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Abstract

This paper investigates generation of a secret key from iaraal wireless channel. In particular
we consider wireless channels that exhibit sparse strigtuthe wideband regime and the impact of the
sparsity on the secret key capacity. We explore this prolifetwo steps. First, we study key generation
from a state-dependent discrete memoryless multiple sodice state of source captures the effect of
channel sparsity. Secondly, we consider a wireless chamoekl that captures channel sparsity and
correlation between the legitimate users’ channel and évesropper’s channel. Such dependency can
significantly reduce the secret key capacity.

According to system delay requirements, two performancasmes are considered: (i) ergodic
secret key capacity and (ii) outage probability. We showt thathe wideband regime when a white
sounding sequence is adopted, a sparser channel can aehiégber ergodic secret key rate than a
richer channel can. For outage performance, we show thaeifisers generate secret keys at a fraction
of the ergodic capacity, the outage probability will decap@nentially in signal bandwidth. Moreover,

a larger exponent is achieved by a richer channel.

Index Terms

Secret key generation, public discussion, reciprocal laése channel, channel sounding, ergodic
capacity, secrecy outage.

I. INTRODUCTION

The fundamental limit of secret key generation from diseretemoryless multiple source
(DMMS) is developed by Ahlswede, Csiszafl [1] and Maurer. [Rheir results show that if
X, Y, Z (respectively observed by Alice, Bob and Eve) are corrdlatgh a known distribution,
it is possible to generate a secret key between Alice and Ba@bpasitive rate through use of
a public discussion. The resulting information rate leat®é&ve can be made arbitrarily small.
The supremum of achievable secret key rates is calledeheet key capacity

Since their work, there have been many extensions to exgiersecret key capacity of more
complicated models. Irﬂ[ﬂ 4], users observe DMMS and alsosinit information via wiretap
channel([5], but there is no access to public channel forudision. The authors inl[6-9] consider
a wiretap channel influenced by a random channel state, kbgvame (or both) of the legitimate
users. In such models, the random channel state can be vigsvackind of correlated source
shared by transmitter/receiver which also influences thestnission.
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In [1d, [11], key generation from DMMS is considered where BIMS is excited by a
deterministic source [10] or by a random soufce [11]. Thiddse-excited model is motivated by
an application in which key generation is based on the intigemmdomness of reciprocal wireless
channel. Consider a situation where Alice and Bob transmeduading signal to each other over
a reciprocal wireless channel. Due to the channel recify;ogiice and Bob observe a pair of
correlated sources. The source turns out to be a good sawrcedret key generation because
it can be the case that (i) the source is correlated, (ii) thece is ubiquitous since it is from
wireless channel, and (iii) it is hard to eavesdrop becalenireless channel varies quickly in
the spatial and temporal domains. This issue has receiveth atention in terms of theoretical
and practical research [12119]. However, most of this warlstibject to the assumption that
the eavesdropper channel is statistically independertteofiiain channel (the channel between
Alice and Bob). This is true when the environment has richtsgag such that the correlation
between channel coefficients decreases rapidly in theasmhtmain.

However, there is growing experimental evidence (d:g,l—,@)) and physical arguments (e.g.,
[@—@]) which show that realistic wireless channels ar@rsp at large bandwidths. The effect
of channel sparsity on secret key capacity is twofold: (feduces the degrees-of-freedom (DoF)
of the main (Alice-Bob) channel and (ii) it induces spatialrelation E%], thereby increasing
Eve’s ability to observe the main channel.

We revisit the key generation problem when the channel @&shgparsity in the wideband
regime. This channel characteristic can be captureddpassity patterrthat defines the non-zero
support of the channel coefficients. Depending on the enmient, the sparsity pattern could
experience fast or slow time variations. The channel moldel @aptures the correlation between
the main channel and Eve’s observations. To study secrejégration in this context we capture
these characteristics by definingstate-dependentiscrete multiple memoryless source (SD-
DMMS). We specialize this model to the statistical chanazégion of sparse wireless channels
were the sparsity pattern plays a role of the channel state @ we discuss next, develop
ergodic capacity and secrecy outage results.

In analogy to communication over a fading channel, two regiare studied according to the
system delay constraint:

« Ergodic regime (the delay tolerant regiméf) the key is generated based on a large number
of observations across multiple states, the secret keycitgps well-defined in the Shannon
sense. We call the capacity in this case d¢ingodic secret key capacity. The main problem
is that the system suffers from an excessive delay.

« Non-ergodic regime (the delay stringent regimi)the observed source sequence is not
long enough or the state changes slowly so that the key geneis forced to occur within
a period of constant state, the capacity is not defined inrgénie this case, we consider
the secrecy outage probabilitwhich measures the probability that the instantaneous stat
condition cannot support the key rate to fulfill the secreopndition (this will be defined
later).

Secrecy outage is also considered in other research ragastiite-dependent (fading) wiretap
channel (e.g.]ﬂ@Q]). We show that when a white soundiggience is adopted in the wideband
(low power) regime, a sparser channel can achieve a higheztdeey rate than a richer channel
can. This is analogous to capacity behavior in sparse raoténna channels iﬂSO]. Furthermore,
at each signal-to-noise ratio (SNR), there is an adequatdwidth that maximizes the secret
key rate. For the outage performance, we show that the systamachieve an exponential
decaying outage probability by using arbackoff scheme { < o < 1) in which secret key rate



is a fractiona of the ergodic capacity. Unlike the ergodic case, now a ricdi@annel always
has a larger exponent characterizing the decay of the oytegfgbility. In a similar vein as
communication over a fading channel, this demonstratesaHarge number of DoF helps to
smooth out the effect of the unknown state.

The paper is organized as following. In Sectidn Il we give saefinitions and describe the
system model. This includes the correlated sparse wireleasnel model, the definition of the
SD-DMMS, and the one-way discussion key generation protdedSectionIll, we investigate
the ergodic secret key capacity of SD-DMMS and apply this ég generation from a sparse
wireless channel. Outage is defined in Seclioh IV. We giveaesgary and sufficient condition
for an outage event and explore the outage probability whemv-backoff scheme is used.
Detailed proofs are deferred for the Appendix.

[I. DEFINITIONS AND SYSTEM MODEL

In this paper we are motivated by key generation based onlesgechannel that exhibits
sparsity in the delay domain. We first develop our model ofaspwireless channel in Section
[M=A] While in earlier works on modeling sparse wireless mhals, e.g., se@@éﬂ%], there is
only a single channel to model, in Sectlon lI-A we need to nhtftiemain (Alice-to-Bob) channel
as well as Eve’s correlated observations of that main cHaRolowing our wireless motivations,
in Section 1I-B we develop an abstractstate-dependent discrete multiple sou(&®-DMMS)
model. In this model the “state” captures the effect of ttwavg} varying sparsity pattern while
the key itself is extracted from the conditionally-geneca{conditioned on the sparsity pattern)
channel fades. Finally, in Sectign II-C tleme-way public discussiokey generation protocol is
formally presented.

A. Sparse reciprocal wireless channel

Consider a wireless communication system with bandwidithSay that the channel exhibits
sparsity in the delay domdlnwhere 7., is the maximum delay spread of the channel. Then
Liax = [TmaxW'] is the maximum number of resolvable paths. A sounding sexudn=
[dy,dy, -+ ,dy,|" is transmitted over time peridt, where N, = [TW]. The sounding sequence
is a known sequence with powdf’d = P. We assume each two-way (Alice Bob) sounding
is done within a channel coherence period (if&,; > 27"). Further multiple channel soundings
(indexed byt) are performed within non-overlapping coherence periodsning that each set
of soundings are independent.

The channel outputs in sounding intervahre

X[t| = DHylt] + Wi[t]  (Alice) , (1a)
Y] =DHglt] + Wa[t]  (Bob), (1b)

where H,[t] = (Hyt],--,Hy,, [t])T is the sampled (virtual) channel coefficient[24] 36]

'In this paper, we consider channel sparsity in the delay danitais not difficult to extend the result to the sparsity iither
the Doppler or spatial domains, e.d..|[24-26, 35].



vector, andD is an N-by-L,,., Toeplitz matrix withN = Ny + L.« — 1:

M dy 0 0 7
dy dy 0
: ds dy
D=|dy, °: dy :[dl,d2,~-~,de}.
d,
0 0 .
0 0 0 dy, |

A widely used sounding signal is a sequence whose spectrasyiaptotically white inV,. In
this caseD is a full column-rank matrix such ttat

DD =PI, (2)

when N, is sufficiently large. One such exampleds= /Pe = v/P(1,0,---,0)”. Another
such example is pseudo-random (PN) sequence in spreadwpex;tstem@?]. The noise terms
W, [t] and Wy [t] in (@) are independer®\ (0, 021y) andCN (0,021y) vectors, respectively.

1) Sparse channel modeMost channels that have a small number of physical paths will
exhibit sparsity in the delay domain as the signal bandwitltincreases. In particular, in some
delay bin/, the corresponding channel coefficiefit|t] will be zero. In this paper, we adopt
the sub-linearlaw model considered in previous Worik__[@ 35] to capture sparse channel
characteristic. In this model, the channel is calbesparseif the average number of non-zero
channel coefficients scales as

L= (TmaxW)® = L

max’

de(0,1). (3)

The parametel is also the mean number of channel DoF.
The channel sparsity patterof the main channel in sounding intervals

Sa [t] - (Sab,l[t], T Sab,Lmax [t]> S SLI""‘X,

whereS = {0,1} and E [Zf;“f" S(M[t]} = L. This pattern defines the support of the channel
vector

Hof] = (Flt], Halt] ... Hy, [f]).

i.e., Hy[t] = 0 if and only if S, ,[t] = 0. The channel coefficient$/,[t] are independent
CN (0,v7) variable where the variance’ = 0 if S,,[t] = 0. The channel hasinit power,
i.e., Y, vZ = 1. Later, we use “channel degrees-of-freedom” (DoF) to redethe weightof the
realization of the vectoS,,;[t]. We also callS,;[t] the stateof H,[t]. A rich multipath channel
corresponds t@ — 1.

The sparsity patter®,,[¢] will, in general, be time-varying. However, in most caseruérest,
Sa[t] will change much more slowly than the channel coefficiefg [t]. This is because the
main reflectors, by which paths are resolved by differenayléins, move more slowly than the
phase changes that influencs the fading coeﬁiciéﬂs@ ,Because of this, most of the
secret key rate will be generated by the randomness inh&yahe channel coefficients rather

Here and in the following, we say(z") = g if g(z™) — g whenn is sufficiently large.



than the sparsity pattern itself. Furthermore, there gexjebd techniques to estimate the sparsity
pattern reliably based on few observations, e@, [40].sThee consideiS,,[t] known to Alice
and Bob. Letn be the number of channel sounding periods during which tlaesgy pattern
remains constant. We term this teparsity coherence period hus, them-th sparsity coherent
period extends fromt = (m — 1)n + 1 to ¢t = mn. In this interval S,,[t] remains constant, i.e.,
Suw[t] = Sap[mn] for all t, (m—1)n+1 < t < mn. We further assume th#,,[t] is independent
across periods.

Modeling the distribution of the state itself is a difficuitsk, so we consider a simple model

L
Lmax

for all ¢. In other words, the5,;, is Bernoulli distribution with parameter (denotedBern (p)).
2) Eavesdropper’s correlation modeEve’s channel output is similar tEEl)

Z[t] = DH.[t] + Ws[t]  (Eve), (5)

where the noise iEAN (0, 21 y). The channel coefficient vectdi. [t| = (H.[t],- - - , He 1. [t])"
is alsod-sparse with state denoted I9y[t], and each elemei@\ (0, v?) distributed. We model
the correlation betwee#, [t] and H,,[t] in a two-step process as follows:

« Correlation betweerss. and S,;,: For each delay bid for which S,,, = 1, the probability
that Eve also has non-zero channel gaifi.ise.,

Pr(See = 1|Sape = 1) =0 (6)

Pr(Spe=1) = = (TmaxW) 179 £ p 4)

forall 1 </ < Lax.

« Correlation between individual channel coefficieRor those channel coefficients in the
“‘common support” delay bins, i.e., in the sét : S;,, = S., = 1}, the correlation
coefficients are

E[HH |
VEHPIE[He, ]

The parameteé captures the fraction of DoF that the main channel and Evesicel have
in common. One can think of the relationship between thee {sparsity pattern) of the main
channel and that of the eavesdropper’s observation as ayhim@moryless channel. However,
because Eve’s marginal channel has the sasarsity as the main channel (since the users are
in the same environment), the channel is not symmetric. lerotvords, transition probability
Pr(Ses = 1|Sape = 0) # Pr(Sey = 0[Swe = 1). This is illustrated in Figuréll. Finally, the
parameter captures the effect that the paths (of both channel) locatede common delay
bin shares the same physical scattering.

Remarkl: The parameter spadéd,n),d} of our model captures many scenarios of interest.
From a physical aspect, there are two factors effecting Eekannel correlation: the distance
between Eve and Bob (which mainly impacts leakage to Eve), raahness/sparseness of the
multipath (which impacts both leakage to Eve and the commodaomness between Alice and
Bob). When Eve gets close to Bob, generally, bétland n will increase (and vice versa);
this will generally increase the leakage. The paramétéind thusp) controls the maximum

n(Hy, Heyp) =

%In order to get meaningful observations, we assume Eve &ddcclose to one of the users. So only one of the two Eve’s
channel outputs during the two-way sounding correlates wie main channel. The other output is independent of the mai
channel due to fast spatial decorrelation.



Fig. 1. Transition probabilityPr(Se ¢|Sas.c).

number of DoF. When multipath is ricl, is high andy is closer to zero (i.e., high overlap but
independent), resulting in the highest capacity and lowesstage. For sparse multipath,is
lower (lower common randomness) andcould be large even at larger distances between Eve
and Bob. In this case leakage will likely increase more sjoad Eve gets closer to Bob.

To generate a secret key, users repeat the channel soufjjii@nd [%))nM times and
generate a key based on a pair of super-bidcX [t], Su[t]), (Y[t], Sa[t]) }724. In the following
section we abstract away the actual sounding process anifyspstate-dependent source model
where the state varies more slowly than the underlying sotgalization process from which
the key is generated. When we study the ergodic case, weewitidthn and M go to infinity,
while when we study the outage casé,= 1, andn can be large.

B. State-dependent discrete memoryless multiple source

To leverage results on information theoretic security, wasider a state-dependent (SD)
DMMS model depicted in Figurgl 2. The observation trifen™  yM  7nMy ¢ ynd o ynM
ZmM is generated according ga™M | yM 2 M|sM M), condltlonlng on the pair of length#
sequences(s’, sM) e SM x SM.

As discussed in Sectidn THASY is the state sequence of Alice and Bob’s correlated source
XM ynM and SM is the state sequence of Eve's observatioh'/. The states have joint
distributionp(s!, sM). Since the states vary more slowly than the conditonallyegated sources,
there is a length of time: during which the states remain constant. This correpond$eo
sparsity coherence period discussed earlier. A largeeans that the states are changing slowly.
We assume that the states are available to the correspooblgggvers but not to other users. In
other words, Alice and Bob both kno@,;, but not.S, while Eve knowsS, but notS,,. This is

depicted in Figur€]2. We call the statgemorylessf

%7 é\/] Hp Sabmusem . (7)

Similarly, the source isnemorylessf

p<ng’ynJ\/l Zn]\/[ | sM s é\/[)

M
= H p(xia Yi, Zi|3ab,ma Se,m) . (8)
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Fig. 2. State-dependent DMMS model

Note that in[[B) one see the effect of the sparsity cohereadedh The triplet of source samples
(X;,Y;, Z;) is conditionally and independently generated from the satag pair(.Sym, Se.m)
for all i, (m — 1)n < i < mn. Each of(X;,Y;, Z;) stands for the vector of channel output in
M-Al

In the one-way discussion protocol (which will be detailexinn[II-C)), Alice sends a message
® over a public channel. Bob recovers Alice’s key based on bhi&eovation(Y ™™ SM) and ®.
Eve’s sourceZ is adegradedversion ofY if

p(l’, Y, Z‘S(llh Se) = p(l’, y|sab)p(2‘y7 Sab, 88) . (9)

In other words, for given states.;, s.), Eve’s output is a cascade of the Bob’s output and a
channel represented by z|y, Sap, Se)-

C. One-way discussion key generation protocol

Let £ = [1 : 2"F] be the key space. There is an authenticated public chanaislale to users
to exchange error-free public messages in thebset[1 : 2"f%#]. The one-way public discussion
secret key generation protocol consists of three functions

fi: XM SM | (10a)
g: XM SM 59 | (10b)
fo: VM xS xd K, (10c)
which define Alice’s key, public message, and Bob’s key, eetipely. Namely,
K= fi(X™ 55) (11a)
¢ =g(X™,S3) (11b)

K = fo(Y™™ SN ¢) . (11c)



Definition 1 (Achievability). A secret key rate? is (weakly) achievable if for any > 0, there
is a secret key generation system defined@) such that for sufficient large and M,

Pr(K # K) <e, (12)
L . onM oM

nMI<K7Z LS P) <€ (13)
1

Condition [14) means the key is almost uniformly distrilsitever the sefC. System secrecy
is measured in terms of the mutual information defined in (&Bich says that the information
about the key leaked to eavesdropper is negligible. Theesuwpm of achievable secret key rates
is called thesecret key capacity

[Il. ERGODIC SECRETKEY CAPACITY

For applications that can tolerate longer delays, the keypiggion protocol can operate across
a large number of independent state realizations. In thignge: and M can both be arbitrary
large. The secret key capacity in the Shannon sense is eftiedl and is termed thergodic
secret key capacifyC,.

A. Ergodic Capacity of SD-DMMS

The theorems developed by Ahlswede, Csislzar [1, Theoreamd]MaurermZ, Theorem 1,2]
can be applied to the ergodic case of the source model in &@uo get the following lemma.

Lemma 1.
Ch<Cu<Ci, (15)
where
Co = 1(X:Y[Sw) — 1(X: Z,5.]Su) + ~ H(SulS.) (16)
O = 1(X:Y1Z, S0, 5) + ~H(Sul5.) a7)
Proof: The proof is given in Appendix]AN [ |

The important observation abolt {16) ahdl(17) is that thei bonsist of two types of terms:
mutual information terms and entropy terms. The latter ¢jfias the amount of uncertainty in
the sparsity pattern of the main (Alice-to-Bob) channelegi\Eve’s observatios.. The former
guantifies the conditional secret key capacity given thedalhe following lemma says that the
upper and lower bound equal one another when the eavesdoppservation is degraded.

Corollary 2. For the situation in which the eavesdropper’s source is ddgd per(@), the
ergodic secret key capacity is

Coo = 1(X;Y|Sw) — (X Z, Se|Sap) + lH(Sab|Se) . (18)
n



Proof: It can be verified by examinind (IL7) that
1
Cct = I(X7 Y|Z, Sab7 Se) + EH<Sab‘Se)
= [(X;Y, Z,5.]8w) — 1(X: Z,5.]) + - H(SulS.)

1
= I(X;Y]Saw) = I(X; Z, Sl Saw) + — H (Sa| Se)

= C’C—r ,
where the third equality is due to the fact that given we have Markov chaiX —Y — (7, S.).
This holds since the eavesdropper is degraded. [ |

Note that when the state changes slowly, which is equivatenwhenn is Iarge,%H(SablSe) —
0. That is, the contribution to the secret key capacity dueht dparsity patterid,, is very
small. As discussed in SectignTIFA this will be the commotuaiion. Thus, in following, we
focus on the non-vanishing term df {18), which we denoteRgs i.e., R, = I(X;Y|Sw) —
I(X;Z,Se|Sap)-

B. Ergodic secret key rate of sparse wireless channel

We now first apply Lemmal1 to the sparse channel model spedififéA] In Section[II[-B1]
we first examine the expressions for mutual informatiéX ; Y'|S,,) and (X ; Z, S.|S.s) for
the vector channel described Hyl (1) and (5). Then, in SedfiegBZ] we identify conditions
under which the eavesdropper’s observation is degradedllfiin Sectiong [[I-BB and_I[[-B#
we focus in on the randomness due to the sparity patterns raadgza the wideband limit.

1) Mutual information: Define @), to be the product,;, x S., soQ, € {0,1}. ThusQ, =1
if and only if the support (the sparsity pattern) Hf,, and of H, are both non-zero in théth
delay bin. Also define two functions:

(1+7)(1+ %))
I, as =1 19a
b(Ya; V6) 0g< T—— (19a)
(1 + ’7(1)(1 + 'Ye)
1) = 1o . (19)
( ) 1+7a76(1 - |77|2> + Ya 1 Ve
and~, = %, v, = & and~. = £.. We show in AppendiXB that
_Lmax
I(X;Y|Sy) = FE Z SabeLab (V7 Vas V?%)] (20a)
L /=1
_Lmax
I(X;Z,5.|8w) = E | Y Qule(V}%a: Ug%)] (20b)
L /=1

In the above expressions, the expectation is taken ovelatislom sparsity patterns,, and.S..
Note the factorQ, in (208). WhenS,,, = 1 but S., = 0 the eavesdropper has no measurement
of that channel coefficient], = 0). Thus, the eavesdropper has no observation of that common
randomness and the negative mutual information terri_ih iL&gro.

It is clear in [20) that channel sparsity patteri$,;(and S,) effect the mutual information
via the channel DoF (the number of terms in the summation)thadcorrelation coefficient
effects the information leakage via(-) in each delay bin observed by the eavesdropper.
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2) Degraded condition:Because the Eve’s channel is correlated to the main chashel,
may get a good estimation di,, if she has a higher SNR than Alice and Bob. To guarantee
the positivity of the secret key rate, we need to charactettie conditions under which the
eavesdropper has a worse observation than Alice and Bobevelap such conditions we first
consider a delay bin wher@, = 1A Project the channel outputs ondg, the ¢-th column ofD,
we get

X,=d!X = PH,+ Wy, (21a)
Y, =dl'Y = PH, +W,, . (21b)
Because the sounding signal is an (asymptotically) whitpisece, X, (andY;) are sufficient

statistic for estimatingd,. The noisell; , (resp.W,,) is a zero mean complex Gaussian with
variancePo? (resp. Po?). Similarly, Eve’s sufficient static is

Zy=d'Z = PH,,+ W3,
=P (%an +/1 - |77|2H2) + Wi, . (22)
i

Because ofy(H,, H.,) = n, we have equivalently writte/, , as a sum of two terms. The
first term is a scaled version df,. The secondH,, is aCN (0,v?) random variable that is
independent off,. We see from[(22) that Eve’s observati@gncontains two types of noise. The
first is the receiver noisé/; ,. The second is due to the uncorrelatédl
Eve’s observatior?, will be a degraded version df, if Eve has a smaller SNR than Bob.

This occurs if ) 5

v P > In|*vi P

o7 " (T — PP+ a2
Otherwise,Y; is a degraded version df,. If the sounding signal power is small and Eve has a
suitably smaller noise varianeg, in particular, when

(23)

2
(L= [nP)iP < [nP~5or = o? | (24)

l
then Bob’s output is noisier and no secret key can be extieatte& positive rate from théth
delay bin. This is because whénis small, Eve’s independent noise (dueHp) is decreased.
It is observed in@l] that there is a cutoff SNR below whick gecret key capacity is zero. If
v? = v? and all the users (Alice, Bob and Eve) are with the same SNR¢} = 07 = 02 = 72,
the secret key capacity will be positive because Eve has &a erise (due to the uncorrelated
H)).

63) Achievable secret key ratén order to see the effect of channel sparsity when the baittiwi
is large (but finite), we focus on the equal-SNR case and densi uniform delay profile, thus,
having a degraded eavesdropper. Define the random numbenefero channel coefficients in
the main Alice-to-Bob and in Eve’s channel to be, respeltive

erlax
Bay =Y Sabe (25a)
=1
Ln)ax
Be - Z Se,é ) (25b)
=1

“In subspaces such thgt, = 0 either Sq;.c = 0 or Eve has no observation @f,; ¢, so there is no need to consider those
subspaces.
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Note thatB,, and B. are binomialBino (L., p) distributed random variables. Consider a
uniform delay profile, i.e.y? = B%b for all ¢ for which S, = 1; similarly, v? = B%,, for all ¢
for which S, , = 1.

Let I;(P) be the instantaneous key rateX:;Y|S,,) — [(X; Z,S.|S,,) for fixed S,, and

S.. i.e.,
_ ) RO
Is(’Y) — BabIab <Bab7 Bab) Bqu <Bab7 Be> 9 (26)
wherey £ £ and
Lmax
B, = Z Q¢ (the number of overlap delay bins) (27)
(=1
From [20) and Corollari]2 the achievable secret key rate is
le(v) = E[L(7)] - (28)

As we will see later if III-B#,,(+) is convex in low SNR (and so i&,(v)). Thus, a uniform
sounding strategy using a sounding signal with constantepdWis not optimal. LetP denote
all sounding policies that satisfy average power constr&i’d] < P, we can achieve

R () = max I () . (29)

Note that from Corollary ]2 and the discussion thereafigr( P) approaches’..(P) from the
below asn — oco.

Theorem 3 (An on-off sounding achieves capacity)

— J
Ral0) = s Mee () 2
Proof: The proof is provided in Appendix]C. [ ]

The physical interpretation of the auxiliary variat)es that key rate\/,, (%) can be achieved
by an on-off sounding strategy that sounds the channel guxif0 < A < 1) fraction of the
time, each with powe|§, and does not sound the channel (i.e., is turned off) dutegrést of
the time (i.e., a time-sharing scheme). Theotém 3 says hiea¢rigodic secret key capacity can
be achieved by an* on-off sounding strategy wherg is the argumment maximizing_(30). As
we will discuss il 1l[-B4, an optimal on-off signal is sparsetime (i.e.,\* — 0) in a low SNR
(v — 0) and is dense (i.eA* — 1) in a high SNR.

4) Wideband regimeOne way to increase the secret key capacity is to increadeatihwidth
W of the wireless channel. However, the channel DoF do not dmoearly in 1. To see how
W effects the secret key rate, we examiRg(P) from (30) in the wideband regime.

In this case, each channel DoF is sounded at a low SNR. At loR 8 can approximate

@9) as

xXr

Ip(z, ) ~ R (31a)
2

L(,y) ~ 0 (31b)
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SNR (dB)
Fig. 3. Achievable secret key rafe. () plotted versus SNRy). The bandwidth i§/ =100MHz, the maximum delay spread

Tmax = 10uS, the conditional probability of overlap if,, and S. is # = 0.5 and the correlation between channel coefficients
is n = 0.1. The sparsity parametére [0.5, 1].

for x andy small. The ergodic key rate

1 7\ 2 7 7
I () = EE Bay <B—ab) — Byn| B, B,
2
_ Vel B L
“ ol {Bab 5. B
@ 2 (1=0n*)  »* 0 -0mn

T2 L In2 (TmeW) (32)
The approximationa) is accurate wher. > 1 [@ eg.(5)]. The right hand side df (32) is a
quadratic function ofy, thus . () is convex in low SNR.

Figure[3 plotsl,, () versusy, for a bandwidth o#¥ = 100MHz, 7., = 10us, and for various
values of the sparsity parametee [0.5,1]. We see that a sparser channel (smalhchieves a
higher key rate at low SNRs. We can also observe this fiorh @&)ording to Theorerh]3 and
notice that[(3R) is quadratic iy, we need a sparser signal in time (an on-off signal) to get a
higher key rate. In other words, in the wideband (powerika) regime, fewer DoF (either in
channel or in time domain) can achieve a higher key rate. dt¢tisirs because the key generation
problem is a combined channel sounding and channel codibigigon. By focusing energy on
fewer DoF we raise their SNR, enabling key generation to oatwa higher rate. In contrast, a
richer channel (largé) results in a higher key rate at a high SNR since that is a Dokdd
(and not a power-limited) regime.

Figure[4(a) andl 4(b) ploté.. as a function ofi¥. This provides another view of the tradeoff
between power and DoF. First, letbe fixed at10dB. Then, Figurg 4(&) ploté., for different
values of channel sparsityin the rangel0.5, 1). In the wideband (low-SNR) regime, largér
results in a smaller key rate. In Figyre 4(b)= 0.5 is fixed andy is varied from 10dB to 30dB.
We see that for each SNR, there is a unidglié that achieves the highest key rate.
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(b)

Fig. 4. Achievable secret key rafe. () for SNR fixed aty = 10dB plotted versus bandwidti’. In subfigurd (g) the tradeoff
is plotted for for values of the sparsity paramefee [0.5, 1). In subfigurg (H) the sparsity parameter is fixediat 0.5 and
the tradeoff is plotted for four SNRs; (dB) € [15, 16].

V. SECRECY OUTAGE

In contrast to Section_lll when an application has a stringkstay requirement or when the
state (i.e., the sparsity pattern) changes so slowly thigt ibughly constant during the secret
key generation process, the secret key capacity in th Simesgrase is not well-defined. To study
this setting, in this section we s&f = 1 while allowingn to be arbitrary large. Since users only
know their state but not Eve’s state, they cannot adapt tlyegk@eration rate to Eve’s state.
Thus, satisfying the secrecy conditidn](13) can be probliemkn this section, we consider an
“outage” setting with a degraded eavesdropper. For ahy=( 1) realization(S,;, S¢) = (Sap, Se)s
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we say that a secrecy outage occurs if
LI 2 s ) > Re (33)
for someR, > 0. Namely, there is a non-vanishing information rate leal®é&ve. Let
Cs(Sapy Se) = I( XY |sap) — L(X; ZSap, Se) (34)

be the conditional secret key capacity for statg, s.). Theoren# shows that the event
R > Cy(sa, s¢) is @ necessary and sufficient condition for the outage el@Et (

Theorem 4. For any ratef? secret key generation systems for which Bob can reliability
recover X" (i.e., Pr(X" # fo(Y™, s, ¢)) — 0 for somef,(-)), and let
Re(Sap, S¢) = R — Cs(Sap, ) > 0, then

(i) the information leaked to Eve is lower bounded as

%I(K; Z™ ®|Sap, Se) > Re(Sap, 5e) — 2¢€ (35)
and
(i) there exist a coding scheme (cf11)) that satisfieq12), (14) and
LI 27, Bl 52) < Relsan ) + 2 (36)
Proof: The proof can be found in Appendix D. u

A. Wideband sparse channel

In the reciprocal wireless channel case, we know flom J1IRRtiC, (S, S.) = () given
in (28). Using the approximations frorh (31), we have in theetiand regime that

In2 Bab Bab Be

Recall thatB,; (resp.B.) is the weight of vectoiS,, (resp.S.) (cf., (28)) andB, is the weight
of support common t&,, and S, (cf., (21)). Also note thaB,,, B., B, are random variables
so that the overall quantity if_(B7) is a random variable. ddinfnately, there is no simple
expression for the distribution @f,(S,;, S.) in (37). Since the users are assumed to krfy
(and, therefore,;), in order to understand how the channel sparsity effe@sptiobability of
outage, we consider the case whéig = L (i.e., its mean which is its most likely value) and
B, = L. The only uncertainty at users iB,, the number of delay bins from which Eve can
learn the key. Conditioned oB,, = L and according to the correlation model [ (&), has a
Binomial distributionBino (L, 6).

From Theoreni 4, the outage probability is

Pout = PI‘ (R > Cs<Sab7 Se))

2

~ (1= B

NPI<R>LIH2 <1 In| L))
1 L

— Pr (Bq>W<1—ln2—2R>> , (38)
Ui g

2 1 B, 1
@(Sab,se)w”—( —|n|2—‘1—). 37)
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where L = (W..4)°. We see that a largey (SNR), a largedV, or a smallem will decrease
the outage probability. However, the sparsitghanges both the distribution &f, and the right
hand side of the argument ih_{38) via Thus, it is still not clear how impactP,,. When
users don’t know the instantaneous secret key capacitynseceative strategy is to generate a
key at a smaller rate.

Consider a strategy in which the key is generated at Rate o/, (7) (0 < a < 1), i.e,, a
backoff from the ergodic key raté (32). We refer to this sggt as the &-backoff” strategy.
The outage probability (38) can now be simplified to be

Pow ~ Pr (B, > aL) (39)
1
where a = (1 — Q)W +ab .

Since B, approximatesino (L, ), the sparsity) (and therefore the actual DaF) determines
the distribution of Eve’s DoR3, to observe the main channel. Froml(39), we can see that when
the a-backoff strategy is used, the correlation coefficigmtetermines how fast the threshald
deviates fromv L (the mean ofB,) asa decreases. Note that in (39), the SNR (or equivalently,
power P) does not appear in the formula. This is because the keysaimportional to ergodic
key ratel.. (), which is a quadratic function of in the wideband regime (cfL.(82)), and thus
cancels they? in (38).

We next use results from large deviation thedﬂ [43] to uppaund the tail probability of
binomial distribution.

Lemma 5. [43, Theorem 1] LetS, be a binomial random variabl®ino (n,p). Forp <a <1,
and forn =1,2,3,---, then

Pr(S, > an) < 9—nD(allp) (40)
where
(1—a)
L=p

is the Kullback-Leibler divergence between the probapiitstributionsBern (a) and Bern (p).

D(allp) = alog% +(1—a)log (41)

By this lemma, the outage probability is upper bounded as
Pout S 2—LD(aH0) . (42)

Figure[5 plots the numerical results of the secrecy outagerentZ D(al|f) in the wideband
regime. It shows that when the-backoff strategy is used, the mechanism through which the
channel sparsity impacts the outage probability diffesmfrhow the channel sparsity impacts
the ergodic secret key rate. A richer channel (laealways has larger exponent than a sparser
channel. In contrast, Figuté 3 demonstrates a sparser ehgields a higher ergodic secret key
rate in the wideband regime.

V. CONCLUSIONS

In this paper we study a setting in which two users desire stillda common secret key
based on the inherent randomness of a reciprocal wirelesmsneh Our particular interest is
the effect of channel sparsity (e.g., in delay), which ssalgb-linearly in signal bandwidth, on
secret key generation. Channel sparsity affects the inhea@domness of the main channel and
increases eavesdropper’s observability of the main cHaBimee channel sparsity is an important
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Fig. 5. Plot of outage exponetD (a||0) vs. bandwidtbiV. Other parameters include the maximum delay sprgad = 100ns,
the conditional probability of overlap i¥,, and S. is & = 0.5 and the correlation between channel coefficients is 0.1.
The sparsity parameteris plotted for various values betweé@b < 6 < 1.

characteristic of many real-world wireless channels andesit has such a large impact on secret
key capacity, it is crucial to understand this interplaylyfulhis will help us to deliver secure
communication systems with robust guarantees.

We first consider the ergodic setting. In this setting, ahealdR there is an adequate bandwidth
to maximizes the ergodic secret key rate. Moreover, whenitewsbunding sequence is adopted
in the wideband (low-SNR) regime, a higher secret key ratebeaachieved by a sparser channel.

For channels whose sparsity changes relatively slowly,caesg outage measure of perfor-
mance is adopted. If the key rate is a fractiorof the ergodic capacity, we show that richer
channels always have larger exponents characterizingdbaydof the outage probability. This
result illustrates that a larger number of DoF can smoothofuhe detrimental effects of an
unknown eavesdropper state.

APPENDIX

A. Proof of Lemmall

Apply the results in|]1],|__[12] where, respectivelyX", S,,) are Alice’s, (Y, S,,) are Bob’s,
and(Z", S.) are Eve’s observations. A lower bound on the ergodic cap&itsee |ﬂl Theorem
1], [2, Theorem 3])

Ca = 10" S Y™, S) — I(X", 5.2 27, 5.)].

er n
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Using the chain rule and memoryless nature of the source Inod@) and [8), the first term
can be reduced to

I(Xna Sab; Yn’ Sab)

- ](Sab; Yn7 Sab) + I(Xn7 Yn’ Sab|Sab)

= H(Sw) + > _ I(X;Y"| X", Sa)
=1

D H(Sw) + Y I(X5Yi| Sw)
=1

= H(Sw) +nl(X;Y|Saw) ,

where(a) follows by applying the memoryless property to soufég, Y;). Similarly, the second
term reduces to

(X", Saw; Z™, Se)
- I<Sab; an Se) + I<Xna va Se‘Sab)

D 1S3 ) + S I(Xi 27, S, X, S,)

=1

= I<Sab; Se) + Z ]<X27 Zi7 Se|Sab>
=1
= [(Sab; Se) + nI(X; Z, Se|Sab) s

where(b) is due to the Markov chaif,, — S. — Z" and applying chain rule on the second term.
Thus, the lower bound is

1
C,=1(X;Y|Sw) — I(X;Z,S|Sap) + EH(Sab\Se) : (43)
The upper bound is the conditional mutual information (&eTheorem 1],|__[|2, Corollary 1]):
1
Clh= 5I(X", Sap; Y™, Sap| 2™, Se)

1 n n
_ E(I(SWY  San| 2", Se)

—+ I(Xn, Yn, Sab‘Zny Se7 Sab))

< l(H(sab|Z", S,)
n

+ i I(Xz Y™ X 2, 8., S“b)>
=1

) %(H(sabwe) + ; 1(X;:Yi1 25,5, 5w))

—
o

1
= [(X7 Y|Z7 Sab> Se) + EH(Sab|Se) 5

where (¢) follows by Markov conditionS,, — S. — Z" and the memoryless property.
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B. Derivation of mutual informatioi20)
First consider! (X;Y|S,;):
I(X7 Y|Sab) - E[h(X|Sab) - h(Y|Sab) - h(X7 Y|Sab)]
det(Rx) . det(Ry)
=F|l 44
|i0g ( det(ny) ’ ( )

whereh(X) is the differential entropy@4] ofX, and the expectation is taken over the distri-
bution of S,,. Let Rx denote the covariance matrix & when the inputS,, = S is fixed,
ie.,

Rx = E[XX"|S] = DR,D” + 0}l ,
whereRy, = diag(vi,--- ,v?) andv? = 0 if S, = 0. Similarly,
Ry = DR,D + 521y

Rew — | Bx |DR,D”
XY~ 'DRy,D”| Ry '

We simplify the determinants as follows,
det(Rx) = det(DRyD* + ¢2Iy)
DRhDH)

= (o2)N det ([N +—
1

H
@ (o)™ det ([L + LPA)

01
P

O (52y¥ 11 (1 + ?V?>
1

(=1

P
= (U%)N I+ _21/[? )
£:Sp=1 o1

where(a) follows by definingA = /Ry, and applying Sylvester’s determinant formulat (I, +
AB) = det(I,, + BA) where A is anm-by-n matrix, andB is ann-by-m matrix. Step(b) is
due to [2). Similarly, we find that

p
det(Rx) = (03" [ (1 + —21/3)
ZZS[:I
2 2 P
det(Rxy) = (o703)™ ] <1 + %yg) .
0:Sp=1
Substituting into[(44), we gel(2Da).
Follow a similar calculation, we get(X; Z, S.|S.;) in (208) by noting that
Re, — Rx |DR,;D”
X2~ I DR,;D7| Rz '
whereR, ;, is a diagonal matrix and ité-th diagonal element is equal tp/} if Q, = 1 or is
equal to zero ifQ), = 0.
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C. Proof of Theorerl3

The proof is similar to @0, Theorem 4]. First note thaty) is non-decreasing in and
S0 is I, (7). This can be verified by evaluatin@#, which is non-negative. Defing,.(y) =

maxg<a<i Mer (}) Note that/,.(v) is a concave and non-decreasing functiory 0iVe are going

to showl,, (%) is equal toR., (%) defined in [29) over the average power constrdint_et

P be the set of all sounding policies satisfying average povagrstraintP. Specifically, let
the sounding policy irP allocate powerP; to sounding signals with probability(s) such that
E[P]=Y"_p(s)P, < P. Note thatR., (%) > L. (). We can also upper bound

P P,
Rer (E) = mgxzp(s)]er (;)
< Z A, Fs
< (0 | Mor (55
_ (P,
= mngp(s)[er <§)

where (a) and (b) are due to the concavity and non-decreasing functioh, f ).

D. Proof of Theorenil4

We first show the lower bound and then the upper bound.
1) Lower bound(@5):

I(K; Z", ®|Sap, Se)
= H(K‘Saba Se) - H(K|Zn7 (I)7 Sab, Se)
- H(K|Sab> 58) - [H(K7 (I>|Zn> Sab, Se) - H((I)|Zna Sab; Se)]

(a)
2 H(K|Sab7 Se) + H((I)|Yna Sab Se)
C[H(X™, K, O 2", sup, 50) — HX"K, ®, Z", 5up, 5]

(b)

>n(R—e€)+ H(P|Y", Sap, Se) — H(X"|Z", Sap, Se)

=n(R—¢)+ H(PIY", 54, Se) — H(X™Y™, Sap, Se)
+ H(Xn|Yn7 Sab, Se) - H(Xn|Zn7 Sab, Se)

= n<R - 6) - H(Xn|(I)7 Yn’ Sab, Se) - nCs(Sabu Se)
d
> n(R — Cs(Sap, Se) — 2€) ,

where(a) is due to the fact that givets,;, s.), ¢ — X" — Y™ — Z" form a Markov chain. Thus
H(®|Z™, Sapy Se) = H(P|Y™, sap, Se)- (b) holds because entropy is non-negative did ®)
is function of (X", s,), we can takeK, ® away from H (X", K, ®|Z", su, s.). For the same
reason, we can add in H(X"|Y", su,s.) and use chain rule to gét). (d) is due to the
reliable conditionPr(X™ # fo(Y™, sw, )) — 0 by applying Fano’s inequality [44].

—
~

—
=
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2) Upper bound(36):
](Ka Zna (I)|Sab> Se)
= H(K|Saba 88) - H(K‘Z”, (I)u Sab, Se)

(a)
< nR— H(K|Z", ®, Sap, Se)

becausek € [1 : 2"%]. We need to show there exist a coding scheme such that

1
—H(K|Z", ®, 54, Se) > Cs(Sap, Se) — 2€ . (45)

We will use the following lemma in the proof.
Lemma 6. (cf. [45, eq.(25)] [11, eq.(16)]) Any > 0, if LH(®|Sap, se) > H(X|Y, sap) + €,
there exists a coding scheme wh¢gé-) and f;(-) are the decoding functions at Bob and Eve,
respectively, such that for sufficiently large
(i) Pr(X" # fo(Y", 80, ®)) = 0,
(i) LH(X"|K, @, 2", 54,5.) <€ .
The proof of Lemmal6 uses a random coding technique to shastegxie. The first statement

is exactly the Slepian-Wolf theorerhj46] The second statgms the standard equivocation
analysis which says if Eve knows and ® along with her observatiotr™, she can recover

sequenceX™. We refer to [111] 45] for the details.
Adopting the coding scheme in Lemrlk 6 where the public mesgag [1 : 27 (XVssa)+o)],

We prove [(45) through a sequence of (in)equalities:

H(K|q)7 Zn7 Sab, Se)
= H(Xn7K|(I)7 Zn’ Sab, Se) - H(XH‘K7 (I)7 Zn7 Sab, Se)

H(X"™ K|®,Z", Sa, Se) — ne

H( LK PLZ" ) Sapy Se) — H(PIZ™, Sap, Se) — ne
O H (X2 sup, 50) — H(®|Z", 50, 50) — e
> H(X™MZ", Sap, Se) — H(P) — ne
D X2 5, 50) — nH(X|Y, 5.3) — 2ne
=n(H(X|Z, Sap, S¢) — H(XY, s0p) — 2¢)
= n(Cs(Sap, Se) — 2€) ,

where (a) is due to(ii) of Lemmal®.(b) follows because(K ®) is a function of (X", su).
(c) comes from the fact thab ¢ [1 : 2"(H(XVsw)+9] and the entropy is upper bounded by a
uniform distribution. This completes the proof.
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