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Abstract

In this paper, we develop a partner selection protocol for enhancing the network lifetime in

cooperative wireless networks. The case-study is the cooperative relayed transmission from fixed

indoor nodes to a common outdoor access point. A stochastic bivariate model for the spatial

distribution of the fading parameters that govern the link performance, namely the Rician K-factor

and the path-loss, is proposed and validated by means of realchannel measurements. The partner

selection protocol is based on the real-time estimation of afunction of these fading parameters,

i.e., the coding gain. To reduce the complexity of the link quality assessment, a Bayesian approach

is proposed that uses the site-specific bivariate model as a-priori information for the coding gain

estimation. This link quality estimator allows network lifetime gains almost as if all K-factor values

were known. Furthermore, it suits IEEE 802.15.4 compliant networks as it efficiently exploits

the information acquired from the receiver signal strengthindicator. Extensive numerical results

highlight the trade-off between complexity, robustness tomodel mismatches and network lifetime

performance. We show for instance that infrequent updates of the site-specific model through K-

factor estimation over a subset of links are sufficient to at least double the network lifetime with

respect to existing algorithms based on path loss information only.
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I. INTRODUCTION

Wireless sensor networks (WSN) are the enabling technologyfor home and building

automation [1], [2]. The main obstacle in the development ofWSNs is the cost of battery

replacement, which becomes even more pronounced for indoor-to-outdoor (I2O) communica-

tion with its larger transmit powers requirements. In this paper we aim at designing a medium

access control (MAC) protocol for I2O WSNs that minimizes the maximum transmit energy

so as to prolong the network lifetime [3].

Transmit energy can be reduced by implementing advanced cooperative relaying strategies

[4], that efficiently exploit the inherent spatial diversity of a distributed radio channel. Se-

lecting the partner for each node [5] is the most crucial taskin the coordination phase of

any cooperative technique [6]. Partner selection is eitherbased on instantaneous or average

channel quality indicators of the links [7], [8]. Additional knowledge on macroscopic features

such as the network topology [9] and a parametric characterization of the fading channel,

e.g., a path-loss model [10], can be also exploited.

In this paper we focus on the transmission from several indoor static nodes in a single-

floor office or factory to a common outdoor access point (AP), as outlined in Fig. 1 (top).

Nodes are permitted to engage in cooperative transmissionsby amplifying and forwarding

(AF) [11] the signals received from the partner nodes. We areinterested to develop a partner

selection scheme that maximizes the network lifetime underreliability and rate constraints

that are identical for all nodes. We propose an original approach where the partner selection is

aided by the knowledge of a site-specific multi-link stochastic channel model. The network

employs a time division multiple access (TDMA) scheme inspired by the IEEE 802.15.4

access protocol in “beacon mode” [12], as depicted in Fig. 1 (bottom).

In [7] selection cooperation based on instantaneous channel state information (CSI) has

been introduced. For large networks such an approach requires the exchange of large amounts

of CSI within the coherence time of the fading channel. To reduce the transmission overhead,

here we are interested to employ long-term channel properties for the partner selection stage.

This approach has been used by the pairing protocol in [8], which is based on the path loss

values. This is a very practical choice, as e.g. in the IEEE 802.15.4 standard a received signal
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strength indicator (RSSI) is available [13]. However, an indication of the randomness of the

fading is also required for assessing the quality of a link. This randomness can be assessed

by the Rician K-factor, as shown by physical fading channel modeling [14].

Contributions of this work :(i) We design a MAC protocol where the AP assigns the

partner and transmission resources to each node based on information about the path lossand

the Rician K-factor, extending the method of [8]. For this protocol we provide a performance

assessment in terms of network lifetime, utilizing realistic I2I/I2O channel models.

(ii ) We propose an empirical, but analytically tractable, stochastic model for the char-

acterization of the two fading parameters, namely, the pathloss and the Rician K-factor

for the links in an indoor network with fixed nodes. The two parameters are modeledjointly

generalizing existing scalar models, e.g., [14]. The so-called bivariatechannel model is drawn

and validated using the multi-link channel measurement data [15].

(iii ) For low-power operation of a cooperative WSN, we propose a procedure where (1) the

K-factor is estimated on a small number of nodes with a slow update cycle: this distributed

information is conveyed to the central coordinator in orderto update the bivariate model

parameters; (2) the estimation of the link-quality for eachtransmission is based on the

local average RSSI and the regularly updated bivariate channel model as common a priori

information. We compare the performance of this approach with the one where both the

path-loss and the K-factor are permanently re-estimated for each transmission.

II. SYSTEM MODEL

The scenario under study consists ofN battery-powered indoor nodes that communicate

with a common AP located outdoors. The nodes transmit duringa communication session.

In each session, the AP is acting as the centralized coordinator for assigning the cooperating

partners, configuring the time-slot assignments and radio-frequency (RF) transmit powers.

Complex base-band notation is used to model the wireless link between nodei ∈ {1, . . . , N}
and nodej ∈ {0, . . . , N}, with nodej = 0 referring to the AP. The received signal at node

j is yi,j = hi,jxi + nj wherehi,j is the frequency-flat complex channel coefficient,xi is

the symbol transmitted by nodei with transmit powerρi, nj is additive symmetric complex

white Gaussian noise with varianceσ2. The instantaneous signal-to-noise ratio (SNR) for
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from nodei to j is modeled as

γi,j =
(
ρi/σ

2
)
|hi,j |2 . (1)

The square fading envelope|hi,j |2 is constant for the whole codeword duration (block fading)

and varies from codeword to codeword according to the Riciandistribution [16], such that

Li,j = −
(
E
[
|hi,j|2

])

dB denotes the path loss in dB andKi,j =
(
|E [hi,j]|2

)

dB−(var [hi,j ]) dB

denotes the Rician K-factor in dB. The termpath loss, used for indicatingLi,j , includes the

large-scale shadow fading and the static component of the small-scale fading as detailed in

Sect. III-A. The block fading assumption motivates the use of outage probability and it is

confirmed by channel measurements (see [15]).

A. Medium Access Control and Node Coordination

The transmission is organized into frames of durationTF, further divided intoN + 1

subframes for time division multiple access (TDMA), as shown in Fig. 1 (bottom). A unique

subframe of durationTS = TF/(N + 1) is assigned to each node by the AP. The AP also

provides the reference clock to all the nodes, the grouping decisions and access coordination

(e.g., power and time slots allocation) through a periodic beacon transmission [12].

Let (i, j) be a pair of cooperating nodes1, to accommodate cooperative transmission each

subframe assigned to any of these two nodes is further subdivided into two slots. As depicted

in Fig. 1, for nodei the first slot spans a fraction2 βi = β of the subframe duration and it is

used to transmit the nodei data. The second slot with duration(1− βi) TS = (1− β)TS is

reserved for helping the assigned partner nodej. In a specular way, the first and second slots

of the subframe assigned to nodej span, respectively, the fractionsβj = 1 − β (for node-j

data) and(1− βj) = β (for forwarding node-i data). The AP optimally combines the noisy

replicas of the signals coming from the two nodes for data detection.

1We assume that each node can cooperate at most with one partner. The extension of the analysis to grouping assignment
with more than one partner is beyond the scope of the paper.

2To simplify the mathematical treatment, we assume that the slot partitionβ can take any value in the interval0 < β < 1,
although in practice this is constrained to a finite number ofdata units.
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B. Outage Probability Modeling

For point-to-point transmissionthe outage probability isP dir
out = Pr[γi,j < γdir

th ], where the

SNR thresholdγdir
th =

(
2R − 1

)
/Γ , R is the spectral efficiency measured in bit/channel use.

The gap0 ≤ Γ ≤ 1 can be varied by changing modulation/coding format and targeted bit

error rate (BER) level (see [17] and references therein). The outage probability is assessed

according to the models in [18], here adapted to the considered scenario.

For the Rician fading model, the outage probability for nodei communicating directly

with any nodej can be parametrized in terms of the so-called coding gainci,j

P dir
out ≈

γdir
th σ

2

ci,jρi
, (2)

where≈ indicates that the equality holds asymptotically for high SNR3. The coding gainci,j

depends on the K-factorKi,j and the path lossLi,j according to:

ci,j =
eθ(Ki,j)

θ (Li,j) [1 + θ (Ki,j)]
. (3)

For convenience of notation we introduce the functionθ(·) = 10(·)/10 with inverseθ−1(·) =
10 log10(·) (recall thatKi,j andLi,j have been defined in dB).

To model the performance ofcooperative transmissionof node i with the help of node

j (here j 6= 0), we consider the AF relaying scheme as it has a simple architecture that

facilitates practical implementation. Nodej periodically overhears the signal transmitted by

the partner nodei and amplifies-and-forwards it towards the AP [11]. The amplification is

based on a variable gain approach, where the power amplification gainaj = ρj/ [σ
2(γi,j + 1)]

is dynamically adjusted to the instantaneous SNRγi,j. Note that the node must maintain a

constant transmit powerρj for the whole assigned subframe, i.e. also during the relaying

phase, so as to avoid amplifier non-linearities by switchingthe power level. Recalling that

the AP optimally combines the two noisy replicas of the source signal, the effective SNR

γ(i,j),0 = γi,0 +

(
1

γi,j
+

1

γj,0
+

1

γi,jγj,0

)−1

. (4)

3Tightness of the approximation is verified for SNR large enough to guarantee sufficiently low outage probabilities
(. 10−2).
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The outage probability for cooperative transmission

P coop
out = Pr[γ(i,j),0 < γcoop

th ] ≈ 1

2

(
γcoop
th σ2

c(i,j),0ρ(i,j),0

)d(i,j),0

, (5)

with γcoop
th =

(
2R/βi − 1

)
/Γ. The spectral efficiencyR is now multiplied by1/βi to guarantee

the same efficiency as for the non-cooperative case. Notice that this assumption implies that

the low-power radio transceiver is designed to support multiple data rates [19]. Also, we select

the same gapΓ for all rates. Termsρ(i,j),0, c(i,j),0 andd(i,j),0 denote theeffectivepower, coding

gain, and diversity order for the cooperative link(i, j), 0, respectively. For Rician fading, it

is d(i,j),0 = 2, ρ(i,j),0 =
√
ρiρj , and

c(i,j),0 =

[
1

ci,0

(
1

ci,j
+

1

cj,0

)]− 1
2

, (6)

where the coding gains depend on the K-factors and the path loss values, as in (3).

C. Energy Consumption Modeling

The transmit power is designed so that the outage probability at the AP is lower or equal

to p. The corresponding energy consumption for nodei during one frame is derived below.

No-cooperation– From (2), the transmit power at nodei scales as

ρi ≈
γdir
th σ

2

ci,0

1

p
. (7)

The average energy expenditure for nodei can thus be modeled as

Ei = ρiTS + ERX
TS

TF

+ EP, (8)

whereERX is the energy consumption for receiving during the beacon slot only, andEP is

the energy consumption for basic processing.

AF cooperation– For a small enough outage probabilityp, it can be shown that the

minimum transmit power levels for paired nodes(i, j) are

ρi = ρj = ρ(i,j),0 = κ(β̂)σ2/
√

2p, (9)

with κ(β) = max
[(
2R/β − 1

)
/
(
Γc(i,j),0

)
,
(
2R/(1−β) − 1

)
/
(
Γc(j,i),0

)]
. The subframe frac-

June 14, 2018 DRAFT



6

tion β for the i-th node message is selected so as to minimizeρ(i,j),0:

β̂ ≈ 1

2
− log2(λ)

8R
, (10)

with λ =
√

1+ci,0/ci,j
1+cj,0/ci,j

. The notation≈ indicates that the scaling law is valid forlog2(λ) ≪ R

(i.e., λ ≃ 1). The proofs of (9) and (10) are given in Appendix A.

Notice that using (10) forλ > 1 (i.e., ci,0 > cj,0), then β̂ < 1/2 as the largest slot is

reserved for helping the partnerj that experiences more severe fading conditions. On the

other hand, ifci,j ≫ max [ci,0, cj,0], the slots have equal length,̂β ≈ 1/2. Notice that the

choiceβ = 1/2 is relevant also because it models a practical system optimized for two data

rates [19], i.e., the lower for no-cooperation and the higher for cooperation.

The average consumed energy for nodei cooperating with partnerj is then

EAF
(i,j),0 = ρ(i,j),0TS + ERX(2− β)

TS

TF
+ (1 + υAF)EP, (11)

with υAF > 0 accounting for the energy consumption for the partner signal amplification.

The transmit powerρ(i,j),0 for source and relay nodes are chosen as in (9).

III. W IRELESSCHANNEL CHARACTERIZATION

In this section we present a framework for modeling and estimating channel quality metrics

for the links of the cooperative network. The final aim is to provide metrics to be used at

the MAC layer for relay selection.

In Sect. III-A we propose a stochastic general model of the two fading parameters(Li,j , Ki,j),

which includes as particular cases some models previously proposed in the literature (see

e.g. [14], [20]). In Sect. III-B, the model is validated and discussed using experimental data

collected by an I2I/I2O measurement campaign, with indoor nodes deployed over an office

environment. The study will also provide a reliable simulation environment for assessing the

performance of partner selection algorithms in Sect. V. Given the a-priori knowledge of the

model, in Sect. III-C we propose a Bayesian method for the estimation of the coding gain

ci,j starting from the path loss observation.
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A. Bivariate Model for the Large-Scale Fading Parameters

We consider a fading channelhi,j between any two nodes(i, j) of the static network. Link

indexes(i, j) will be omitted when not needed, to simplify the notation. Itis important to

highlight that, differently from mobile scenarios, here the deterministic channel gainµh =

E [hi,j] accounts for the effects of fixed scattering/absorbing objects which determine the

so-calledstatic multipathcomponent. On the other hand, temporal fading - with variance

σ2
h = var [hi,j ] - is due only to some moving scatterers/absorbers in the environment. As

assumed in Sect. II, this results in a Rician distribution with parametersL = −θ−1(σ2
h+|µh|2)

and K = θ−1(|µh|2/σ2
h) (recall thatθ(·) is the inverse of the transformation to dB). The

multipath configuration changes rapidly with the node locations, thus leading to fast variations

of the Rician factorK and the path-lossL over the space. The objective of this section is

the definition of a model to describe the variations of such parameters from link to link.

Let x = [K L]T be the vector collecting the two fading parameters for a generic link.

We model the variations ofx according to a bivariate Gaussian random variable (bivariate

model). We assume thatx is Gaussian distributed,x ∼ N (µ
x
,C), with a meanµ

x
(D) =

[µK(D) µL(D)]T depending on the link distanceD and a spatially invariant covariance matrix

C =




σ2
K ϕσKσL

ϕσKσL σ2
L



, (12)

The correlation coefficientϕ = E [(K − µK(D)) (L− µL(D))] /(σKσL) models the mutual

dependence between the K-factor and the path loss experienced over the same link. A metric,

that will be relevant in partner selection analysis in Sect.IV, is the probability density function

(pdf) of the K-factor conditioned on the path loss,p (K|L) = N (µK|L, σ2
K|L), with mean

µK|L= E [K|L] = µK(D) +
σK

σL
ϕ (L− µL(D)) (13)

and varianceσ2
K|L = var [K|L] = (1− ϕ2)σ2

K.

The parameters of the bivariate model can be tuned for different propagation scenarios,

e.g. I2I and I2O, as done in the following.
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B. Experimental Calibration of the Bivariate Model and Analysis of Spatial Coherence

In this section, we describe the calibration of the model parametersµ
x
(D) andC on the

I2I and I2O propagation scenarios in Fig. 1. We use the multi-link channel measurements

[15] at 2.45 GHz, but also existing models whenever the data is not sufficient. It is important

to mention that the fading in the experiment is caused not only by walking people but also

by moving metallic objects. This contributes to determine harsh I2O propagation conditions.

The 70 MHz band of the channel is divided into 60 subbands, each corresponding to a flat

fading subchannel. As mentioned in Sect. III-A, in contrastto mobile scenarios, the small-

scale temporal fading has a different origin compared to thesmall-scale fading in the spatial

and spectral domains. Hence,Ki,j andLi,j are estimated independently in each subband.

I2I channel model– The vector functionµ
x
(D) is estimated by performing linear least

squares regressions ofK and L over the corresponding distancesD in logarithmic scale.

The covarianceC is then obtained by computing variances and covariances on the sets

of data{K − µK(D)} and {L− µL(D)}. The l∞ norm of the error between the theoretic

cumulative density function (cdf) of{K − µK(D)} and{L− µL(D)} and the empirical one

is 0.04, showing a very good fit. This is apparent in Fig. 2, where the equidensity contour

lines of the bivariate distribution of(K − µK(D), L− µL(D)) are shown together with the

respective measured values.

I2O channel model– According to the urban micro-cell scenario B4 in [21], the propagation

on the link (i, 0) is modeled as the combination of three main contributions: (i) the indoor

propagation from the node to the nearest wall to the BS(i,Wall); (ii ) the propagation through

the wall; (iii ) the outdoor propagation from the wall to the BS(Wall, 0). The overall link

path lossLi,0 and K-factorKi,0 are modeled as

Li,0 = Li,Wall + LWall + LWall,0, Ki,0 = Ki,Wall +KWall,0. (14)

Notice that the wall contribution has no effects onKi,0. The value chosen for the wall

contribution isLWall = 14dB (neglecting the angle of the propagation path with respect to

the wall [21]). The specific value will not affect the performance comparison of the algorithms

presented in Sect. V. The outdoor parameters(LWall,0, KWall,0) modeling adheres to [20, (4)
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and (9)]. The indoor parameterLi,Wall is modeled according to [21, Table 4-4]. The bivariate

model (Li,Wall, Ki,Wall) and the corresponding indoor correlation value are obtained by a

simple manipulation of the model forLi,Wall in [21, Table 4-4], using the line slope and the

error variance of the least squares linear regression ofK over the correspondingL in the

available I2O measurements. Numerical details are provided in Table 1.

The normal distribution ofK | L has been assumed by several studies in the literature

(see, e.g., [20], [16], [14]) to model the residuals of the linear least square regression

of K over L. Here, instead, we have directly tested the bivariate normal distribution of

{K − µK(D)} and {L− µL(D)} via a 2-D fitting of the cdf. In this way, we have also

highlighted the strong (negative) correlation between{K − µK(D)} and{L− µL(D)}, also

observed experimentally in our study (see the values detailed in Table 1). In contrast to

line-of-sight mobile scenarios, in our case the static multipath component inµh mainly

contributes to the negative correlationϕ. Consider e.g. two links(i, j1) and (i, j2), with

nodesj1 and j2 closely located, i.e., with distance in the order of the carrier wavelengthλ

(Di,j1 ≈ Di,j2). Even if the two links are likely to experience the same channel shadowing,

average fading conditionsµ
x
(D), and degree of temporal variations4 σ2

h, the two links still

experience different multipath configurations and thus different values for the static multipath

component inµh. The variation onµh affects with opposite sign the path-loss and the K-

factor, thus, astrongnegative correlation is observed.

Spatial coherence of the models– We use the available measurement data to empirically

assess the spatial coherence of the I2I bivariate model. We first estimate the model from the

measurements over 16 links during thefirst 1/3 of the total experiment duration (32s). The

model is again estimated from a disjoint set of 16 links measured during thelast 1/3 of the

total experiment duration. We observe that the model based on the first subset of links can

predict with extremely high accuracy the mean valuesµ
x
(D) as modeled from the second

subset of links. Fig. 3 shows the measured(L− µL(D), K − µK(D)) values for the two

subsets of links and the corresponding bivariate Gaussian contour lines. The depicted bivariate

models are strongly matching as the covariance matricesC are practically the same. Due to

4This has been observed in the frequency domain also in [14]. Notice that the small-scale spatial and frequency-selective
fading are caused by the same mechanism.
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the common underlying physical mechanism, it is realistic to assume that similar results are

valid for the indoor propagation model(Li,Wall, Ki,Wall) in the I2O case. Finally, the outdoor

(LWall,0, KWall,0) values, similarly to the wall penetration lossLWall, are not changing over the

links and time in the considered I2O scenario (so as to model acommon stationary outdoor

propagation scenario). As analyzed in Sect. V-C, these conclusions suggest that the model

parameters can be extracted efficiently employing just a small subset of nodes.

C. Link Quality Estimators

In indoor environments, it is likely to incur into a link thatexhibits both a large average

RSSI and, yet, a high packet loss rate [13]. In these scenarios, accurate link quality estimation

should include a measure of the fluctuations of the received power. Based on the physical

fading channel modeling, several works propose ways to assess the randomness of a link via

the online estimation of its K-factor. However, it is not trivial to predict the physical layer

performance, or even to draw MAC layer decisions directly using the estimated K-factor.

Let us instead consider the problem of the estimation of the coding gain (3). It is convenient

to re-write the coding gain in dB scale as:

c = Υθ(K)− θ−1 [1 + θ(K)]
︸ ︷︷ ︸

ς(K)

−L, (15)

whereΥ = 10 log10(e). The termς(K) measures the additional information provided by the

coding gain in Rician fading(θ(K) > 0) with respect to path-loss information only.

Most commercial RF transceivers designed for low-power wireless applications [22], [19]

provide information about the received signal strength from which the path-lossL can be

easily inferred [13]. A straightforward method to estimatec would then be to calculate also

the K-factor and to adopt the formula (3). We refer to this estimate asdirect estimateĉKi,j.

Accurate, but complex, estimators are proposed, e.g., in [23]. The most accurate estimator

requires the knowledge of the fading phase. On the other hand, for non-coherent transmissions

as in current implementation of IEEE 802.15.4 radios, the ratio between the squared mean and

the variance of the fading envelopes can be also used to estimate the K-factor. Nevertheless,

the estimation of small K-factor values (K < 3dB) becomes very inaccurate [24].

Here, to reduce the estimation complexity, we propose to estimate c only from the path

June 14, 2018 DRAFT
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lossL by exploiting the a-priori information on the statistics ofc|L derived from the bivariate

model. We assume the stationarity and the perfect knowledgeof the parametersµ
x
(D) and

C introduced above. It is important to stress that the model knowledge is availableonly if the

nodes are cooperating to exchange the information requiredto extract the model parameters5.

The assumption of model knowledge is therefore realistic inthe considered network.

Bayesian estimation of the link qualityc based on the observation ofL requires the

computation of the a-posteriori pdfp(c|L). This pdf can be approximated by observing that

for Υθ(K) ≫ θ−1 [1 + θ(K)] it is ς(K) ≈ Υθ(K) and the link-quality indicator (15) reduces

to c ≈ Υθ(K)−L. Recalling thatK conditioned on the observedL is Gaussian distributed,

K ∼ N
(

µK|L, σ2
K|L

)

, it follows that c is shifted log-normal distributed with pdf [25]:

p(c|L) ≃
[(

c+L
Υ

)√

2πσ2
K|L

]−1

exp

(

− 1
2σ2

K|L

[
θ−1

(
c+L
Υ

)
− µK|L

]2
)

u(c+ L), (16)

whereu(x) is the unitary step function. The approximation is corroborated by a numerical

analysis in Fig. 4, where the true and the approximated pdfs are shown for two values of the

path lossL of one I2I link, simulated according to the model calibration in Sect. III-B.

Based on the a-posteriori pdf, we derive themaximum a posteriori(MAP) estimator of the

link quality c. The MAP estimator,̂cMAP = argmax
c

[p(c|L)], is approximated by the mode

value of the shifted log-normal distribution (16) which yields [25]:

ĉMAP ≈ Υθ

(

µK|L −
σ2
K|L

Υ

)

− L . (17)

A minimum mean square error(MMSE) estimatorĉMMSE is also provided in Appendix

B. The MAP and MMSE estimators are depicted, by empty markersfor L = 63dB, and by

filled ones forL = 58dB in Fig. 4, together with the corresponding pdfs. The figure shows

that the approximations of the pdfs and of the estimators aretight to the exact ones, and

behave similarly with varying path loss value.

IV. PARTNER SELECTION STRATEGIES

In this section, the problem we tackle is how to select the partner for the nodes that

are tasked to communicate to the outdoor AP. The final goal is to minimize the maximum

5The distributed estimation of the I2I and I2O models is beyond the scope of the present work.
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energy consumed among them. The AP selects the partners (relays) based on long-term link

quality metrics and not on the instantaneous channel gains,as proposed and studied in the

literature (e.g., in [7]). The optimalmin-maxpairing is found in Sect. IV-A that allows also

for configurations with un-paired nodes. To lower the complexity and the amount of signaling,

a worst-link-first (WLF) algorithm is then described in Sect. IV-B. Although the structure

of the WLF algorithm is simple and resembles the one in [8] - with a modification for odd

number of nodes - the proposed performance analysis diverges substantially for the I2I/I2O

fixed links considered in our experimental scenario (see Sect. III). Given that the distributed

wireless links can be modeled by Rician fading with different K-factors, the first key idea

is that the AP uses the coding gain and not the path loss as decision metric in the WLF

algorithm. Secondly, the Bayesian estimators derived in Sect. III-C provide a representation

of the link quality to be used by the AP to finalize the partner selection.

A. Problem Definition and Optimal Solver

We define the set of candidate pairing setsP, such that one setξ ∈ P contains up to

⌊N/2⌋ disjoint pairs of cooperative nodes:ξ = {(i, j), (k, h), ..., (f, g)} . All the non-paired

nodes belong to the set of single nodesSξ = {q, s, . . . , z}, such that2 |ξ| + |Sξ| = N

(where |·| denotes the cardinality of the set). Given the candidate pairing set ξ and the

corresponding single node setSξ, the maximum energy consumed by a node in the network is

Emax(ξ) = max[max
(i,j)∈ξ

Emax
(i,j),0, max

q∈Sξ

Eq], whereEmax
(i,j),0 = max[E(i,j),0, E(j,i),0] is the maximum

energy for the pair(i, j) for a given relaying protocol, withE(i,j),0 defined by (11). The

optimal pairingξ̂ is the solution to

ξ̂ = argmin
ξ∈P

Emax(ξ) , (18)

where we assume that all nodes have the same rateR and outage probabilityp constraints.

The problem (18) can be formulated as a special case of the weighted matching prob-

lem on the non-bipartite graphG =(X , E) [26]. The set of verticesX corresponds to the

set of nodes{1, . . . , N}, which are fully connected by the set of undirected edgesE =

{ei,j : (i, j ∈ X ) & (i ≤ j)}. The loopsei,j=i can be regarded as edgesei,̄i, where the virtual

vertex ī of the extended graph is connected only toi. The weightsw (ei,j<i) = Emax
(i,j),0 and
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w (ei,j=i) = Ei are associated to all the edges and loops, respectively. Theoptimal pairing

algorithm removes at each iteration the maximum weighted edge of the extended graph (as

done in [27] for amax-minproblem on the bipartite graph) and checks the existence of a

weighed matching solution in the remaining graph using Gabow’s algorithm6 [26, Ch. 11],

which was instead proposed in [8] for minimizing the sum of the energies consumed at the

nodes in one iteration only. It can be shown that the above algorithm reaches the solution in

O (N5) computational time. Notice that the algorithm is centralized and requires the AP to

know all the inter-node link qualities for computingc(i,j),0.

B. Worst-Link-First Coding-Gain Based (WLF-CG) algorithm

The WLF algorithm is a suboptimal protocol for node pairing that allows to reduce the

complexity toO (N2). The conventional WLF algorithm (referred to as WLF path-loss-based,

WLF-PL) is based on the information of second order statistics of the fading link [8], i.e.

the path lossLi,j. We propose a WLF method based on the coding gain (WLF-CG).

Link quality estimation –Before pairing decisions can take place, each nodei locally

acquires an estimate of the link qualities for all I2I linksĉi,j to the candidate partners and

the I2O link towards the AP̂ci,0. Link quality estimator optionŝcKi,j, ĉ
MAP
i,j , and ĉMMSE

i,j (in

dB) have been discussed in Sect. III-C. The WLF-PL algorithmusesĉi,j = −Li,j .

Protocol structure –The algorithm is composed of two phases:

1) Candidate partner set discovery –Each nodei performs link quality estimation̂ci,0 for

the I2O channel exploiting the periodic transmission of beacon subframes from the AP as

probing signals to be used for channel parameter estimation. The link qualitieŝci,j measured

from all neighboring nodes over I2I links are estimated based on the signals overheard from

the potential partners. The differenceĉi,j − ĉi,0 is compared at each nodei to a common

thresholdτ in order to guarantee the conditionθ(ĉi,j) ≫ θ(ĉi,0). If ĉi,j − ĉi,0 > τ then node

j becomes a candidate partner for nodei. Given the I2O link quality estimation̂ci,0, the

thresholdτ is centrally designed such that the probability of finding nocandidate partners

among theN −1 potential candidates
∏N

j=1,j 6=i [1− Pr (ci,j > ĉi,0 + τ |Li,j)] is small enough,

wherePr (ci,j > ĉi,0 + τ |Li,j) can be estimated using (16). The evaluation of the optimal

6The Hungarian method, which is tailored for the bipartite graphs, is instead considered in [27].
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value for the thresholdτ is carried out in the case-study outlined in Sect. V. The candidate

partners setCP(i) = {j : ĉi,j − ĉi,0 > τ} is finally communicated to the AP from each node

i, using the assigned subframe.

2) Assignment algorithm at the AP –At each iteration the AP selects the worst-uplink

node i with link quality ĉi,0 < ĉk,0 ,∀k 6= i, and, if possible, assigns it to the best-uplink

candidate partnerj, such that

j = arg max
j∈CP (i)

ĉj,0 (19)

Nodesi andj are paired and disregarded in the next iterations, unlessCP(i) is empty. In the

latter case, nodei is left un-paired in the final configuration.

For an odd number of nodesN the preliminary step is to leave the best-uplink node

un-paired, then the partner assignment follows as above forthe remainingN − 1 nodes.

V. EXPERIMENTAL ASSESSMENT OFPARTNER SELECTION IN THE I2O ENVIRONMENT

In what follows, we provide numerical simulations on the performance of the partner

selection algorithms (Sect. IV) and of the Bayesian link quality estimation methods (Sect.

III-C). The network setup is outlined in Fig. 1,N nodes are randomly distributed in a

25m × 25m indoor environment, while the AP is placed outdoors50m away from the

nearest wall. For each random topology of the network, K-factor and path loss values

are generated independently for all links according to the respective I2I and I2O models

detailed in Sect. III-B. The performance results are expressed in terms oflifetime gain

E[Emax(ξref)]/E[E
max(ξ̂)], defined as the ratio between the maximum energies (averaged

over 5 × 104 random topologies) consumed among the nodes according to two different

pairing strategies: the reference protocol with pairing solution ξref and the proposed protocol

with pairing solutionξ̂. Note that the largest values ofEmax(ξref) and ofEmax(ξ̂) highlight the

lifetime gain in scenarios where the I2O channel conditionsare worst. In the examples, the

energies consumed for receptionERX and for basic processingEp are neglected. According

to the I2O modeling in Sect. III, it is likely thatci,j ≫ max [ci,0, cj,0]. From (10), the optimal

choice for slot duration isβi = βj = 1/2. We setΓ = 1, as this assumption has no relevant

impact on the performance comparisons in the examples. The target outage probability is

p = 10−3 for all the nodes with spectral efficiencyR = 1bps/Hz.
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In Sect. V-A, we provide numerical simulations for the WLF-CG lifetime performance.

In Sect. V-B, the impact of the proposed link quality estimation is evaluated and compared

to the case where a noisy estimation of the K-factor is obtained from training. Finally, in

Sect. V-C, the proposed pairing algorithm performance is discussed in presence of imperfect

modeling of the channel.

A. WLF-CG Protocol Performance

We first evaluate the performance of the WLF-CG algorithm assuming that the link qualities

ci,j are perfectly known at the respective nodesi = {1, . . . , N} and j = {0, . . . , N}. Fig. 5

shows the lifetime gain of AF cooperation compared to no-cooperation, i.e.ξref = ⊘ is the

empty pairing set and̂ξ is the pairing set obtained according to a partner selectionstrategy.

A random pairing strategy is also considered for comparisonwhere all nodes are disjointly

paired with a random choice of the partner. For oddN , the optimal pairing algorithm in Sect.

IV-A, the random pairing strategy, the WLF-PL algorithm, and the proposed WLF-CG are

compared. The candidate partner conditions (see Sect. IV-B) ci,j ≫ ci,0 andLi,j ≪ Li,0 for the

WLF-CG and the WLF-PL, respectively, are almost always guaranteed for each pair of nodes,

in particular it isPr (ci,j > ci,0 + τ) ≃ 1 andPr (Li,j < Li,0 − τ) ≃ 1 for τ ≤ 30dB. For

the propagation environment under consideration, the simulations show that partner selection

performance get worse when choosingτ ≥ 40dB. The exploitation of the knowledge of the

K-factor is revealed crucial: the WLF-CG algorithm increases the lifetime from a factor of

20 for N = 3 to a factor of 2 forN = 55 compared to the WLF-PL. This results from

the fact that the WLF-CG algorithm allows for a more efficientexploitation of the available

diversity, as if the optimal algorithm in Sect. IV-A were applied. The remarkable gains over

no-cooperation and over the random pairing denote a large degree of spatial redundancy

provided by the multi-link channel, i.e., the path loss and K-factor values exhibit significant

variations over the space.

B. Impact of Link Quality Estimation on WLF-CG

The optimality of the WLF-CG pairing strategy relies on the accuracy of coding gain (link

quality) estimation. This motivates a closer study to identify the most suitable estimator and
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to quantify the benefits provided by the knowledge of the distributed channel model. Here,

we assume that only the path lossL is perfectly known.

Link quality estimation from the path lossĉi,j =
{
ĉMAP
i,j , ĉMMSE

i,j

}
– The WLF-CG algorithm

can capitalize from the available site-specific channel characterization. Fig. 6 shows the energy

gains of cooperation over no-cooperation for varying number of cooperating nodesN . The

estimatorŝcMAP
i,j andĉMMSE

i,j are used, exhibiting equivalent performance: notably, thelifetime

gain over the WLF-PL ranges between factors 2 (N = 15) and 20 (N = 3). These gains are

similar to those obtained in the case whereci,j are perfectly known (see Fig. 5). Thus, the

proposed Bayesian estimation ofc is revealed useful to guarantee significant lifetime benefits

in the considered network settings.

In Fig. 7 we evaluate how the WLF-CG lifetime gain scales withthe correlationϕ between

the path loss and the K-factor forN = 10. The correlationϕ (assumed equal for both the I2I

links and the indoor component of the I2O links) varies arbitrarily from −1 to 0, whereas

the other channel parameters conform to the values in Table 1. When the link qualityc is

known, the lifetime gain increases asϕ gets closer to 0: this is the case where the knowledge

of the K-factor becomes in theory most beneficial. Instead, the WLF-CG algorithm based on

ĉMAP
i,j , and ĉMMSE

i,j is shown not to be sensitive within realistic variations−0.8 < ϕ < −0.5,

as it improves always by a factor 2.5 the lifetime obtained byemploying the WLF-PL.

It is interesting to observe that̂cMAP
i,j performs better than̂cMMSE

i,j for ϕ > −0.4, as it is

more conservative in predicting the worst-uplink link quality, which dominates the lifetime

performance. Indeed, it can be verified thatĉMAP
i,j ≤ ĉMMSE

i,j .

Link quality estimation from both path loss and K-factorĉi,j = ĉKi,j – The estimator of

the K-factor can be obtained from the complex fading realizations or the corresponding

squared envelope values (acquired from RSSI measurements)[23]. As discussed in Sect.

III-C, depending on the choice of the estimator, various trade-offs between accuracy and

complexity can be obtained. Here, we prefer not to consider any specific estimator̂K, but

we rather model the estimation noiseθ
(

K̂
)

− θ (K) as zero-mean Gaussian, where the

pdf is truncated in order to keepθ
(

K̂
)

positive. Fig. 8 shows the lifetime gain of the

WLF-CG algorithm with the direct estimatêci,j = ĉKi,j over the WLF-PL, with varying root
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mean squared error (RMSE)σ△K =

√

E

[∣
∣
∣θ
(

K̂
)

− θ (K)
∣
∣
∣

2
]

. Remarkably, forN = 10 and

σ△K ≤ 5dB the lifetime is at least doubled. Notice thatĉMAP
i,j outperformŝcMMSE

i,j , resulting

in lifetime gains as ifĉKi,j were employed withσ△K = 0dB, and 3dB, respectively. The

estimator ofĉKi,j is revealed robust for partner selection for a small number of cooperating

nodesN . Instead, for larger number of nodesN ≥ 30, the lifetime is doubled only for

σ△K ≤ −10dB, while the WLF-CG is even outperformed by the WLF-PL forσ△K > 6dB.

C. Impact of Imperfect Model Knowledge

We consider a protocol where a set ofN1 nodes is used in a prior communication session to

update the channel model, as shown in Fig. 1. In a later communication session,N2 different

nodes are then tasked to transmit to the AP. The impairment ofthe model knowledge is due

to the limited number of the(K,L) regression points used in the prior session to estimate

the model, i.e.,(N2
1 −N1)/2 points for the I2I model andN1 points for the I2O model. Thus,

the accuracy of the proposed Bayesian link quality estimation improves for increasingN1, at

the expense of spectral and computational power efficiency.This trade-off is assessed in the

following. We focus on the MAP estimator̂cMAP
i,j , that was shown to have better performance

compared tôcMMSE
i,j in the above evaluations.

Fig. 9 shows the pdfs of the I2O coding gain estimation absolute error in dB∆c = |ĉi,0−ci,0|
for the estimator̂cMAP

i,0 with perfect (solid lines) and imperfect model knowledge derived

via N1 = 7 nodes (dashed lines) forKi,0 = {0dB, 7.8dB}. Notably, the absolute error

pdfs are very similar, although the bivariate model is estimated by only 7 spatially distinct

measurements of(Ki,0, Li,0). As expected, the mean points of∆c in the considered range of

K-factor values, i.e., >0dB and <7.8dB, are smaller than theabsolute error of the link quality

estimator used in the WLF-PL, i.e.,ς(K) = ci,0 + Li,0 (depicted by the cross markers).

Fig. 10 plots the network lifetime gains of the WLF-CG that uses ĉi,j = ĉMAP
i,0 over the

WLF-PL with varying number of the nodesN1 employed for the parameter extraction. The

performance with perfect model knowledge is also depicted as upper bound. It is revealed

that, for 3 < N2 < 11, the proposed WLF-CG algorithm outperforms the WLF-PL, byat

least doubling the network lifetime forN1 ≥ N2 (as highlighted by circle markers).
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VI. CONCLUDING REMARKS

We have designed an efficient partner selection protocol forcooperative wireless access

from fixed indoor nodes to an outdoor AP through AF relaying. Given that the considered

links can be modeled by Rician fading, we have proposed a partner selection algorithm that

adopts the coding gain - a function of the path loss and K-factor - as link quality metric for

pairing the nodes. The proposed approach implies an additional computational cost due to

the estimation of the K-factor, but provides a network lifetime increase by factors ranging

from 2 to 20 compared to the conventional algorithm based on path loss information only.

Analyzing measurement data from a channel sounding campaign at 2.4GHz we were able

to characterize the path loss and the K-factor with a Gaussian bivariate model. From this

bivariate model a novel link quality indicator is derived that does not require a permanent re-

estimation of the K-factors. This is the Bayesian estimate of the coding gain, where the path

loss is the observed variable (inferred through RSSI readings) and the channel model is the

a-priori information. The novel metric improves remarkably the partner selection performance

almost as if full knowledge of the K-factors were available.

Furthermore, the analysis on the measurement data reveals the high degree of spatial

coherence of the model. Hence, we have proposed a protocol with two phases: (i) for a long

time period (within the stationarity time interval of the model) low-complexity communication

sessions take place, where the link qualities are inferred through path loss measurements and

the a-priori information of the channel model; (ii ) for a short time period, a more complex

communication session occurs, where a set of nodes estimatealso the K-factors in order

to update the site-specific channel model. Numerical results show a good trade-off between

performance and robustness. In particular, the proposed protocol allows to double the network

lifetime compared to the conventional algorithm, also in presence of modeling mismatches.

APPENDIX A

For Rician fading whereρ(i,j),0 =
√
ρiρj and d(i,j),0 = 2, the target outage probabilityp

constrains the powersρi andρj over the two slots such that repetition based coding prescribes

that βi = β and1− βj = β:

ρj ≥ 1
2

[
σ2(2R/(1−β)−1)

Γc(j,i),0

]2

(pρi)
−1 , ρi ≥ 1

2

[
σ2(2R/β−1)

Γc(i,j),0

]2

(pρj)
−1 . (20)
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Recall that the gapΓ can be designed to be the same for the communication both fromi and

from j. By minimizing the maximum overρi andρj , the simple power balancing solutionρi =

ρj = κ(β̂)σ2/
√
2p is found whereκ(β) = max

[(
2R/β − 1

)
/
(
Γc(i,j),0

)
,
(
2R/(1−β) − 1

)
/
(
Γc(j,i),0

)]

and β̂ = argmin
β

κ(β) is solution to
(

2R/β̂ − 1
)

c(j,i),0 =
(

2R/(1−β̂) − 1
)

c(i,j),0, therefore

2R/β̂ − 1 = λ
(

2R/(1−β̂) − 1
)

(21)

whereλ =
√

1+ci,0/ci,j
1+cj,0/ci,j

. The solution to (21) is now approximated for large enough rate R

such that forlog2(λ) ≪ R it is

R

β̂
− R

1− β̂
≈ log2 λ. (22)

Now by letting β̂ = 1
2
− υ̂ with υ̂ small enough, the solution to (22) iŝυ ≈ log2(λ)

8R
.

APPENDIX B

The minimum mean square error(MMSE) estimator̂cMMSE can be approximated as

ĉMMSE = E [c|L] ≈ E [Υθ(K)|L]− E [max (K, 0) |L]− L =

= Υθ

(

µK|L +
σ2
K|L

2Υ

)

− µK|LQ

(

−µK|L

σK|L

)

− σK|L√
2π

exp

(

−
µ2
K|L

2σ2
K|L

)

− L, (23)

whereQ (·) is the Q-function. In (23) we use the approximationς(K) ≃ Υθ(K)−max (K, 0)

∀K7, whereE [max (K, 0) |L] =
∫∞

0
K p [K|L] dK.
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Figure 1. Top: general indoor networking scenario and the specific I2O office radio measurement plan in [15]; indoor
nodes are allowed to support the estimation of a site-specific stochastic channel model (1), and to engage in cooperative
transmission to the access point (2). Bottom: TDMA framing structure inspired to the IEEE 802.15.4 beacon mode.



Figure 2. Measured I2I path loss and K-factor values minus the respective distance-dependent means. The equidensity
contours of the zero-mean bivariate Gaussian distributionare depicted at one and two standard deviations from the mean,
containing 62% and 98% of the points respectively.



Table I
PARAMETERS FOR THEBIVARIATE MODEL (12) - SEESECT. III-B

Bivariate Model (12) Parameters

Indoor-to-Indoor (I2I):
(i, j) 6= 0; D = Di,j

µ
x

{

µK(D|m) = 16.90− 10αK log10 (D|m)
µL(D|m) = 40.4 + 10αL log10 (D|m)

[αK = 0.53, αL = 1.75]

C

{

ϕ = −0.66

σK = 5.8dB, σL = 6dB

Indoor-to-Outdoor (I2O),
Outdoor propagationKWall,0 andLWall,0:

(wall, j = 0 ); D = Dwall,0

µ
x

{

µK(D|km) = 7.85− 10αK log10 (D|km)
µL(D|km) = 135.78 + 10αL log10 (D|km)

[αK = 0.45, αL = 3.89]

C

{

ϕ = −0.25

σK = 7.5dB, σL = 7.9dB

Indoor-to-Outdoor (I2O),
Indoor propagationKi,Wall andLi,Wall:

(i 6= 0, wall); D = Di,wall

µ
x

{

µK(D|m) = −0.3D|m
µL(D|m) = 0.5D|m

C

{

ϕ = −0.74

σK = 5.7dB, σL = 7dB



Figure 3. Measured I2I path loss and K-factor values minus the respective distance-dependent means for the first and for
the second subset of links, estimated at two different time after 10 seconds, respectively.



Figure 4. Conditional pdfp (c|L), both exact (simulated) and approximated (analytical). The respective link quality
estimatorŝcMAP

i,j and ĉMMSE
i,j are also depicted for two values of observed path lossL (empty markers forL = 63dB and

filled markers forL = 58dB).



Figure 5. Cooperative transmission lifetime gain over no-cooperation with different partner selection strategies and varying
number of transmitting nodesN (odd values). The WLF-CG uses threshold valuesτ = {30dB, 40dB} for ĉi,j − ĉi,0 in
the candidate partner set discovery phase. The conservative choiceτ = −∞ is used for the WLF-PL.



Figure 6. The lifetime gains of the WLF-CG algorithm based onĉMAP
i,j and ĉMMSE

i,j over no-cooperation, compared to
that of WLF-PL, with varying number of transmitting nodesN (odd values).



Figure 7. Lifetime performance of the WLF-CG algorithm, also with MAP and MMSE estimators, compared in percentage
to the one of the WLF-PL (100% means equal performance). The correlationϕ between path loss and K-factor as defined
in (12) is varying and is assumed equal for both the I2I links and the indoor component of the I2O links. As practical
reference, the cross markers highlight the valuesϕ = −0.66 andϕ = −0.74, i.e., the correlation observed in the I2I and
in the indoor component of the I2O measurements, respectively.



Figure 8. WLF-CG lifetime compared in percentage to WLF-PL,with varying K-factor estimation MSE. The lifetime
performance of the WLF-CG algorithm based onĉMAP

i,j andĉMMSE
i,j are also marked on the respective curves for comparison.



Figure 9. I2O coding gain absolute estimation error|∆c| = |ĉi,0 − ci,0| pdf for the estimator̂ci,0 = ĉMAP
i,0 with perfect

model knowledge (solid lines) compared to that with the model estimated viaN1 = 7 points (Li,0,Ki,0) observed in the
previous communication session (dashed lines). Also the estimation errorς(K) = ci,0 + Li,0 in the WLF-PL is depicted
for the considered values of the K-factorKi,0 = {0dB, 7.8dB}, i.e., θ(Ki,0) = {1, 6}.



Figure 10. WLF-CG lifetime with MAP link-quality estimator̂cMAP
i,j compared in percentage to WLF-PL, with varying

number of nodesN1 involved in the the estimation the bivariate channel model during the previous communication session.
The lifetime gains of the WLF-CG algorithm based onĉMAP

i,j with perfect model knowledge are also depicted with dashed
lines as upper bound. Performance for different values of communicating nodesN2 in the current session are depicted. The
circle markers highlight the performance forN1 = N2.
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