimal power allocation and the effect of a limited

buffer size will be discussed in Sections IV and V, respectively.

A. Problem Formulation

Let di ∈ {0, 1} denote a binary decision variable. We setdi = 1 if the R-D channel is selected for

transmission in time sloti, i.e., the relay transmits and the destination receives. Similarly, we setdi = 0 if

theS-R channel is selected for transmission in time sloti, i.e., the source transmits and the relay receives.
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Exploiting di, the number of bits send from the source to the relay and from the relay to the destination

in time slot i can be written in compact form as

SSR(i) = (1− di)S(i) (10)

and

RRD(i) = dimin{R(i), Q(i− 1)}, (11)

respectively, whereS(i) , log2(1 + s(i)) andR(i) , log2(1 + r(i)). Consequently, the throughput in (5)

can be rewritten as

τ = lim
N→∞

1

N

N
∑

i=1

di min{R(i), Q(i− 1)}. (12)

The considered problem can now be stated as follows: Find theoptimal link selection policy, i.e., the

optimal sequencedi, i ≥ 1, which maximizes throughputτ .

Remark 1:Our problem formulation is quite general in the sense that wehave introduced no restrictions

concerning the required knowledge regarding the channel and the queue states. In other words, the optimal

decision at timej, dj, potentially depends onhS(i), hR(i), andQ(i), i ≥ 1, and thus requires non-causal

channel knowledge. Fortunately, as will be shown in the ensuing section, this is not the case and the

optimal policy turns out to be rather simple and easy to implement.

B. Optimal Link Selection Policy

Let us first define the average arrival rate of bits per slot into the queue of the buffer,A, and the average

departure rate of bits per slot out of the queue of the buffer,D, as [16]

A , lim
N→∞

1

N

N
∑

i=1

(1− di)S(i) (13)

and

D , lim
N→∞

1

N

N
∑

i=1

di min{R(i), Q(i− 1)}, (14)

respectively. We note that the average departure rate of thequeue is equal to the throughput. The queue is

said to be absorbing ifA > D = τ . The following theorem characterizes the optimal link selection policy

in terms of the state of the queue in the buffer of the relay.
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Theorem 1:A necessary condition for the optimal link selection policy, which maximizes the through-

put, is that the queue in the buffer of the relay is at the edge of non-absorbtion, i.e., the queue is non-

absorbing but is at the boundary of a non-absorbing and an absorbing queue.

Proof: Please refer to Appendix A.

Exploiting Theorem 1, we can establish a useful condition that the optimal link selection policy has to

fulfill and a simplified expression for the throughput. This is the subject of the following theorem.

Theorem 2:Assuming non-negative, ergodic, and stationary random processess(i) and r(i), for the

optimal link selection policy the identity

E{(1− di)S(i)} = E{diR(i)} (15)

holds and the throughput is then given by

τ = E{diR(i)}. (16)

Proof: Please refer to Appendix B.

Remark 2:According to Theorem 2, for the optimal link selection policy, the queue is non-absorbing

but is almost always filled to such a level that the number of bits in the queue exceed the number of

bits that can be transmitted over theR-D channel. In particular, as shown in Appendix B, condition (15)

automatically ensures that forN → ∞, 1
N

∑N
i=1 diR(i) = 1

N

∑N
i=1 di min{R(i), Q(i − 1)} is valid, i.e.,

the impact of eventR(i) > Q(i− 1), i = 1, . . . , N , is negligible.

We are now ready to derive the optimal link selection policy for buffer-aided relaying. According to

Theorem 2, the policy that maximizes the throughputτ in (16) can only be found inside the set of policies

that produce a queue which satisfies (15), and not outside of this set of policies. Thus, forN → ∞, we

formulate the following optimization problem:

Maximize :
di

1
N

∑N
i=1 diR(i)

Subject to : C1 : 1
N

∑N
i=1(1− di)S(i) =

1
N

∑N
i=1 diR(i)

C2 : 1
N
di(1− di) = 0 ∀i

(17)

where constraint C1 ensures that the search for the optimal policy is conducted only among those policies

that satisfy (15) and C2 ensures thatdi ∈ {0, 1}. We note that C1 and C2 do not exclude the case that

the relay is chosen for transmission ifR(i) > Q(i−1). However, according to Remark 2, C1 ensures that

the influence of eventR(i) > Q(i− 1) is negligible. Therefore, an additional constraint dealing with this

event is not required. The solution of problem (17) leads to the following theorem.
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Theorem 3:The optimal policy maximizing the throughput of buffer-aided relaying with adaptive link

selection is given by

di =







1 if F(r(i)) ≥ ρF(s(i))

0 otherwise
(18)

whereρ is referred to as the decision threshold and the optimal decision function is given by

F(x) = log2(1 + x). (19)

The optimal decision thresholdρ, ρopt, has to satisfy (15).

Proof: Please refer to Appendix C.

Remark 3: Interestingly, we observe from Theorem 3 that the optimal decision, di, at time slot i,

depends only on the instantaneous SNRs,s(i) andr(i), of that time slot.di does not depend on the state

of the queue,Q(i), in any time slot nor on the instantaneous SNRs in previous orfuture time slots. This

makes the proposed optimal selection policy highly practical. We note that the optimal decision threshold,

ρopt, depends on the statistical CSI of both involved links as will be established in the next section. The

independence of the optimal link selection policy from non-causal instantaneous CSI is caused by the

relay being operated at the edge of non-absorbtion, i.e., the relay node is practically fully backlogged.

Non-causal knowledge would only help buffer management (i.e., ensuring that there is a sufficient number

of bits in the buffer for upcoming time slots), which is not required in the considered regime.

Remark 4: In this paper, we assume that the transmitting nodes have perfect CSI and apply adaptive

rate transmission. However, we note that this is not necessary for achieving the maximum throughput in

(16). In fact, the proposed adaptive link selection protocol (18) also achieves the maximum throughput

in (16) if source and relay transmit long codewords that span(ideally infinitely) many time slots (and

consequently many channel states). In this case, both the source and the relay can transmit with constant

rate τ = E{(1 − di)S(i)} = E{diR(i)} and rate adaptation is not necessary. The first codeword is

transmitted by the source without link adaptation and decoded by the relay. For all subsequent codewords,

link adaptation is performed based on (18) and source and relay transmit parts of a long codeword whenever

they are selected for transmission. The disadvantage of this approach is that the long codewords inherently

introduce (ideally infinitely) long delays and the generalization of this approach to the delay constrained

case is difficult. Therefore, in this paper, we consider adaptive rate transmission and assume that one

codeword spans only one time slot (and consequently one channel state).
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C. Generalization of the Decision Function and Optimal Decision Threshold

The optimal decision function in (19) is intuitively pleasing since it basically means that link selection

is performed based on the instantaneous link capacities. Nevertheless, for some fading distributions, the

optimal decision function may lead to complicated expressions for the throughput and the optimal decision

thresholdρopt. In such cases, simpler suboptimal decision functions suchasF(x) = x may be preferable

as they generally lead to a similar performance asF(x) = log2(1+x) but are analytically more tractable.

Thus, in the following, we generalize the decision function, F(x), to be any non-negative, smooth, and

increasing function, i.e.,F(x+ ǫ) > F(x) for ǫ > 0. We assume that the inverse ofF(·) exists and denote

it by F−1(·).

We note that Theorems 1 and 2 also hold for suboptimal decision functionsF(x). For a givenF(x),

the corresponding decision thresholdρ has to satisfy (15). Thus, the optimal decision threshold,ρopt, for

a given (optimal or suboptimal) decision function,F(x), can be computed based on the following lemma.

Lemma 1:Denote the pdfs ofs(i) and r(i) by fs(s) and fr(r), respectively. For a given decision

function,F(x), the optimalρopt is the solution of
∫ ∞

0

[
∫ ∞

G(r)

log2(1 + s)fs(s)ds

]

fr(r)dr =

∫ ∞

0

[
∫ ∞

H(s)

log2(1 + r)fr(r)dr

]

fs(s)ds, (20)

where the integral limits are given byG(r) , F−1(F(r)/ρ) andH(s) , F−1(ρF(s)).

Proof: The left hand side of (15) is the expectation of variable(1− di) log2(1 + s(i)). This variable

is nonzero only whendi = 0. From (18) we observe thatdi = 0 if ρF(s(i)) > F(r(i)), which is

equivalent tos(i) > F−1(F(r(i))/ρ). Therefore, the domain of integration for calculating the expectation

of (1 − di) log2(1 + s(i)) is s(i) > F−1(F(r(i))/ρ) and r(i) > 0, which leads to the left hand side of

(20). Using a similar approach, the right hand side of (20) isobtained from the right hand side of (15).

This concludes the proof.

Remark 5:Eq. (20) reveals that the optimal decision threshold,ρopt, depends indeed on the statistical

properties of both involved links as was already alluded to in Remark 3.

D. Rayleigh Fading

For concreteness, we provide in this subsection expressions for ρopt and the corresponding maximum

throughputτmax for Rayleigh fading links. Thereby, the optimal and a suboptimal decision functionF(·)

are considered.
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1) F(x) = x: In this case, the limitsG(r) andH(s) in (20) are given byG(r) = r/ρ andH(s) = ρs.

Thus, after some elementary manipulations, (20) simplifiesto

exp

(

1

ΩS

)

E1

(

1

ΩS

)

− exp

(

1

ΩR

)

E1

(

1

ΩR

)

−
ΩR

ΩR + ρΩS

exp

(

ΩR + ρΩS

ΩSΩR

)

E1

(

ΩR + ρΩS

ΩSΩR

)

+
ρΩS

ΩR + ρΩS
exp

(

ΩR + ρΩS

ρΩSΩR

)

E1

(

ΩR + ρΩS

ρΩSΩR

)

= 0. (21)

The optimal value ofρ for F(x) = x, ρopt,1, can be obtained from (21) via a simple one dimensional

search.

The corresponding maximal throughput can be obtained fromτmax,1 = E{di log2(1+r(i))} and is given

by

τmax,1 =
1

ln(2)
exp

(

1

ΩR

)

E1

(

1

ΩR

)

−
1

ln(2)

ρΩS

ΩR + ρΩS
exp

(

ΩR + ρΩS

ρΩSΩR

)

E1

(

ΩR + ρΩS

ρΩSΩR

)

, (22)

whereρ = ρopt,1.

2) F(x) = log2(1 + x): In this case, we haveG(r) = (1 + r)
1
ρ − 1 andH(s) = (1 + s)ρ − 1 in (20).

Thus, after some manipulations, we obtain from (20)
∫ ∞

0

[

exp

(

−
(r + 1)

1
ρ − 1

ΩS

)

ln
(

(r + 1)
1
ρ

)

+ e
1

ΩS E1

(

(r + 1)
1
ρ

ΩS

)

]

×
1

ΩR

exp

(

−
r

ΩR

)

dr

−

∫ ∞

0

[

exp

(

−
(s + 1)ρ − 1

ΩR

)

ln ((s+ 1)ρ) + e
1

ΩR E1

(

(s+ 1)ρ

ΩR

)]

×
1

ΩS
exp

(

−
s

ΩS

)

ds = 0. (23)

The optimalρ, ρopt,2, can be found numerically from (23). The corresponding maximum throughput is

obtained as

τmax,2 =
1

ln(2)

∫ ∞

0

[

exp

(

−
(s+ 1)ρ − 1

ΩR

)

× ln ((s + 1)ρ) + e
1

ΩR E1

(

(s+ 1)ρ

ΩR

)]

1

ΩS

exp

(

−
s

ΩS

)

ds,(24)

whereρ = ρopt,2.

3) Special case (ΩS = ΩR): For the special caseΩS = ΩR = Ω, we obtain from (21) and (23)

ρopt,1 = ρopt,2 = 1, and the corresponding maximal throughput is

τmax = τmax,1 = τmax,2 =
1

ln(2)
exp

(

1

Ω

)

E1

(

1

Ω

)

−
1

2 ln(2)
exp

(

2

Ω

)

E1

(

2

Ω

)

. (25)

Comparing this throughput with the throughput achievable with conventional buffer-aided relaying without

adaptive link selection, cf. (9), the gain of adaptive link selection can be characterized by

τmax/τconv,2 = 2− exp

(

2

Ω

)

E1

(

2

Ω

)

/

[

exp

(

1

Ω

)

E1

(

1

Ω

)]

≥ 1, (26)
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where the ratioτmax/τconv,2 monotonically increases from 1 to 1.5 asΩ decreases from∞ to zero. We

note that the results in Section VI reveal that the gain of adaptive link selection is minimum forΩS = ΩR,

cf. Fig. 2.

Remark 6:From (18) it is easy to see that forρ = 1 the decision functionsF(x) = log2(1 + x) and

F(x) = x are equivalent in the sense that they lead to the same decisions. Hence, both decision functions

lead to identical throughputsτmax = τmax,1 = τmax,2. However, forΩS 6= ΩR, ρopt,1 6= ρopt,2 6= 1 holds,

and the decision functions are no longer equivalent andτmax,2 > τmax,1 holds.

IV. POWER ALLOCATION

So far, we have assumed that the source and relay transmit powers are fixed. In this section, we jointly

optimize the power allocation and link selection policies for buffer-aided relaying.

A. Problem Formulation and Optimal Power Allocation

Our goal is to jointly optimize the link selection variabledi and the powersPS(i) andPR(i) in each

time slot i such that the throughput is maximized. For convenience, we optimize in the following the

transmit SNRs without fadingγS(i) andγR(i), which may be viewed as normalized powers, instead of the

powersPS(i) = γS(i)σ
2
nS

andPR(i) = γR(i)σ
2
nR

themselves. For a fair comparison, we limit the average

(normalized) power consumed by the source and the relay toΓ. This leads forN → ∞ to the following

optimization problem:

Maximize :
γS(i)≥0,γR(i)≥0,di

1
N

∑N
i=1 di log2(1 + γR(i)hR(i))

Subject to : C1 : 1
N

∑N
i=1(1− di) log2(1 + γS(i)hS(i)) =

1
N

∑N
i=1 di log2(1 + γR(i)hR(i))

C2 : 1
N
di(1− di) = 0

C3 : 1
N

∑N
i=1(1− di)γS(i) +

1
N

∑N
i=1 diγR(i) ≤ Γ

(27)

where constraints C1 and C2 are identical to the constraintsin (17) and C3 is the joint source-relay power

constraint. The solution of Problem (27) is summarized in the following theorem.

Theorem 4:The optimal (normalized) powersγS(i) andγR(i) and decision variabledi maximizing the

throughput of buffer-aided relaying with adaptive link selection while satisfying an average source-relay
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power constraint are given by

γS(i) =







ρ/λ− 1/hS(i) if hS(i) > λ/ρ

0 otherwise
(28)

γR(i) =







1/λ− 1/hR(i) if hR(i) > λ

0 otherwise
(29)

di =



















1 if
[

ln
(

hR(i)
λ

)

+ λ
hR(i)

− 1 > ρ ln
(

ρ
λ
hS(i)

)

+ λ
hS(i)

− ρ AND hR(i) > λ AND hS(i) >
λ
ρ

]

OR
[

hR(i) > λ AND hS(i) ≤
λ
ρ

]

0 otherwise

(30)

where the optimalρ, ρopt, and the optimalλ, λopt, have to satisfy C1 and C3 in (27) forN → ∞ with

equality.

Proof: Please refer to Appendix D.

Remark 7:Similar to the case without power allocation discussed in Section III, it is also possible

for the case with power allocation to simplify the link selection policy in (30). For example, a simple

suboptimal link selection policy which only depends on the instantaneous channel gainshS(i) andhR(i)

but is independent of the transmit powersγS(i) andγR(i) may be adopted at the expense of some loss in

performance. However, in this paper, we do not pursue suboptimal link selection policies for the case of

power allocation because of space limitation.

B. Finding the Optimalλ and ρ

The following lemma establishes two equations from which the optimalλ andρ can be found.

Lemma 2:Denote the pdfs ofhS(i) andhR(i) by fhS
(hS) andfhR

(hR), respectively. Let the transmit

powers of the source and the relay in time sloti be given by (28) and (29), respectively, and the link

selection variabledi by (30). Then, the optimalρ, ρopt, and the optimalλ, λopt, maximizing the throughput

of buffer-aided relaying with adaptive link selection and power allocation have to fulfill the following two

equations
∫ λ

0

[∫ ∞

λ/ρ

log2

(

ρhS

λ

)

fhS
(hS)dhS

]

fhR
(hR)dhR +

∫ ∞

λ

[∫ ∞

L1

(

ρhS

λ

)

fhS
(hS)dhS

]

fhR
(hR)dhR

=

∫ λ/ρ

0

[∫ ∞

λ

log2

(

hR

λ

)

fhR
(hR)dhR

]

fhS
(hS)dhS +

∫ ∞

λ/ρ

[∫ ∞

L2

log2

(

hR

λ

)

fhR
(hR)dhR

]

fhS
(hS)dhS ,

(31)
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∫ λ

0

[
∫ ∞

λ/ρ

(

ρ

λ
−

1

hS

)

fhS
(hS)dhS

]

fhR
(hR)dhR +

∫ ∞

λ

[
∫ ∞

L1

(

ρ

λ
−

1

hS

)

fhS
(hS)dhS

]

fhR
(hR)dhR

+

∫ λ/ρ

0

[
∫ ∞

λ

(

1

λ
−

1

hR

)

fhR
(hR)dhR

]

fhS
(hS)dhS +

∫ ∞

λ/ρ

[
∫ ∞

L2

(

1

λ
−

1

hR

)

fhR
(hR)dhR

]

fhS
(hS)dhS

= Γ (32)

where

L1 = −
λ

ρW (−e(hR−λ)/(ρhR)−1(λ/hR)1/ρ)
, L2 = −

λ

W (−eρ−1−λ/hS (λ/(ρhS))ρ)
. (33)

Here,W (·) is the LambertW -function [17], which is available as built-in function in software packages

such as Mathematica. The maximum throughput is given by the left (and right) hand side of (31).

Proof: Please refer to Appendix E.

To find λopt andρopt meeting (31) and (32), a two dimensional search over allλ > 0 andρ > 0 has to

be conducted or built-in root-finding functions of commercially available software such as Mathematica

can be used. The optimalλ andρ can be found offline since (31) and (32) only depend on the statistical

properties of theS-R and theR-D links. Since these statistical properties change on a much slower time

scale than the instantaneous channel gains,λopt andρopt can be updated with a low rate.

C. Rayleigh Fading

For the special case of Rayleigh fading withfhS
(hS) = e−hS/Ω̄S/Ω̄S andfhR

(hR) = e−hR/Ω̄R/Ω̄R, (31)

can be simplified to

1

ln(2)

[

(

1− e−λ/Ω̄R

)

E1

(

λ

ρΩ̄S

)

+

∫ ∞

λ

{

e−L1/Ω̄S ln

(

ρL1

λ

)

+ E1

(

L1

Ω̄S

)}

e−hR/Ω̄R

Ω̄R

dhR

]

=
1

ln(2)

[

(

1− e−λ/(ρΩ̄S)
)

E1

(

λ

Ω̄R

)

+

∫ ∞

λ/ρ

{

e−L2/Ω̄R ln

(

L2

λ

)

+ E1

(

L2

Ω̄R

)}

e−hS/Ω̄S

Ω̄S

dhS

]

,(34)

and (32) can be simplified to

(

1− e−λ/Ω̄R

)





ρ

λ
e−λ/(ρΩ̄S ) −

E1

(

λ
ρΩ̄S

)

Ω̄S



+

∫ ∞

λ







ρ

λ
e−L1/Ω̄S −

E1

(

L1

Ω̄S

)

Ω̄S







e−hR/Ω̄R

Ω̄R

dhR

+
(

1− e−λ/(ρΩ̄S)
)





1

λ
e−λ/Ω̄R −

E1

(

λ
Ω̄R

)

Ω̄R



+

∫ ∞

λ/ρ







1

λ
e−L2/Ω̄R −

E1

(

L2

Ω̄R

)

Ω̄R







e−hS/Ω̄S

Ω̄S

dhS = Γ, (35)

whereL1 andL2 are given in (33) and the maximum throughput is given by the left (and right) hand side

of equation (34).
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V. DELAY L IMITED TRANSMISSION

So far, we have assumed that there is no delay constraint and that the size of the buffer at the relay is

infinite. In practice, there is usually some constraint on the delay and on the buffer size. In this section, we

investigate how these constraints affect the performance of the proposed relaying protocol. For simplicity,

we assume fixed transmit powers, i.e.,PS(i) = PS, PR(i) = PR, ∀i, and consequently, policy (18) is used

for link selection.

Since we assume that the source is backlogged and has always information to transmit, for the considered

three-node network, the transmission delay is caused only by the buffer at the relay. LetT (i) denote the

delay of a bit that is transmitted by the source in time sloti and received at the destination in time slot

i+ T (i), i.e., the considered bit is stored forT (i) time slots in the buffer. Then, according to Little’s law

[18] the average delayE{T (i)} (i.e., the average time that a bit is stored in the buffer) is given by

E{T (i)} = E{Q(i)}/A, (36)

whereE{Q(i)} is the average queue length at the buffer andA is the average arrival rate into the queue.

E{Q(i)} is given in bits andA is given in bits/slot. Thus, the average delayE{T (i)} is given in time

slots. From (36), we observe that the delay can be controlledvia the arrival rate and the queue size. In

the following, we will present two different approaches to adjust the arrival rate and the queue size. The

first approach is to “starve” the buffer, i.e., we intentionally limit the arrival rate by choosingρ < ρopt.

The second approach is to limit the buffer size by forcing therelay to transmit if the buffer gets full.

A. Satisfying an Average Delay Constraint by “Starving” theBuffer

Starving the buffer is a common approach for limiting average delays in queueing systems [19], [20]. In

our case, we can decrease the average arrival rate by selecting ρ < ρopt which leads toE{(1−di)S(i)} <

E{diR(i)}. In the following theorem, we establish an upper bound for the resulting average delay.

Theorem 5:Let ρ < ρopt in (18) such thatξ = E{(1−di)S(i)}/E{diR(i)} < 1. In this case, assuming

slot-by-slot uncorrelated fading the average delay in slots is bounded by

E{T (i)} ≤
1

2

1

E{(1− di)S(i)}

E{(1− di)S
2(i)}+ ξ(2− ξ)E{diR

2(i)}

E{diR(i)} −E{(1− di)S(i)}
(37)

and the throughput is given byτ = E{(1− di)S(i)}.

Proof: Please refer to Appendix F.
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Remark 8:Exploiting (37) the required value ofρ < ρopt to ensure a desired average delay can be found.

For example, assumingF(x) = x and Rayleigh distributedS-R and R-D channel gains the expected

values required in (37) can be obtained as

E{(1− di)S(i)} =
1

ln(2)

[

exp

(

1

ΩS

)

E1

(

1

ΩS

)

−
ΩR

ΩR + ρΩS

exp

(

ΩR + ρΩS

ΩSΩR

)

E1

(

ΩR + ρΩS

ΩSΩR

)]

(38)

E{diR(i)} =
1

ln(2)

[

exp

(

1

ΩR

)

E1

(

1

ΩR

)

−
ρΩS

ΩR + ρΩS
exp

(

ΩR + ρΩS

ρΩSΩR

)

E1

(

ΩR + ρΩS

ρΩSΩR

)]

(39)

E{(1− di)S
2(i)} =

∫ ∞

0

[∫ ∞

r/ρ

(log2(1 + s))2
e−s/ΩS

ΩS
ds

]

e−r/ΩR

ΩR
dr (40)

E{diR
2(i)} =

∫ ∞

0

[
∫ ∞

sρ

(log2(1 + r))2
e−r/ΩR

ΩR

dr

]

e−s/ΩS

ΩS

ds. (41)

Inserting now (38)-(41) into (37), the value ofρ guaranteeing a certain average delay can be found by

slowly increasingρ from zero until the right hand side of (37) equals the desiredaverage delayE{T (i)}.

If the buffer size is limited, there is a non-zero probability that the bits arriving into the buffer have to

be dropped because the buffer is full, even if the buffer is starved. However, the probability of this event

happening can be minimized by properly choosing the buffer size compared to the desired average delay.

This issue is addressed in the following lemma.

Lemma 3:Denote the maximum queue size byQmax. Then, we can bound the probability that the

queue in the buffer exceedsQmax as

Pr{Q(i) > Qmax} ≤ E{Q(i)}/Qmax. (42)

Proof: The proof follows directly from Markov’s inequality.

We can guarantee any prescribed probability of dropped bits, Pr{Q(i) > Qmax}, by selecting appropriate

values forρ andQmax based on (42) and (64) given in Appendix F. The resulting throughput is given by

τ = E{(1− di)S(i)|Q(i) < Qmax}Pr{Q(i) < Qmax} = E{(1− di)S(i)}Pr{Q(i) < Qmax}

= E{(1− di)S(i)}(1− Pr{Q(i) > Qmax}), (43)

for which a lower bound can be found by combining (42), (43), and (64).

B. Satisfying the Delay Constraint by Limiting the Queue Size

For the scheme proposed in the previous subsection dropped bits are unavoidable. In this subsection,

we propose an alternative approach which allows us to avoid dropped bits. Let the buffer size again be

limited to Qmax bits. The proposed scheme employs the following link selection protocol:
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1) If Qmax −Q(i− 1) > S(i), selectdi based on (18).

2) Otherwise, setdi = 1.

Hence, if there is enough room in the buffer to accommodate the bits possibly sent from the source to the

relay, the link selection protocol introduced in Section III is employed. On the other hand, if there exists

the possibility of a buffer overflow, the relay transmits to reduce the amount of data in the buffer.

Remark 9:Although conceptually simple, a theoretical analysis of the throughput of the queue size

limiting protocol is difficult. In contrast to the buffer starving protocol discussed in Section V-A, for the

queue size limiting protocol, the average arrival rateA, depends on the frequency with which the buffer

has to be emptied due to a full queue. The frequency of these events depends in turn on the average

arrival rate. This mutual dependence of average arrival rate and emptying the buffer makes a meaningful

theoretical analysis difficult. Thus, we will resort to simulations to evaluate the performance of the queue

size limiting protocol in Section VI.

Remark 10:We note that both proposed protocols for the delay constrained case are heuristic in nature.

The search for other protocols with possibly superior performance is an interesting topic for future work.

The proposed protocols for the delay constrained and the delay unconstrained case can serve as benchmark

and performance upper bound for these new protocols, respectively.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we evaluate the performance of buffer-aided DF relaying with adaptive link selection

and compare it with that of conventional relaying. Throughout this section, we assume Rayleigh fading.

All results shown in this section have been confirmed by computer simulations. However, the simulations

are not shown in all instances for clarity of presentation.

A. Delay Unconstrained Transmission

First, we assume that there are no delay constraints and investigate the achievable throughputs with and

without power allocation.

1) Throughput of Buffer-Aided Relaying with Adaptive Link Selection: We first consider the case of

fixed transmit powers. In Fig. 2, we show the ratio of the optimal throughput of buffer-aided relaying with

adaptive link selection,τmax, and the throughput of conventional relaying with a buffer,τconv,2, given in (9),

as a function ofΩR/ΩS for several different values ofΩS . The corresponding optimal decision thresholds,

ρopt, for buffer-aided relaying with adaptive link selection are shown in Fig. 3. For buffer-aided relaying
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with adaptive link selection, we considered the decision functionsF(x) = x and F(x) = log2(1 + x)

and calculated the corresponding throughputs based on (22)and (24), respectively. The optimal decision

thresholds were obtained from (21) and (23), respectively.Clearly, buffer-aided relaying with adaptive

link selection leads to substantial throughput gains compared to conventional relaying. Both considered

decision functions lead to very similar performances, although at very high ratiosΩR/ΩS the optimal

decision functionF(x) = log2(1 + x) yields a small throughput gain. The ratioτmax/τconv,2 approaches

two asΩR/ΩS → 0 andΩR/ΩS → ∞. For ΩR/ΩS → 0, the source-relay link is selected very rarely for

transmission (asρopt → 0) since comparatively large amounts of data can be transferred to the relay in a

single time slot. Thus, the relay can almost always transmitas compared to half of the time in conventional

relaying. On the other hand, forΩR/ΩS → ∞, it is the relay-destination channel that is used very rarely as

ρopt → ∞ and the source can transmit almost all the time, which results in twice the throughput compared

to conventional relaying.

2) Throughput with Power Allocation:In Figs. 4 and 5, we investigate the gains achievable with power

allocation (PA) for a system with̄ΩS = 0.1 and Ω̄R = 1.9. Thereby, we compare the performances of

buffer-aided relaying with adaptive link selection and conventional relaying with and without a buffer. For

buffer-aided relaying with adaptive link selection and power allocation the throughput, power allocation,

and link selection policy were obtained as described in Theorem 4 and Lemma 2 in Section IV. For

conventional relaying with buffer, a similar optimal powerallocation scheme as for buffer-aided relaying

with adaptive link selection was adopted with variable powers γj(i) = max{0, 1/α−1/hj(i)}, j ∈ {S,R},

whereα is chosen such thatE{γj(i)} = Γ. For comparison, in Figs. 4 and 5, we also show the performance

of both considered relaying schemes without power allocation, i.e., we setγS(i) = γR(i) = Γ. Furthermore,

to highlight the gain compared to conventional relaying without buffer and without power allocation, in

Fig. 4, we normalized the throughput with respect toτconv,1 as given by (8). Figs. 4 and 5 show that optimal

power allocation can improve performance of both buffer-aided relaying with adaptive link selection and

conventional relaying. For example, forΓ = 0 dB buffer-aided relaying with adaptive link selection and

power allocation leads to a throughput gain of 95 % compared to conventional relaying with buffer and

power allocation. Nevertheless, the gain achievable by adaptive link selection is more significant than the

gain from power allocation. For example, atΓ = 20 dB, adaptive link selection yields a throughput gain

of 1 bit/slot compared to conventional relaying with buffer.
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B. Delay Constrained Transmission

We now turn our attention to delay limited transmission and investigate the performance of the two

proposed protocols for this case. In the following we assumeuncorrelated fading. Furthermore, we assume

fixed transmit powers for the source and relay, and adopt the suboptimal decision functionF(x) = x.

1) Starving the Buffer:In Fig. 6, we show the ratio of the throughput of buffer-aidedrelaying with

starved buffer,τmax, and the throughput of conventional relaying without buffer, τconv,1, as given in (8),

as a function of the upper bound on the average delay. The corresponding decision thresholds,ρ, are

shown in Fig. 7. For the theoretical results shown in Figs. 6 and 7 the throughput and the upper bound

on the average delay for buffer-aided relaying with starvedbuffer were obtained based on Theorem 5 and

Remark 8. A comparison of the theoretical results with the simulation results also shown in Fig. 6 reveals

that the derived upper bound on the delay is tight, especially for large delays. On the other hand, for very

small delays, buffer-aided relaying with starved buffer becomes inefficient since the starving of the buffer

decreases the average queue size and increases the probability that the relay is selected for transmission

whenR(i) > Q(i− 1). In fact, Fig. 6 shows that for very small delays buffer-aided relaying with starved

buffer may be even outperformed by conventional relaying without buffer. As expected, the throughput

of buffer-aided relaying increases with increasing tolerable delay andρ approaches the optimal value for

the delay constrained case,ρopt (computed from (21)), for large delays. The required delay to achieve a

throughput gain compared to conventional relaying increases with increasingΩS-ΩR ratio since for large

ΩS/ΩR and small tolerable average delays, the arrival rate into the buffer has to be severely limited (i.e,

ρ has to be chosen very small) which has a negative impact on thethroughput which, by the conservation

of flow, is equal to the arrival rate.

In Fig. 8, we show the probability of a dropped bit as a function of the buffer sizeQmax for three

different average delays andΩS = ΩR = 1. These results were obtained via simulations since the bound

obtained in (42) is relatively loose due to the looseness of Markov’s inequality. Fig. 8 shows that the

probability of dropping a bit rapidly decreases with increasing buffer size and decreasing average delay.

2) Limiting the Queue Size:In Fig. 9, we show the throughput achieved by limiting the queue size,

τlimit, and the throughput achieved by starving the buffer,τstarve, normalized by the throughput of con-

ventional relaying without buffer,τconv,1, as given in (8), for symmetric and asymmetric link qualities.

For comparison, Fig. 9 also contains the throughput of delayunconstrained buffer-aided relaying with

adaptive link selection, which constitutes an upper bound for the throughput in the delay constrained
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case, and conventional relaying with buffer as proposed in [13]. For conventional relaying with buffer,

the relay drops information bits if the achievable rate of the S-R link in the firstN/2 time slots exceeds

the achievable rate of theR-D link in the secondN/2 time slots. All results shown in Fig. 9 have been

obtained by simulations. Fig. 9 reveals that the performance of both delay constrained buffer-aided relaying

protocols is comparable for large delays and approaches that of the delay unconstrained protocol. For small

delays, limiting the buffer size yields a higher throughputthan starving the buffer. However, both proposed

protocols may be outperformed by conventional relaying with and without buffer for very small delays as

for the proposed simple protocols, the relay may be selectedfor transmission even ifR(i) > Q(i − 1).

While this event has negligible effect for delay unconstrained transmission since the optimal link selection

policy ensures that the queue is sufficiently long such thatR(i) > Q(i − 1) is avoided (cf. Remark 2),

this is no longer true for the delay constrained case. Therefore, for the delay constrained case, more

sophisticated protocols should be developed that take intoaccount thatR(i) > Q(i− 1) may occur.

VII. CONCLUSIONS

In this paper, we proposed a novel adaptive link selection protocol for relays with buffers. In contrast

to conventional relaying, where the source and the relay transmit according to a pre-defined schedule

regardless of the channel state, in the proposed scheme, always the node with the stronger link is selected

for transmission. For delay unconstrained transmission, we derived the optimal link selection policy for

the cases of fixed and variable source and relay transmit powers. Remarkably, in both cases, the optimal

policy for a given time slot only depends on the instantaneous CSI of that time slot and the statistical CSI

of the involved links. This makes the optimal policies attractive for implementation. For delay constrained

transmission, we proposed two different methods to controlthe delay introduced by the buffer at the

relay. Furthermore, for the case when the buffer is starved,we derived upper bounds on the average delay

and the number of dropped bits for limited buffer size. Our analytical and simulation results showed that

buffer-aided relaying with adaptive link selection is a promising approach to significantly increase the

throughput compared to conventional relay-assisted transmission. Interesting extensions of the presented

work include using the considered simple three-node network as a building block for larger networks,

studying the impact of imperfect CSI, and deriving the outage probability for fixed rate transmission.
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APPENDIX

A. Proof of Theorem 1

We first note that, because of the law of the conservation of flow, A ≥ τ is always valid and equality

holds if and only if the queue is non-absorbing. Assume first we have a link selection policy with average

arrival rateA and throughputτ with A > τ , i.e., the queue is absorbing. For this policy, we denote the

set of indices withdi = 1 by Ī and the set of indices withdi = 0 by I, i.e., forN → ∞ we have

A =
1

N

∑

i∈I

(1− di)S(i) > τ =
1

N

∑

i∈Ī

di min{R(i), Q(i− 1)}. (44)

From (44) we observe that the considered protocol cannot be optimal as it can be improved by moving

some of the indicesi in I to Ī which leads to an increase ofτ at the expense of a decrease ofA.

However, once the pointA = τ is reached, moving more indicesi from I to Ī will decrease bothA andτ

because of the conservation of flow. Thus, a necessary condition for the optimal policy is that the queue

is non-absorbing but the queue is at the edge of non-absorbtion, i.e., the queue is at the boundary of a

non-absorbing and an absorbing queue. This completes the proof.

B. Proof of Theorem 2

We denote the sets of indicesi for which di = 1 anddi = 0 holds byĪ andI, respectively.ǫ denotes a

subset ofĪ and| · | is the cardinality of a set. Throughout the remainder of thisproofN → ∞ is assumed.

If the queue in the buffer of the relay is absorbing,A > τ holds and on average the number of bits

arriving at the queue exceed the number of bits leaving the queue. Thus,R(i) ≤ Q(i − 1) holds almost

always and as a result the throughput can be written as

τ =
1

N

∑

i∈Ī

min{R(i), Q(i− 1)} =
1

N

∑

i∈Ī

R(i). (45)

Now, we assume that the queue is at the edge of non-absorption. That isA = τ holds but moving a

small fractionǫ, where|ǫ|/N → 0, of indices fromĪ to I will make the queue an absorbing queue with

A > τ . For this case, we wish to determine whether or not

1

N

∑

i∈Ī

R(i) > τ =
1

N

∑

i∈Ī

min{R(i), Q(i− 1)} = A =
1

N

∑

i∈I

S(i) (46)

holds. To test this, we move a small fractionǫ, where|ǫ|/N → 0, of indices fromĪ to I, thus making the

queue an absorbing queue. As a result, (45) holds, and (46) becomes

1

N

∑

i∈Ī\ǫ

R(i) = τ =
1

N

∑

i∈Ī\ǫ

min{R(i), Q(i− 1)} < A =
1

N

∑

i∈I∪ǫ

S(i). (47)
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From the above we conclude that if (45) holds, then based on (46) and (47), for|ǫ|/N → 0, we must have

1

N

∑

i∈Ī

R(i) >
1

N

∑

i∈I

S(i) (48)

and

1

N

∑

i∈Ī\ǫ

R(i) <
1

N

∑

i∈I∪ǫ

S(i). (49)

However, for (48) and (49) to jointly hold, we require that the particular considered moving of indices

from Ī to I has caused a discontinuity in1
N

∑

i∈Ī R(i) or/and a discontinuity in1
N

∑

i∈I S(i) as|ǫ|/N → 0

is assumed. Since the capacities of theS-R andR-D links are such thatlimN→∞

∑

i∈ǫ S(i)/N → 0 and

limN→∞

∑

i∈ǫR(i)/N → 0, such discontinuities are not possible. Therefore, at the edge of non-absorption

(46) is not true and we must have instead

1

N

∑

i∈Ī

R(i) = τ =
1

N

∑

i∈Ī

min{R(i), Q(i− 1)} = A =
1

N

∑

i∈I

S(i) (50)

Using the the ergodicity ofs(i) andr(i), (50) can be expressed as (15), and the throughput can be written

as (16). This concludes the proof.

C. Proof of Theorem 3

The Lagrangian for Problem (17) is given by

L =
1

N

N
∑

i=1

diR(i)− µ
1

N

N
∑

i=1

[diR(i)− (1− di)S(i)]−
1

N

N
∑

i=1

βidi(1− di), (51)

whereµ andβi are Lagrange multipliers. DifferentiatingL with respect todi and setting the result to zero

leads to

di =
(−1 + µ)R(i) + µS(i) + βi

2βi

. (52)

For di(1− di) = 0 to hold, we need eitherdi = 0 or di = 1, which leads to two possible values forβi:

di = 0 ⇒ βi,1 = (1− µ)R(i)− µS(i) (53)

di = 1 ⇒ βi,2 = −βi,1 (54)

For the maximum ofL in (51), βi < 0, ∀i, has to hold. Furthermore,0 < µ < 1 has to hold since for

µ ≤ 0 andµ ≥ 1 we have alwaysdi = 1 anddi = 0, respectively, irrespective of the values ofR(i) and
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S(i). Hence, we have

di =







1 if (1− µ)R(i)− µS(i) ≥ 0

0 if (1− µ)R(i)− µS(i) < 0
(55)

which is identical to (18) withF(x) = log2(1+x) if we setρ = µ/(1−µ). µ or equivalentlyρ are chosen

such that constraint C1 of Problem (17) is met. This completes the proof.

D. Proof of Theorem 4

To solve Problem (27), we form the Lagrangian

L =
1

N

N
∑

i=1

di log2(1 + γR(i)hR(i))− µ
1

N

N
∑

i=1

[

di log2(1 + γR(i)hR(i))− (1− di) log2(1 + γS(i)hS(i))
]

− ν
1

N

N
∑

i=1

[

(1− di)γS(i) + diγR(i)
]

−
1

N

N
∑

i=1

βidi(1− di), (56)

where the Lagrange multipliersµ, βi, andν are chosen such that C1, C2, and C3 are satisfied, respectively.

By differentiatingL with respect toγS(i), γR(i), anddi, and setting the results to zero, we obtain three

equations. Solving this system of equations forγS(i), γR(i), anddi, and taking into account thatβi < 0,

0 < µ < 1, andν > 0, we obtain (28), (29), and (30) after lettingρ = µ/(1−µ) andλ = ν ln(2)/(1−µ),

which are chosen such that constraints C1 and C3 are meet withequality. This completes the proof.

E. Proof of Lemma 2

Sinces(i) andr(i) are ergodic random processes, forN → ∞, the normalized sums in C1 and C3 in

(27) can be replaced by expectations. Therefore, the left hand side of C1 is the expectation of variable

(1 − di) log2(1 + γS(i)hS(i)). This variable is nonzero only when both(1 − di) and γS(i) are nonzero.

The domain over which(1− di) andγS(i) are jointly nonzero can be obtained from (28) and (30) and is

given by

(hS(i) > λ/ρ AND hR(i) < λ) OR (hS(i) > L1 AND hR(i) > λ) (57)

whereL1 is given by (33). Variable(1 − di) log2(1 + γS(i)hS(i)) has to be integrated over domain (57)

to obtain its average. This leads to the left side of (31).

Similarly, the right hand side of C1 is the expectation of thevariabledi log2(1 + γR(i)hR(i)). This

variable is nonzero only when bothdi and γR(i) are nonzero. The domain over whichdi and γR(i) are

jointly nonzero can be obtained from (29) and (30) and is given by

(hR(i) > λ AND hS(i) < λ/ρ) OR (hR(i) > L2 AND hS(i) > λ/ρ) (58)
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whereL2 is given by (33). Variabledi log2(1+γR(i)hR(i)) has to be integrated over domain (58) to obtain

its average. This leads to the right side of (31).

Following a similar procedure, we can obtain (32) from C3 in (27). This completes the proof.

F. Proof of Theorem 5

For ξ = E{(1− di)S(i)}/E{diR(i)} < 1 the queue is non-absorbing, and thus, because of the law of

conservation of flow, the throughput is equal to the arrival rate, i.e.,τ = E{(1− di)S(i)}.

To arrive at an upper bound for the average queue size, we firstintroduce two auxiliary results from

the literature. Let

q(i) = max{q(i− 1)− u(i), 0}, (59)

whereu(i) is a slot by slot uncorrelated random variable withE{u(i)} > 0. Also, let a(i) and b(i) be

non-negative slot by slot uncorrelated random variables with E{b(i)} > E{a(i)} and setu(i) = b(i)−a(i).

Then, equality [21]

E{u2(i)} − 2E{u(i)}E{q(i)} = E{(max{u(i)− q(i), 0})2} (60)

and inequality [22]

E{(max{u(i)− q(i), 0})2} ≥

(

1−
E{a(i)}

E{b(i)}

)

E{b2(i)} (61)

hold. Furthermore, combining (60) and (61), the following bound is obtained [22]

E{q(i)} ≤
1

2

E{(b(i)− a(i))2} − (1− ξ)2E{b2(i)}

E{b(i)} − E{a(i)}
, (62)

whereξ = E{a(i)}/E{b(i)}.

By rewriting the queue size as

Q(i) = max {Q(i− 1)− diR(i) + (1− di)S(i), 0} , (63)

we observe that (63) is in the form of (59) if we letq(i) = Q(i), a(i) = (1 − di)S(i), b(i) = diR(i) and

ξ = E{(1− di)S(i)}/E{diR(i)}. Thus, assuming thats(i) andr(i) are slot by slot uncorrelated, we can

exploit (62) and upper bound the average size of the queue as

E{Q(i)} ≤
1

2

E{(1− di)S
2(i)}+ E{diR

2(i)} − 2E{(1− di)diS(i)R(i)} − (1− ξ)2E{diR
2(i)}

E{diR(i)} − E{(1− di)S(i)}

=
1

2

E{(1− di)S
2(i)}+ ξ(2− ξ)E{diR

2(i)}

E{diR(i)} −E{(1− di)S(i)}
. (64)

Since the average arrival rate is given byA = E{(1− di)S(i)}, we obtain (37) from (64) and Little’s law

(36). This completes the proof.
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s(i) r(i)
S R D

Fig. 1. System model comprising a sourceS , a half-duplex relay equipped with a bufferR, and a destinationD. s(i) and r(i) are the

instantaneous signal-to-noise ratios (SNRs) of theS-R andR-D links in the ith time slot, respectively.

0 1 2 3 4 5 6 7 8 9

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Ω
R

/Ω
S

τ m
a

x
/τ

c
o

n
v
,2

 

 

F(x) = x

F(x) = log2(1 + x)

Ω
S
=1

Ω
S
=20

Ω
S
=0.1

Fig. 2. Throughput ratioτmax/τconv,2 vs.ΩR/ΩS for buffer-aided relaying with adaptive link selection andfixed transmit powers for source

and relay.



27

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

Ω
R

/Ω
S

ρ
o
p
t

 

 
F(x) = x

F(x) = log2(1 + x)
ΩS = 0.1
ΩS = 1
ΩS = 20

Fig. 3. Optimal decision thresholdρopt vs. ΩR/ΩS for buffer-aided relaying with adaptive link selection andfixed transmit powers for

source and relay.



28

−20 −15 −10 −5 0 5 10 15 20
1

2

3

4

5

6

7

8

9

10

Γ (in dB)

τ/
τ  c

o
n

v
,1

 

 
Adaptive Link Selection with PA
Adaptive Link Selection without PA
Conventional Relaying with Buffer and PA
Conventional Relaying with Buffer and without PA
Simulation of Adaptive Link Selection

Fig. 4. Throughput normalized toτconv,1 vs.Γ for buffer-aided relaying with adaptive link selection andconventional relaying with buffer.
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