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Abstract—Key management in wireless sensor networks faces several new challenges. The scale, resource limitations, and new threats
such as node capture necessitate the use of an on-line key generation by the nodes themselves. However, the cost of such schemes is
high since their secrecy is based on computational complexity. Recently, several research contributions justified that the wireless channel
itself can be used to generate information-theoretic secure keys. By exchanging sampling messages during movement, a bit string can be
derived that is only known to the involved entities. Yet, movement is not the only possibility to generate randomness. The channel response
is also strongly dependent on the frequency of the transmitted signal. In our work, we introduce a protocol for key generation based on the
frequency-selectivity of channel fading. The practical advantage of this approach is that we do not require node movement. Thus, the frequent
case of a sensor network with static motes is supported. Furthermore, the error correction property of the protocol mitigates the effects of
measurement errors and other temporal effects, giving rise to an agreement rate of over 97 %. We show the applicability of our protocol by
implementing it on MICAz motes, and evaluate its robustness and secrecy through experiments and analysis.

Index Terms—Security and protection, wireless communication, secret key generation, performance evaluation

✦

1 INTRODUCTION

S ECURING wireless sensor networks (WSNs) has been
one of the main wireless network research areas in re-

cent years. Especially key generation and key management,
which are at the heart of any security design, pose new
challenges because of the low computational capabilities
of wireless motes, their limited battery lifetime, and the
broadcast nature of wireless communication. Given these
peculiarities, a large number of key management protocols
for WSNs has been proposed, often fine-tuned between
different performance vs. security trade-offs and adapted
for specific WSN scenarios and their applications (for a
general overview see, e.g., [6], [31]). However, most of these
protocols follow a conventional cryptographic approach,
where the secret is based either on pre-distributed keys
or public-key schemes assuming more performance capa-
ble devices that are able to generate and distribute the
keys. Although there have been efforts to adapt public
key cryptographic protocols to the world of WSNs (e.g.,
TinyECC [14]), these adaptations usually have a significant
complexity and memory footprint as well as a high energy
consumption (for energy analysis of public key schemes,
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see, e.g., [27]). As an example, TinyECC (with optimiza-
tions) requires roughly 20 kB of ROM and 1.7 kB of RAM
[14], which is 15.6 % and 42.5 % of the overall available
memory resources of MICAz sensor motes, respectively,
and single operations require computation time in the
order of seconds.

Recently, there have been research contributions that
follow an alternative path towards key generation using an
information-theoretic approach to derive secrets from unau-
thenticated broadcast channels. Informally, the general idea
is similar to the quantum world, in which the laws of quan-
tum mechanics ensure that two spatially separated particles
experience highly correlated quantum states (called “quan-
tum entanglement”). Measuring the quantum properties of
one particle discloses the knowledge of another. However,
in contrast to the mystical quantum nature, contributions
on key generation using wireless channel are concerned
with conventional physical signal propagation and, to some
extent, its reciprocal behavior. Specifically, recent results
described by Mathur et al. [15] and Azimi-Sadjadi et al. [2]
justify that the unpredictable multipath propagation and
the resulting fading behavior of wireless channel can be
used to extract shared secret material. Simply by exchang-
ing messages that serve to sample the signal propaga-
tion behavior, both transmitters can establish mutual se-
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cret information, while an eavesdropper who also receives
these messages still remains completely ignorant of their
channel measurements. Since the secrecy of the extracted
information is not based on computational complexity as
common to conventional public key cryptography, these
protocols are especially valuable to computationally limited
wireless devices. Yet, existing solutions require that the
wireless devices move at certain speeds to produce enough
unpredictability in their signals. Thus, the most prevalent
applications of WSNs which are based on static wireless
motes make these protocols inapplicable. This brings us
to the contribution of this work, which abstains from this
limitation and provides a novel key generation protocol for
static WSNs. The main contributions of this paper are:

• Design of a robust key generation protocol with an
error-correcting property against channel deviations
(→ Section 4).

• Implementation of the protocol on static MICAz sensor
motes and analysis of the protocol’s robustness and
the secrecy of derived keys, especially with respect to
dependencies between wireless channels (→ Section 5).

• Derivation of a stochastic model describing the secrecy
of the protocol, its validation using experimental data,
and guidelines on increasing the number of generated
secret bits (→ Section 6).

In summary, we demonstrate the applicability of a key
generation protocol that takes advantage of the wireless
channel behavior in static wireless networks and analyze
different trade-offs between it’s robustness to channel de-
viations and available secrecy.

2 RELATED WORK

The use of physical properties was first considered in the
context of quantum cryptography. The laws of quantum
mechanics ensure that the same quantum states are ob-
served by two spatially separated parties. Several proto-
cols have been proposed that exploit this property and
can guarantee the detection of eavesdroppers [4], [7]. The
concept was generalized in the framework of information
theory by Maurer [16]. Here, random sources observable by
three parties are considered: a source provides two strongly
correlated variables to two legitimate participants, and a
weaker correlated variable to an eavesdropper. This work
shows that information-theoretically secure keys can be
derived from such sources even when an adversary has
partial access to the source of information. The theoretical
concept was instantiated for the use of wireless channels
by the same research group [18], [17].

Several research contributions apply this concept to
narrow-band communication systems to generate secret
keys from a wireless channel. Mathur et al. [15] use the
randomness of the received signal strength, which is intro-
duced by movement, as a source for correlated information,

the so-called “radio-telepathy”. By frequent sampling of
the wireless channel both parties can create a sequence
of channel states that are strongly correlated because of
the principle of reciprocity. The fading behavior on a
single sampling frequency is strongly dependent on the
physical position, and movement introduces uncertainty
for an adversary that is captured in these sequences. The
degree of reciprocity decreases rapidly in space, such that
eavesdropping on sampling messages does not allow to
infer the channel state between the legitimate nodes. The
authors employ a level-crossing algorithm that uses two
thresholds for signal strength values to generate bit strings.
For information reconciliation, both parties detect mutual
excursions by exchanging suitable candidate regions in the
sequence, thereby increasing the chance to produce shared
secret bits. The longer the required excursions are, the more
robust the scheme is against measurement errors. Yet, in
contrast to our work, their solution requires movement as
a generator of randomness and thus it is not applicable
to static networks. Additionally, the protocol introduced
in [15] requires more powerful devices such as laptops
or software-defined radios, as a high sampling rate is
necessary and a complex reconciliation mechanism is used
to avoid errors.

Azimi-Sadjadi et al. [2] propose a similar protocol that
focuses mainly on the robustness of the key generation
process, i.e., tolerance against deviations in the wireless
channel and a high success rate. They employ a single
threshold for detection of strong deep fades introduced by
movement, an event that is reliably detectable, but also
rare (in the order of Hz), again depending on the speed
of movement. Every sample is turned into an output bit
of the protocol, which leads to long sequences of “1”s,
representing the absence of deep fades, interrupted by
shorter sequences of “0”s. The resulting bit string is not
directly usable as keying material, as the uncertainty for
an attacker is located in the position of the deep fades in
the string. Thus, not all bits are equally unpredictable, and
the authors consider the use of randomness extractors to
produce uniformly random strings. No quantitative evalu-
ation of secrecy is given, but considering the use of deep
fades only and the nature of randomness extractors, we
estimate that the use of this protocol results in a lower
secret bit rate than the approach in [15]. Further results on
such key extraction protocols, especially with respect to the
effectiveness in realistic scenarios, are given in [11].

Several other contributions use highly specialized hard-
ware, such as steerable antennas, ultra-wideband (UWB)
radio or multi-antenna systems with performance-capable
processors [1], [30], [33]. In contrast, this paper focuses
on the capabilities of conventional “off-the-shelf” sensor
motes, without the need for additional equipment.

In summary, it can be stated that current solutions
provide valuable insights into the feasibility of key gen-
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(a) Alice’s view when Bob transmits
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Fig. 1: The reciprocity of the wireless channel state is strong enough to enable the extraction of shared secret information.

eration using physical properties, but several important
issues still remain open. Especially the hardware platform
that benefits most from key generation schemes, wireless
sensor networks, is still unsupported. As current protocols
require movement and complex reconciliation to guarantee
successful key generation, the most prevalent static scenarios
are not considered. Our work closes this gap with a protocol
that can be used even on the most resource-constrained
hardware and is specially designed for static environments.
Our initial results are presented in [28] and [29]. This
work extends our previous results and finalizes them. It
offers extensive experimental analysis using IEEE 802.15.4
technology, an in-depth evaluation of secrecy, especially
with respect to dependencies between wireless channels,
and a stochastic model that captures the behavior of the
proposed protocol and provides predictions on the different
trade-offs between security and robustness.

3 CONCEPT

In this section, we introduce the concept of key generation
using the frequency-selectivity of wireless channels. As we
base the secrecy of our protocol on our ability to extract
secrets at two different locations, we require two things
from the wireless channel: strongly correlated information
between the two parties and high uncertainty about the
generated keying material for adversaries.

3.1 Robustness Considerations

The principle of channel reciprocity states that two receivers
experience the same properties of the wireless channel if
their role as sender and receiver is exchanged, given that
the time interval is shorter than the coherence time tc of
the channel. As we mainly consider static scenarios, the
reciprocity between nodes is strong, even if the sampling
rate is small owning to the limited capabilities of the con-
sidered hardware. Measurements show that we are able to

distinguish signal strengths even when using fine-grained
levels. As an example of this behavior, Fig. 1 presents
such measurements from a single constellation of sender
and receiver. On each channel, 16 sampling messages are
exchanged to generate robust results. The experiments ex-
hibit bounded deviations, the RSS indicator reported by the
hardware is able to capture the channel state accurately
enough to enable successful key generations.

Imperfect reciprocity directly influences the robustness of
the proposed key generation protocol, as deviations in the
view on the channel lead to disagreement in the produced
bit strings. A second factor is measurement errors caused
by noise, both in the measurement circuits and the wireless
channel. All of these deviations must be corrected to suc-
cessfully generate secret keys. Our experimental analysis
presented in Section 5.2 will show that these deviations are
sufficiently small for different indoor scenarios, and secrets
can be generated reliably even on stock sensor motes.

3.2 Security Considerations

The unpredictability of the channel state is the most im-
portant aspect when considering the wireless channel as
a source of randomness, as it directly affects the available
secrecy. In the related work [15], [2], the spatial selectivity of
the wireless channel due to movement is used to generate
secret bits. In this work, we show that the frequency-
selectivity of multipath fading is a viable alternative to
generate secret information using the wireless channel,
without requiring node movement.

In general, wireless signals are not traveling on a single
path from a sender to a receiver, but arrive from several
directions at the receiver, i.e., the signal exhibits multipath
propagation characteristics. Each path is affected by differ-
ent attenuations and phase shifts, and the resulting signal
at the receiver is a combination of all signal paths by wave
interference, resulting in a channel response depending
on many variables. A small variation in phase, e.g., by
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Fig. 2: Taking advantage of spatial and frequency selectiv-
ity of multipath fading experienced in wireless channels.
Even if Eve takes positions on a circle with 10 cm radius
around the position of the legitimate transmitter (Bob), the
measured signalprints are significantly different from Bob’s
measurements.

using a different carrier frequency, leads to unpredictable
changes in the signal strength, even when signal paths
are unchanged. This behavior is captured by the impulse
response of the wireless channel, consisting of a number of
time-shifted Dirac pulses δ, and considering L signal paths

h(τ) =

L
∑

l=1

αle
jφlδ (τ − τl) ,

with different values of each path for the amplitude αl,
phase shift φl and delay τl, acting as random variables.
Because of phase shifts, interference effects can lead to sig-
nal cancellation or amplification, depending on the relative
phase shifts.

To show the magnitude of these effects, we conducted an
experiment to evaluate the selectivity of the channel both

with respect to position and carrier frequency. Fig. 2 shows
the uncertainty of an adversary even if he is positioned
very close Bob. Each barplot represents the received signal
strength measurements on 16 channels in the 2.4 GHz range
available on the MICAz platform. The sensor mote acting
as Alice was placed in a fixed position on a desk, Bob was
placed in an adjacent room, such that both were separated
by a wall, and the channel response was sampled from 12
positions on a 10 cm radius around Bob’s initial position.
The results show that the multipath effects are strong, and
even if an attacker has knowledge of the environment and
the positions of Alice and Bob; the channel behavior is
unpredictable. Even ray-tracing approaches are unable to
capture this behavior precisely, as a highly accurate model
of the environment capturing minimal phase shifts would
be required. Extensive results on the amount of uncertainty
for an adversary obtained in our experiments are given in
Section 5.3.

3.3 System Model

We are interested in the amount of uncertainty that an adver-
sary experiences. Information theory introduces the notion
of (Shannon) entropy to quantify the average amount of
information of a discrete random variable, making it suit-
able for capturing the amount of uncertainty an attacker
experiences. In this section, we derive a stochastic model
of the system enabling us to evaluate the secrecy of the
proposed protocol based on signal strength distributions of
real-world measurements.

3.3.1 Secrets from the Wireless Channel
The state of the wireless channel for a specified frequency
at a certain point in time is captured by the discrete random
variable C, that is, we assume that only finite precision can
be achieved in channel state acquisition. Possible sources
for this variable are, for example, the complex impulse
response of the channel, or as in our case, the received
signal strength. The outcome of C is stable during channel
coherence time, which depends on the speed of movement.
In static scenarios on which we focus this time is very long,
enabling us to take several samples and use mean values
as outcomes of C.

Both Alice and Bob have access to the wireless channel
and can exchange sampling messages. Each can monitor
one of the random variables

XAlice = CAlice +NAlice,

XBob = CBob +NBob,

with Cx being the measured channel state at the respective
position and Nx being random variables representing the
noise processes that introduce errors in the channel state
estimations. With the help of channel reciprocity we can
assume that CAlice = CBob = C, i.e., both parties experience



5

the same channel properties in their exchanged sampling
messages. The mutual information that the channel pro-
vides is described by

I (XAlice, XBob) = H (XAlice)−H(XAlice|XBob) ≤ H(C) .

The conditional entropy H(XAlice|XBob) is zero if the chan-
nel is noiseless, and then the amount of shared information
which Alice and Bob gain from monitoring the wireless
channel is quantified by the entropy H(C) of the channel
state variable, given by

H(C) = −
∑

c∈C

p (c) log p (c) ,

where p (c) denotes the probability mass function of C and
C its support. This also represents the maximum attainable
mutual information from the wireless channel, because the
noise term N = NAlice − NBob that captures deviations
in the measurements has a negative effect on the mutual
information [17]. We propose a reconciliation mechanism
to correct the errors introduced at this point, which is
presented in the next section. An experimental evaluation
of the magnitude of measurement errors and the effects
on secrecy is given in Section 5, as we aim to quantify
the amount of secrecy using the propagation properties of
realistic wireless channels.

An eavesdropper who can also monitor the sampling
message to infer the channel state C between Alice and
Bob measures XEve = CEve + NEve. As C and CEve de-
correlate rapidly in space, as shown empirically by Mathur
et al. in [15], the mutual information I (XAlice, XEve) and
I (XBob, XEve) are approaching zero if the distance is greater
than a wavelength, thus eavesdropping on the sampling
messages does not help Eve to infer information on C. The
entropy H(C) stands against Eve, it quantifies the amount
of uncertainty in the channel state for Eve accurately.

However, the information on a single channel is limited,
and a way must be identified to increase the amount of
shared information between Alice and Bob. Two possibil-
ities of increasing entropy can be considered: (i) create a
random process C (t) by moving the devices (reducing the
channel coherence time), or (ii) probe multiple channels
to exploit the frequency-selectivity of the wireless channel.
The first approach is followed in [15], [2], which is effective
and easy to analyze for its secrecy but, as pointed out, poses
several problems for an adoption in WSNs. To support static
networks, we propose and evaluate the second approach in
this work.

3.3.2 Multiple Channels

We now consider the random vector C = (C1, . . . , Cn),
measured on n different frequencies (channels). In this

case, Alice measures XAlice =
(

X
(1)
Alice, . . . , X

(n)
Alice

)

and Bob

measures the corresponding vector XBob, which both can
be used to obtain the mutual information

I (XAlice,XBob) = H (XAlice)−H(XAlice|XBob) ≤ H(C) ,

assuming reciprocity on all channels and H(C) being the
joint entropy over all channels, given by

H(C) = −
∑

cj∈Ci

p (c1, . . . cn) log p (c1, . . . , cn) .

If the elements in the random vector are independent,
then the amount of uncertainty can directly be evaluated
using the entropy values from individual channels, H(C) =
∑n

i=1 H(Ci). This value represents an upper bound on the
joint entropy, as known dependencies between the variables
enable predictions and reduce the overall uncertainty of
Eve. Wireless channels experience correlated fading if the
distance between the center frequencies is smaller than the
coherence bandwidth. This is the case for our hardware
platform, MICAz sensor motes. If it were not the case, the
secrecy analysis would be fairly easy. Yet, in Section 5 we
will not make that simplifying assumption. Therefore, we
analyze the dependency structure to evaluate the amount
of uncertainty, i.e., the secrecy of keys generated by the
presented protocol. We do this with respect to the following
adversarial model.

3.3.3 Adversarial Model
One important aspect for the quantification of secrecy of
such a scheme is to define the abilities of an adversary,
in the same way as it is necessary when evaluating cryp-
tographic security protocols. For instance, computation-
ally unbounded attackers can break Diffie-Hellman key
agreements with ease because they can solve any problem
that relies on computational complexity. Similarly, an at-
tacker who can take exactly the same physical positions as
legitimate sensor nodes can break our key generation proto-
col. Yet, with realistic constraints on an attacker, the security
of the protocol can be analyzed quantitatively.

An adversary has several options to attack the secrecy of
the key generation protocol. It can eavesdrop on the wire-
less channel and observe both the content of the messages
and the signal strengths that it can experience at its position.
As the content of the messages carries no information and
the signal strength de-correlates rapidly in space, this gives
it very little information on the channel state between
Alice and Bob. Thus, eavesdropping is not an effective
option. With its presence, it can only prevent Alice and
Bob from exchanging secret information in plaintext over
the wireless channel.

The best attack vector is to model the multipath channel
between Alice and Bob, taking into consideration the hard-
ware and environment, and then infer the signal strength
values. Knowledge to aid an attacker in this modeling can
come from plans of the building for indoor scenarios or
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from observations of the environment, from the positions
of Alice and Bob by observation of the sensor motes, or
via positioning methods using wireless signals, such as
triangulation. While the effects of path loss and shadowing
on the line-of-sight (LOS) connection between the two
nodes are predictable (e.g., using ray-tracing methods [9]),
the resolution of the multipath components is very chal-
lenging. To refine its model, an adversary is allowed to
do measurements with similar hardware off-site. The only
assumption here is that the attacker cannot measure at
the very same positions of the legitimate sensors during
operation, because this is equivalent to a node capture
which discloses the key directly.

Given this information, we can model the knowledge of
an adversary by limiting possible signal strengths to the
distribution of signal strengths of similar positions. This
can be achieved by using the distribution of signal strength
values from channel propagation models, that is, he can
generate accurate distributions for Ci between Alice and
Bob. This allows quantifying the amount of uncertainty
that the attacker experiences; we can quantify its expected
uncertainty with the entropy H(C) of the signal strength
distributions of the wireless channel.

4 PROTOCOL DESIGN

In this section, we present our novel key generation pro-
tocol suitable even for limited hardware capabilities by
using a performance-aware design, specifically with WSNs
in mind.

In the following, we conduct measurements by sam-
pling RSS values on a set of n different frequencies F =
{f1, . . . , fn} (also referred to as channels). The number of
samples taken is k, i.e., for each channel fi we collect a

set of measurements mi =
{

m
(1)
i , . . . ,m

(k)
i

}

. To increase

the error tolerance of our scheme, we calculate the mean
value µi =

1
k

∑k

j=1 m
(j)
i of these RSS samples. We view this

mean value as the random variable Ci, which is distributed
depending on the characteristics of wireless propagation,
e.g., following the commonly assumed Rayleigh or Ricean
distributions. The means of all n channels are combined
to the random vector C = (C1, . . . , Cn). A realization,
the outcome of our measurements is µ = (µ1, . . . , µn),
with µi ∈ M = [µmin, µmax], the range of signal strength
values that can be measured by the hardware platform. We
assume that only a finite precision in the measurements
can be achieved. As an example, in our wireless sensor
network testbeds we used M = [-104, -40]dBm, with a
precision depending on the number of samples taken, since
each RSS sample is integer valued. We associate M with
the distance function dis : M × M → R

+ defined as
dis (µi, µ

′
i) := |µi − µ′

i|, which is the difference in dB in
our case. Thus, M together with this distance function

constitutes a metric space, a necessary prerequisite for the
discussion of our error correction scheme.

4.1 Multi-level Quantization

To successfully repair deviations in channel state measure-
ments between Alice and Bob, we use multi-level quanti-
zation to make close measurements equal. In general, our
quantization scheme Q uses a subset of the metric space M,
Q = {q1, . . . , qK} ⊆ M, with a total of K elements,
the quantization levels. The most important property of the
quantization scheme is the tolerance t of the quantization Q.
This is the largest distance for which an m ∈ M is
mapped uniquely, i.e., for all µi ∈ M, we have dis (µi, q) < t

for at most one q ∈ Q. Therefore, all values µi, µ
′
i are

mapped to q given their distance to q is small enough.

4.1.1 Construction
We choose K elements of M with the same distance d

between quantization levels, where p = ⌈log2 K⌉ is the
number of bits that are needed to identify a level. This
equidistance ensures that the tolerance t is the same for
all values in M. We denote this quantization as Qt =
{q1, . . . , qK}, the bijective mapping to the binary represen-
tation as bin : Qt → {0, 1}p, which maps quantized values
to binary strings. Since µmin and µmax are both fixed values,
the distance d between neighboring quantization levels is
reduced as the number of levels increases. The relation is
given by d = |µmax−µmin|

K
. The tolerance of this scheme is

given by t = d
2 , since all levels are evenly spaced. The

number of levels therefore directly affects the tolerance
of the quantization scheme, therefore, when fewer levels
are considered, larger deviations can be repaired. The pro-
cess of quantization maps the value µ to the levels q with
a minimal distance in R, formally

q
t
(µ) = arg min

q∈Qt

dis (µ, q) .

For example, consider the quantization scheme

Q1 = {-104, -102, . . . , -42, -40}

with 32 levels and tolerance t = 1 for our metric space M.
For this, the measured value µ = -71.424dBm is quantized
to the level q = -72. This ensures that values with distances
smaller than 1dB are mapped to equal levels.

4.1.2 Tolerance Properties of the Quantization Scheme
The amount of uncertainty is reduced in this process as
several values are mapped to the same quantization level,
but at the same time the tolerance for deviations is in-
creased. Thus, we can trade between robustness and secrecy
by choosing a Qt with a suitable tolerance t ∈ R that is able
to correct errors in measurements given dis (µ, µ′) < t.

Still, some constellations are possible, such that µ and µ′

are mapped to two different levels (e.g., given Q1, µ =
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Alice BobSampling Phase

Key Generation Phase

Key Verification Phase

switchChannel()
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qi = qti(µi) Pi = qi − µi

P = (P1, . . . , Pn) T = (t1, . . . , tn)

secret = bin(q1) || · · · || bin(qn)

ti = getTolerance (T)

Pi = getReconcileToken (P)
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′
i + Pi)

secret′ = bin(q′1) || · · · || bin(q
′
n)
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=
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h (secret) == h (secret′)?
False: Choose new tolerances ti

True: Key verified.

e
r
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+
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Fig. 3: Key generation protocol. The protocol operates in three phases; (i) the acquisition of channel state estimates, (ii)
error correction using multi-level quantization and (iii) secret verification. The channel state estimates can be reused if
the chosen tolerance values are too small for the experienced deviations.

-70.9dBm and µ′ = -71.1dBm are mapped to -70 and -72,
respectively). To correct these error patterns, we need to
send a public piece of information P that helps Bob to rec-
oncile his measurement and recover the same quantization
results as Alice. Of course, at the same time P should reveal
no new information to Eve.

Our construction is straightforward: Alice calculates P =
q
t
(µ) − µ, the shift that is necessary from µ to the corre-

sponding quantization value q = q
t
(µ), and uses q as her

secret information. This shift is always smaller than or equal
to t, and therefore reveals only information that is discarded
by Alice and Bob anyway due to the quantization property.
Alice then sends P via public channel to Bob, who uses P

to generate the same level q using his measurement µ′ by
calculating q = q

t
(µ′ + P ).

Claim 1: By using this reconciliation scheme, both Alice
and Bob obtain q, given dis (µ, µ′) < t.

Proof: Considering dis (µ, µ′) < t, then the distance
between the mean values is unchanged when both sides
are shifted by P , i.e., dis (µ+ P, µ′ + P ) < t. From the
construction of P , we can infer that q = q

t
(µ) = µ+P , and

thus dis (q, µ′ + P ) < t. Finally, as the quantization distance
of the used scheme is t, µ′ +P is uniquely mapped to q by
Bob as well, q

t
(µ′ + P ) = q.

4.2 Key Generation Protocol

The proposed key generation protocol operates in three
phases. In the sampling phase, the channel state is acquired,
and due to the reciprocity of the wireless channel state in-

formation strongly correlated measurements are collected
by the two legitimate parties in the protocol. In the key
generation phase, these deviations are corrected, resulting in
a secret bit string that is guaranteed to be equal if the expe-
rienced deviations are bounded and suitable quantization
levels are chosen. The key verification phase ensures correct
key agreement. The complete protocol is shown in Fig. 3.
We used a straightforward protocol for the ease of presenta-
tion of the protocol analysis, but we also experimented with
several protocol optimizations that can further increase the
robustness and secrecy of the protocol, as presented in
Section 4.3.

4.2.1 Sampling Phase

In this initial phase, Alice and Bob exchange sampling
messages over the set of available wireless channels. For
each of the n frequencies in F , Alice and Bob exchange
k messages and each one stores a set of measured RSS
values mi or m′

i, respectively. Alice initiates the message
exchanges, Bob answers incoming sampling messages as
fast as possible for a maximum of channel reciprocity. Due
to constraints of the mote hardware, the samples must
be collected in an interleaved manner, such that the state
of the wireless channel can change slightly, contributing
to the noise terms NAlice and NBob. However, by using
several sampling messages per channel, the adverse effects
of such short term deviations can be mitigated. The mean

values µi =
1
k

∑k

j=1 m
(j)
i are then computed by Alice, while

Bob proceeds similarly with µ′
i. Thus, after finishing the
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sampling phase, both Alice and Bob possess the vectors of
channel state information µ and µ

′ that capture the fading
behavior of the wireless channel.

4.2.2 Key Generation Phase

The gathered mean value vectors µ and µ
′ contain secret

information that can be used as secret keys, but after the
sampling phase these vectors are unlikely to agree. The
key generation phase uses information reconciliation based
on the introduced error correction scheme to produce a
bit string that is equal on both sides, without discarding
shared bits or revealing information to eavesdroppers. Alice
chooses a set of tolerance values T = (t1, . . . , tn) based
on the variance of its RSS values mi and the number
of experienced verification errors from potential previous
runs. We used the same starting tolerance value ti = 1 for all
channels in our experiments and analysis, which achieves
a high rate of successful key agreements as well as good
secrecy, as shown experimentally with our implementation.
However, the choice of tolerance values strongly influ-
ences the robustness and secrecy trade-off, and considering
optimization at this point is useful (see a corresponding
discussion in Section 4.3).

Alice uses the tolerance values to instantiate the appro-
priate quantization functions q

ti
and applies them on her

mean values µi to generate the values qi for each channel.
She also generates the vector of public reconciliation strings
P = (P1, . . . , Pn) by calculating Pi = qi − µi to aid Bob in
his error correction and to ensure matching secrets. He can
then generate his quantization level vector by calculating
q′i = q

t
(µ′

i + Pi). Both parties now have sufficient informa-
tion to generate their candidate secrets secret and secret′

by concatenating the resulting binary strings.

4.2.3 Key Verification Phase

Finally, both parties proceed to verify if the secret keys are
generated successfully, i.e., if a mutual secret is established.
After Bob has finished his computations, he sends the hash
value h (secret′) of his secret string to Alice. Alice ensures
successful key generation by comparing Bob’s value to
her secret string. If the hash values do not match, Alice
can retry the key generation by increasing the error count
and choosing new tolerance values in the key generation
phase; redoing the sampling of the wireless channel is not
necessary. The approach used in our implementation uses
a tolerance increase of 0.5 dB on each channel. However,
our implementation on MICAz sensor motes presented in
the next section shows that with a tolerance t = 1, key
agreement was reached in 94.6 % of the cases on the first
try.

After finishing this step, both Alice and Bob share a secret
key that can be used to support security services.

4.3 Protocol Optimizations

We experimented with some optimizations to increase the
robustness and secrecy of our protocol, and discuss some
options in this section. The later sections, however, base
their analysis on the protocol described in the previous
section.

The function chooseTolerance can be improved further
when the tolerance values ti are chosen independently for
each channel. Our experiments show that only one or two
channels have deviations larger than the used tolerance
values, and therefore prevent a successful key generation.
By choosing a higher tolerance value for single channels
only, Alice can start several key verification phases until
the mismatching channel is identified.

Our experiments show that the deviations can be approx-
imated well by a Normal distribution. This enables us to
predict the success probability of a protocol run, that can
be used by Alice to aggressively choose low tolerances in
the beginning to increase the entropy of secret strings, e.g.,
by initially achieving only a 56 % chance of a successful key
agreement with a tolerance value t = 0.4.

5 IMPLEMENTATION RESULTS

After the definition of the key generation protocol, the next
interesting aspect is how this protocol performs in real-
world environments, and how large the achievable secrecy
and robustness is given realistic propagation properties.
With several experiments, these properties are explored in
detail in this section. We also show that the concept is
applicable on resource-constrained devices under realistic
properties of the wireless channel. The first part is focused
on the robustness and performance of the protocol, and in
the second part the secrecy is quantified empirically using
the notion of information entropy. These insights are also
used as a basis and justification for the analytical model,
developed in Section 6.

5.1 WSN Testbed and Methodology

The experiments were conducted over several days on
a university floor, that is, an indoor setting across sev-
eral rooms. During the measurements, several wireless
LAN access points were concurrently operating in the
2.4 GHz band; so, the experiments were performed in a real-
world environment with unpredictable factors. The envi-
ronment contains concrete walls, as well as office furniture
made of different materials. Especially metal objects such as
shelves and cabinets with good reflection properties regard-
ing electromagnetic waves were present. Thus, this set of
environment can be considered to generate a rich multipath
effects, while it also represents a typical indoor scenario.
An additional factor for this changing environment was the
movement of people in corridors or office rooms.
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(c) Success probability of key generation based
on all positions.

Fig. 4: Deviations in the channel and the resulting success rate of key generations in our experiments.

Several different scenarios were considered to evaluate
the impact of positioning on secrecy and robustness. A
large meeting room was used for experiments, where the
sensor motes always maintained a line of sight connection,
and several smaller office rooms were used to quantify the
impact of shadowing objects and walls. For each of these
scenarios, 250 positions were considered, and the distance
was kept constantly at 2.5 meters to avoid the influence
of path loss effects. In long-term and dynamic scenarios,
these rooms and the connecting corridors were used, and
1000 additional positions were tested with mixed distances
and obstacles. We used k = 16 samples on each channel,
collected on n = 16 channels.

5.2 Protocol Robustness

In order to evaluate the robustness of the protocol, a
total of 1600 positions of the two parties was tested, and
the measurements and deviations between the two parties
recorded for each of the 16 channels.

From the deviations N = NAlice − NBob observed, we
can see that they are bounded. The histogram of deviations
is given in Fig. 4a and 4b, which also shows that these
deviations are fitted well by a zero-mean Normal distribu-
tion with a standard deviation of σ = 0.461dB in the LOS
experiment and σ = 0.503dB in the non-LOS experiment.
The empirical distributions have even lighter tails than the
fitted Normal distributions. We can use this knowledge to
evaluate the success probability as described in Section 4.3
for protocol optimizations. Based on the experiments, we
can conclude that the reciprocity of the wireless channel is
very strong.

The success ratio of the protocol can be directly controlled
by the tolerance values of the code used, as codes with
larger tolerance values are able to correct stronger devia-
tions. With a tolerance of 1 dB, 94.6 % of the key agreements
are successful on the first run. This value is increased to
99.2 % with a tolerance of 2 dB. The empirical cumulative

distribution function (ECDF) of all experiments is shown in
Fig. 4c. The majority of deviations are below 2 dB, and only
a small number of extreme outliers were measured. As the
chosen tolerance value also has an impact on the secrecy of
the resulting bit string, a careful trade-off between secrecy
and robustness must be found.

5.3 Evaluation of the Channel Entropy

We evaluated the frequency-selective channel fading effects
in two different environmental settings: (i) connections with
line of sight only; and (ii) connections with obstacles in
the direct connection, that is, non-LOS connections. The
LOS experiment was intended as the worst-case scenario
because a strong LOS component may be able to dominate
the multipath fading behavior. Yet, our experiments show
that this is not the case, and both experiments yield roughly
the same entropy. In all experiments, several different tol-
erance values were considered to show the impact of this
parameter on the secrecy.

The secrecy analysis focuses on the distribution of sig-
nal strength measurements, especially on the entropy that
these distributions offer. The evaluation of the entropy for
single channels is straightforward: we use the empirical
distribution to calculate H(Ci) for each of the n channels
individually, using the relative frequencies as the estimates
of codeword probabilities. For example, this analysis shows
that there are 3.5 secret bits available from each channel for
a tolerance value of t = 1; a value of t = 0.5 results in an
increase to 4.38 bit.

The joint entropy under the assumption of independent
channels is the sum of the channels’ entropy values. How-
ever, the independence cannot be assumed as the chan-
nels are within the coherence bandwidth, and using the
conventional approach to estimate the Shannon entropy
of dependent channels using sampling is not effective, as
this becomes prohibitive in spaces with larger dimensions.
For example, to show a joint secrecy of 45 bit, at least
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IMMGIIGIOOIIIKOUOQQQWQSaUa9ACAKIIKMOMMOGGEAACKEEAAACAEOIEC

KQMOQUSOOOUUUSMIACCAACIMCAAMIGIIECEIMOOSMGGMEEGIMMIIOMGEGO

MSaKEEEECCCEMOMOOEEAAACAEOIECMMIIGEGKIKQSKIKKEAAOIEACECAKG

AACESMECCEECCCCAEGEACEICACIIIIQSOMMIIOQOaQGCAAAEIIEEIOMMaS

MOOMIKECEKGCEMKEAOOOUaQSOMMQUSQMOCGKSECAACGQOIKEEIEGECGGGG

GOMIEMKCCECAMEEIEGECGGGIIMKIMIEECGMSMMMOIGGGOOOGGIKKOOMOOO

955;;IQMCCEIMIMOSQIOI???CGKOSKIIGECEIKMMOQMMIECEGECCESUaWU

WWWWUaWSSSS??A????CIQMMMMIEOSSOOMOIIMKMMIIOCCAACEIECEEIMGE

QOOOUSOMKMMQKECGOMIIKMS[WQQOGE??ACGGEAAAAA??==AA?ACEEAACCC

ECOOOGKGEEGGGKMOUUKGGKGIMMIKOMMOMMQQOOQOOOUSOMKMMQGGKGEIMM

Fig. 5: A part of the T-string used for estimating the
Shannon entropy of codewords generated by our key-
generation protocol. This approach is based on encoding the
codewords as ASCII strings and analyzing their minimal
representation.

245 samples must be collected. Additionally, the unknown
dependency structure of the generated secret strings makes
such quantification harder. The reason is that the Shan-
non entropy operates on the knowledge of the underlying
joint distribution, which is unknown in our case. While
in the next section we derive a stochastic model for such
analysis, we are still interested in finding out how much
uncertainty is present in the experimental data without any
assumptions on the underlying codeword distribution, i.e.,
without requiring any a priori knowledge. The idea we
follow is based on construction complexity described by
the notion of T-complexity [25]. T-complexity quantifies the
difficulty to decompose input strings into codewords of T-
codes, i.e., the complexity when trying to find the minimal
representation of the input string. Speidel et al. [23] show
in their work that T-complexity is the fastest to converge
to the true value of the Shannon entropy, and provide an
algorithm that enables fast computations of entropy values.
The tool tcalc [32], developed by the same group, was
used to evaluate our results. As this tool operates on byte
strings, we had to convert the lists of quantized values
to arrays consisting of different ASCII characters as input.
These characters were concatenated to form a large string
that can be used as input to tcalc. A part of the T-string
used is given in Fig. 5.

As a result, using this method we were able to capture the
dependencies between channels in the empirical data with-
out explicitly knowing them. The results from this analysis
are discussed in the next subsection and in Section 6.1 we
use them for the validation of the derived stochastic model.

5.3.1 Results from Experimental Analysis
A comparison of results showing the available entropy
from the experimental data is shown in Fig. 6. With a
tolerance value of t = 1, the entropy under independence
assumption is 56 bit for both LOS and non-LOS connections.
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Fig. 6: Results for the implementation on MICAz sensor
motes. The amount of secrecy under different dependency
assumptions is shown, with the corresponding success
probabilities of key agreement.

When considering the dependencies in the measurements,
31 bit of entropy can be achieved with the limited number
of channels and precision that the wireless sensor mote
hardware offers. Lower tolerance values can be used to
increase secrecy. For example, a tolerance value of 0.4,
which results in a 56 % chance of successful key agreement,
offers 45–50 secret bits under dependent channels.

The entropy of generated shared secrets in this settings
can be compared with conventional password-based se-
curity schemes and applied to the protocols such as, for
example, commitment-based authentication protocols using
short authenticated (e.g., [26], [19], [13], [10]). Similarly,
protocols such as the Encrypted Key-Exchange (EKE) apply
short shared secrets for confidential exchange of public
key material (e.g., [3], [24]). The shared secrets in such
applications are usually created by the user and contain
approximately 18 bit entropy due to dependency between
characters (for a comprehensive overview of password
entropy, see [21]). Since these protocols protocols play an
important role in wireless networks as a part of device-
pairing schemes, generating secrets from the wireless chan-
nel can be seen as their valuable extension and alternative
to an user-required input of secrets.

6 INCREASING THE LENGTH OF A SECRET

The experimental analysis shows that the dependencies
between channels have considerable influence on the se-
crecy of the proposed protocol. In contrast to previous
section, we now develop a stochastic model that makes
these dependencies explicit and enables us to analyze and
predict ways to increase the achievable secrecy. Especially,
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we want to answer questions such as: what is the impact of
increasing the number of available channels, and increasing
the spacing between center frequencies. To derive a realistic
model of dependent wireless channels, we start with fitting
and validating the distribution of single channel measure-
ments and then extending it to a multivariate case, which
captures the dependencies between wireless channels. The
model is validated by comparing the resulting entropy
values with our empirical results.

6.1 Modeling Channel Dependency

Frequently used distributions for large-scale models of
wireless channels are Rayleigh, Ricean, or Log-Normal [20]
depending on the properties of the respective propagation
environment. Also, in scenarios common to WLANs and
WSNs, where distances between transceivers are short,
the empirical data can be approximated by the Normal
distribution [22], [12], [5]. To find an adequate distribution,
we collected 4000 RSS sample means for each of the LOS
and non-LOS scenarios, where every RSS mean was cal-
culated over 16 measurements, estimating the distribution
parameters using Maximum Likelihood Estimation (MLE).
The resulting fit of the Rayleigh and Normal distributions
to the empirical data is shown in Fig. 7a. Additionally,
we tested the normality of the sampled data using the
probability plot correlation coefficient test for normality
(PPCC), which is based on checking for linearity between
the theoretical quantiles and the sample data [8]. In fact, the
goodness of fit test confirms that the Normal distribution
(correlation coefficient = 0.992) can be assumed with an
even higher confidence than the corresponding Rayleigh
distribution (correlation coefficient = 0.967). In this case, the
multivariate Normal distribution can be used to describe
the complex dependency structures of wireless channels by
directly estimating the covariance matrix from the empirical
data.

Hence, to analyze the dependencies of the joint distribu-
tion over all 16 wireless channels, especially with respect to
the joint entropy, we model the signal strength values of dif-
ferent channels using a single 16-dimensional multivariate
Normal distribution. The distribution parameter estimation
is straightforward: the vector of mean values µ, which is in
case of the Normal distribution already the MLE for the
population mean, and for the covariance matrix Σ we used
the MLE method:

Σ̂ =
1

k − 1

k
∑

j=1

(

m
(j) − µ

)(

m
(j) − µ

)T

.

Finally, we validated the multivariate channel depen-
dency model against our empirical data by using the same
error correction mechanism (described in Section 4) to
generate secret strings and to compare the Shannon entropy
of the empirical data with the results of the model. The
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Fig. 8: Comparison of discrete entropy values based on RSS
values generated using the stochastic model.

results of this evaluation are given in Fig. 8, which shows
the resulting entropy values for the non-LOS data apply-
ing the same analysis methods used in the experimental
analysis. The LOS experiment is omitted as the behavior
is similar. The model captures the dependency structure
well, resulting in a similar progression of the curve for the
existing tolerance values, although the entropy is slightly
overestimated by the model.

Using this model, we can estimate the amount of en-
tropy if additional resources are available, such as a higher
number of channels or a larger spacing between channels.
We only need to consider the properties of the covariance
matrix Σ with respect to entropy. The differential entropy
(in natural units) of the multivariate Normal distribution is
given by

HmvN =
1

2
ln ((2πe)

n
detΣ) , (1)

depending on the number of channels n and the determi-
nant of Σ. The first-order effect of increasing the number
of channels is easy to quantify, the differential entropy is
increased by 2.05bit for each additional channel. However,
the relationship is not obvious with respect to the determi-
nant. In the case of independence, only the main diagonal
of the covariance matrix is populated, but in the general
case the complete matrix has an influence that is hard to
quantify.

6.2 More Channels or Larger Frequency Spacing

First, we consider the effects of the determinant on the
security given a larger number of channels. To this end, we
extrapolate the covariance matrix and evaluate the effect on
the determinant.
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Fig. 7: Test for different distributions of the empirical data.

Two different prediction methods are used, one that
extrapolates Σ directly and another that also simulates the
effect of larger spacing between center frequencies and then
extrapolates the matrix.

We used (i×i) sub-matrices with i = 1, . . . , 15 of the
matrix Σ to predict the 16×16 matrix Σ. Only the val-
ues contained in the sub-matrix are used, in the follow-
ing manner: each diagonal is treated independently, as it
represents a different lag in the covariances. The missing
elements of the matrix are chosen uniformly from a range
between minimum and maximum values on the respective
diagonal. The results of this 16×16 prediction for the non-
LOS experiment are shown in Fig. 9. A sample of 100
extrapolated covariance matrices was used to predict the
known amount of differential entropy for 16 channels, the
used confidence level in the graph is 95 %. The horizontal
line represents a differential entropy using the correct Σ

from the experiments. The predicted entropy values using
different sub-matrix sizes are shown, obtained from mean
values of different uniform extrapolations. Even with small
2×2 prediction matrices, it is possible to estimate the en-
tropy accurately. The evaluation for the LOS experiment is
not shown, but gave similar results. Thus, we can use the
estimation of Σ to predict the secrecy from a larger number
of channels.

The second matrix extrapolation method was used to
evaluate the effects of a larger spacing between the chan-
nels. Only every second (third, n-th) diagonal was used and
the remaining ones were removed for this analysis. This
simulates a channel spacing of 10 MHz (15 MHz, 5nMHz).
This smaller matrix is then extrapolated in the same fashion
as described before. The quality of prediction is comparable
to the previous results.

Fig. 10 shows the increases of entropy we can observe
from our model. The figure shows the results of the non-
LOS experiment only, but the LOS experiment gave similar
results. The results are given in differential entropy, which
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Fig. 9: Prediction of the differential entropy using only a
subset of available channels. Even with a small number of
channels, an accurate prediction is possible.

does not take the tolerances into account. The lowest line
describes the increase in joint differential entropy if we use
the same determinant we obtained from 16 channels. This
results in an increase of 2.05 bit for each channel, but it
is also a very conservative prediction, it overestimates the
dependencies between channels with center frequencies far
apart from each other. Using extrapolation based on the
16×16 matrix and calculating the entropy using Eq. (1) and
the new Σ, we see an increase of 4.02 bit for each additional
channel. The slashed line shows an additional gain if the
channels are spaced 10 MHz apart, instead of the 5 MHz
spacing in our experiments, yielding a 4.25 bit increase.
Our model shows that there are several ways to increase
the secrecy of the proposed protocol. With measurements
of higher precision it is possible to generate more bits on
each channel, but as this increases the hardware costs, it is
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advisable to rather use a larger number of channels.
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Fig. 10: Extrapolation of covariance matrix Σ for a larger
number of channels to evaluate of the model with respect
to secrecy gains.

7 CONCLUSION

Secret key generation and distribution poses one of the
main security challenges in wireless networks, especially
in computation-limited WSNs. In conventional security
schemes, the wireless channel is usually considered as a
part of an adversarial toolbox which additionally helps to
launch different attacks by abusing its broadcast nature. Yet,
in recent years a number of papers following an alternative
approach to wireless security have demonstrated that the
unpredictable and erratic nature of wireless communication
can be used to enhance and augment conventional security
designs. Taking advantage of physical properties of signal
propagation, mutual secrets between wireless transmitters
can be derived. While this approach for securing wireless
networks has been recently addressed in [15], [2], both
contributions require movement as the main generator of
secret material. Although valuable to mobile networks,
such solutions are not applicable to the majority of WSN
applications which are based on static sensor motes.

The main focus of this work was to overcome this limi-
tation. We started by introducing a system model based on
real-world measurements using IEEE 802.15.4 technology,
and describing building blocks of a novel key generation
protocol. To demonstrate its applicability, the protocol was
implemented and evaluated using MICAz sensor motes.
Experiments show that the protocol is able to successfully
generate keys in over 95 % of the cases, irrespective of
environmental properties. By using only a very limited
number of wireless channels, the proposed protocol can

already provide secrets up to 50 bit, depending on the
wireless channel behavior. A stochastic model derived in
this work validated our experimental data and provided
guidelines on how to increase the length of the secret
keys based on either increasing the number of wireless
channels or increasing the channel spacing. For example, if
the number of channels of the present IEEE 802.15.4 is set
to 40, this protocol can generate up to 160 bit secret keys in
static scenarios.

The possibility to increase the length of a secret by using
additional wireless channels or larger frequency spacing
is an interesting alternative to computational-based ap-
proaches not only from the security perspective but also
from the network throughput perspective. For example,
cognitive radio is focused on increasing the utilization
of limited radio resources by dynamically adjusting the
transmission to interference-free frequencies. The key gen-
eration protocol introduced in this work can inherently take
advantage of such technologies.

Finally, this approach to key generation is intended to
extend and support conventional security designs as it only
needs a limited number of messages exchanges to generate
shared secrets even on the currently available, off-the-shelf
WSN devices.
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