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Abstract

In this paper, we develop a partner selection protocol fdraecing the network lifetime in
cooperative wireless networks. The case-study is the catpe relayed transmission from fixed
indoor nodes to a common outdoor access point. A stochastaridte model for the spatial
distribution of the fading parameters that govern the liekfprmance, namely the Rician K-factor
and the path-loss, is proposed and validated by means otheainel measurements. The partner
selection protocol is based on the real-time estimation &frection of these fading parameters,
i.e., the coding gain. To reduce the complexity of the linlality assessment, a Bayesian approach
is proposed that uses the site-specific bivariate model @#od-information for the coding gain
estimation. This link quality estimator allows networlelifme gains almost as if all K-factor values
were known. Furthermore, it suits IEEE 802.15.4 compliaetworks as it efficiently exploits
the information acquired from the receiver signal strenigticator. Extensive numerical results
highlight the trade-off between complexity, robustnessntodel mismatches and network lifetime
performance. We show for instance that infrequent updaitebeosite-specific model through K-
factor estimation over a subset of links are sufficient toeasst double the network lifetime with

respect to existing algorithms based on path loss infoomatinly.
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I. INTRODUCTION

Wireless sensor networks (WSN) are the enabling technofogyhome and building
automation ([1], [2]. The main obstacle in the developmenWsNs is the cost of battery
replacement, which becomes even more pronounced for itdemutdoor (120) communica-
tion with its larger transmit powers requirements. In trap@r we aim at designing a medium
access control (MAC) protocol for 120 WSNs that minimizes thaximum transmit energy
so as to prolong the network lifetimel [3].

Transmit energy can be reduced by implementing advancegecative relaying strategies
[4], that efficiently exploit the inherent spatial diveysivf a distributed radio channel. Se-
lecting the partner for each node [5] is the most crucial tasthe coordination phase of
any cooperative techniquel [6]. Partner selection is eibfased on instantaneous or average
channel quality indicators of the linkis|[7],/[8]. Additiohenowledge on macroscopic features
such as the network topology/[9] and a parametric charaetgon of the fading channel,
e.g., a path-loss model [10], can be also exploited.

In this paper we focus on the transmission from several indtatic nodes in a single-
floor office or factory to a common outdoor access point (AB)patlined in Fig[1L (top).
Nodes are permitted to engage in cooperative transmissipramplifying and forwarding
(AF) [11] the signals received from the partner nodes. Wergerested to develop a partner
selection scheme that maximizes the network lifetime umdkability and rate constraints
that are identical for all nodes. We propose an original eagin where the partner selection is
aided by the knowledge of a site-specific multi-link stodltashannel model. The network
employs a time division multiple access (TDMA) scheme ireppiby the IEEE 802.15.4
access protocol in “beacon modé” [12], as depicted in Bigodttém).

In [[7] selection cooperation based on instantaneous chatae information (CSI) has
been introduced. For large networks such an approach esgtihie exchange of large amounts
of CSI within the coherence time of the fading channel. Taioedthe transmission overhead,
here we are interested to employ long-term channel pregseftir the partner selection stage.
This approach has been used by the pairing protocol|in [8iclwis based on the path loss

values. This is a very practical choice, as e.g. in the IEEEBR4 standard a received signal
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strength indicator (RSSI) is available [13]. However, adi¢ation of the randomness of the
fading is also required for assessing the quality of a linkisTrandomness can be assessed
by the Rician K-factor, as shown by physical fading channetieting [14].

Contributions of this work :(i) We design a MAC protocol where the AP assigns the
partner and transmission resources to each node basedoomation about the path lossid
the Rician K-factor, extending the method (of [8]. For thistpcol we provide a performance
assessment in terms of network lifetime, utilizing re&i$2l/I20 channel models.

(i) We propose an empirical, but analytically tractable, s&stic model for the char-
acterization of the two fading parameters, namely, the pags and the Rician K-factor
for the links in an indoor network with fixed nodes. The twogaeters are modelgdintly
generalizing existing scalar models, e.g.,/[14]. The dted&ivariatechannel model is drawn
and validated using the multi-link channel measuremerda {IEi].

(iii) For low-power operation of a cooperative WSN, we proposeaqriure where (1) the
K-factor is estimated on a small number of nodes with a slodatg cycle: this distributed
information is conveyed to the central coordinator in ortterupdate the bivariate model
parameters; (2) the estimation of the link-quality for edacdnsmission is based on the
local average RSSI and the regularly updated bivariate reflamodel as common a priori
information. We compare the performance of this approac wie one where both the

path-loss and the K-factor are permanently re-estimate@doh transmission.

[l. SYSTEM MODEL

The scenario under study consists éfbattery-powered indoor nodes that communicate
with a common AP located outdoors. The nodes transmit duaimgmmunication session.
In each session, the AP is acting as the centralized codadif@ assigning the cooperating
partners, configuring the time-slot assignments and radopiency (RF) transmit powers.
Complex base-band notation is used to model the wirelekbltween node € {1,..., N}
and nodej € {0,..., N}, with node;j = 0 referring to the AP. The received signal at node
Jjis y,; = hijxz; +n; whereh,; is the frequency-flat complex channel coefficient,is
the symbol transmitted by nodewith transmit powerp;, n; is additive symmetric complex

white Gaussian noise with varianeg€. The instantaneous signal-to-noise ratio (SNR) for
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from nodei to j is modeled as

Yig = (Pz‘/UQ) ‘hm’\Q- 1)

The square fading enveloﬁ)/a,j|2 is constant for the whole codeword duration (block fading)
and varies from codeword to codeword according to the Ridiatribution [16], such that
L;; = — (E[|hi;|’]) ap denotes the path loss in dB ahd; = (|E [k ;]|*) ap — (var [hi;]) a5
denotes the Rician K-factor in dB. The temath loss used for indicating’; ;, includes the
large-scale shadow fading and the static component of tlal-sgale fading as detailed in
Sect.[ll-A. The block fading assumption motivates the us@wage probability and it is

confirmed by channel measurements ($eé [15]).

A. Medium Access Control and Node Coordination

The transmission is organized into frames of duratign further divided intoNV + 1
subframes for time division multiple access (TDMA), as shaw Fig.[1 (bottom). A unique
subframe of duratio¥s = 7r/(/N + 1) is assigned to each node by the AP. The AP also
provides the reference clock to all the nodes, the groupeuistbns and access coordination
(e.g., power and time slots allocation) through a periogiadon transmission [12].

Let (¢, 7) be a pair of cooperating no@es&o accommodate cooperative transmission each
subframe assigned to any of these two nodes is further sdlediinto two slots. As depicted
in Fig.[1, for node: the first slot spans a fractiBrzBi = (3 of the subframe duration and it is
used to transmit the nodedata. The second slot with duratiéh — 3;) 7s = (1 — ) Ts is
reserved for helping the assigned partner npda a specular way, the first and second slots
of the subframe assigned to noglespan, respectively, the fractions = 1 — 5 (for nodey
data) and(1 — g;) = g (for forwarding node- data). The AP optimally combines the noisy

replicas of the signals coming from the two nodes for dataatitn.

lWwe assume that each node can cooperate at most with onerpahaeextension of the analysis to grouping assignment
with more than one partner is beyond the scope of the paper.

2To simplify the mathematical treatment, we assume thatltitepartition 3 can take any value in the intenval< 8 < 1,
although in practice this is constrained to a finite numbedatf units.
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B. Outage Probability Modeling

For point-to-point transmissiothe outage probability i$2" = Pr[y;; < vd], where the
SNR thresholdydr = (QR — 1) /T, R is the spectral efficiency measured in bit/channel use.
The gap0 < T' < 1 can be varied by changing modulation/coding format andetaud bit
error rate (BER) level (see [17] and references thereing dlitage probability is assessed
according to the models in [18], here adapted to the corsidscenario.

For the Rician fading model, the outage probability for nadeommunicating directly
with any nodej can be parametrized in terms of the so-called coding gain

L L @
Ci i Pi
where= indicates that the equality holds asymptotically for hig‘h\FQ. The coding gair; ;
depends on the K-factak; ; and the path losg; ; according to:
0(K,5)

e

0 (Lij) [1 40 (K )]

3)

Cij =

For convenience of notation we introduce the functiign = 10¢)/1° with inversef—!(-) =
101og,o(+) (recall thatk; ; and L, ; have been defined in dB).

To model the performance alooperative transmissioaf node: with the help of node
j (herej # 0), we consider the AF relaying scheme as it has a simple aathie that
facilitates practical implementation. Nogeperiodically overhears the signal transmitted by
the partner node and amplifies-and-forwards it towards the AP|[11]. The afigaiion is
based on a variable gain approach, where the power ampbficgaina; = p;/ [0%(v;; + 1)]
is dynamically adjusted to the instantaneous SR Note that the node must maintain a
constant transmit powes; for the whole assigned subframe, i.e. also during the netpyi
phase, so as to avoid amplifier non-linearities by switctimg power level. Recalling that

the AP optimally combines the two noisy replicas of the sewsignal, the effective SNR

1 1 1\
Vi) 0 = Vio T ( +—+ ) - (4)
Yigo V0 V750

3Tightness of the approximation is verified for SNR large @foio guarantee sufficiently low outage probabilities
(<1073).
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The outage probability for cooperative transmission

coo coo 1 ’YCOOPUQ Y0
Poutp = Prh/(i,j),o < Yth p] ~ 5 <C( _t)hop(_ N 0) ) (5)
Z7] b Z7] b

with v = (2/% — 1) /T. The spectral efficiency is now multiplied byl /3; to guarantee
the same efficiency as for the non-cooperative case. Ndiadethis assumption implies that
the low-power radio transceiver is designed to supportiplaltiata rates [19]. Also, we select
the same gap for all rates. Termgy; ;0. ci 5,0 anddy; ;o denote theeffectivepower, coding

gain, and diversity order for the cooperative lifkj), 0, respectively. For Rician fading, it

1 1 1 -
C(ivj)vo = |7 o _'_ o ? (6)
Cio \Cij Cjo

where the coding gains depend on the K-factors and the pathmMalues, as in{3).

N

C. Energy Consumption Modeling

The transmit power is designed so that the outage probahilithe AP is lower or equal
to p. The corresponding energy consumption for noakiring one frame is derived below.

No-cooperation- From [2), the transmit power at nodescales as

Oty -
' Go P
The average energy expenditure for nadman thus be modeled as
T
E; = piTs+ Erxe + Ep, (8)
T

where Ery is the energy consumption for receiving during the beacohahly, andEp is
the energy consumption for basic processing.
AF cooperation— For a small enough outage probability it can be shown that the

minimum transmit power levels for paired nodes;j) are

Pi = Pj = P(i,5),0 = %(B)UZ/\/?a 9

with x(3) = max [(2%% — 1) / (D zy0), (270 —1) / (Tegao)]. The subframe frac-
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tion 3 for the i-th node message is selected so as to minimijzgo:

_ log,(A)

1
ﬁ”§ SR’

(10)

1+cio/¢ij

with \ = Tre, o/er

. The notationx indicates that the scaling law is valid farg,(\) < R
(i.e., A ~ 1). The proofs of[(B) and_(10) are given in Appendix A.

Notice that using[(10) fox > 1 (i.e., c;p > c¢;0), then 5 < 1/2 as the largest slot is
reserved for helping the partngrthat experiences more severe fading conditions. On the
other hand, ifc;; > max [, ¢;0], the slots have equal length, ~ 1/2. Notice that the
choices = 1/2 is relevant also because it models a practical system agahfor two data
rates [19], i.e., the lower for no-cooperation and the higbe cooperation.

The average consumed energy for nedmoperating with partney is then

T
EGSy 0 = PtgoTs + Erx(2 — ﬁ)?s + (1 + var) Ep, (11)
F

with vag > 0 accounting for the energy consumption for the partner signaplification.

The transmit powepy; ;o for source and relay nodes are chosen aglin (9).

[1l. WIRELESSCHANNEL CHARACTERIZATION

In this section we present a framework for modeling and estimg channel quality metrics
for the links of the cooperative network. The final aim is t@ypde metrics to be used at
the MAC layer for relay selection.

In Sect[IlI-Al we propose a stochastic general model of ttefasding parameterd.; ;, K, ;),
which includes as particular cases some models previouslyoged in the literature (see
e.g. [14], [20]). In Sect III-B, the model is validated angaussed using experimental data
collected by an 121/120 measurement campaign, with indamtes deployed over an office
environment. The study will also provide a reliable simwlatenvironment for assessing the
performance of partner selection algorithms in Se¢t. V.e@ithe a-priori knowledge of the
model, in Sect[IlI-C we propose a Bayesian method for thenasion of the coding gain

c;,; Sstarting from the path loss observation.
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A. Bivariate Model for the Large-Scale Fading Parameters

We consider a fading channk]; between any two nod€s, j) of the static network. Link
indexes(i, j) will be omitted when not needed, to simplify the notationislimportant to
highlight that, differently from mobile scenarios, here teterministic channel gaim, =
E[h; ;] accounts for the effects of fixed scattering/absorbing aibjevhich determine the
so-calledstatic multipathcomponent. On the other hand, temporal fading - with vaganc
o = var[h;;] - is due only to some moving scatterers/absorbers in ther@nwient. As
assumed in Sedtlll, this results in a Rician distributiothvparameterd, = —0~* (o7 +|us|?)
and K = 07 '(|un|?/c?) (recall thatd(-) is the inverse of the transformation to dB). The
multipath configuration changes rapidly with the node lmo#, thus leading to fast variations
of the Rician factorK and the path-losg over the space. The objective of this section is
the definition of a model to describe the variations of suctapaters from link to link.

Let x = [K L]" be the vector collecting the two fading parameters for a dermk.
We model the variations ot according to a bivariate Gaussian random variable (bitaria
model). We assume that is Gaussian distributedk ~ N (5, C), with a meanu, (D) =

[ux(D) u(D)]" depending on the link distande and a spatially invariant covariance matrix

0'2 OKO
c=| & TR (12)
()OO'KO'L 0'%

The correlation coefficienp = E [(K — uk(D)) (L — p,(D))] /(oxor) models the mutual
dependence between the K-factor and the path loss exped@ver the same link. A metric,
that will be relevant in partner selection analysis in SBgtis the probability density function

(pdf) of the K-factor conditioned on the path lo$s(K|L) = N (kv o—f(IL), with mean

= B [K|L) = puc(D) + 75 (L — (D)) (13)

and varianceoy,;, = var [K|L] = (1 — ¢*)og.

The parameters of the bivariate model can be tuned for diftepropagation scenarios,

e.g. 12l and 120, as done in the following.
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B. Experimental Calibration of the Bivariate Model and Aysit of Spatial Coherence

In this section, we describe the calibration of the modeapuaatersu, (D) and C on the
I2I and 120 propagation scenarios in Fig. 1. We use the nfinki-channel measurements
[15] at 2.45 GHz, but also existing models whenever the datet sufficient. It is important
to mention that the fading in the experiment is caused not bglwalking people but also
by moving metallic objects. This contributes to determiaesh 120 propagation conditions.
The 70 MHz band of the channel is divided into 60 subbandd) eacesponding to a flat
fading subchannel. As mentioned in Séct. 1lI-A, in contri@smobile scenarios, the small-
scale temporal fading has a different origin compared tosthall-scale fading in the spatial
and spectral domains. Henck; ; and L, ; are estimated independently in each subband.

121 channel model The vector functionu, (D) is estimated by performing linear least
squares regressions & and L over the corresponding distancés in logarithmic scale.
The covarianceC is then obtained by computing variances and covarianceshersets
of data{K — ux(D)} and{L — u(D)}. Thel,, norm of the error between the theoretic
cumulative density function (cdf) of K — ux(D)} and{L — ur(D)} and the empirical one
is 0.04, showing a very good fit. This is apparent in Elg. 2, iehibe equidensity contour
lines of the bivariate distribution of K — ux (D), L — ur (D)) are shown together with the
respective measured values.

120 channel mode} According to the urban micro-cell scenario B4lin/[21], tmegagation
on the link (7,0) is modeled as the combination of three main contributior)sthé indoor
propagation from the node to the nearest wall to thg BSvall); (ii) the propagation through
the wall; (ii) the outdoor propagation from the wall to the B®/all, 0). The overall link

path lossL; , and K-factork;, are modeled as
Lio = Liwan + Lwan + Lwano, Kio = Kiwan + Kwalo- (14)

Notice that the wall contribution has no effects @f),. The value chosen for the wall
contribution isLw.; = 14dB (neglecting the angle of the propagation path with respect t
the wall [21]). The specific value will not affect the perfaante comparison of the algorithms

presented in Sedi.]V. The outdoor parametérg.n o, Kwano) modeling adheres to [20, (4)
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and (9)]. The indoor parametér; w,; is modeled according to [21, Table 4-4]. The bivariate
model (L; wan, Kiwan) and the corresponding indoor correlation value are obthime a
simple manipulation of the model fdr; w.n in [21, Table 4-4], using the line slope and the
error variance of the least squares linear regressioR aiver the corresponding in the
available 120 measurements. Numerical details are pravidélable 1.

The normal distribution ofK’ | L has been assumed by several studies in the literature
(see, e.qg.,[120],[116],[114]) to model the residuals of theeér least square regression
of K over L. Here, instead, we have directly tested the bivariate nbasribution of
{K —ux(D)} and {L — ur(D)} via a 2-D fitting of the cdf. In this way, we have also
highlighted the strong (negative) correlation betwééh — pux (D)} and{L — ur(D)}, also
observed experimentally in our study (see the values eetan Table 1). In contrast to
line-of-sight mobile scenarios, in our case the static ipath component iru, mainly
contributes to the negative correlatign Consider e.g. two linksi, j;) and (¢, j»), with
nodesj; and j, closely located, i.e., with distance in the order of the iearwavelength\
(Dij, = D, ;,). Even if the two links are likely to experience the same ciegrshadowing,
average fading conditionsg, (D), and degree of temporal variatiHnsﬁ, the two links still
experience different multipath configurations and thuted#int values for the static multipath
component inu,. The variation onu,, affects with opposite sign the path-loss and the K-
factor, thus, astrongnegative correlation is observed.

Spatial coherence of the modelsWe use the available measurement data to empirically
assess the spatial coherence of the 12| bivariate model. MleeBtimate the model from the
measurements over 16 links during thest 1/3 of the total experiment duration (32s). The
model is again estimated from a disjoint set of 16 links messwaluring theast 1/3 of the
total experiment duration. We observe that the model baseth® first subset of links can
predict with extremely high accuracy the mean valugéD) as modeled from the second
subset of links. Figll3 shows the measurdd— u. (D), K — ux (D)) values for the two
subsets of links and the corresponding bivariate Gaussiatouar lines. The depicted bivariate

models are strongly matching as the covariance matfit@se practically the same. Due to

4This has been observed in the frequency domain aldo_in [1ejc&lthat the small-scale spatial and frequency-selectiv
fading are caused by the same mechanism.
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the common underlying physical mechanism, it is realistii@ssume that similar results are
valid for the indoor propagation modeL; wa.n, £; wan) in the 120 case. Finally, the outdoor
(Lwan,0, K'wan o) values, similarly to the wall penetration los.;, are not changing over the
links and time in the considered 120 scenario (so as to modehamon stationary outdoor
propagation scenario). As analyzed in Sect.1V-C, theselasions suggest that the model

parameters can be extracted efficiently employing just dlsubset of nodes.

C. Link Quality Estimators

In indoor environments, it is likely to incur into a link thakhibits both a large average
RSSI and, yet, a high packet loss rate [13]. In these scenataurate link quality estimation
should include a measure of the fluctuations of the receimdep Based on the physical
fading channel modeling, several works propose ways tosagbe randomness of a link via
the online estimation of its K-factor. However, it is notvtal to predict the physical layer
performance, or even to draw MAC layer decisions directingishe estimated K-factor.

Let us instead consider the problem of the estimation of tlikng gain[(B). It is convenient

to re-write the coding gain in dB scale as:

c=TO(K) - 07" [1 +0(K)] - L, (15)

S(K)

whereY = 10log,,(e). The termc(K) measures the additional information provided by the
coding gain in Rician fadingd(K) > 0) with respect to path-loss information only.

Most commercial RF transceivers designed for low-poweeless applications [22], [19]
provide information about the received signal strengtimfrhich the path-losd, can be
easily inferred[[18]. A straightforward method to estimateould then be to calculate also
the K-factor and to adopt the formulal (3). We refer to thisneate asdirect estimateéﬁfj.
Accurate, but complex, estimators are proposed, e.gl,3h [Phe most accurate estimator
requires the knowledge of the fading phase. On the other,i@andon-coherent transmissions
as in current implementation of IEEE 802.15.4 radios, thie tzetween the squared mean and
the variance of the fading envelopes can be also used toatstitme K-factor. Nevertheless,
the estimation of small K-factor value& (< 3dB) becomes very inaccurate [24].

Here, to reduce the estimation complexity, we propose tonagt ¢ only from the path
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loss L by exploiting the a-priori information on the statistics@f. derived from the bivariate
model. We assume the stationarity and the perfect knowlefiglee parameterg, (D) and
C introduced above. It is important to stress that the modeWkadge is availablenly if the
nodes are cooperating to exchange the information reqtoredtract the model parame&rs
The assumption of model knowledge is therefore realistithenconsidered network.
Bayesian estimation of the link quality based on the observation df requires the
computation of the a-posteriori pgfc|L). This pdf can be approximated by observing that
for TO(K) > 0711+ 60(K)]itis ¢(K) ~ TO(K) and the link-quality indicatof{15) reduces
to ¢ = TO(K) — L. Recalling thatK’ conditioned on the observedis Gaussian distributed,
K~N (MK|L, aqu>, it follows thatc is shifted log-normal distributed with pdf [25]:

p(c|L) ~ [(%;L) /27T012<IL} - exp <—20%<L (671 (e£L) — MKIL}Z) u(c+ L), (16)

wherew(z) is the unitary step function. The approximation is corr@ed by a numerical
analysis in Fig[.4, where the true and the approximated péfslaown for two values of the
path lossL of one 121 link, simulated according to the model calibratio Sect[1I-B.
Based on the a-posteriori pdf, we derive theximum a posterioffMAP) estimator of the
link quality c. The MAP estimatorgMAY = arg max [p(c|L)], is approximated by the mode

value of the shifted log-normal distribution (16) which igg [25]:

o2
¢MAP x5 T9 (MM — I;L) ~L. (17)

A minimum mean square errdiMMSE) estimatoréMMSE is also provided in Appendix
B. The MAP and MMSE estimators are depicted, by empty martaers. = 63dB, and by
filled ones forL = 58dB in Fig.[4, together with the corresponding pdfs. The figurewsh
that the approximations of the pdfs and of the estimatorstighe to the exact ones, and

behave similarly with varying path loss value.
V. PARTNER SELECTION STRATEGIES
In this section, the problem we tackle is how to select thengarfor the nodes that
are tasked to communicate to the outdoor AP. The final goa imihimize the maximum

The distributed estimation of the 121 and 120 models is beytime scope of the present work.
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energy consumed among them. The AP selects the partneaggydlased on long-term link
quality metrics and not on the instantaneous channel gasmgroposed and studied in the
literature (e.g., in[[7]). The optimahin-maxpairing is found in Secf_IV-A that allows also
for configurations with un-paired nodes. To lower the comipyeand the amount of signaling,
a worst-link-first (WLF) algorithm is then described in SéBf-Bl Although the structure
of the WLF algorithm is simple and resembles the one_In [8] thve modification for odd
number of nodes - the proposed performance analysis dvexglastantially for the 121/120
fixed links considered in our experimental scenario (se¢. 88c Given that the distributed
wireless links can be modeled by Rician fading with différ&afactors, the first key idea
is that the AP uses the coding gain and not the path loss asi@ecnetric in the WLF
algorithm. Secondly, the Bayesian estimators derived it. 8B-C]| provide a representation

of the link quality to be used by the AP to finalize the partnglestion.

A. Problem Definition and Optimal Solver

We define the set of candidate pairing sétssuch that one set € P contains up to
| N/2] disjoint pairs of cooperative node§:= {(i,j), (k, h), ..., (f,g)}. All the non-paired
nodes belong to the set of single nodgs = {q¢,s,...,z}, such that2 (| + |S¢| = N
(where |-| denotes the cardinality of the set). Given the candidateingpiset{ and the
corresponding single node s&t, the maximum energy consumed by a node in the network is

X

Eme(€) = max[max ER<,, max By, whereER% ( = max[E( ;) 0, E(j),0] IS the maximum
(ig)eg "W qese e
energy for the pair(i, j) for a given relaying protocol, with¥; ;) , defined by [(1ll). The

optimal pairing¢ is the solution to

~

¢ = argmin E"(¢) (18)

where we assume that all nodes have the sameRaad outage probability constraints.
The problem[(1B) can be formulated as a special case of thghteei matching prob-
lem on the non-bipartite grapd =(X, ) [26]. The set of verticest’ corresponds to the
set of nodes{1,..., N}, which are fully connected by the set of undirected edfes
{eij: (1,5 € X) & (i < j)}. The loopse; ;—; can be regarded as edges, where the virtual

vertexi of the extended graph is connected onlyitdhe weightsw (e; j<;) = EiSo and
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w (e;j=;) = E; are associated to all the edges and loops, respectivelyoptimal pairing
algorithm removes at each iteration the maximum weightegbeaf the extended graph (as
done in [27] for amax-minproblem on the bipartite graph) and checks the existence of a
weighed matching solution in the remaining graph using GéebalgorithnH [26, Ch. 11],
which was instead proposed in [8] for minimizing the sum & #nergies consumed at the
nodes in one iteration only. It can be shown that the aboveridthgn reaches the solution in

O (N®) computational time. Notice that the algorithm is centediznd requires the AP to

know all the inter-node link qualities for computing ) .

B. Worst-Link-First Coding-Gain Based (WLF-CG) algorithm

The WLF algorithm is a suboptimal protocol for node pairigit allows to reduce the
complexity toO (N?). The conventional WLF algorithm (referred to as WLF patbstbased,
WLF-PL) is based on the information of second order stasstf the fading link[[8], i.e.
the path losd.; ;. We propose a WLF method based on the coding gain (WLF-CG).

Link quality estimation -Before pairing decisions can take place, each nodecally
acquires an estimate of the link qualities for all 121 links to the candidate partners and
the 120 link towards the AR; . Link quality estimator optionsk,, éM'AF, and &'M5® (in
dB) have been discussed in Séct. IlI-C. The WLF-PL algoritisasc; ; = —L; ;.

Protocol structure —The algorithm is composed of two phases:

1) Candidate partner set discoveryEach node performs link quality estimation; , for
the 120 channel exploiting the periodic transmission ofde@masubframes from the AP as
probing signals to be used for channel parameter estimakiom link qualitiesc; ; measured
from all neighboring nodes over 121 links are estimated Hase the signals overheard from
the potential partners. The differenég; — ¢;, is compared at each nodeto a common
thresholdr in order to guarantee the conditiéi¢; ;) > 6(¢é; ). If ¢, ; — ¢ o > 7 then node
j becomes a candidate partner for nadésiven the 120 link quality estimatios;, the
thresholdr is centrally designed such that the probability of findingcamdidate partners
among theN — 1 potential candidateE[jV:L#i [1 —Pr(c;; > ¢+ 7|Li )] is small enough,

where Pr (¢; ; > ¢,0+ 7|L; ;) can be estimated using_(16). The evaluation of the optimal

®The Hungarian method, which is tailored for the bipartitapirs, is instead considered n[27].
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value for the threshold is carried out in the case-study outlined in Sédt. V. The whatd
partners se€p(i) = {j : ¢;; — ¢;o > 7} is finally communicated to the AP from each node
1, using the assigned subframe.

2) Assignment algorithm at the AP At each iteration the AP selects the worst-uplink
node: with link quality ¢, o < ¢éxo Yk # 4, and, if possible, assigns it to the best-uplink
candidate partnef, such that

| = arg max C, 19
J g max G (19)

Nodes: andj are paired and disregarded in the next iterations, urdless is empty. In the
latter case, nodeéis left un-paired in the final configuration.
For an odd number of node¥ the preliminary step is to leave the best-uplink node

un-paired, then the partner assignment follows as abovéh@&remainingV — 1 nodes.

V. EXPERIMENTAL ASSESSMENT OFPARTNER SELECTION IN THE 120 ENVIRONMENT

In what follows, we provide numerical simulations on the fpanance of the partner
selection algorithms (Sedi._1V) and of the Bayesian linkliyaestimation methods (Sect.
[M-C). The network setup is outlined in Fig] 1V nodes are randomly distributed in a
25m x 25m indoor environment, while the AP is placed outdodfsn away from the
nearest wall. For each random topology of the network, Kefa@nd path loss values
are generated independently for all links according to #pective 121 and 120 models
detailed in Sect[_1lI-B. The performance results are exgmdsin terms oflifetime gain
E[E™(&,q0)] /E[E™>(£)], defined as the ratio between the maximum energies (averaged
over 5 x 10* random topologies) consumed among the nodes according daodifferent
pairing strategies: the reference protocol with pairingison &,.; and the proposed protocol
with pairing solutioré. Note that the largest values Bfex(¢L¢) and ofEmaX(é) highlight the
lifetime gain in scenarios where the 120 channel conditiaresworst. In the examples, the
energies consumed for receptidirx and for basic processingj, are neglected. According
to the 120 modeling in Sedi I, it is likely that, ; > max [c; o, ¢;0]. From [10), the optimal
choice for slot duration i, = 5, = 1/2. We setl’ = 1, as this assumption has no relevant
impact on the performance comparisons in the examples. digettoutage probability is

p = 1073 for all the nodes with spectral efficiendy = 1 bps/Hz.
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In Sect.[\VFA, we provide numerical simulations for the WLIGGifetime performance.
In Sect.[V-B, the impact of the proposed link quality estiimatis evaluated and compared
to the case where a noisy estimation of the K-factor is okthiftom training. Finally, in
Sect[V-C, the proposed pairing algorithm performance ssubsed in presence of imperfect

modeling of the channel.

A. WLF-CG Protocol Performance

We first evaluate the performance of the WLF-CG algorithnuassg that the link qualities
c;; are perfectly known at the respective nodes {1,...,N} andj = {0,..., N}. Fig.[5
shows the lifetime gain of AF cooperation compared to nopeoation, i.e&..; = @ is the
empty pairing set and is the pairing set obtained according to a partner selestitategy.
A random pairing strategy is also considered for comparigbere all nodes are disjointly
paired with a random choice of the partner. For dddthe optimal pairing algorithm in Sect.
V-A] the random pairing strategy, the WLF-PL algorithmdatihe proposed WLF-CG are
compared. The candidate partner conditions (see[Sect) &/;B> ¢, andL, ; < L, for the
WLF-CG and the WLF-PL, respectively, are almost always guataed for each pair of nodes,
in particular it isPr(¢;; > ¢;o+7) ~1andPr(L;; < L,y —7) ~ 1 for 7 < 30dB. For
the propagation environment under consideration, thelations show that partner selection
performance get worse when choosing 40dB. The exploitation of the knowledge of the
K-factor is revealed crucial: the WLF-CG algorithm increaghe lifetime from a factor of
20 for N = 3 to a factor of 2 forN = 55 compared to the WLF-PL. This results from
the fact that the WLF-CG algorithm allows for a more efficiemploitation of the available
diversity, as if the optimal algorithm in Se€t. ITM-A were digd. The remarkable gains over
no-cooperation and over the random pairing denote a largeedeof spatial redundancy
provided by the multi-link channel, i.e., the path loss andbktor values exhibit significant

variations over the space.

B. Impact of Link Quality Estimation on WLF-CG

The optimality of the WLF-CG pairing strategy relies on tleewaracy of coding gain (link

guality) estimation. This motivates a closer study to idgrthe most suitable estimator and
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to quantify the benefits provided by the knowledge of therittisted channel model. Here,
we assume that only the path lokss perfectly known.

Link quality estimation from the path logg; = {¢'A”, ¢MMSEL — The WLF-CG algorithm
can capitalize from the available site-specific channetaittarization. Fid.16 shows the energy
gains of cooperation over no-cooperation for varying numdfecooperating noded’. The
estimators?)’*” and¢}M3" are used, exhibiting equivalent performance: notablyjitaéme
gain over the WLF-PL ranges between factors\2= 15) and 20 (V = 3). These gains are
similar to those obtained in the case wheyg are perfectly known (see Figl 5). Thus, the
proposed Bayesian estimation©is revealed useful to guarantee significant lifetime besefit
in the considered network settings.

In Fig.[7 we evaluate how the WLF-CG lifetime gain scales wiité correlationy between
the path loss and the K-factor fo¥ = 10. The correlationp (assumed equal for both the 121
links and the indoor component of the 120 links) varies aaoity from —1 to 0, whereas
the other channel parameters conform to the values in TabWghkn the link qualityc is

known, the lifetime gain increases @gets closer to 0: this is the case where the knowledge

of the K-factor becomes in theory most beneficial. Instelae WLF-CG algorithm based on

¢'AP, and ¢!MSF is shown not to be sensitive within realistic variation8.8 < ¢ < —0.5,
as it improves always by a factor 2.5 the lifetime obtaineddmyploying the WLF-PL.
It is interesting to observe thaf'*" performs better tham}!"'>* for ¢ > —04, as it is
more conservative in predicting the worst-uplink link gtyalwhich dominates the lifetime
performance. Indeed, it can be verified tlﬁ}{@t“P < ¢IMOE,

Link quality estimation from both path loss and K-fact®y, = cfj — The estimator of
the K-factor can be obtained from the complex fading retibrs or the corresponding
squared envelope values (acquired from RSSI measurem28js)As discussed in Sect.
[I-C] depending on the choice of the estimator, variousidraffs between accuracy and
complexity can be obtained. Here, we prefer not to considgrspecific estimatois’, but
we rather model the estimation noiﬁe(f() — 0 (K) as zero-mean Gaussian, where the
pdf is truncated in order to kee@(f() positive. Fig.[8 shows the lifetime gain of the

WLF-CG algorithm with the direct estimatg; = cfj over the WLF-PL, with varying root
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mean squared error (RMSE) = \/E UQ (K) -0 (K)ﬂ . Remarkably, forV = 10 and
oax < 5dB the lifetime is at least doubled. Notice thgt*" outperformszM5®, resulting
in lifetime gains as iféﬁfj were employed withonx = 0dB, and 3dB, respectively. The
estimator oféffj is revealed robust for partner selection for a small numlderooperating
nodesN. Instead, for larger number of nodéé > 30, the lifetime is doubled only for

oarx < —10dB, while the WLF-CG is even outperformed by the WLF-PL tot; > 6dB.

C. Impact of Imperfect Model Knowledge

We consider a protocol where a set/éf nodes is used in a prior communication session to
update the channel model, as shown in Elg. 1. In a later cormation session)V, different
nodes are then tasked to transmit to the AP. The impairmetiteomodel knowledge is due
to the limited number of thé K, L) regression points used in the prior session to estimate
the model, i.e.(N}? — N;)/2 points for the 121 model andV; points for the 120 model. Thus,
the accuracy of the proposed Bayesian link quality estonatinproves for increasing/;, at
the expense of spectral and computational power efficieftag trade-off is assessed in the
following. We focus on the MAP estimatéff;.AP, that was shown to have better performance
compared ta?>" in the above evaluations.

Fig.[d shows the pdfs of the 20 coding gain estimation altea@tror in dBA, = |¢; 0—c; o
for the estimator}i*" with perfect (solid lines) and imperfect model knowledgeiwis
via N; = 7 nodes (dashed lines) fak;, = {0dB,7.8dB}. Notably, the absolute error
pdfs are very similar, although the bivariate model is eated by only 7 spatially distinct
measurements af; o, L; o). As expected, the mean points Af in the considered range of
K-factor values, i.e., >0dB and <7.8dB, are smaller thanatbeolute error of the link quality
estimator used in the WLF-PL, i.e(K) = ¢; o + L;o (depicted by the cross markers).

Fig. (10 plots the network lifetime gains of the WLF-CG thaesis;; = ¢}{*" over the
WLF-PL with varying number of the nodeS; employed for the parameter extraction. The
performance with perfect model knowledge is also depictedi@per bound. It is revealed
that, for3 < N, < 11, the proposed WLF-CG algorithm outperforms the WLF-PL, aty

leastdoubling the network lifetime forV; > N, (as highlighted by circle markers).
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VI. CONCLUDING REMARKS

We have designed an efficient partner selection protocotémperative wireless access
from fixed indoor nodes to an outdoor AP through AF relayingue@ that the considered
links can be modeled by Rician fading, we have proposed a@aselection algorithm that
adopts the coding gain - a function of the path loss and Kefacts link quality metric for
pairing the nodes. The proposed approach implies an additimomputational cost due to
the estimation of the K-factor, but provides a network life¢ increase by factors ranging
from 2 to 20 compared to the conventional algorithm basedaih fwss information only.

Analyzing measurement data from a channel sounding cam@zeig.4GHz we were able
to characterize the path loss and the K-factor with a Gandsiariate model. From this
bivariate model a novel link quality indicator is derivectidoes not require a permanent re-
estimation of the K-factors. This is the Bayesian estimétie coding gain, where the path
loss is the observed variable (inferred through RSSI regjiand the channel model is the
a-priori information. The novel metric improves remarkatiie partner selection performance
almost as if full knowledge of the K-factors were available.

Furthermore, the analysis on the measurement data revealbigh degree of spatial
coherence of the model. Hence, we have proposed a protottotwo phases:i) for a long
time period (within the stationarity time interval of the de) low-complexity communication
sessions take place, where the link qualities are infefremligh path loss measurements and
the a-priori information of the channel modeii) (for a short time period, a more complex
communication session occurs, where a set of nodes estastiethe K-factors in order
to update the site-specific channel model. Numerical resllow a good trade-off between
performance and robustness. In particular, the propossdgmi allows to double the network
lifetime compared to the conventional algorithm, also iegemce of modeling mismatches.

APPENDIX A

For Rician fading wherey; o = \/pip; andd ;o = 2, the target outage probability
constrains the poweys andp, over the two slots such that repetition based coding piessri
thats, = 5 and1 — 8, = 3:

2 2
o2 (2R/(1=B)_1 _ o2(2R/B_1 _
p; >3 {W} (ppi) ™", pi > : [ﬁ} (ppy) " (20)

June 14, 2018 DRAFT



19

Recall that the gajp' can be designed to be the same for the communication bothifieord
from j. By minimizing the maximum oves; andp;, the simple power balancing solutipn=

p; = r(B)a?/y/2pis found wheres(8) = max [(2%/7 — 1) / (Degno) , (2707 — 1) / (Tegao)]
and 3 = arg mins () is solution to (23/5 - 1) i = <2R/(H§) - 1) c(i.j)0, therefore

9R/B _ 1 — )\ (2R/(H§) _ 1) 1)

1t+cio/ci,
1+cj,0/¢i,

such that forlog,(\) < R it is

where )\ = . The solution to[(21) is now approximated for large enough ra

—]? — i ~ log, A. (22)

g 1-p
logy (A)

— 0 with © small enough, the solution to (22) is~ =:2~.

Now by letting 3 = =

1
2
APPENDIX B

The minimum mean square errdMMSE) estimatorc™5F can be approximated as

MMSE S — E[c|L] = E[YO(K)|L] — E[max (K,0) |L] — L =

2 2
OK|L /~LK|L) OK|L Hg|L
= 70 +—] - —— | - —=exp| — — L, (23
(MKIL T ) pKLE ( o)~ vax P\ a2 . (23)

where( (-) is the Q-function. In[(23) we use the approximatigx’) ~ T6(K ) —max (K, 0)

VKL, whereE [max (K,0)|L] = [;° K p[K|L] dK.
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Indoor-to-outdoor networking: experimental scenario

Office (Stanford 2008 measurements [15]) o )
In-building networking

1) Measurements and information exchange
to derlve a site-specific channel model

- S
/é" Factory

Access point (AP)

/ )

Home

r=]

2) Communications via cooperative relaying
Pan‘ner selection aided by channel modeling

—_—

Node i relayed signal

BT (I-B)T,

TDMA structure: (IP)Ts BT

Node j data Node i data
B lot Node j relayed signal
eacon slot: T.=T./AN+1
- TDMA synchronization ST AN
- power/slot scheduling ilif - [
- partner selection -

7
Frame T.(N+1 slots)

Figure 1. Top: general indoor networking scenario and thecifip 120 office radio measurement plan [n][15]; indoor
nodes are allowed to support the estimation of a site-spestifichastic channel model (1), and to engage in cooperative
transmission to the access point (2). Bottom: TDMA framitgicture inspired to the IEEE 802.15.4 beacon mode.
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Figure 2. Measured 12| path loss and K-factor values mingsréspective distance-dependent means. The equidensity
contours of the zero-mean bivariate Gaussian distribugiendepicted at one and two standard deviations from the mean
containing 62% and 98% of the points respectively.



Table |

PARAMETERS FOR THEBIVARIATE MODEL (I2) - SEE SECT.[[II-B]

Bivariate Model [(12) Parameters

Indoor-to-Indoor (12I):

" UK (D) = 16.90 — 10ak logyo (D|m)
* ) pn. (D) = 40.4 + 10ay, log,y (D|m)

[ax = 0.53, a, = 1.75]

© = —0.66
OK — 58dB, o1, = 6dB

Indoor-to-Outdoor (120),

Outdoor propagatiodywau o and Ly o:

(Wall, j = 0 ), D = Dwall,O

| #L(D)xm) = 135.78 + 10ay, log (D xm)

[ax = 0.45, ar, = 3.89)]

p=—0.25
OK — 75dB, o1, = 7.9dB

Indoor-to-Outdoor (120),
Indoor propagationy; w.y and L; wan:
(1 # 0, wall); D = D; wan

o (Dl = 03D,
* | k(D) = 0.5D)

p=—-0.74
OK = 57dB, o1, = 7dB
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Figure 3. Measured 12| path loss and K-factor values minesréispective distance-dependent means for the first and for
the second subset of links, estimated at two different tifter 40 seconds, respectively.
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Figure 4. Conditional pdfp (c|L), both exact (simulated) and approximated (analytical)e Taspective link quality
estimatorst;*" and ¢}M5F are also depicted for two values of observed path lbgempty markers foi, = 63dB and

filled markers forL = 58dB).
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Figure 5. Cooperative transmission lifetime gain over nogeration with different partner selection strategies earying
number of transmitting noded (odd values). The WLF-CG uses threshold valees: {30dB, 40dB} for é; ; — éi0 in
the candidate partner set discovery phase. The consendtdicer = —oo is used for the WLF-PL.
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Figure 7. Lifetime performance of the WLF-CG algorithm,calgith MAP and MMSE estimators, compared in percentage
to the one of the WLF-PL (100% means equal performance). dhelationy between path loss and K-factor as defined
in (I2) is varying and is assumed equal for both the 12! linkgl ¢he indoor component of the 120 links. As practical

reference, the cross markers highlight the valges —0.66 and¢ = —0.74, i.e., the correlation observed in the 121 and

in the indoor component of the 120 measurements, respéctive
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Figure 9. 120 coding gain absolute estimation efiye| = |é;,0 — ci,0| pdf for the estimatog; o = ¢'g*" with perfect

model knowledge (solid lines) compared to that with the nh@dtimated viaN, = 7 points (;,0,K;,0) observed in the
previous communication session (dashed lines). Also ttimaton error¢(K) = ¢;,0 + Lio in the WLF-PL is depicted
for the considered values of the K-factaf; o = {0dB, 7.8dB}, i.e., 0(K;,0) = {1, 6}.
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lines as upper bound. Performance for different values ofroanicating nodesV, in the current session are depicted. The
circle markers highlight the performance fdf = Ns.
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