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Joint User Grouping and Linear Virtual
Beamforming: Complexity, Algorithms and
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Abstract—In a wireless system with a large number of dis-
tributed nodes, the quality of communication can be greatly
improved by pooling the nodes to perform joint transmis-
sion/reception. In this paper, we consider the problem of op-
timally selecting a subset of nodes from potentially a large
number of candidates to form a virtual multi-antenna system,
while at the same time designing their joint linear transmission
strategies. We focus on two specific application scenarios:1)
multiple single antenna transmitters cooperatively transmit to
a receiver; 2) a single transmitter transmits to a receiver with
the help of a number of cooperative relays. We formulate the
joint node selection and beamforming problems ascardinality
constrained optimization problemswith both discrete variables
(used for selecting cooperative nodes) and continuous variables
(used for designing beamformers). For each application scenario,
we first characterize the computational complexity of the joint
optimization problem, and then propose novel semi-definiterelax-
ation (SDR) techniques to obtain approximate solutions. Weshow
that the new SDR algorithms have a guaranteed approximation
performance in terms of the gap to global optimality, regard-
less of channel realizations. The effectiveness of the proposed
algorithms is demonstrated via numerical experiments.

Index Terms—Virtual Multi-antenna Systems, Beamforming,
User Grouping, Cardinality Constrained Quadratic Program,
Semi-definite Relaxation, Approximation Bounds, Computational
Complexity

I. I NTRODUCTION

With the proliferation of rich multimedia services as well
as smart mobile devices, the demand for wireless data has
been increasing explosively in recent years. To accommodate
the growing demand for wireless data, practical techniques
that can significantly improve the spectrum efficiency of
existing wireless systems must be developed. In this paper,
we focus on a combination of two such techniques: partial
node cooperation and collaborative beamforming.

In a cellular network, cooperation can be achieved by allow-
ing the neighboring base stations (BSs) to form a virtual multi-
antenna system for joint transmission and reception, a scheme
known as cooperative multipoint (CoMP) [1]. It can effectively
cancel the inter-BS interference, and has been included into the
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next-generation wireless standards such as 3GPP Long Term
Evolution-Advanced (LTE-A); see e.g., [1]–[3]. For example,
in a downlink network, assuming the users’ data signals are
known at all BSs, then either the capacity achieving non-linear
dirty-paper coding (DPC) (see, e.g., [4], [5]), or simpler linear
precoding schemes such as zero-forcing (ZF) (see, e.g., [6]–
[8]) can be used for joint transmission. In addition, various
cooperation schemes have been proposed to exploit spatial
diversity among the mobile users as well [9]–[14]. In these
schemes, users assist each other in relaying information to
the desired destinations by using various strategies such as
amplify-and-forward (AF) and decode-and-forward (DF).

However, the cost of cooperation can outweigh its benefit
when the size of the cooperation group grows large. Such
costs include the overhead incurred by exchanging control
and data signals among the cooperating nodes (either via
backhaul networks or air interfaces); it can also include efforts
required to maintain system level synchronization [2], [3],
[15], [16]. To control the size of cooperation group, various
partial cooperation schemes have been developed recently. In
the setting of a cellular network, partial cooperation among
the BSs amounts to judiciously clustering the BSs into (pos-
sibly overlapping) small cooperation groups, within which
they cooperatively transmit to or receive from the users [7],
[17], [18]. In [19]–[21], joint BS clustering and beamforming
problems are formulated as certainsparsebeamformer design
problems, in which the sparsity of the virtual beamformer
corresponds to the size of the cooperation groups. Partial
cooperation in the relay networks has also been studied
recently. In [14], [22], the authors propose to select asingle
relay (out of many candidates) so that certain performance
metric at the receiver is optimized. Alternatively, references
[14], [23]–[25] study themultiple relay selection problem.
In particular, the authors of [23] propose to increase the
number of relays until adding an additional one decreases the
received SNR. Reference [25] formulates the relay selection
problem as a Knapsack problem [26], and proposes greedy
algorithms for this problem. However, these schemes generally
assume simplified underlying cooperation schemes after fixing
the cooperative set. For example, references [7], [18] use
simple zero forcing strategies for intra-cluster transmission,
while references [23], [24] assume that the cooperative relays
transmit with full power. There has been no performance
analysis for these partial cooperation schemes. This is due
to the mixed-integernature of the problem when treating the
group membership (which is a set of discrete variables) as
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optimization variables.
In this paper, we study the problem of optimally partitioning

the transmit nodes into cooperation groups, while at the
same time designing their cooperation strategies. We focuson
two related network settings in which either multiple nodes
cooperatively transmit to a receiver, or a single node transmits
to the receiver with the help of a set of cooperative relays.
In both cases, the cooperative nodes are allowed to form a
virtual antenna system, and they can jointly design the virtual
transmit beamformers. More specifically, our objective is to
find a subset of cooperative nodes (with given cardinality) and
their joint linear beamformers so that the system performance
measured by the receive signal to noise ratio (SNR) is maxi-
mized. We formulate the problem as a cardinality constrained
quadratic program and study its computational complexity.
Furthermore, we develop novel semi-definite relaxation (SDR)
algorithms for this mixed integer quadratic program and prove
that they have a guaranteed approximation performance in
terms of the gap to global optimality, regardless of channel
realization. Compared to the existing SDR algorithms and
their analysis [27]–[30] which focus on quadratic problems
with continuous variables, our work deals with mixed-integer
cardinality constrained quadratic optimization problemsand
therefore has a significantly broader scope.

The rest of the paper is organized as follows. In Section
II, we introduce the virtual beamforming problem without
node grouping. Section III–Section V consider the joint node
grouping and virtual beamforming problems in various set-
tings. Section VI presents numerical results. The concluding
remarks and future works are given in Section VII.

Notations: For a symmetric matrixX, X � 0 signifies that
X is positive semi-definite. We use Tr[X], XH , and λi(X)
to denote the trace, Hermitian transpose, and thei-th largest
eigenvalue ofX, respectively. The notationdiag(X) denotes
a matrix consisting the diagonal value ofX. For an index set
S, the notationsX[i, j] andX[S] denote the(i, j)-th element
of X and the principal submatrix ofX indexed by the set
S, respectively. Similarly, we usex[i] andx[S] to denote the
i-th element of a vectorx and the subvector ofx with the
elements in setS, respectively. For a complex scalarx, the
notationx̄ denotes its complex conjugate . Letδi,j denote the
Kronecker function, which takes the value1 if i = j, and0
otherwise. The notationsIn, e andei denote, respectively, the
n × n identity matrix, the all one vector inRn, and thei-th
unit vector inRn. Some other notations are listed in Table I.

II. V IRTUAL BEAMFORMING WITH FULL COOPERATION

A. A Single-hop Network

Let us first describe the virtual beamforming (VB) problem
with all transmit nodes fully cooperating in transmission.
Suppose there is a setM = {1, · · · ,M} of transmitters
each equipped with a single antenna, and there is a single
receiver withN ≥ 1 receive antennas. This setting depicts for
instance an uplink cellular network, where the transmit nodes
are the users and the receive node is the BS. We are interested
in the caseM > N , where the receiver cannot cancel
the interference among the transmit nodes if they transmit

simultaneously and independently. In this case, the benefitof
transmit nodes cooperation in improving system performance
is more pronounced. Lethi,n ∈ C denote the channel between
transmitteri and then-th antenna of the receiver, and define
hn , [h1,n, · · · , hM,n]

H . Suppose only second order statistics
on the channels are available, that is, both the transmitters
and the receiver only knowE[hnh

H
n ] = Rn ≻ 0, for

n = 1, · · · , N . Let z ∼ CN (0, 1) denote the (normalized)
noise at the receiver.

For tractability, we restrict ourselves to a simple transmit
cooperation strategy in which the cooperative transmitters can
form a linear virtual beamformer for joint transmission. Let
wi ∈ C denote the complex antenna gain for transmitter
i, which satisfies an individual transmit power constraint:
|wi|2 ≤ P . Define w , [w1, · · · , wM ]H . When all the
transmitters participate simultaneously in the beamforming,
they transmitthe samedata signal to the receiver by using
distinctantenna gains. The transmit nodes can share their data
signals by the following steps:1) identify the node whose data
is to be transmitted;2) the identified node broadcasts its data
to all nearby nodes, who subsequently decode the data.

Assume that the receiver performs spatially matched fil-
tering/maximum ratio combining (which is equivalent to
the MMSE receiver in this case), then the total received
signal power can be expressed as:

∑N

n=1 |hH
n w|2 =

wH(
∑N

n=1 hnh
H
n )w. Let R ,

∑N

n=1 Rn, and assume that
the noise power is normalized to1, then the averaged signal
to noise ratio (SNR) at the receiver is given by:SNR =

E

[∑N

n=1 |wHhn|2
]

= wHRw. To optimize the averaged

SNR at the BS, one can solve the following quadratic program
(QP)

max
w

wHRw (1)

s.t. |wi|2 ≤ P, i = 1, · · · ,M.

At this point, it may appear that solving the above SNR
maximization problem with per-antenna power constraints can
be done easily, using for example algorithms based on uplink-
downlink duality proposed in [5]. Unfortunately, as will be
seen later in Section III-A, this seemingly simple problem
turns out to be computationally very difficult, forgeneral
channel covariance matrixR with rank larger than one. In
fact, the uplink-downlink duality theory developed in [5] and
related works depends critically on the assumption thatR is
of rank one. Later in Claim 1 we will see that indeed in our
case when Rank(R) = 1, solving problem (1) is easy.

It is worth mentioning that the formulation (1) is equally
applicable to solving the sum SNR maximization problem
when theinstantaneouschannel states{hn} are available. In
this case,R should be replaced by the instantaneous channel
R̂ ,

∑N

n=1 hnh
H
n .

B. A Two-hop Network

In the previous single hop model, it is assumed that the hop
connecting the source and the cooperative nodes isreliable, in
the sense that all the cooperative nodes can perfectly decode
the signals to be jointly transmitted. Alternatively, whenthe
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TABLE I
A L IST OF NOTATIONS

M The set of all transmit nodes N The number of antennas at the receiver
R The channel covariance matrix w The virtual beamformer
P The transmit power budget for each node Q The size of cooperative group
x The vector of both discrete and continuous variablesS The support of a beamformerw
w̃ The dimension-reduced beamformerw[S ] Y The rank-1 matrixw̃w̃H

X The rank-1 matrixxxH L The sample size for randomization
f The first hop channel g The second hop channel
P0 The transmit power for the transmitter ν The noise at the relay
S The Channel matrixP0E[(g⊙ f)(g ⊙ f)H ] F The channel matrixE[(g ⊙ ν)(g⊙ ν)H ]

Fig. 1. Illustration of joint node grouping and VB. Nodes1-3 and
4, 5 are divided into two different groups.

Fig. 2. Illustration of joint relay selection and VB. Relays1-3 are
the serving relays.

quality of the first hop communication also needs to be taken
into consideration, the problem can be formulated in the
context of the a two-hop relay network, as we explain below.

Consider a network with a pair of transceiver and a set of
M relays, each of which has a single antenna (see Fig. 2 for
an illustration). Assume that there is no direct link between the
transmitter and the receiver. Let{fi}Mi=1 and {gi}Mi=1 denote
the complex channel coefficients between the transmitter and
the relays, and between the relays and the receiver, respec-
tively. We focus on a popular AF relay protocol, in which the
transmitter broadcasts the desired signal to the relays, who
subsequently forward the signals to the receiver. Assume that
there is a large number of relays available, and any group of
them can form a virtual multi-antenna system for transmission.

Let us uses ∈ C to denote the message transmitted by
the transmitter; useP0 to denote the transmit power; useνi
to denote the noise at thei-th relay with powerσ2

ν . Then
the signalxi received at thei-th relay can be expressed as
xi =

√
P0fis+ νi. Again usewi to denote the complex gain

applied by thei-th relay, which satisfies the power constraint
|wi|2 ≤ P . It follows that the transmitted signal ofi-th relay
is given by yi = wixi. Using this expression, the averaged
transmit power of relayi can be expressed as

E[|yi|2] = |wi|2E[xix̄i] = |wi|2
(
P0E[|fi|2] + σ2

ν

)
.

Let n ∈ CN (0, σ2
n) denote the noise at the receiver, then the

received signal is given by

z =
M∑

i=1

giyi + n =
√
P0

M∑

i=1

wifigis

︸ ︷︷ ︸
signal

+
M∑

i=1

wigiνi + n

︸ ︷︷ ︸
noise

. (2)

The averaged signal power at the receiver is then given by

E

[∣∣√P0

M∑

i=1

wifigis
∣∣2
]
= wHSw (3)

whereS , P0E[(f⊙g)(f⊙g)H ], with ⊙ denoting the compo-
nentwise product. When{νi}Mi=1 and{gi}Mi=1 are independent
from each other, the averaged noise power is given by [11]

E

[
∣∣

M∑

i=1

wigiνi + n
∣∣2
]
= wHFw + σ2

n, (4)

whereF , E[(g⊙ν)(g⊙ν)H ]. Additionally, if we further as-
sume that the noises{νi}Mi=1 are independent, thenF becomes
diagonal:F , σ2

νdiag(E[gg
H ]). It follows that the averaged

SNR at the receiver is given by [11]:SNR = w
H
Sw

σ2
n+wHFw

.
To optimize the averaged SNR at the receiver, the following
problem needs to be solved

max
w

wHSw

σ2
n +wHFw

(5)

s.t. |wi|2
(
P0E[|fi|2] + σ2

ν

)
≤ P, i = 1, · · · ,M.

We remark that when the set of per-relay power constraints is
replaced by a single sum-power constraint, the above problem
is equivalent to a principal generalized eigenvector problem,
which is easily solvable [11]. However, as will be explainedin
more detail in Section V, when the per-relay power constraints
are present, (5) turns out to be computationally difficult.

In practice, when the number of transmit/relay nodes be-
comes large, allowing all of them to cooperate at the same time
induces heavy signaling overhead (related to nodes’ exchange
of data and control signals) and computational efforts (related
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to computing the optimal virtual beamformer for all the nodes)
[15]. To address these issues, it is necessary to divide the
transmit/relay nodes into different cooperative groups while at
the same time optimizing their virtual beamformers. How to
do so in either single-hop or two-hop networks will be the
focus of the rest of this paper.

III. JOINT ADMISSION CONTROL AND VB

In this section, we consider a basic setting in which the
aim is to find asingle cooperative group with a fixed size.
Such admission control problem is important as fixing the
size of the group can effectively control the cooperation
and computational overhead. Although admission control for
wireless networks is a well-studied subject (see [31]–[33]),
existing solutions cannot be directly applied in our setting
because they are designed for conventional wireless networks
without node cooperation.

A. Problem Formulation and Complexity Status

Let Q denote the desired size of the cooperation group,
and introduce the set of binary variablesai ∈ {0, 1}, i ∈ M
to indicate the transmit nodes’ group membership: when
ai = 1, node i is being assigned to the cooperation group.
Let a , [a1, · · · , aM ]. Then the joint admission control and
VB problem is given as the following cardinality constrained
program

vCP
1 = max

w,a
wHRw (CP1)

s.t. |wi|2 ≤ aiP, i = 1, · · · ,M
M∑

i=1

ai = Q, ai ∈ {0, 1}, i = 1, · · · ,M.

Note thatai = 0 implies |wi|2 = 0, that is, nodei does not
transmit. In the following, we will usevCP

1 (w) to indicate the
objective value achieved by a feasible solutionw.

In order to express the problem in a simpler form, we
introduce a homogenizing variableγ ∈ {−1, 1} and change
the domain of the discrete variables to{−1, 1}. By doing
so problem (CP1) can be equivalently reformulated in the
following quadratic form:

max
w,a,γ

wHRw

s.t. wHeie
T
i w +

P

4
(ai − γ)2 ≤ P, i = 1, · · · ,M

M∑

i=1

(ai + γ)2 = 4Q,

ai ∈ {−1, 1}, i = 1, · · · ,M, γ ∈ {−1, 1}.
To see the equivalence, we first perform a change of variable
domain by defining:̂ai = 2ai − 1, for all i, whereai is the
original variable with the domain{0, 1}. Then we split each
âi by âi = γãi for a new variablẽai ∈ {−1, 1}. By doing so
the constraints can be shown to be quadratic in bothã andγ.
For notational simplicity, below we still useai to denote the
new variablẽai ∈ {−1, 1}.

After such transformation, we see thatγai = −1 implies
wi = 0, i.e., nodei does not join the cooperative group.

To further express the problem in a standard quadratic form
of both the binary and continuous variables, we need the
following definitions

Ci,0 ,
1

4

(
eie

T
i + eM+1e

T
M+1 − eie

T
M+1 − eM+1e

T
i

)
∈ R

(M+1)×(M+1),

(6a)

Ci,1 , eie
T
i

1

P
∈ R

M×M (6b)

Di , blkdg[Ci,0,Ci,1] ∈ C
(2M+1)×(2M+1) (6c)

R̃ , blkdg[0,R] ∈ C
(2M+1)×(2M+1) (6d)

B0 ,

[
I e

eT M

]
∈ R

(M+1)×(M+1), (6e)

B = blkdg[B0, 0] ∈ R
(2M+1)×(2M+1) (6f)

x , [aT , γ,wT ]T x0 , [aT , γ]T ,x1 , w. (6g)

We can now compactly write (CP1) as a quadratic problem of
the newly defined vectorx, which contains both binary and
continuous variables:

max
x

xHR̃x (R1)

s.t. xHDix ≤ 1, i = 1 · · · ,M (7a)

xHBx = 4Q, (7b)

x[i] ∈ {−1, 1}, i = 1, · · · ,M + 1.

We emphasize again that in this new notation,x[i]x[M+1] =
−1 implies that nodei is not in the cooperative group (i.e.,
w[i] = 0), or equivalentlyx[M + 1 + i] = 0 from definition
(6g).

Towards finding a solution for problem (CP1)/(R1), the
first task is to analyze their computational complexity. Our
analysis, to be presented shortly, shows that these problems
are difficult even when fixing the values of the binary variables
{ai}.

Let S ⊂ M with |S| = Q denote thesupportof a feasible
solutionw to problem (CP1):S = {i : ai = 1}. WhenS is
fixed, problem (CP1) is equivalent to the following QP

max
w̃∈CQ

w̃HR[S]w̃ (QP1)

s.t. |w̃i|2 ≤ P, i = 1, · · · , Q.

In the following we analyze the computational complexity of
(QP1).

Proposition 1 Solving the problem(QP1) is NP-hard in the
number of transmit nodes.

Proof: We only prove the claim with real variables.
The complex case can be derived similarly. The claim is
proved by a polynomial time reduction from a known NP-
complete problem called equal partition problem [26], which
can be described as follows. Given a vectorc consisting
of positive integersc1, · · · , cQ, the equal partition problem
decides whether there exists a subsetI such that

1

2

Q∑

i=1

ci =
∑

i∈I

ci. (8)

In the following, we will show that a special case of problem
(QP1) is equivalent to an instance of equal partition problem.
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SupposecT c = C > 0. Let R[S] = (−ccT + 2CIQ) ≻ 0.
The claim is that the problem (QP1) has the maximum value
of 2CQP if and only if there exists a setI satisfying (8). The
objective of problem (QP1) can be written as

w̃TR[S]w̃ = −|w̃T c|2 + 2C

Q∑

i=1

|w̃i|2

≤ 2C

Q∑

i=1

|w̃i|2 ≤ 2CQP, whenever |w̃i|2 ≤ P.

(9)

Consequently, the maximum value for problem (QP1) is2CQP
if and only if −|w̃T c|2 = 0 and |w̃i|2 = P. This is equivalent
to the existence of an index setI such that (8) is true.
It is important to note that whenS = M, (QP1) is the same as
the VB problem (1). Therefore we can readily conclude that
solving problem (1) is also NP-hard.

Claim 1 When R admits certain special structures, both
(QP1) and (CP1) may be easy to solve. One such example
is that whenRank(R) = 1, which corresponds to the special
case where the receiver has a single antenna, and the in-
stantaneous SNR is considered. Another relevant case is that
whenR is a diagonal matrix, which happens when all the
transmit nodes’ channels are independent and zero mean. For
both cases, problems(QP1) and (CP1) are separable among
the variables, and their solutions can be easily obtained in
closed form.

B. The Semi-definite Relaxation

Our proposed algorithm is based on the technique called
semi-definite relaxation (SDR), which has been widely used
to solve problems in communications and signal processing
[27]. We emphasize that unlike conventional SDR methods, in
which the problems to be relaxed have either all continuous
(e.g., [28]) or all discrete (e.g., [34]) variables, our problem
(CP1)/(R1) is of mixed integernature. Consequently our
algorithm and analysis to be presented differ significantlyfrom
those developed in the existing literature.

We first introduce two semi-definite programs (SDPs) which
are relaxations of problems (R1) and (QP1). Define a variable
X , xxH . Define two index setsI , {1, · · · ,M + 1} and
Ī , {M+2, · · · , 2M+1}. ThenX0 , X[I] andX1 , X[Ī]
denote the leading and trailing principal submatrices ofX,
respectively. ClearlyX0 = x0x

T
0 andX1 = x1x

H
1 . Moreover,

we have Rank(X) = 1 andX0[i, j] ∈ {−1, 1} for all i, j ∈ I.
The following SDP is a relaxation of (R1), by removing
the non-convex constraint Rank(X) = 1 and by replacing
X0[i, j] ∈ {−1, 1} by X0[i, j] ∈ [−1, 1], for all i, j ∈ I:

vSDP
1 = max

X�0
Tr[R̃X] (SDP1)

s.t. Tr[DiX] ≤ 1, i = 1 · · · ,M (10a)

Tr[BX] = 4Q (10b)

X[i, i] = 1, i = 1, · · · ,M + 1. (10c)

Note that we did not explicitly include the conditions
X0[i, j] ∈ [−1, 1], for all i, j ∈ I, as it can be ensured by
the set of conditions (10c) andX � 0. As the above problem
is a relaxationof problem (R1), we must havevSDP

1 ≥ vCP
1 .

Denote the optimal solution for this problem asX∗. Since all
the data matricesB, Di and R̃ are block diagonal matrices,
removing the off-diagonal blocks of an optimal solution does
not change either its optimality or feasibility. Thus, without
loss of generality we can assumeX∗ = blkdg[X∗

0,X
∗
1].

Similarly, let Y , w̃w̃H ∈ CQ×Q. The following problem
is a relaxation of the problem (QP1), for a given index set
S ⊆ M with |S| = Q

max
Y�0

Tr[R[S]Y] (11a)

s.t. Y[i, i] ≤ P, i = 1, · · · , Q. (11b)

Let us denote the optimal solution of this problem byY∗.
Fig. 3 below shows the relationship among different prob-

lem formulations introduced so far. For problems (SDP1) and
(11a), the following claims summarize some useful properties
of their optimal solutions. These properties will be used later
for analyzing the quality of certain approximate solutionsfor
the original problem (CP1)/(R1).

Fig. 3. Relationship among different problem formulations.

Claim 2 At optimality, the set of constraints(10a)and (11b)
must be all tight. That is

1

P
X∗

1[i, i] =
1

2
+

1

2
X∗

0[i,M + 1], ∀ i = 1, · · · ,M, (12)

Y∗[i, i] = P, ∀ i = 1, · · · , Q. (13)

Claim 3 The sum of the last column ofX∗
0 admits a closed

form expression:
∑M

i=1 X
∗
0[i,M + 1] = 2Q−M.

Claim 2 can be shown straightforwardly using a contradic-
tion argument. Claim 3 can be derived using the cardinality
constraint (10b). Due to space limitations, we refer the readers
to [35] for a formal proof.

C. The Proposed Algorithm

In this section, we propose a randomized algorithm that
generates an approximate solution for problem (CP1). To
highlight ideas, we list below the main steps of the algorithm:



6

1) Compute the optimal solutionX∗ of the relaxed problem
(SDP1);

2) Determine the discrete variablesx0 and the setS
according toX∗

0;
3) Fixing S, compute the optimal solutionY∗ of problem

(11a);
4) Randomly generate a sample of feasiblew’s usingY∗;
5) Select the solution that achieves the best objective value

for problem (CP1).
Intuitively, steps 1)–2) select the set of cooperative nodes,

while the rest of the steps determine the virtual beamformer
among the selected nodes. To formally describe the proposed
algorithm, the following definitions are needed. LetS ⊆ M
be an index set, and letY∗ denote the corresponding solution
for problem (11a). Let us factorizeY∗ asY∗ = ∆H∆. Then
define

Ei , ∆Ci,1[S]∆H , E , ∆R[S]∆H .

Let us further decomposeE asE = UΣUH . Then the diagonal
matrix Σ can be expressed as

Σ = UHEU = UH∆R[S]∆HU. (14)

Let L denote the sample size of the randomization, and let the
superscript(l) denote the index of a random sample. Letx(Q)

andr(Q) respectively denote theQ-th largest value in the sets
{X∗

0[i,M + 1]}Mi=1 and{R[i, i]}Mi=1. The proposed algorithm
is described in Table II.

TABLE II
THE PROPOSEDALGORITHM FOR ADMISSIONCONTROL

S1: Compute the solutionX∗ of problem (SDP1)
S2: Find a setT of indices such that|T | = Q and

T = {j : X∗
0[j,M + 1] ≥ x(Q)};

S2a:If Tr [R[T ]X∗
1[T ]] ≥ QP

M
Tr[R], let S = T ;

S2b:Else Let S = {j : R[j, j] ≥ r(Q)};
Let S̄ = M\ S ;

S3: Setx0[M + 1] = 1 andx0[j] = 1, for all j ∈ S ;
Setx0[i] = −1 for all i ∈ S̄;

S4: Compute the solutionY∗ of problem (11a) with index setS ;
For ℓ = 1, · · · , L

S5: Generateξ(ℓ) ∈ {−1, 1}Q by randomly and independently
generating its components from{−1, 1};

S6: Computet(ℓ) =
√

maxi∈S(ξ
(ℓ))TUHEiUξ(ℓ);

S7: Computew̃(ℓ) = 1

t(ℓ)
∆HUξ(ℓ);

Let w(ℓ)[S ] = w̃(ℓ) andw(ℓ)[S̄] = 0;
End For
S8: Computeℓ∗ = argℓ max(w(ℓ))HRw(ℓ); let w∗ = w(ℓ∗);

This algorithm can be viewed as a generalization of the
algorithm developed by Nemirovski et al. and Zhang et al.
[29], [30] for approximating continuous quadratic programs.
The novelty of this algorithm lies in steps S2)–S3), in which
discrete variables are determined. Below we motivate Step S2).
Without rank relaxation,X0 = x0x

H
0 is the block variable

representing the discrete variables, so it is reasonable toselect
cooperative groups using the elements of this matrix. Recall
that in problem (R1), a nodei joins the cooperative group
if x0[i]x0[M + 1] = 1, which, combined with the definition
X0 = x0x

T
0 , implies thatX0[i,M+1] = 1. Ideally, we should

form the cooperative group by choosingQ elements in the
set S̃ = {i : X∗

0[i,M + 1] = 1, i ∈ M}. However it is
possible that|S̃| < Q, as we have relaxedX0[i, j] ∈ {−1, 1}
to X0[i, j] ∈ [−1, 1]. As a result, we instead choose the largest
Q elements in the set{X∗

0[i,M + 1]}Mi=1. Using Claim 3,
it is seen that there is a lower bound on the sum of such
Q elements:

∑
j∈T X∗

0[j,M + 1] ≥ (2Q−M)Q
M

. This bound
will be instrumental in the following performance analysis.
Additionally, steps S2a)–S2b) are some technical refinement
of the selection procedure that are needed later for the proof
of the approximation bounds.

The reason for using steps S4)–S8) to generate the solution
w∗ is twofold: 1) the optimal objective valuevCP

1 (w∗) can
be written down analytically;2) w∗ is always feasible. See
the following two claims for more details regarding these two
properties. Formal arguments for these claims are relegated to
Appendix A.

Claim 4 The objective value of the problem(CP1)evaluated
at a solutionw(ℓ) is given by

vCP
1 (w(ℓ)) =

1

(t(ℓ))2
Tr[R[S]Y∗]. (15)

This result implies thatvCP
1 (w∗) = 1

minℓ(t(ℓ))2
Tr[R[S]Y∗].

Claim 5 For all l = 1, · · · , L, the solution x(ℓ) ,

[xH
0 , (w(ℓ))H ]H is a feasible solution for the problem(R1).

Moreover,w(ℓ) is a feasible solution to(CP1).

D. The Analysis of the Quality of the Solution

Clearly the solutionw∗ generated by the proposed algorithm
is only a feasible solution for (CP1). A natural question then
is: how good this solution is in terms of the achieved receive
SNR. In the following, we will show that the quality ofw∗

can be indeed guaranteed. That is, compared with the globally
optimal objectivevCP

1 , there is afinite constantα1 > 1 such
that:vCP

1 (w∗) ≥ 1
α1

vCP
1 . The constantα1 is referred to as the

approximation ratioof the solutionw∗. The smaller the value
of α1, the better the quality of the solutionw∗. The following
result provides a finite data independent bound forα1. The
proof is relegated to Appendix B.

Theorem 1 If w∗ is generated using the algorithm in Table
II, then with high probability, we havevCP

1 (w∗) ≥ 1
α1

vCP
1 ,

with α1 bounded above by

α1 ≤ 8Mλ1(R)
∑M

i=1 λi(R)
ln(5Q) < 8M ln(5Q). (16)

It is interesting to see that for any channel realization,α1

is finite. Moreover, when the eigenvalues ofR are roughly
uniformly distributed, the derived bound is of the order
O(ln(Q)), which is better than the case whereR has a
single dominant eigenvalue. Nevertheless, it is importantto
note that the theoretical approximation ratio obtained above
characterizes the quality of theworst solutions. It implies
that, compared to the global optimal solution or the cardinality
constrained problem (CP1)/(R1), the solution generated bythe
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SDR approach cannot bearbitrarily bad regardless problem
instance. As we will see later in our numerical results, the
practical performance of the algorithm is much better than the
derived worst-case bound (16).

IV. JOINT TRANSMIT NODE SCHEDULING AND VB

The previous section considers the case where a subset of
nodes are selected for transmission. Such a scheme may not
be fair to all the nodes, as the ones that are being excluded
from the cooperative set do not get served. In this section we
study a generalized formulation that provides fairness among
the transmit nodes.

A. Problem Formulation and Complexity Status

Suppose there aretwo orthogonal time slots available for
transmission. The problem is to effectively scheduleQ trans-
mit nodes to the first slot and the restM − Q nodes to the
second one, in a way that theminimumSNR among these two
time slots is maximized. In this case, effectively there aretwo
virtual transmitters in the network, and the scheduling scheme
promotes fairness among the virtual transmitters.

Let wk ∈ CM denote the virtual beamformer used in the
k-th time slot, and letwk,i ∈ C denote nodei’s antenna gain
in slot k. Suppose that in both time slots the channel matrices
R remains the same. Mathematically, the problem is given by

vCP
2 = max

{w1,w2,α}
min
k=1,2

wH
k Rwk (CP2)

s.t. |w1,i|2 ≤ aiP, |w2,i|2 ≤ (1− ai)P, i = 1, · · · ,M
M∑

i=1

ai = Q, ai ∈ {0, 1}, i = 1, · · · ,M.

In the following, we will usevCP
2 (w1,w2) to denote the

objective achieved by a feasible tuple(w1,w2). Note that it
is possible to extend (CP2) to the multiple time slot case by
using more discrete variables (M discrete variables per slot).
However, the resulting analysis will become quite involved. In
the remainder of this paper, we will consider the 2-slot case
only.

Similar to the case of (R1), let us introduce a homogenizing
variableℓ ∈ {−1, 1}. Let us defineB0, Ci,0 andCi,1 the same
way as in (6b)–(6g). Let us further define

C̃i,0 ,
1

4

(
eie

T
i + eM+1e

T
M+1 + eie

T
M+1 + eM+1e

T
i

)
∈ R

(M+1)×(M+1)

Ai,1 , blkdg[Ci,0,Ci,1, 0] ∈ C
(3M+1)×(3M+1),

Ai,2 , blkdg[C̃i,0,0,Ci,1] ∈ C
(3M+1)×(3M+1)

B̃ , blkdg[B0,0,0] ∈ R
(3M+1)×(3M+1)

x , [aT , ℓ,wT
1 ,w

T
2 ]

T , x0 , [aT , ℓ], x1 , w1, x2 , w2.

Then problem (CP2) can be equivalently written as

max
x

min
k=1,2

xH
k Rxk (R2)

s.t. xHAi,1x ≤ 1, i = 1 · · · ,M
xHAi,2x ≤ 1, i = 1 · · · ,M
xHB̃x = 4Q, x[i] ∈ {−1, 1}, i = 1, · · · ,M + 1.

The max-min scheduling problem is at least as difficult as
its admission control counterpart, as when fixing the group
membership, the subproblem of maximizing the per-group
SNR is the same as (QP1). To see this, we again fix an index
setS1 ⊂ M with |S1| = Q, and letS2 = M\ S1. Then the
problem (CP2) reduces to two QPs, one for each slotk:

max
w̃1∈C|Sk|

w̃H
k R[Sk]w̃k (17)

s.t. |w̃k[i]|2 ≤ P, i = 1, · · · , |Sk|
One may observe that each of these problems has the

same structure as problem (QP1). It follows from Proposition
1 that solving either one of them is difficult for general
R. Interestingly, unlike the admission control problem, the
scheduling problem is difficult even whenR is diagonal or
is of rank 1. The following result summarizes the complexity
status, the proof of which can be found in [35].

Proposition 2 Solving problem(CP2)is strongly NP-hard for
general channel matrixR, as well as for the special cases
whenR is either rank 1 or diagonal.

B. The Proposed Algorithm

The scheduling algorithm we propose below is similar to the
one for the admission control problem—we use the solutions
of a relaxation of (CP2) to construct approximate solutions.
To proceed, defineX0 ∈ R(M+1)×(M+1), X1,X2 ∈ RM×M ,
and letX = blkdg[X0,X1,X2]. The SDR of problem (R2)
is given by

vSDP
2 = max

X�0
min
k=1,2

Tr[RXk] (SDP2)

s.t. Tr[Ai,1X] ≤ 1, i = 1 · · · ,M (18a)

Tr[Ai,2X] ≤ 1, i = 1 · · · ,M (18b)

Tr[B̃X] = 4Q (18c)

X[i, i] = 1, i = 1, · · · ,M + 1.

Similarly, for a fixed index setSk, the SDR of problem (17)
is

max
Yk�0

Tr[R[Sk]Yk] (19a)

s.t. Yk[i, i] ≤ P, i = 1, · · · , |Sk|. (19b)

To formally describe the proposed algorithm, we need to
introduce a few definitions that are similar to those in Section
III-C. Let Sk ⊆ M be any index set, and letY∗

k denote the
corresponding solution for problem (19a). DecomposeY∗

k by
Y∗

k = ∆H
k ∆k, for k = 1, 2. Define the following

Ei,k , ∆kCi,1[Sk]∆
H
k , Ek , ∆kR[Sk]∆

H
k .

Let us decomposeEk using its eigendecomposition:Ek =
UkΣkU

H
k .

The proposed algorithm for joint scheduling and VB follows
almost identical steps of the admission control algorithm in
Table II, with only minor changes. Below we list the main
steps of the proposed algorithm.

1) Compute the optimal solutionX∗ of problem (SDP2),
such that all the constraints in (18a) and (18b) are tight
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1.
2) Find the setS1 with |S1| = Q by S1 = {j : X∗

0[j,M +
1] ≥ x(Q)}; SetS2 = M\ S1.

3) For k = 1, 2, compute the solutionY∗
k of problem (17)

with index setSk.
4) Perform twice the randomization steps identical to those

in Step 5)–Step 8) in Table II, replacing{U,∆,E,Ei}
with {Uk,∆k,Ek,Ei,k}, k = 1, 2; obtain samples
{w(ℓ)

1 ,w
(ℓ)
2 }Lℓ=1.

5) Select the best sample by ℓ∗ =

argmaxℓ mink=1,2{(w(ℓ)
k )HRw

(ℓ)
k }.

Let us pause to discuss the differences between the above
SDR algorithm and its counterpart for admission control.
After deciding the setS1 andS2, two separate randomization
procedures are needed, one for each setS1 andS2. Intuitively,
after decidingS1 andS2, we have completed the scheduling
task. What remains to be done is to perform VB for the nodes
allocated to each slot. This is the goal of the randomization
procedure. Moreover, the best sampleℓ∗ is selected according
to the max-min SNR criteria, which promotes fairness among
the two virtual beamformers.

Using the argument identical to that presented in Claim 4
and Claim 5, we can verify that for allℓ, [x0,w

(ℓ)
1 ,w

(ℓ)
2 ] must

be feasible for problem (R2). Moreover, the optimal value
vCP
2 (w∗) can be expressed in closed form

(w∗
k)

HRw∗
k =

1

minℓ(t
(ℓ)
k )2

Tr [R[S]Y∗
k] , k = 1, 2.

Let α2 be the approximation ratio for a solution(w∗
1 ,w

∗
2),

defined asvCP
2 (w∗

1 ,w
∗
2) ≥ 1

α2
vCP
2 . Using techniques similar

to the proof of Theorem 1, one can show thatα2 can be
bounded by

α2 ≤ 8Mλ1(R)

min{Q,M −Q}λM (R)
ln(12max{Q,M −Q}).

(20)

However, compared to Theorem 1, the above bound is less
powerful since it isdependenton the channel realization. The
proof of this result can be found in [35]

V. JOINT RELAY GROUPING AND VB

In this section we show that the approaches developed in
the previous sections are also applicable in relay networks.
The problem here is to select a set of relays to form a virtual
multi-antenna system, and at the same time design their virtual
beamformers for signal relaying.

A. Problem Formulation and Complexity Status

SupposeQ out ofM relays are to be selected for transmis-
sion. Using the system model described in Section II, we can
formulate the joint relay grouping and beamforming problem

1To find a solution required by step 1), we can start by any optimal solution
X

∗ of (SDP2), and increase the diagonal elements ofX
∗
1 or X∗

2 until all the
constraints in (18a) and (18b) are satisfied.

as follows:

vCP
3 = max

w,a

wHSw

σ2
n +wHFw

(CP3)

s.t. |wi|2
(
P0E[|fi|2] + σ2

ν

)
≤ aiP, i = 1, · · · ,M,

M∑

i=1

ai = Q, ai ∈ {0, 1}, i = 1, · · · ,M.

where the objective is the receive SNR. This problem can be
compactly written as

vQP
3 = max

x

xH S̃x

σ2
n + xHF̃x

(R3)

s.t. xHDiGix ≤ 1, i = 1, · · · ,M, (21a)

xHBx = 4Q, x[i] ∈ {−1, 1}, i = 1, · · · ,M + 1.
(21b)

whereDi, B and x are given in (6b)–(6g), and the(2M +
1)× (2M + 1) matricesF̃, S̃ andGi are defined as

S̃ ,

[
0 0

0 S

]
, F̃ ,

[
0 0

0 F

]
,

Gi ,

[
IM+1 0

0 eie
T
i

(
P0E[|fi|2] + σ2

ν

)
]
, i = 1, · · · ,M.

As always, we first analyze the computational complexity
of joint relay grouping and VB problem (CP3). The following
theorem shows that solving this problem is generally NP-hard.
We refer the readers to Appendix C for proof details.

Proposition 3 Solving(CP3) is NP-hard in general.

It is worth noting that problem (CP3) is easy when there
is no correlation between the channels, or equivalently when
bothS andF are diagonal. The reason is that for a fixed value
of t ≥ 0, solving the following feasibility problem is easy

wHSw

σ2
n +wHFw

≥ t

|wi|2
(
P0E(|fi|2) + σ2

v

)
≤ aiP, ∀i

M∑

i=1

ai = Q, ai ∈ {0, 1}.

By performing a bisection ont, we can obtain the optimal
solution for (CP3).

Similar to problem (CP2), one can consider the relay
scheduling problem over two time slots. Mathematically, this
problem can be formulated as

max
{w1,w2,α}

min
k=1,2

wH
k Swk

σ2
n +wH

k Fwk

(CP4)

s.t. |wk,i|2
(
P0E[|fi|2] + σ2

v

)
≤ aiP, i = 1, · · · ,M, k = 1, 2

M∑

i=1

ai = Q, ai ∈ {0, 1}, i = 1, · · · ,M.

It turns out that this problem is NP-hard even for diagonal
channel matrices (see [35] for the proof).
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Proposition 4 For diagonal channel matrices, problem(CP4)
is NP-hard.

B. The SDR Algorithm

Again let us defineX , xxH . The SDR of the reformulated
problem (R3) is given by

vSDP
3 , max

X�0

Tr[S̃X]

σ2
n + Tr[F̃X]

(SDP3)

s.t. Tr[DiGiX] ≤ 1, i = 1, · · · ,M, (23a)

Tr[BX] = 4Q, (23b)

X[i, i] = 1, i = 1, · · · ,M + 1. (23c)

Let X∗ denote the optimal solution of this problem. Clearly,
we must have Tr[S̃X∗] = vSDP

3 (σ2
n + Tr[F̃X∗]). Moreover,

X∗ must be the optimal solution of the following problem,
with an optimal objective valuevSDP

3 σ2
n

max
X�0

Tr[(S̃− vSDP
3 F̃)X] (SDP4)

s.t. (23a)− (23c).

This problem is a relaxation of the following QP

max
x

xH(S̃− vSDP
3 F̃)x

s.t. (21a)− (21b).

The similarity between problem (SDP4) and the relaxed
node selection problem (SDP1) suggests a natural two-step
approach to obtain a feasible solutionx∗ of (R3):

1) Solve problem (SDP3), obtainvSDP
3 .

2) Obtainx∗ = [x∗
0,w

∗] by applying the algorithm in Table
II, with the matricesR̃, Di replaced byS̃ − vSDP

3 F̃,
DiGi, respectively.

Using the same argument given in Claim 5, we can show that
the resulting vectorx∗ must be feasible for our relay selection
problem.

Unfortunately, at this point we are still unable to derive a
finite (data independent) approximation bound for this SDR
algorithm. The main difficulty is that, unlike the case of
(SDP1), the coefficient matrix̃S − vSDP

3 F̃ in the objective
of (SDP4) is no longer a positive definite matrix (in fact
it is indefinite). This implies that some key properties (e.g.,
Claim 2) no longer hold true in this case. Nevertheless, in
our numerical experiments, we did observe that the proposed
SDR algorithm generates high quality approximate solutions
for problem (CP3).

VI. N UMERICAL RESULTS

In this section, we present numerical results to evaluate the
proposed algorithms. For all simulations presented, we choose
the total number of randomization to beL = 200.

A. Grouping for Admission Control and Scheduling

We evaluate the performance of the proposed algorithm for
joint admission control and beamforming. LetN > 0 be
a constant, which represents the number of antennas at the

receiver. We generate a single cell network with radius500
meters, and with the BS/receiver located in the cell center.
The location for the transmit nodes are randomly generated
within the cell, and are at least100 meters away from the
receiver. Letdi denote the distance between nodei and the
receiver and lethn ∈ C

M×1 denote the channel vector for the
path between thei-th node and then-th receive antenna. We
model thei-th entry ofhn as a zero mean circularly symmetric
complex Gaussian variable with variance (per real/imaginary
dimension) given by(200/di)

3.5
Li, where10 log 10(Li) ∼

N (0, 64) is a real Gaussian random variable modeling the
shadowing effect. SetR =

∑N

n=1 hnh
H
n . Suppose the network

hasM = 50 transmit nodes, with each node having the same
transmit powerP = −10 dBW. The proposed algorithm in
Section III (abbreviated as Alg.1) is compared with a sparse
PCA (SPCA) based algorithm, whose main steps are listed
below: i) Approximately find asparseprincipal component
of R with Q non-zero entries (denoted aŝw), using the
backward-forward algorithm proposed in [36];ii) normalize
ŵ by a constantǫ so that all the individual power constraints
are satisfied. In its first step, this algorithm tries to find the set
of nodes that, when replacing the individual power constraints
with a total power constraint, can provide the (approximately)
best averaged receive SNR.

Table III demonstrates the maximum, the minimum and the
averaged ratios achieved for running the algorithms over500
independent random generations of the channel. Note that the
approximation ratio for a solutionw∗ is calculated byα =
vCP
1 (w∗)

vSDP
1 (X∗)

.

In Fig. 4–5 we plot the performance of the algorithms for
different sizes of the network. For a given network size, we
chooseQ = 10 and letN = 5. For each network(Q,M)
pair, the algorithm is run for500 independent realizations of
the network. We again plot the maximum, the minimum and
the averaged approximation ratios achieved among those500
realizations. We see that the proposed algorithm achieves very
low worst-case approximation ratio, which suggests that high
SNR performance is obtained for almost all Monte Carlo runs.
In Fig. 6, a similar experiment is conducted with the number of
transmit nodes fixed atM = 50, but with varying cooperative
group sizeQ ∈ [6, 15].

In Table IV, we show the performance of the proposed
algorithm in a network ofM = 30 transmit nodes, for the
max-min scheduling problem (abbreviated as Alg.2). The pro-
posed algorithm is compared with the following two heuristic
benchmarks: 1) randomly partition the nodes into two groups
of size Q and M − Q, for each of which we solve a PCA
followed by a normalization step (abbreviated as R-PCA); 2)
randomly partition the nodes into two groups of sizeQ and
M − Q, and obtain a solutionw∗

1 and w∗
2 following steps

S4)–S8) in Table II (abbreviated as R-SDR). Fig. 7 illustrates
the effectiveness of Alg.2 in balancing the receive SNRs for
different slots. We plot the receive SNRs computed by Alg.2
in both slots (referred to thefavorable/unfavorableslot in the
figure) during 20 Monte Carlo runs of the algorithm. For
comparison, the plots are overlaid with those obtained by
running Alg.1 in the same network. For the latter case, the
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TABLE III
APPROXIMATION RATIO OF THE PROPOSED ANDSPCA ALGORITHMS

Alg.1 Min Alg.1 Mean Alg.1 Max SPCA Min SPCA Mean SPCA Max
N = 5, Q = ⌈M/3⌉ 1.12 1.20 1.31 2.88 5.85 9.51
N = 10, Q = ⌈M/3⌉ 1.11 1.21 1.51 2.48 6.74 10.62
N = 15, Q = ⌈M/3⌉ 1.11 1.20 1.43 2.71 6.79 11.27
N = 5, Q = M/2 1.09 1.14 1.49 3.04 6.97 12.13
N = 10, Q = M/2 1.08 1.18 1.72 2.81 7.94 14.08
N = 15, Q = M/2 1.07 1.17 1.87 3.86 8.28 13.74
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Fig. 4. Approximation ratio for admission control with different network
sizes.M ∈ [10, 20, 30, 40, 50, 60, 70], Q = 10, P = −10dBW, N = 5.
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receive SNRs are shown for both the active nodes and the
idle nodes. For the set of idle nodes that are excluded from
the cooperative group, their virtual beamformer is computed
using steps S4)–S8) in Table II, withS replaced byS̄, and with
all the matricesU, Ei and∆ computed usinḡS. Fig. 7 shows
that for the admission control formulation, when the idle nodes
are offered a chance of being served, they can only achieve
very low SNR. On the contrary, the scheduling formulation
results in more balanced SNRs for both slots.

In the aforementioned numerical results, the proposed SDR
algorithms can clearly deliver high quality approximate so-
lutions (in terms of both the averaged and the worse case
performance) to the joint admission control/scheduling and VB
problem.

B. Grouping for Relay Selection in Relay Networks

In this section, we numerically evaluate the performance of
the SDR algorithm for solving the joint relay selection and
VB problem (abbreviated as Alg.3).

For the relay network, the channel covariances are generated
as follows [11], [12]. Assumefi can be written byfi = f̂i+f̃i,
where f̂i is the mean offi and f̃i is a zero-mean random
variable. Assume that̃fi, f̃j are independent fori 6= j, and
choosef̂i = ejθi/

√
ηfi andvar(f̃) = ηfi/(1 + ηfi), whereθi

is a uniform random variable on the interval[0, 2π], andηfi
is a parameter that determines the level of uncertainty in the
channel coefficientfi. Similarly, letgi = ĝi+g̃i, with ĝi andg̃i
defined similarly aŝfi andf̃i. The justification of this channel
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TABLE IV
APPROXIMATION RATIO OF THE ALGORITHM FOR SCHEDULING

Alg. 2 Mean Alg. 2 Max R-PCA Mean R-PCA Max R-SDR Mean R-SDR Max
N=5, Q = ⌈M/4⌉ 1.88 4.06 9.76 24.84 3.23 10.14
N=10,Q = ⌈M/4⌉ 2.77 9.55 10.87 28.56 5.68 15.74

model can be found in [11], [12]. In our simulations,{ηfi}
and {ηgi} are generated randomly from−10 dB to 10 dB,
accounting for different uncertainty levels for differentnodes.

Our SDR algorithm is compared against the following three
algorithms:

• Random-GED: This is a variant of the generalized eigen-
value decomposition (GED) based algorithm proposed in
[11, Section IV-B]. In its original form, all the relays
are utilized, and the algorithm computes an approximate
solution of the max-SNR problem by performing a PCA
for the matrixS−1F, followed by a normalization step
to ensure the individual power constraints. To incorporate
the selection of relays, we firstrandomlyselectQ out of
M relays, and then perform the PCA and normalization
steps.

• Random-SDR: In this algorithm, we firstrandomlyselect
Q out of M relays in the network, and then perform the
two-step SDR algorithm with the fixed node grouping
(see the algorithm description in Section V).

• Greedy algorithm: This algorithm largely follows from
the one proposed in [23], in which nodes are added to
the cooperation set successively and greedily as long as
it can improve the received SNR level, or the required
group size is less thanQ.

In Fig. 8–9, the approximation ratio and the achieved receive
SNR of different algorithms are plotted against the size of the
network. Fig. 10–11 show the performance of the algorithms
when we increase the relays’ transmission powers. In these
two sets of figures we setP0 = 0 dBW, Q = M

2 , and set
the total transmit power of the relaysPtot = 10 dBW. The
curves labeled by “SDP” in Fig. 9 and Fig. 11 represent
the upperbounds of the achievable receive SNR which are
obtained by solving the relaxed problem (SDP3). We see that
the proposed SDR algorithm is close to the optimal solution
across all power levels and all network sizes, while the other
three algorithms perform notably worse in these experiments.
Furthermore, the proposed algorithm has significantly better
“worst case” performance than the Random-SDR algorithm
(see Fig. 8 and Fig. 10).

VII. F INAL REMARKS

This paper addresses the joint node grouping and the
virtual beamformer design problem under different network
setup. We formulate this problem as a cardinality constrained
quadratic optimization problem. Unfortunately, the resulting
optimization problem is computationally intractable as shown
in Table V below.

Given the NP-hardness of the problem, we develop several
novel approximation algorithms based on the semidefinite
programming relaxation (SDR) technique. The quality of the
approximate solutions is evaluated both theoretically andvia
numerical simulation. Somewhat surprisingly, we are able to

prove that the resulting SDR algorithm for admission control
has a guaranteed approximation performance in terms of the
gap to global optimality, regardless of channel realizations.
Such theoretical analysis lends strong support to the prac-
tical performance of the proposed algorithms. Indeed, their
effectiveness has been confirmed in our extensive numerical
experiments.

In closing, we suggest several directions of future research.
First, it will be interesting to extend the theoretical analysis
for the approximation bounds to the scheduling and the
relay selection problems. Second, we expect that our SDR
approach can be applied and extended to some new application
scenarios. For example, in the admission control problem, to
mitigate the interference to a neighboring co-existing system,
one could further impose atotal interferenceconstraint of the
form E[|wHg|2] ≤ I to the selected group of nodes, where
g represents the channel between the transmit nodes and the
BS of the neighboring system. Additionally, the proposed SDR
approach may prove to be useful in designing future multi-cell
cellular systems, where not all, but a subset of BSs can jointly
transmit and receive signals for a given mobile user (see the
recent work [19], [20], [37] on the partial CoMP technique).

APPENDIX

A. Proof of Claims 4 and 5
Claim 4 is due to the following chain of equalities

vCP
1 (w(ℓ)) = (w(ℓ))HRw

(ℓ) =
1

(t(ℓ))2
(ξ(ℓ))TUH

∆R[S ]∆H
Uξ

(ℓ)

(a)
=

1

(t(ℓ))2
(ξ(ℓ))TΣξ

(ℓ) (b)
=

1

(t(ℓ))2
Tr[Σ]

(c)
=

1

(t(ℓ))2
Tr[R[S ]Y∗]

(24)

where(a) and(c) are from (14);(b) is from the fact thatΣ is
diagonal, and the diagonal elements ofξ(ℓ)(ξ(ℓ))T are all1.

To argue the feasibility condition claimed in Claim 5,
we first show that the constraint(x(ℓ))HDix

(ℓ) ≤ 1 is
always satisfied for alli ∈ M. To see this, we consider the
following two cases (we omit the superscript(ℓ) for notational
simplicity).

Case i): If i ∈ S, then we have

x
H
Dix = (w)HCi,1w + (x0)

H
Ci,0x0

= (w[S ])HCi,1[S ]w[S ] + (x0)
H
Ci,0x0

=
1

t2
ξ
T
U

H
∆Ci,1[S ]∆

H
Uξ +

1

2
(1− x0[i]x0[M + 1])

(a)
=

1

t2
ξ
T
U

H
EiUξ

(b)

≤ 1

where(a) is from the definition ofEi and from the fact that
x0[M + 1] = 1 and for all i ∈ S, x0[i] = 1; (b) is from the
definition of t in Step S6) of the algorithm.

Case ii): If i ∈ S̄, then from Step S7) of the algorithm, we
havewi = 0. Using the fact thatCi,1 = eie

T
i

1
P

, we have:
xHDix = (w)HCi,1w = |wi|

2 1
P

= 0. It is straightforward to
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TABLE V

SUMMARY OF COMPLEXITY RESULTS

Admission Control Scheduling (2-Slot)
Channel R General Diagonal Rank 1 General Diagonal Rank 1
VMIMO NP-Hard Ploy. Time Solvable Ploy. Time Solvable NP-Hard NP-Hard NP-Hard

VMIMO-Relay NP-Hard Ploy. Time Solvable Unknown NP-Hard NP-Hard Unknown

see that the cardinality constraintxHBx = 4Q is satisfied for
each solutionw(ℓ), as this constraint mandates thatM − Q
nodes do not transmit.

In summary, we conclude thatx is feasible for the problem
(R1). Due to the equivalence between problems (R1) and
(CP1),w is also feasible for the latter problem.

B. Proof of Theorem 1

Proof: Observe that it is sufficient to show that with
high probability vCP

1 (w(ℓ)) ≥ 1
α1

vSDP
1 . Below we first show

that for any ℓ = 1, · · · , L, there exists a finite constant
α1 > 1 satisfying:Prob

(
vCP
1 (w(ℓ)) ≥ 1

α1
vSDP
1

)
≥ δ > 0, or

equivalently,

Prob

(
1

(t(ℓ))2
Tr[R[S ]Y∗] ≥

1

α1
Tr[RX

∗
1]

)
≥ δ > 0. (25)

That is, with positive probability, the solutionw(ℓ) generated
by the proposed algorithm is at least as good as1

α1
fraction

of vSDP. If this is indeed true, it follows that the probability
that the solutionw∗ achieves an objective that is at least1

α1

of vSDP
1 is given by

Prob

(
max

ℓ
vCP
1 (w(ℓ)) ≥

1

α1
vSDP
1

)

= 1− Prob

(
max

ℓ
vCP
1 (w(ℓ)) <

1

α1
vSDP
1

)

= 1−

L∏

l=1

Prob

(
vCP
1 (w(ℓ)) <

1

α1
vSDP
1

)
≥ 1− (1− δ)L.

Clearly, this probability approaches1 exponentially asL
becomes large.

Below we will show (25). The analysis is divided into the
following three steps.
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Step 1): Let β > 0 be a constant. We first show that
when β

α1
is small enough, with zero probability the event

Tr[R[S]Y∗] ≤ β
α1

Tr[RX∗
1] happens.

To this end, we first lower bound Tr[R[S]Y∗]. We have the
following two cases.

Case i) SupposeS = T = {j : X∗
0[j,M + 1] ≥ xQ}, then

we have

vSDP
2 = Tr[R[S ]Y∗] ≥ Tr[R[S ]X∗

1[S ]]

where the inequality is from that factX∗
1[S] is a feasible

solution to the problem (11a), and thatY∗ is the optimal
solution for that problem. From Step S2) of the algorithm,
we must have

Tr[R[S ]Y∗] ≥
QP

M
Tr[R]. (26)

Case ii) SupposeS = {j : R[i, i] ≥ rQ}. Then we have

Tr [R[S ]Y∗]
(i)

≥ PTr[R[S ]IQ]
(ii)

≥
QP

M
Tr[R] (27)

where (i) is again from that factP IQ is a feasible solution
to the problem (11a), and thatY∗ is the optimal solution for
that problem;(ii) is from the fact that eachi ∈ S is among
the largestQ elements in the set{R[i, i]}Qi=1, which leads to∑

i∈S R[i, i] ≥ Q
M

∑M
i=1 R[i, i] = Q

M
Tr[R].

We then upper bound Tr[RX∗
1]. By a trace inequality for

the product of two semi-definite matrices, we have that [38]

Tr[RX
∗
1] ≤

M∑

i=1

λi (X
∗
1)λi(R) ≤ λ1(R)

M∑

i=1

λi (X
∗
1) = λ1(R)Tr[X∗

1].

(28)

Utilizing this result, we have

Tr[RX
∗
1] ≤ λ1(R)Tr[X∗

1]
(i)
= Pλ1(R)

M∑

i=1

(
1

2
+

1

2
X

∗
0[i,M + 1]

)

= Pλ1(R)

(
M

2
+

1

2

M∑

i=1

X
∗
0[i,M + 1]

)

(ii)
= Pλ1(R)

(
2Q−M

2
+

M

2

)
= QPλ1(R) (29)

where (i) is from the tightness of the first set of constraints
of the problem (SDP1) (cf. (12)) and(ii) is due to Claim 2
and Claim 3. Comparing (27) and (29), we see that choosing
β
α1

≤ Tr[R]
Mλ1(R) ensures

Prob

(
Tr[R[S ]Y∗] ≤

β

α1
Tr[RX

∗
1]

)
= 0.

Step 2): For fixed α1, we bound the probability that
Prob

(
1

(t(ℓ))2
≤ 1

β

)
as follows (omitting(ℓ) for simplicity, and

definingÊi , UTEiU)

Prob

(
1

t2
≤

1

β

)
= Prob(t2 ≥ β) = Prob

(
max
i∈S

(ξ)T Êiξ ≥ β

)

≤
∑

i∈S

Prob
(
(ξ)T Êiξ ≥ β

)
< 4Qµ exp

(
−
β

8

)

whereµ = min[Q,maxi Rank(Êi)]. The last inequality is ob-
tained by slightly generalizing the existing result in [29,Propo-

sition 1] 2. To explicitly compute the value forµ, note that by
definition, we have:̂Ei = UHEiU = UH∆Ci,1[S ]∆

HU. As
a result, Rank(Êi) ≤ 1 as by definition Rank(Ci,1) = 1, and
any one of its principal submatrices must have rank at most
1. We conclude that0 ≤ µ ≤ 1.

Step 3): Utilizing the above result, choose

β = 8 ln(5Q), α1 =
8Mλ1(R)

Tr[R]
ln(5Q),

we can bound the left hand side of (25) as follows

Prob

(
1

t2
Tr[R[S ]Y∗] ≥

1

α1
Tr[RX

∗
1]

)

≥ Prob

(
Tr[R[S ]Y∗] ≥

β

α1
Tr[RX

∗
1 ],

1

t2
≥

1

β

)

≥ 1− Prob

(
Tr[R[S ]Y∗] ≤

β

α1
Tr[RX

∗
1]

)
− Prob

(
1

t2
≤

1

β

)

= 1− Prob

(
1

t2
≤

1

β

)
> 1− 4Q exp (− ln(5Q)) = 1− 4Q/(5Q) =

1

5
.

In conclusion, the final approximation ratio is given by

α1 =
8Mλ1(R)

Tr[R]
ln(5Q) =

8Mλ1(R)
∑M

i=1 λi(R)
ln(5Q) ≤ 8M ln(5Q).

This completes the proof.

C. Proof of Proposition 3

Proof: It suffices to show that solving (CP3) is NP-hard
even when the active relays are known. In other words, it is
sufficient to show that solving the problem

max
w

wHSw

σ2
n +wHFw

(30)

s.t. |wi|2
(
P0E[|fi|2] + σ2

ν

)
≤ P, i = 1, · · · ,M,

is NP-hard. We prove by using a polynomial time reduction
from the integer equal partitioning problem. To this end, let
us consider the following system parameters:

P0 = 1, P = 2, σ2
v = 1, fi = 1, ∀i.

Then the problem (30) can equivalently be written as

max
w

wH
E[ggH ]w

σ2
n +wHdiag (E[ggH ])w

(31)

s.t. |wi|
2 ≤ 1, i = 1, · · · ,M.

Let t denote the objective value of the above problem. In order
to check the achievability of a particular valuet, we need to
check the feasibility of the following set of inequalities:

w
H
(
E[ggH ]− tdiag

(
E[ggH ]

))
w ≥ tσ2

n

|wi|
2 ≤ 1, ∀i.

(32)

Therefore, it suffices to show the NP-hardness of checking the
achievability of (32). To this end, we first claim that for given
a positive definite matrixA, the following set is non-empty

T =
{
(t,X) | X− tdiag(X) = A,A ≻ 0, t > 0, t ∈ R,X ∈ R

M×M
}

2The cited result can be generalized from the real case to the complex case
using the complex form of the large deviation results from Bernstein, see e.g.,
[39, Theorem 4], and the recent results by Zhang and So [30].
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To justify this claim, consider the mappingφA(t) : R+ 7→
RM×M , whereφA(t) = B with

Bij =

{
Aij i 6= j
Aii

1−t
i = j

.

Note thatφA(t) is continuous over[0, 1) and φA(0) = A.
Therefore, for small enought′ > 0, we haveφA(t′) = B′ ≻ 0.
In other words,(t′,B′) ∈ T . The above claim implies that
there exists a positive definite matrixR = E[ggH ] and a
positive scalart such that

E[ggH ]− tdiag
(
E[ggH ]

)
= 2CI− ccT ,

with C = ‖c‖2. Therefore, using a similar argument to the
one in the proof of Proposition 1 completes the proof.
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