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Abstract

This paper investigates generation of a secret key from a reciprocal wireless channel. In particular
we consider wireless channels that exhibit sparse structure in the wideband regime and the impact of the
sparsity on the secret key capacity. We explore this problemin two steps. First, we study key generation
from a state-dependent discrete memoryless multiple source. The state of source captures the effect of
channel sparsity. Secondly, we consider a wireless channelmodel that captures channel sparsity and
correlation between the legitimate users’ channel and the eavesdropper’s channel. Such dependency can
significantly reduce the secret key capacity.

According to system delay requirements, two performance measures are considered: (i) ergodic
secret key capacity and (ii) outage probability. We show that in the wideband regime when a white
sounding sequence is adopted, a sparser channel can achievea higher ergodic secret key rate than a
richer channel can. For outage performance, we show that if the users generate secret keys at a fraction
of the ergodic capacity, the outage probability will decay exponentially in signal bandwidth. Moreover,
a larger exponent is achieved by a richer channel.

Index Terms

Secret key generation, public discussion, reciprocal wireless channel, channel sounding, ergodic
capacity, secrecy outage.

I. INTRODUCTION

The fundamental limit of secret key generation from discrete memoryless multiple source
(DMMS) is developed by Ahlswede, Csiszár [1] and Maurer [2]. Their results show that if
X, Y, Z (respectively observed by Alice, Bob and Eve) are correlated with a known distribution,
it is possible to generate a secret key between Alice and Bob at a positive rate through use of
a public discussion. The resulting information rate leakedto Eve can be made arbitrarily small.
The supremum of achievable secret key rates is called thesecret key capacity.

Since their work, there have been many extensions to explorethe secret key capacity of more
complicated models. In [3, 4], users observe DMMS and also transmit information via wiretap
channel [5], but there is no access to public channel for discussion. The authors in [6–9] consider
a wiretap channel influenced by a random channel state, knownby one (or both) of the legitimate
users. In such models, the random channel state can be viewedas a kind of correlated source
shared by transmitter/receiver which also influences the transmission.
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In [10, 11], key generation from DMMS is considered where theDMMS is excited by a
deterministic source [10] or by a random source [11]. This sender-excited model is motivated by
an application in which key generation is based on the inherent randomness of reciprocal wireless
channel. Consider a situation where Alice and Bob transmit asounding signal to each other over
a reciprocal wireless channel. Due to the channel reciprocity, Alice and Bob observe a pair of
correlated sources. The source turns out to be a good source for secret key generation because
it can be the case that (i) the source is correlated, (ii) the source is ubiquitous since it is from
wireless channel, and (iii) it is hard to eavesdrop because the wireless channel varies quickly in
the spatial and temporal domains. This issue has received much attention in terms of theoretical
and practical research [12–19]. However, most of this work is subject to the assumption that
the eavesdropper channel is statistically independent of the main channel (the channel between
Alice and Bob). This is true when the environment has rich scattering such that the correlation
between channel coefficients decreases rapidly in the spatial domain.

However, there is growing experimental evidence (e.g., [20–23]) and physical arguments (e.g.,
[24–26]) which show that realistic wireless channels are sparse at large bandwidths. The effect
of channel sparsity on secret key capacity is twofold: (i) itreduces the degrees-of-freedom (DoF)
of the main (Alice-Bob) channel and (ii) it induces spatial correlation [27], thereby increasing
Eve’s ability to observe the main channel.

We revisit the key generation problem when the channel exhibits sparsity in the wideband
regime. This channel characteristic can be captured by asparsity patternthat defines the non-zero
support of the channel coefficients. Depending on the environment, the sparsity pattern could
experience fast or slow time variations. The channel model also captures the correlation between
the main channel and Eve’s observations. To study secret keygeneration in this context we capture
these characteristics by defining astate-dependentdiscrete multiple memoryless source (SD-
DMMS). We specialize this model to the statistical characterization of sparse wireless channels
were the sparsity pattern plays a role of the channel state and, as we discuss next, develop
ergodic capacity and secrecy outage results.

In analogy to communication over a fading channel, two regimes are studied according to the
system delay constraint:

• Ergodic regime (the delay tolerant regime): If the key is generated based on a large number
of observations across multiple states, the secret key capacity is well-defined in the Shannon
sense. We call the capacity in this case theergodicsecret key capacity. The main problem
is that the system suffers from an excessive delay.

• Non-ergodic regime (the delay stringent regime): If the observed source sequence is not
long enough or the state changes slowly so that the key generation is forced to occur within
a period of constant state, the capacity is not defined in general. In this case, we consider
the secrecy outage probabilitywhich measures the probability that the instantaneous state
condition cannot support the key rate to fulfill the secrecy condition (this will be defined
later).

Secrecy outage is also considered in other research regarding state-dependent (fading) wiretap
channel (e.g., [28, 29]). We show that when a white sounding sequence is adopted in the wideband
(low power) regime, a sparser channel can achieve a higher secret key rate than a richer channel
can. This is analogous to capacity behavior in sparse multi-antenna channels in [30]. Furthermore,
at each signal-to-noise ratio (SNR), there is an adequate bandwidth that maximizes the secret
key rate. For the outage performance, we show that the systemcan achieve an exponential
decaying outage probability by using anα-backoff scheme (0 < α ≤ 1) in which secret key rate
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is a fractionα of the ergodic capacity. Unlike the ergodic case, now a richer channel always
has a larger exponent characterizing the decay of the outageprobability. In a similar vein as
communication over a fading channel, this demonstrates that a large number of DoF helps to
smooth out the effect of the unknown state.

The paper is organized as following. In Section II we give some definitions and describe the
system model. This includes the correlated sparse wirelesschannel model, the definition of the
SD-DMMS, and the one-way discussion key generation protocol. In Section III, we investigate
the ergodic secret key capacity of SD-DMMS and apply this to key generation from a sparse
wireless channel. Outage is defined in Section IV. We give a necessary and sufficient condition
for an outage event and explore the outage probability when an α-backoff scheme is used.
Detailed proofs are deferred for the Appendix.

II. DEFINITIONS AND SYSTEM MODEL

In this paper we are motivated by key generation based on wireless channel that exhibits
sparsity in the delay domain. We first develop our model of a sparse wireless channel in Section
II-A. While in earlier works on modeling sparse wireless channels, e.g., see [20, 31–35], there is
only a single channel to model, in Section II-A we need to model the main (Alice-to-Bob) channel
as well as Eve’s correlated observations of that main channel. Following our wireless motivations,
in Section II-B we develop an abstractedstate-dependent discrete multiple source(SD-DMMS)
model. In this model the “state” captures the effect of the slowly varying sparsity pattern while
the key itself is extracted from the conditionally-generated (conditioned on the sparsity pattern)
channel fades. Finally, in Section II-C theone-way public discussionkey generation protocol is
formally presented.

A. Sparse reciprocal wireless channel

Consider a wireless communication system with bandwidthW . Say that the channel exhibits
sparsity in the delay domain1 where τmax is the maximum delay spread of the channel. Then
Lmax = ⌈τmaxW ⌉ is the maximum number of resolvable paths. A sounding sequence d =
[d1, d2, · · · , dNd

]T is transmitted over time periodT , whereNd = ⌈TW ⌉. The sounding sequence
is a known sequence with powerdH

d = P . We assume each two-way (Alice⇆ Bob) sounding
is done within a channel coherence period (i.e.,Tcoh ≫ 2T ). Further multiple channel soundings
(indexed byt) are performed within non-overlapping coherence periods meaning that each set
of soundings are independent.

The channel outputs in sounding intervalt are

X[t] = DHab[t] +W1[t] (Alice) , (1a)

Y [t] = DHab[t] +W2[t] (Bob) , (1b)

where Hab[t] = (H1[t], · · · , HLmax
[t])T is the sampled (virtual) channel coefficient [24, 36]

1In this paper, we consider channel sparsity in the delay domain. It is not difficult to extend the result to the sparsity in either
the Doppler or spatial domains, e.g., [24–26, 35].
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vector, andD is anN-by-Lmax Toeplitz matrix withN = Nd + Lmax − 1:

D =

























d1 0 · · · 0
d2 d1 · · · 0
... d2 · · · d1

dNd

... d2
... dNd

. . .

0 0
. . .

...
0 0 0 dNd

























=
[

d1,d2, · · · ,dNd

]

.

A widely used sounding signal is a sequence whose spectrum isasymptotically white inNd. In
this caseD is a full column-rank matrix such that2

D
H
D

.
= P ILmax

(2)

when Nd is sufficiently large. One such example isd =
√
Pe =

√
P (1, 0, · · · , 0)T . Another

such example is pseudo-random (PN) sequence in spread spectrum system [37]. The noise terms
W1[t] andW2[t] in (1) are independentCN (0, σ2

aIN) andCN (0, σ2
b IN) vectors, respectively.

1) Sparse channel model:Most channels that have a small number of physical paths will
exhibit sparsity in the delay domain as the signal bandwidthW increases. In particular, in some
delay binℓ, the corresponding channel coefficientHℓ[t] will be zero. In this paper, we adopt
the sub-linear law model considered in previous work [34, 35] to capture thesparse channel
characteristic. In this model, the channel is calledδ-sparseif the average number of non-zero
channel coefficients scales as

L = (τmaxW )δ = Lδ
max, δ ∈ (0, 1) . (3)

The parameterL is also the mean number of channel DoF.
The channel sparsity patternof the main channel in sounding intervalt is

Sab[t] =
(

Sab,1[t], · · · , Sab,Lmax
[t]
)

∈ SLmax ,

whereS = {0, 1} andE
[

∑Lmax

ℓ=1 Sab,ℓ[t]
]

= L. This pattern defines the support of the channel
vector

Hab[t] =
(

H1[t], H2[t] . . . HLmax
[t]
)

,

i.e., Hℓ[t] = 0 if and only if Sab,ℓ[t] = 0. The channel coefficientsHℓ[t] are independent
CN (0, ν2

ℓ ) variable where the varianceν2
ℓ = 0 if Sab,ℓ[t] = 0. The channel hasunit power,

i.e.,
∑

ℓ ν
2
ℓ = 1. Later, we use “channel degrees-of-freedom” (DoF) to referto theweightof the

realization of the vectorSab[t]. We also callSab[t] the stateof Hab[t]. A rich multipath channel
corresponds toδ → 1.

The sparsity patternSab[t] will, in general, be time-varying. However, in most case of interest,
Sab[t] will change much more slowly than the channel coefficientsHab[t]. This is because the
main reflectors, by which paths are resolved by different delay bins, move more slowly than the
phase changes that influencs the fading coefficients [36, 38,39]. Because of this, most of the
secret key rate will be generated by the randomness inherentto the channel coefficients rather

2Here and in the following, we sayg(xn)
.
= g if g(xn) → g whenn is sufficiently large.
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than the sparsity pattern itself. Furthermore, there exists good techniques to estimate the sparsity
pattern reliably based on few observations, e.g., [40]. Thus, we considerSab[t] known to Alice
and Bob. Letn be the number of channel sounding periods during which the sparsity pattern
remains constant. We term this thesparsity coherence period. Thus, them-th sparsity coherent
period extends fromt = (m− 1)n+ 1 to t = mn. In this intervalSab[t] remains constant, i.e.,
Sab[t] = Sab[mn] for all t, (m−1)n+1 ≤ t ≤ mn. We further assume thatSab[t] is independent
across periods.

Modeling the distribution of the state itself is a difficult task, so we consider a simple model

Pr(Sab,ℓ = 1) =
L

Lmax
= (τmaxW )−(1−δ) , ρ (4)

for all ℓ. In other words, theSab,ℓ is Bernoulli distribution with parameterρ (denotedBern (ρ)).
2) Eavesdropper’s correlation model:Eve’s channel output is similar to (1)3:

Z[t] = DHe[t] +W3[t] (Eve) , (5)

where the noise isCN (0, σ2
eIN). The channel coefficient vectorHe[t]=(He,1[t], · · · , He,Lmax

[t])T

is alsoδ-sparse with state denoted bySe[t], and each elementCN (0, υ2
ℓ ) distributed. We model

the correlation betweenHe[t] andHab[t] in a two-step process as follows:
• Correlation betweenSe andSab: For each delay binℓ for which Sab,ℓ = 1, the probability

that Eve also has non-zero channel gain isθ. i.e.,

Pr(Se,ℓ = 1|Sab,ℓ = 1) = θ (6)

for all 1 ≤ ℓ ≤ Lmax.
• Correlation between individual channel coefficient: For those channel coefficients in the

“common support” delay bins, i.e., in the set{ℓ : Sab,ℓ = Se,ℓ = 1}, the correlation
coefficients are

η(Hℓ, He,ℓ) ,
E[HℓH

∗
e,ℓ]

√

E[|Hℓ|2]E[|He,ℓ|2]
= η .

The parameterθ captures the fraction of DoF that the main channel and Eve’s channel have
in common. One can think of the relationship between the state (sparsity pattern) of the main
channel and that of the eavesdropper’s observation as a binary memoryless channel. However,
because Eve’s marginal channel has the sameδ-sparsity as the main channel (since the users are
in the same environment), the channel is not symmetric. In other words, transition probability
Pr(Se,ℓ = 1|Sab,ℓ = 0) 6= Pr(Se,ℓ = 0|Sab,ℓ = 1). This is illustrated in Figure 1. Finally, the
parameterη captures the effect that the paths (of both channel) locatedin the common delay
bin shares the same physical scattering.

Remark1: The parameter space{(θ, η), δ} of our model captures many scenarios of interest.
From a physical aspect, there are two factors effecting Eve’s channel correlation: the distance
between Eve and Bob (which mainly impacts leakage to Eve), and richness/sparseness of the
multipath (which impacts both leakage to Eve and the common randomness between Alice and
Bob). When Eve gets close to Bob, generally, bothθ and η will increase (and vice versa);
this will generally increase the leakage. The parameterδ (and thusρ) controls the maximum

3In order to get meaningful observations, we assume Eve is located close to one of the users. So only one of the two Eve’s
channel outputs during the two-way sounding correlates with the main channel. The other output is independent of the main
channel due to fast spatial decorrelation.
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Fig. 1. Transition probabilityPr(Se,ℓ|Sab,ℓ).

number of DoF. When multipath is rich,ρ is high andη is closer to zero (i.e., high overlap but
independent), resulting in the highest capacity and lowestleakage. For sparse multipath,ρ is
lower (lower common randomness) andη could be large even at larger distances between Eve
and Bob. In this case leakage will likely increase more slowly as Eve gets closer to Bob.

To generate a secret key, users repeat the channel sounding (1) (and (5))nM times and
generate a key based on a pair of super-block{(X[t],Sab[t]), (Y [t],Sab[t])}nMt=1. In the following
section we abstract away the actual sounding process and specify a state-dependent source model
where the state varies more slowly than the underlying source-realization process from which
the key is generated. When we study the ergodic case, we will let bothn andM go to infinity,
while when we study the outage case,M = 1, andn can be large.

B. State-dependent discrete memoryless multiple source

To leverage results on information theoretic security, we consider a state-dependent (SD)
DMMS model depicted in Figure 2. The observation triple(XnM , Y nM , ZnM) ∈ X nM ×YnM ×
ZnM is generated according top(xnM , ynM , znM |sMab , sMe ), conditioning on the pair of length-M
sequences:(sMab , s

M
e ) ∈ SM × SM .

As discussed in Section II-A,SM
ab is the state sequence of Alice and Bob’s correlated source

XnM ,Y nM and SM
e is the state sequence of Eve’s observationZnM . The states have joint

distributionp(sMab , s
M
e ). Since the states vary more slowly than the conditonally-generated sources,

there is a length of timen during which the states remain constant. This correponds tothe
sparsity coherence period discussed earlier. A largen means that the states are changing slowly.
We assume that the states are available to the correspondingobservers but not to other users. In
other words, Alice and Bob both knowSab but notSe while Eve knowsSe but notSab. This is
depicted in Figure 2. We call the statememorylessif

p(sMab , s
M
e ) =

M
∏

m=1

p(sab,m, se,m) . (7)

Similarly, the source ismemorylessif

p(xnM ,ynM , znM |sMab , sMe )

=
M
∏

m=1

mn
∏

i=(m−1)n+1

p(xi, yi, zi|sab,m, se,m) . (8)
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Fig. 2. State-dependent DMMS model

Note that in (8) one see the effect of the sparsity coherence period. The triplet of source samples
(Xi, Yi, Zi) is conditionally and independently generated from the samestate pair(Sab,m, Se,m)
for all i, (m − 1)n < i ≤ mn. Each of(Xi, Yi, Zi) stands for the vector of channel output in
II-A.

In the one-way discussion protocol (which will be detailed next in II-C), Alice sends a message
Φ over a public channel. Bob recovers Alice’s key based on his observation(Y nM , SM

ab ) andΦ.
Eve’s sourceZ is a degradedversion ofY if

p(x, y, z|sab, se) = p(x, y|sab)p(z|y, sab, se) . (9)

In other words, for given states(sab, se), Eve’s output is a cascade of the Bob’s output and a
channel represented byp(z|y, sab, se).

C. One-way discussion key generation protocol

Let K = [1 : 2nR] be the key space. There is an authenticated public channel available to users
to exchange error-free public messages in the setΦ = [1 : 2nRφ]. The one-way public discussion
secret key generation protocol consists of three functions:

f1 : X nM × SM → K , (10a)

g : X nM × SM → Φ , (10b)

f2 : YnM × SM × Φ → K , (10c)

which define Alice’s key, public message, and Bob’s key, respectively. Namely,

K = f1(X
nM , SM

ab ) , (11a)

φ = g(XnM , SM
ab ) , (11b)

K̂ = f2(Y
nM , SM

ab , φ) . (11c)
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Definition 1 (Achievability). A secret key rateR is (weakly) achievable if for anyǫ > 0, there
is a secret key generation system defined in(10) such that for sufficient largen andM ,

Pr(K 6= K̂) < ǫ , (12)
1

nM
I(K;ZnM , SM

e ,Φ) < ǫ , (13)

1

nM
H(K) > R − ǫ . (14)

Condition (14) means the key is almost uniformly distributed over the setK. System secrecy
is measured in terms of the mutual information defined in (13)which says that the information
about the key leaked to eavesdropper is negligible. The supremum of achievable secret key rates
is called thesecret key capacity.

III. ERGODIC SECRET KEY CAPACITY

For applications that can tolerate longer delays, the key generation protocol can operate across
a large number of independent state realizations. In this setting n andM can both be arbitrary
large. The secret key capacity in the Shannon sense is well-defined and is termed theergodic
secret key capacity, Cer.

A. Ergodic Capacity of SD-DMMS

The theorems developed by Ahlswede, Csiszár [1, Theorem 1]and Maurer [2, Theorem 1,2]
can be applied to the ergodic case of the source model in Figure 2 to get the following lemma.

Lemma 1.
C−

er ≤ Cer ≤ C+
er , (15)

where

C−
er = I(X ; Y |Sab)− I(X ;Z, Se|Sab) +

1

n
H(Sab|Se) (16)

C+
er = I(X ; Y |Z, Sab, Se) +

1

n
H(Sab|Se) . (17)

Proof: The proof is given in Appendix A.�
The important observation about (16) and (17) is that they both consist of two types of terms:

mutual information terms and entropy terms. The latter quantifies the amount of uncertainty in
the sparsity pattern of the main (Alice-to-Bob) channel given Eve’s observationSe. The former
quantifies the conditional secret key capacity given the latter. The following lemma says that the
upper and lower bound equal one another when the eavesdropper’s observation is degraded.

Corollary 2. For the situation in which the eavesdropper’s source is degraded per (9), the
ergodic secret key capacity is

Cer = I(X ; Y |Sab)− I(X ;Z, Se|Sab) +
1

n
H(Sab|Se) . (18)
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Proof: It can be verified by examining (17) that

C+
er = I(X ; Y |Z, Sab, Se) +

1

n
H(Sab|Se)

= I(X ; Y, Z, Se|Sab)− I(X ;Z, Se|Sab) +
1

n
H(Sab|Se)

= I(X ; Y |Sab)− I(X ;Z, Se|Sab) +
1

n
H(Sab|Se)

= C−
er ,

where the third equality is due to the fact that givenSab we have Markov chainX−Y −(Z, Se).
This holds since the eavesdropper is degraded.

Note that when the state changes slowly, which is equivalentto whenn is large,1
n
H(Sab|Se) →

0. That is, the contribution to the secret key capacity due to the sparsity patternSab is very
small. As discussed in Section II-A this will be the common situation. Thus, in following, we
focus on the non-vanishing term of (18), which we denote asRer, i.e., Rer = I(X ; Y |Sab) −
I(X ;Z, Se|Sab).

B. Ergodic secret key rate of sparse wireless channel

We now first apply Lemma 1 to the sparse channel model specifiedin II-A. In Section III-B1
we first examine the expressions for mutual informationI(X;Y |Sab) andI(X;Z,Se|Sab) for
the vector channel described by (1) and (5). Then, in SectionIII-B2 we identify conditions
under which the eavesdropper’s observation is degraded. Finally, in Sections III-B3 and III-B4
we focus in on the randomness due to the sparity patterns and analyze the wideband limit.

1) Mutual information:DefineQℓ to be the productSab,ℓ×Se,ℓ soQℓ ∈ {0, 1}. ThusQℓ = 1
if and only if the support (the sparsity pattern) ofHab and ofHe are both non-zero in theℓ-th
delay bin. Also define two functions:

Iab(γa, γb) = log

(

(1 + γa)(1 + γb)

1 + γa + γb

)

, (19a)

Ie(γa, γe) = log

(

(1 + γa)(1 + γe)

1 + γaγe(1− |η|2) + γa + γe

)

. (19b)

andγa = P
σ2
a
, γb = P

σ2

b

andγe = P
σ2
e
. We show in Appendix B that

I(X;Y |Sab) = E

[

Lmax
∑

ℓ=1

Sab,ℓIab(ν
2
ℓ γa, ν

2
ℓ γb)

]

(20a)

I(X;Z,Se|Sab) = E

[

Lmax
∑

ℓ=1

QℓIe(ν
2
ℓ γa, υ

2
ℓγe)

]

(20b)

In the above expressions, the expectation is taken over the random sparsity patternsSab andSe.
Note the factorQℓ in (20b). WhenSab,ℓ = 1 but Se,ℓ = 0 the eavesdropper has no measurement
of that channel coefficient (Qℓ = 0). Thus, the eavesdropper has no observation of that common
randomness and the negative mutual information term in (16)is zero.

It is clear in (20) that channel sparsity patterns (Sab andSe) effect the mutual information
via the channel DoF (the number of terms in the summation) andthe correlation coefficientη
effects the information leakage viaIe(·) in each delay bin observed by the eavesdropper.
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2) Degraded condition:Because the Eve’s channel is correlated to the main channel,she
may get a good estimation ofHab if she has a higher SNR than Alice and Bob. To guarantee
the positivity of the secret key rate, we need to characterize the conditions under which the
eavesdropper has a worse observation than Alice and Bob. To develop such conditions we first
consider a delay bin whereQℓ = 14. Project the channel outputs ontodℓ, theℓ-th column ofD,
we get

Xℓ = d
H
ℓ X

.
= PHℓ +W1,ℓ (21a)

Yℓ = d
H
ℓ Y

.
= PHℓ +W2,ℓ . (21b)

Because the sounding signal is an (asymptotically) white sequence,Xℓ (andYℓ) are sufficient
statistic for estimatingHℓ. The noiseW1,ℓ (resp.W2,ℓ) is a zero mean complex Gaussian with
variancePσ2

a (resp.Pσ2
b ). Similarly, Eve’s sufficient static is

Zℓ = d
H
ℓ Z

.
= PHe,ℓ +W3,ℓ

≡ P

(

υℓ

νℓ
ηHℓ +

√

1− |η|2H ′
ℓ

)

+W3,ℓ . (22)

Because ofη(Hℓ, He,ℓ) = η, we have equivalently writtenHe,ℓ as a sum of two terms. The
first term is a scaled version ofHℓ. The second,H ′

ℓ, is a CN (0, υ2
ℓ ) random variable that is

independent ofHℓ. We see from (22) that Eve’s observationZℓ contains two types of noise. The
first is the receiver noiseW3,ℓ. The second is due to the uncorrelatedH ′

ℓ.
Eve’s observationZℓ will be a degraded version ofYℓ if Eve has a smaller SNR than Bob.

This occurs if
ν2
ℓP

σ2
b

>
|η|2υ2

ℓP

(1− |η|2)υ2
ℓP + σ2

e

. (23)

Otherwise,Yℓ is a degraded version ofZℓ. If the sounding signal power is small and Eve has a
suitably smaller noise varianceσ2

e , in particular, when

(1− |η|2)υ2
ℓP < |η|2υ

2
ℓ

ν2
ℓ

σ2
b − σ2

e , (24)

then Bob’s output is noisier and no secret key can be extracted at a positive rate from theℓ-th
delay bin. This is because whenP is small, Eve’s independent noise (due toH ′

ℓ) is decreased.
It is observed in [41] that there is a cutoff SNR below which the secret key capacity is zero. If
ν2
ℓ = υ2

ℓ and all the users (Alice, Bob and Eve) are with the same SNR, i.e.,σ2
a = σ2

b = σ2
e = σ2,

the secret key capacity will be positive because Eve has an extra noise (due to the uncorrelated
H ′

ℓ).
3) Achievable secret key rate:In order to see the effect of channel sparsity when the bandwidth

is large (but finite), we focus on the equal-SNR case and consider a uniform delay profile, thus,
having a degraded eavesdropper. Define the random number of non-zero channel coefficients in
the main Alice-to-Bob and in Eve’s channel to be, respectively,

Bab =

Lmax
∑

ℓ=1

Sab,ℓ , (25a)

Be =
Lmax
∑

ℓ=1

Se,ℓ , (25b)

4In subspaces such thatQℓ = 0 eitherSab,ℓ = 0 or Eve has no observation ofHab,ℓ, so there is no need to consider those
subspaces.
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Note thatBab and Be are binomialBino (Lmax, ρ) distributed random variables. Consider a
uniform delay profile, i.e.,ν2

ℓ = 1
Bab

for all ℓ for which Sab,ℓ = 1; similarly, υ2
ℓ = 1

Be
for all ℓ

for which Se,ℓ = 1.
Let Is(P ) be the instantaneous key rateI(X;Y |Sab) − I(X;Z,Se|Sab) for fixed Sab and

Se. i.e.,

Is(γ) = BabIab

(

γ

Bab

,
γ

Bab

)

−BqIe

(

γ

Bab

,
γ

Be

)

, (26)

whereγ , P
σ2 and

Bq =

Lmax
∑

ℓ=1

Qℓ (the number of overlap delay bins). (27)

From (20) and Corollary 2 the achievable secret key rate is

Ier(γ) = E [Is(γ)] . (28)

As we will see later in III-B4,Is(γ) is convex in low SNR (and so isIer(γ)). Thus, a uniform
sounding strategy using a sounding signal with constant power P is not optimal. LetP denote
all sounding policies that satisfy average power constraint E[dH

d] ≤ P , we can achieve

Rer(γ) = max
P

Ier(γ) . (29)

Note that from Corollary 2 and the discussion thereafter,Rer(P ) approachesCer(P ) from the
below asn → ∞.

Theorem 3 (An on-off sounding achieves capacity).

Rer(γ) = max
0<λ≤1

λIer

(γ

λ

)

. (30)

Proof: The proof is provided in Appendix C.
The physical interpretation of the auxiliary variableλ is that key rateλIer

(

γ

λ

)

can be achieved
by an on-off sounding strategy that sounds the channel during λ (0 < λ ≤ 1) fraction of the
time, each with powerP

λ
, and does not sound the channel (i.e., is turned off) during the rest of

the time (i.e., a time-sharing scheme). Theorem 3 says that the ergodic secret key capacity can
be achieved by anλ∗ on-off sounding strategy whereλ∗ is the argumment maximizing (30). As
we will discuss in III-B4, an optimal on-off signal is sparsein time (i.e.,λ∗ → 0) in a low SNR
(γ → 0) and is dense (i.e.,λ∗ → 1) in a high SNR.

4) Wideband regime:One way to increase the secret key capacity is to increase thebandwidth
W of the wireless channel. However, the channel DoF do not growlinearly in W . To see how
W effects the secret key rate, we examineRer(P ) from (30) in the wideband regime.

In this case, each channel DoF is sounded at a low SNR. At low SNR we can approximate
(19) as

Iab(x, x) ≈
x2

ln 2
, (31a)

Ie(x, y) ≈
|η|2xy
ln 2

. (31b)
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Fig. 3. Achievable secret key rateIer(γ) plotted versus SNR (γ). The bandwidth isW =100MHz, the maximum delay spread
τmax = 10µs, the conditional probability of overlap inSab andSe is θ = 0.5 and the correlation between channel coefficients
is η = 0.1. The sparsity parameterδ ∈ [0.5, 1].

for x andy small. The ergodic key rate

Ier(γ) ≈
1

ln 2
E

[

Bab

(

γ

Bab

)2

−Bq|η|2
γ

Bab

γ

Be

]

=
γ2

ln 2
E

[

1

Bab

− |η|2 Bq

Bab

1

Be

]

(a)≈ γ2

ln 2

(1− θ|η|2)
L

=
γ2

ln 2

(1− θ|η|2)
(τmaxW )δ

. (32)

The approximation(a) is accurate whenL ≫ 1 [42, eq.(5)]. The right hand side of (32) is a
quadratic function ofγ, thusIer(γ) is convex in low SNR.

Figure 3 plotsIer(γ) versusγ, for a bandwidth ofW = 100MHz, τmax = 10µs, and for various
values of the sparsity parameterδ ∈ [0.5, 1]. We see that a sparser channel (smallδ) achieves a
higher key rate at low SNRs. We can also observe this from (32). According to Theorem 3 and
notice that (32) is quadratic inγ, we need a sparser signal in time (an on-off signal) to get a
higher key rate. In other words, in the wideband (power-limited) regime, fewer DoF (either in
channel or in time domain) can achieve a higher key rate. Thisoccurs because the key generation
problem is a combined channel sounding and channel coding problem. By focusing energy on
fewer DoF we raise their SNR, enabling key generation to occur at a higher rate. In contrast, a
richer channel (largeδ) results in a higher key rate at a high SNR since that is a DoF-limited
(and not a power-limited) regime.

Figure 4(a) and 4(b) plotsIer as a function ofW . This provides another view of the tradeoff
between power and DoF. First, letγ be fixed at10dB. Then, Figure 4(a) plotsIer for different
values of channel sparsityδ in the range[0.5, 1). In the wideband (low-SNR) regime, largerδ
results in a smaller key rate. In Figure 4(b),δ = 0.5 is fixed andγ is varied from 10dB to 30dB.
We see that for each SNR, there is a uniqueW ∗ that achieves the highest key rate.
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Fig. 4. Achievable secret key rateIer(γ) for SNR fixed atγ = 10dB plotted versus bandwidthW . In subfigure (a) the tradeoff
is plotted for for values of the sparsity parameterδ ∈ [0.5, 1). In subfigure (b) the sparsity parameter is fixed atδ = 0.5 and
the tradeoff is plotted for four SNRs,γ (dB) ∈ [15, 16].

IV. SECRECY OUTAGE

In contrast to Section III when an application has a stringent delay requirement or when the
state (i.e., the sparsity pattern) changes so slowly that itis roughly constant during the secret
key generation process, the secret key capacity in th Shannon sense is not well-defined. To study
this setting, in this section we setM = 1 while allowingn to be arbitrary large. Since users only
know their state but not Eve’s state, they cannot adapt the key generation rate to Eve’s state.
Thus, satisfying the secrecy condition (13) can be problematic. In this section, we consider an
“outage” setting with a degraded eavesdropper. For any (M = 1) realization(Sab, Se) = (sab, se),
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we say that a secrecy outage occurs if

1

n
I(K;Zn,Φ|sab, se) > Re (33)

for someRe > 0. Namely, there is a non-vanishing information rate leaked to Eve. Let

Cs(sab, se) = I(X ; Y |sab)− I(X ;Z|sab, se) (34)

be the conditional secret key capacity for state(sab, se). Theorem 4 shows that the event
R > Cs(sab, se) is a necessary and sufficient condition for the outage event (33).

Theorem 4. For any rate-R secret key generation systems for which Bob can reliability
recoverXn (i.e., Pr(Xn 6= f2(Y

n, sab, φ)) → 0 for somef2(·)), and let
Re(sab, se) = R− Cs(sab, se) > 0, then
(i) the information leaked to Eve is lower bounded as

1

n
I(K;Zn,Φ|sab, se) ≥ Re(sab, se)− 2ǫ , (35)

and
(ii) there exist a coding scheme (cf.,(11)) that satisfies(12), (14) and

1

n
I(K;Zn,Φ|sab, se) ≤ Re(sab, se) + 2ǫ . (36)

Proof: The proof can be found in Appendix D.

A. Wideband sparse channel

In the reciprocal wireless channel case, we know from III-B that Cs(Sab, Se) = Is(γ) given
in (26). Using the approximations from (31), we have in the wideband regime that

Cs(Sab,Se) ≈
γ2

ln 2

(

1

Bab

− |η|2 Bq

Bab

1

Be

)

. (37)

Recall thatBab (resp.Be) is the weight of vectorSab (resp.Se) (cf., (25)) andBq is the weight
of support common toSab andSe (cf., (27)). Also note thatBab, Be, Bq are random variables
so that the overall quantity in (37) is a random variable. Unfortunately, there is no simple
expression for the distribution ofCs(Sab,Se) in (37). Since the users are assumed to knowSab

(and, therefore,Bab), in order to understand how the channel sparsity effects the probability of
outage, we consider the case whereBab = L (i.e., its mean which is its most likely value) and
Be = L. The only uncertainty at users isBq, the number of delay bins from which Eve can
learn the key. Conditioned onBab = L and according to the correlation model in (6),Bq has a
Binomial distributionBino (L, θ).

From Theorem 4, the outage probability is

Pout = Pr (R > Cs(Sab,Se))

≈ Pr

(

R >
γ2

L ln 2

(

1− |η|2Bq

L

))

= Pr

(

Bq >
1

|η|2
(

1− ln 2
LR

γ2

))

, (38)
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whereL = (Wτmax)
δ. We see that a largerγ (SNR), a largerW , or a smallerη will decrease

the outage probability. However, the sparsityδ changes both the distribution ofBq and the right
hand side of the argument in (38) viaL. Thus, it is still not clear howδ impactPout. When
users don’t know the instantaneous secret key capacity, a conservative strategy is to generate a
key at a smaller rate.

Consider a strategy in which the key is generated at rateR = αIer(γ) (0 < α < 1), i.e., a
backoff from the ergodic key rate (32). We refer to this strategy as the “α-backoff” strategy.
The outage probability (38) can now be simplified to be

Pout ≈ Pr (Bq ≥ aL) (39)

where a = (1− α)
1

|η|2 + αθ .

SinceBq approximatesBino (L, θ), the sparsityδ (and therefore the actual DoFL) determines
the distribution of Eve’s DoFBq to observe the main channel. From (39), we can see that when
theα-backoff strategy is used, the correlation coefficientη determines how fast the thresholdaL
deviates fromθL (the mean ofBq) asα decreases. Note that in (39), the SNR (or equivalently,
powerP ) does not appear in the formula. This is because the key rate is proportional to ergodic
key rateIer(γ), which is a quadratic function ofγ in the wideband regime (cf. (32)), and thus
cancels theγ2 in (38).

We next use results from large deviation theory [43] to upperbound the tail probability of
binomial distribution.

Lemma 5. [43, Theorem 1] LetSn be a binomial random variableBino (n, p). For p < a < 1,
and for n = 1, 2, 3, · · · , then

Pr(Sn ≥ an) ≤ 2−nD(a‖p) (40)

where

D(a‖p) ≡ a log
a

p
+ (1− a) log

(1− a)

1− p
(41)

is the Kullback-Leibler divergence between the probability distributionsBern (a) andBern (p).

By this lemma, the outage probability is upper bounded as

Pout ≤ 2−LD(a‖θ) . (42)

Figure 5 plots the numerical results of the secrecy outage exponentLD(a‖θ) in the wideband
regime. It shows that when theα-backoff strategy is used, the mechanism through which the
channel sparsity impacts the outage probability differs from how the channel sparsity impacts
the ergodic secret key rate. A richer channel (largerδ) always has larger exponent than a sparser
channel. In contrast, Figure 3 demonstrates a sparser channel yields a higher ergodic secret key
rate in the wideband regime.

V. CONCLUSIONS

In this paper we study a setting in which two users desire to distill a common secret key
based on the inherent randomness of a reciprocal wireless channel. Our particular interest is
the effect of channel sparsity (e.g., in delay), which scales sub-linearly in signal bandwidth, on
secret key generation. Channel sparsity affects the inherent randomness of the main channel and
increases eavesdropper’s observability of the main channel. Since channel sparsity is an important
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Fig. 5. Plot of outage exponentLD(a‖θ) vs. bandwidthW . Other parameters include the maximum delay spreadτmax = 100ns,
the conditional probability of overlap inSab andSe is θ = 0.5 and the correlation between channel coefficients isη = 0.1.
The sparsity parameterδ is plotted for various values between0.5 ≤ δ ≤ 1.

characteristic of many real-world wireless channels and since it has such a large impact on secret
key capacity, it is crucial to understand this interplay fully. This will help us to deliver secure
communication systems with robust guarantees.

We first consider the ergodic setting. In this setting, at each SNR there is an adequate bandwidth
to maximizes the ergodic secret key rate. Moreover, when a white sounding sequence is adopted
in the wideband (low-SNR) regime, a higher secret key rate can be achieved by a sparser channel.

For channels whose sparsity changes relatively slowly, a secrecy outage measure of perfor-
mance is adopted. If the key rate is a fractionα of the ergodic capacity, we show that richer
channels always have larger exponents characterizing the decay of the outage probability. This
result illustrates that a larger number of DoF can smooth outof the detrimental effects of an
unknown eavesdropper state.

APPENDIX

A. Proof of Lemma 1

Apply the results in [1], [2] where, respectively,(Xn, Sab) are Alice’s, (Y n, Sab) are Bob’s,
and(Zn, Se) are Eve’s observations. A lower bound on the ergodic capacity is (see [1, Theorem
1], [2, Theorem 3])

C−
er =

1

n

[

I(Xn, Sab; Y
n, Sab)− I(Xn, Sab;Z

n, Se)
]

.
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Using the chain rule and memoryless nature of the source model in (7) and (8), the first term
can be reduced to

I(Xn, Sab; Y
n, Sab)

= I(Sab; Y
n, Sab) + I(Xn; Y n, Sab|Sab)

= H(Sab) +

n
∑

i=1

I(Xi; Y
n|X i−1, Sab)

(a)
= H(Sab) +

n
∑

i=1

I(Xi; Yi|Sab)

= H(Sab) + nI(X ; Y |Sab) ,

where(a) follows by applying the memoryless property to source(Xi, Yi). Similarly, the second
term reduces to

I(Xn, Sab;Z
n, Se)

= I(Sab;Z
n, Se) + I(Xn;Zn, Se|Sab)

(b)
= I(Sab;Se) +

n
∑

i=1

I(Xi;Z
n, Se|X i−1, Sab)

= I(Sab;Se) +

n
∑

i=1

I(Xi;Zi, Se|Sab)

= I(Sab;Se) + nI(X ;Z, Se|Sab) ,

where(b) is due to the Markov chainSab−Se−Zn and applying chain rule on the second term.
Thus, the lower bound is

C−
er = I(X ; Y |Sab)− I(X ;Z, Se|Sab) +

1

n
H(Sab|Se) . (43)

The upper bound is the conditional mutual information (see [1, Theorem 1], [2, Corollary 1]):

C+
er =

1

n
I(Xn, Sab; Y

n, Sab|Zn, Se)

=
1

n

(

I(Sab; Y
n, Sab|Zn, Se)

+ I(Xn; Y n, Sab|Zn, Se, Sab)
)

≤ 1

n

(

H(Sab|Zn, Se)

+

n
∑

i=1

I(Xi; Y
n|X i−1, Zn, Se, Sab)

)

(c)
=

1

n

(

H(Sab|Se) +

n
∑

i=1

I(Xi; Yi|Zi, Se, Sab)
)

= I(X ; Y |Z, Sab, Se) +
1

n
H(Sab|Se) ,

where(c) follows by Markov conditionSab − Se − Zn and the memoryless property.
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B. Derivation of mutual information(20)

First considerI(X;Y |Sab):

I(X;Y |Sab) = E[h(X|Sab)− h(Y |Sab)− h(X,Y |Sab)]

= E

[

log

(

det(RX) · det(RY )

det(RXY )

)]

, (44)

whereh(X) is the differential entropy [44] ofX, and the expectation is taken over the distri-
bution of Sab. Let RX denote the covariance matrix ofX when the inputSab = S is fixed,
i.e.,

RX = E[XX
H |S] = DRhD

H + σ2
1IK ,

whereRh = diag(ν2
1 , · · · , ν2

L) andν2
ℓ = 0 if Sℓ = 0. Similarly,

RY = DRhD
H + σ2

2IN

RXY =

[

RX DRhD
H

DRhD
H

RY

]

.

We simplify the determinants as follows,

det(RX) = det(DRhD
H + σ2

1IN)

= (σ2
1)

N det

(

IN +
DRhD

H

σ2
1

)

(a)
= (σ2

1)
N det

(

IL +
ΛDH

DΛ

σ2
1

)

(b)
= (σ2

1)
N

L
∏

ℓ=1

(

1 +
P

σ2
1

ν2
ℓ

)

= (σ2
1)

N
∏

ℓ:Sℓ=1

(

1 +
P

σ2
1

ν2
ℓ

)

,

where(a) follows by definingΛ =
√
Rh and applying Sylvester’s determinant formula:det(Im+

AB) = det(In +BA) whereA is anm-by-n matrix, andB is ann-by-m matrix. Step(b) is
due to (2). Similarly, we find that

det(RX)
.
= (σ2

2)
N

∏

ℓ:Sℓ=1

(

1 +
P

σ2
2

ν2
ℓ

)

det(RXY )
.
= (σ2

1σ
2
2)

N
∏

ℓ:Sℓ=1

(

1 +
(σ2

1 + σ2
2)P

σ2
1σ

2
2

ν2
ℓ

)

.

Substituting into (44), we get (20a).
Follow a similar calculation, we getI(X;Z,Se|Sab) in (20b) by noting that

RXZ =

[

RX DR
hh̃
D

H

DR
hh̃
D

H
RZ

]

.

whereR
hh̃

is a diagonal matrix and itsℓ-th diagonal element is equal toην2
ℓ if Qℓ = 1 or is

equal to zero ifQℓ = 0.
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C. Proof of Theorem 3

The proof is similar to [10, Theorem 4]. First note thatIs(γ) is non-decreasing inγ and
so is Ier(γ). This can be verified by evaluating∂Is(γ)

∂γ
, which is non-negative. DefinēIer(γ) =

max0<λ≤1 λIer
(

γ

λ

)

. Note thatĪer(γ) is a concave and non-decreasing function ofγ. We are going
to show Īer

(

P
σ2

)

is equal toRer

(

P
σ2

)

defined in (29) over the average power constraintP . Let
P be the set of all sounding policies satisfying average powerconstraintP . Specifically, let
the sounding policy inP allocate powerPs to sounding signals with probabilityp(s) such that
E[Ps] =

∑

s p(s)Ps ≤ P . Note thatRer

(

P
σ2

)

≥ Īer
(

P
σ2

)

. We can also upper bound

Rer

(

P

σ2

)

= max
P

∑

s

p(s)Ier

(

Ps

σ2

)

≤ max
P

∑

s

p(s)

[

max
0<λ≤1

λIer

(

Ps

λσ2

)]

= max
P

∑

s

p(s)Īer

(

Ps

σ2

)

(a)

≤ max
P

Īer

(∑

s p(s)Ps

σ2

)

(b)

≤ Īer

(

P

σ2

)

,

where(a) and (b) are due to the concavity and non-decreasing function ofĪer(γ).

D. Proof of Theorem 4

We first show the lower bound and then the upper bound.
1) Lower bound(35):

I(K;Zn,Φ|sab, se)
= H(K|sab, se)−H(K|Zn,Φ, sab, se)

= H(K|sab, se)− [H(K,Φ|Zn, sab, se)−H(Φ|Zn, sab, se)]
(a)

≥ H(K|sab, se) +H(Φ|Y n, sab, se)

− [H(Xn, K,Φ|Zn, sab, se)−H(Xn|K,Φ, Zn, sab, se)]
(b)

≥ n(R − ǫ) +H(Φ|Y n, sab, se)−H(Xn|Zn, sab, se)

= n(R − ǫ) +H(Φ|Y n, sab, se)−H(Xn|Y n, sab, se)

+H(Xn|Y n, sab, se)−H(Xn|Zn, sab, se)
(c)
= n(R− ǫ)−H(Xn|Φ, Y n, sab, se)− nCs(sab, se)
(d)

≥ n(R− Cs(sab, se)− 2ǫ) ,

where(a) is due to the fact that given(sab, se), Φ−Xn− Y n −Zn form a Markov chain. Thus
H(Φ|Zn, sab, se) ≥ H(Φ|Y n, sab, se). (b) holds because entropy is non-negative and(K,Φ)
is function of (Xn, sab), we can takeK,Φ away fromH(Xn, K,Φ|Zn, sab, se). For the same
reason, we can addΦ in H(Xn|Y n, sab, se) and use chain rule to get(c). (d) is due to the
reliable conditionPr(Xn 6= f2(Y

n, sab,Φ)) → 0 by applying Fano’s inequality [44].
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2) Upper bound(36):

I(K;Zn,Φ|sab, se)
= H(K|sab, se)−H(K|Zn,Φ, sab, se)
(a)

≤ nR−H(K|Zn,Φ, sab, se)

becauseK ∈ [1 : 2nR]. We need to show there exist a coding scheme such that

1

n
H(K|Zn,Φ, sab, se) ≥ Cs(sab, se)− 2ǫ . (45)

We will use the following lemma in the proof.

Lemma 6. (cf. [45, eq.(25)] [11, eq.(16)]) Anyǫ > 0, if 1
n
H(Φ|sab, se) ≥ H(X|Y, sab) + ǫ,

there exists a coding scheme wheref2(·) and f3(·) are the decoding functions at Bob and Eve,
respectively, such that for sufficiently largen,

(i) Pr(Xn 6= f2(Y
n, sab,Φ)) → 0 ,

(ii) 1
n
H(Xn|K,Φ, Zn, sab, se) ≤ ǫ .

The proof of Lemma 6 uses a random coding technique to show existence. The first statement
is exactly the Slepian-Wolf theorem [46]. The second statement is the standard equivocation
analysis which says if Eve knowsK and Φ along with her observationZn, she can recover
sequenceXn. We refer to [11, 45] for the details.

Adopting the coding scheme in Lemma 6 where the public message Φ ∈ [1 : 2n(H(X|Y,sab)+ǫ)].
We prove (45) through a sequence of (in)equalities:

H(K|Φ, Zn, sab, se)

= H(Xn, K|Φ, Zn, sab, se)−H(Xn|K,Φ, Zn, sab, se)
(a)

≥ H(Xn, K|Φ, Zn, sab, se)− nǫ

= H(Xn, K,Φ|Zn, sab, se)−H(Φ|Zn, sab, se)− nǫ

(b)
= H(Xn|Zn, sab, se)−H(Φ|Zn, sab, se)− nǫ

≥ H(Xn|Zn, sab, se)−H(Φ)− nǫ

(c)

≥ H(Xn|Zn, sab, se)− nH(X|Y, sab)− 2nǫ

= n(H(X|Z, sab, se)−H(X|Y, sab)− 2ǫ)

= n(Cs(sab, se)− 2ǫ) ,

where (a) is due to(ii) of Lemma 6.(b) follows because(K,Φ) is a function of(Xn, sab).
(c) comes from the fact thatΦ ∈ [1 : 2n(H(X|Y,sab)+ǫ)] and the entropy is upper bounded by a
uniform distribution. This completes the proof.
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