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Low Delay MAC Scheduling for Frequency-agile
Multi-radio Wireless Networks

Avhishek Chatterjee, Supratim Deb, Kanthi Nagaraj, Vikram Srinivasan

Abstract—Recent trends suggest that cognitive radio based
wireless networks will be frequency agile and the nodes will be
equipped with multiple radios capable of tuning across large
swaths of spectrum. The MAC scheduling problem in such
networks refers to making intelligent decisions on which commu-
nication links to activate at which time instant and over which
frequency band. The challenge in designing a low-complexity
distributed MAC, that achieves low delay, is posed by two
additional dimensions of cognitive radio networks: interference
graphs and data rates that are frequency-band dependent, and
explosion in number of feasible schedules due to large number of
available frequency-bands. In this paper, we propose MAXIMAL-
GAIN MAC, a distributed MAC scheduler for frequency agile
multi-band networks that simultaneously achieves the following:
(i) optimal network-delay scaling with respect to the number
of communicating pairs, (ii) low computational complexity of
O(log2(maximum degree of the interference graphs)) which is
independent of the number of frequency bands, number of radios
per node, and overall size of the network, and (iii) robustness, i.e.,
it can be adapted to a scenario where nodes are not synchronized
and control packets could be lost. Our proposed MAC also
achieves a throughput provably within a constant fraction (under
isotropic propagation) of the maximum throughput. Due to a
recent impossibility result, optimal delay-scaling could only be
achieved with some amount of throughput loss [30]. Extensive
simulations using OMNeT++ network simulator shows that, com-
pared to a multi-band extension of a state-of-art CSMA algorithm
(namely, Q-CSMA), our asynchronous algorithm achieves a 2.5×
reduction in delay while achieving at least 85% of the maximum
achievable throughput. Our MAC algorithms are derived from
a novel local search based technique.

Index Terms—Whitespaces, Multi-band, Frequency-agile, Dis-
tributed Scheduling

I. INTRODUCTION

There are two emerging trends in the evolution of cognitive
radio based wireless networks. First, new regulations allow
the possibility for a single technology to utilize spectrum
across very diverse range. For example, FCC mandated the
use of unutilized TV spectrum in the 50 − 698 MHz band
for unlicensed access [2]. Along with unlicensed spectrum
in 2.4 GHz and 5.1 GHz, this implies that we now have
fragments of unlicensed spectrum available across several
GHz. Second, advances in RF technology allows cognitive
radio based wireless devices to tune across large range of
spectrum. For example, a recent product by Radio Technology
Systems [3] makes it possible for radios to tune their center
frequencies from 100 MHz to 8 GHz. Such radios are referred
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to as frequency agile radios. Note that, at any given time, the
radio can tune to a single center frequency with a upper limit
on the operating bandwidth (typically 40 MHz). These two
trends imply that wireless devices have greater flexibility in
adapting to the network. In this paper, we identify and address
new challenges in MAC design that arise as a consequence of
these trends.

We consider a wireless network where each network node is
equipped with a cognitive radio that can detect the presence of
a large number of available frequency bands. Since our work
is on distributed MAC design, we implicitly assume that MAC
has knowledge of available frequency bands; this knowledge
could come from a layer/module that connects to a database
or from a layer/module that connects to sensing equipments.
The availability of frequency bands is quasi-static, i.e., the
available frequency bands can change roughly at the time-scale
of session durations and not at the time-scale of milliseconds.
In the terminology of cognitive radio networks, the wireless
network nodes are secondary transmitters and we assume that
primary transmitters vacate the channels for large time-scales
of the order of session durations1. We also assume that each
wireless node has potentially multiple transmitting radios to
make full use of the cognitive capabilities. Each wireless
node is allowed to transmit over all or a large subset of the
detected frequency bands2. For example, in a given location,
the network codes can avail all unlicensed spectrum that
could have 5 frequency bands consisting of 3 non-overlapping
channels in 2.4 GHz ISM along with 2 TV whitespace bands
512− 524 MHz and 692− 698 MHz3.

Thus, from a MAC design point of view, two aspects of
cognitive radio capabilities of nodes are most relevant: firstly,
multi-band RF capability of the radio nodes, and secondly,
ability of a radio to switch frequency band with minimal
switching overheads of less than millisecond [3]. While these
provide additional flexibility for more efficient sharing of radio
resources; however this also gives rise to new challenges in
MAC scheduling. The key MAC scheduling question in such a
network is: at every instant, which set of communicating node-
pairs should operate over which frequency band and using
which radio? Compared to traditional wireless networks, the
MAC scheduling problem in cognitive radio based wireless
networks is more complex due to two primary reasons:

1) Due to a potentially large number of available frequency
bands, the number of feasible schedules increases con-

1Wireless networks over TV whitepsaces follow such a model.
2A node can transmit over a frequency bands either if the band is unlicensed

or if the node is deployed by an entity having license to operate over the band.
3We use the terms frequency bands and channels interchangeably.
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siderably. Indeed, the number of available frequency
bands can easily be few tens (e.g., 3 non-overlapping
frequency bands in 2.4 GHz, 13 in 5 GHz, and another
5 − 15 frequency bands in TV whitespaces) in today’s
networks. Thus, choosing the “right” schedule becomes
computationally more challenging.

2) Since the available frequency bands can have diverse
propagation characteristics, the interfering neighbors and
the data rates depend on the operating frequency band.
This is because wireless path loss inversely depends on
the square of the operating frequency. This is unlike
traditional wireless networks that operate either over a
single frequency band or over multiple frequency bands
with homogeneous propagation properties (referred to as
multi-channel networks in the literature).

We wish to design practical and low-complexity MAC
schedulers while addressing these unique challenges.

Design goal: While the MAC scheduling question can
be answered differently depending on suitable performance
goals, our primary objective is to minimize network queueing
delay since network traffic is getting dominated by delay
sensitive applications. Thus, we wish to design a MAC that
meets the following simultaneous objectives: (i) low delay,
i.e., total queueing delay scales linearly with the number of
communication links which is the optimal scaling (ii) low
computational complexity and protocol overhead, (iv) and very
importantly, robust in the sense that it does not require nodes
to be synchronized and allows for losses in control overhead.
The reader might wonder why we do not mention maximizing
network throughput as an objective. This is because, it has
been shown in [30] that there is a fundamental trade-off
between achieving 100% throughput, achieving delay that
scales polynomially with the network size, and polynomial
complexity of schedule computation, in the sense that all three
cannot be achieved together. Thus, if we wish to design a
low complexity scheduler that minimizes network delay, we
must sacrifice on throughput. In this paper, we design a MAC
scheduler that achieves our three objectives with minimal
throughput loss.

Our approach: The theoretical underpinning of our work
comes from so called local search based approaches for
complex optimization problems. Local search is an iterative
method, where, in each step, the current solution is improved
by looking at the neighborhood of current solution. The
choice of neighborhood of a feasible solution, along with
how the transitions happen (it could be greedy, or random,
or based on some transition probability structure) from one
solution to another, determine the computational complexity
and performance guarantee of the algorithm. Local search
based algorithms are attractive due to their simplicity and
amenability to distributed implementation. One popular local
search based technique that has been applied to wireless
scheduling problems is Glauber Dynamics based scheduling
schemes and this is shown to achieve 100% throughput [14],
[24], [26]. Referred to as Q-CSMA, these schemes are dis-
tributed and are computationally very light in each iteration
(O(1) computation time per iteration). However, convergence
time of a Glauber Dyamics based scheme could be exponential

in the size of the graph [9] which could adversely impact
the network delay. Indeed, not much is known about delay
guarantees of Glauber Dynamics based scheduling algorithms,
except possibly for very special classes of network graphs
(see Section II) in a single band scenario. The convergence
issues of Glauber dynamics could exacerbate in multi-band
cognitive-radio based wireless networks as the number of
feasible schedules grows with the number of bands and radios.
In this paper, we propose an alternative local search based dis-
tributed scheduling algorithm characterized by a very different
solution-neighborhood and transition structure. Our scheme
achieves optimal delay scaling in multi-band wireless networks
but with at most O(1) fraction of throughput loss under
isotropic propagation. Since it is impossible to achieve 100%
throughput and optimal delay scaling simultaneously [30],
our approach is complementary to Glauber dynamics based
scheme; our scheme optimizes delay with some minimal loss
in throughput, whereas, Glauber dynamics based scheme
optimizes throughput and sacrifice on delay guarantees. Our
scheme is distributed, requires O(ln2 ∆) (∆ is maximum
degree of interference graph) computation time per schedule,
and can be adapted to asynchronous setting.

Since MAC scheduling is a link-level decision, for simplic-
ity and ease of exposition, we derive our scheme assuming
all network traffic to be single-hop. We also describe later
in the paper how all our results can be easily extended to
a multi-hop network setting using a standard back-pressure
based approach.

A. Our Contributions

Our main contributions are as follows:
1. Design of low-delay MAC scheduler for cognitive radio
networks: First, for a synchronous network, we design a
distributed scheduling (called the MAXIMAL-GAIN algo-
rithm) algorithm that provably achieves all of the following:
(i) an average network-wide total queue length that scales
as HM where H is the number of transmit-receive pairs
and M is the number of available frequency bands, (ii)
computational overhead O(log2 ∆) times the time required
to exchange RTS-CTS message between two neighboring
nodes (here ∆ is the maximum degree of the network
graph), and (ii) any throughput within a factor β of
the throughput region where β is a topology dependent
parameter that is O(1) for practical networks like grid,
hexagonal deployment, random deployment with isotropic
propagation etc.

2. Developing extensions for asynchronous network: In an
asynchronous cognitive-radio based wireless network, we
identify several issues that can severely impair the per-
formance of scheduling algorithms developed for syn-
chronous setting. Inspired by the design philosophy of the
synchronous MAXIMAL-GAIN algorithm, we design a
robust MAXIMAL-GAIN like CSMA based algorithm for
asynchronous settings.

3. Evaluation: We provide detailed evaluation of our algo-
rithm. To evaluate the benefits of designing a delay-centric
MAC and to understand the throughput-loss of our MAC,
we compared our algorithm with a multi-band multi-radio
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adaptation of a distributed and practically implementable
MAC that is known to achieve 100% throughput (namely,
Q-CSMA [24]). We compared the asynchronous version
of our algorithm with Q-CSMA which is synchronous in
nature. We report results of extensive simulations over the
OMNet network simulator. We show that our MAXIMAL-
GAIN algorithm achieves 2−3× reduction in delay, while
achieving over 85% of the maximum possible throughput.

II. RELATED WORK

The extensive research on MAC scheduling in single band
networks (see [20] for an excellent survey) can be broadly
divided into two classes: max-weight computation based and
Glauber dynamics based. The first class of approach is inspired
by the seminal work [33] which proves that maximum-weight
(MW) scheduling achieves 100% throughput. The MW sched-
uler MAC activates at every instant a non-interfering set of
links such that the total of weighted data-rates of the activated
links is maximized, where, weight of a link is roughly defined
by the number of backlogged packets. Furthermore, a recent
work [18] (also see [22], [23]) has shown that an MW schedule
achieves order optimal delay scaling with the number of links.
However, computing MW schedule is NP-hard, leading to
considerable research on approximate MW schedules [19],
[21], [28], [32]. However, extending these works to multi-
band wireless networks, with distributed implementation and
low complexity, is not easy. As discussed in Section I, the
second class of approach [14], [24], [26] is motivated by so
called Glauber dynamics based local search. These scheme
achieve 100% throughput but do not provide delay guarantees
in general networks.

Some examples of work that focus on low delay algorithms
in single band networks are [12], [15]. For single band net-
works, low delay CSMA based algorithms for special classes
of interference graphs have been proposed: [29] proposes
a delay-optimal CSMA based MAC for polynomial growth
networks (i.e., the number of nodes r hops away from a node
is polynomial in r), and [13] proposes polynomial delay Q-
CSMA based algorithm for bounded degree networks.

Multi-radio multi-channel resource allocation is addressed
in [16], [21], [34]. Unlike our work, none of these works
account for the fact that different bands can have different
propagation characteristics.

The inspiration of our MAC comes from application of local
search based techniques to develop approximation algorithms
for NP-hard optimization problems. We refer the reader to [5]
for an excellent survey.

III. PRELIMINARIES
A. Network Model

We consider a wireless network with V as the set of nodes.
The radio resources available are multiple frequency bands
with diverse propagation characteristics. By frequency band,
we mean a contiguous slice of spectrum of width at most
Bmax, the maximum tunable range of a radio. If there is a
larger contiguous band W available, we split it into “bands”
of equal width Bmax, with the last band having width possibly
less than Bmax. Since the frequency bands have diverse
propagation, the data rate between a transmitter-receiver pair

in the network and the interfering neighbors of the transmitter-
receiver are frequency dependent. The availability of frequency
bands do not change for the duration of a session. In the
terminology of cognitive radio networks, the wireless network
nodes are secondary transmitters and we assume that primary
transmitters vacate the channels for large time-scales of the
order of session durations4.

Each network node has cognitive radio capabilities by which
we mean the following:

1) Each wireless node has K half-duplex radios capable
of tuning across a large frequency range (e.g., from
100 MHz to 2.5 GHz, [10]). Each node can detect and
communicate over all the frequency bands. This model
subsumes the case where a node can only detect/use a
subset of the available bands by setting the PHY data
rates (we will elaborate on this later in the section)
over the prohibited frequency bands to be zero. We
also remark that our work easily generalizes to the case
where different mesh nodes have different number of
radios.

2) We assume that at any given time any radio can tune
to only a single frequency band (e.g., 500MHz, 2.4GHz
etc.) and the bandwidth can range from 0 to Bmax.

We consider all traffic between one-hop communication
pairs which is a standard approach to designing a MAC
scheduler. Since MAC scheduling is a link level decision, the
single hop setting is not limiting at all and the extension to a
multi-hop setting can be done in a standard manner [33] using
queue back-pressure based approach (see Section IV-D for the
required modifications). Towards this end, we will denote by
H the set of single-hop node pairs and let |H| = H . Since
we are considering a multi-band wireless network, we call a
node pair (u, v) single hop if u can transmit to (or receive
from) v at non-zero rate over at least one of the available
bands. We consider a slotted system. Associated with each
single hop node pair h ∈ H is a stochastic arrival process
{Ah(t)}, where Ah(t) is the number of packets arriving to
node pair h in time-slot t. Let λh = E[Ah(t)] be the average
arrival rate at node pair h. We will also assume that the arrival
processes have bounded second moments. We will assume that
the arrival process is i.i.d. across time slots. Let Dh(t) be the
number of packets that depart from node pair h in time-slot
t and let qh(t) be the queue length at the end of time-slot t.
We will assume that the arrivals happen at the beginning of
the slot. The queue length evolution can be described by

qh(t+ 1) = [qh(t) +Ah(t)−Dh(t)]+ .

We will also refer to Λ as the set of all possible arrival rate
vectors that can keep the queues bounded for some sequence
{Dh(t)}t that is feasible. The arrivals are also assumed to
have bounded second moments.

Transmission over a node-pair can happen at different rates
depending upon the frequency band it is operating on. We next
extend the standard definition of link (and associated link data
rate) between any node pair to account for the frequency band
dependent data rate.

4Wireless networks over TV whitepsaces can be modeled this way.
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Network graph and generalized link: We assume that the
spectrum available in the system is fragmented and spans a
large range (e.g., 50-700MHz, 2.4GHz and 5.2GHz). Let M
be the number of frequency bands. We will also assume that
the bands are ordered in the real axis from left to right, and
we will simply say band fj , j = 1, 2, . . . ,M to mean the
jth frequency band. We will also use “band-j” and “frequency
band fj” interchangeably.

Radio propagation physics dictates that, if all other param-
eters remain same, the received signal strength at a receiver
is inversely proportional to the square of the carrier frequency
[27] (i.e., halving the frequency doubles the received signal
strength). Thus, it is possible that two nodes in the network
may be able to communicate on a frequency band f1 but
unable to communicate on frequency f2.

The network connectivity in frequency band-j is modeled
as a graph Gj(V, Ej), j = 1, 2, . . . ,M where V is the set
of network nodes and for two nodes u and v, (u, v) ∈ Ej
if u can communicate with v over frequency band fj at a
non-zero data rate. Also, we will denote by ∆j the maximum
degree in the graph Gj(V, Ej) and ∆ = maxj ∆j .

Definition 1 (Generalized link). A generalized link is de-
fined by (i) the band m over which the link exists, and (ii)
the ordered node-pair (i, j) to indicate that node i is the
transmitting node of the link and j is the receiving node of
the link (more precisely, one of the radios of node i (j) is
the transmitting (receiving)). We will also use the notation
band(l) = m, head(l) = j, tail(l) = i to describe link-l.

Remark 1. Our algorithms use the notion of generalized
link that abstracts out diverse propagation in different bands.
Indeed, there could be multiple generalized links between two
nodes each corresponding to different bands with different data
rates and different interference neighborhoods.

In the rest of the paper, we say link to mean generalized
link. Note that, multiple links can exist between two nodes if
they can communicate at non-zero rate over multiple frequency
bands. We denote the data rate over generalized link-l by rl.
We define the weight of a generalized link l, wl, as follows.
Definition 2 (Weight of a link). We define the weight of link
l as wl = qh, if link l is on hop h ∈ H, i.e., wl is the queue
backlog on hop h.

Interference model: Our interference model is the widely
used secondary interference [6], [20], [31] model. In this
model, two links l1, l2 interfere over a frequency band fj if
any one of the end points of l1 can decode messages from
any one of the end points of l1 even at the lowest possible
modulation and coding. Such an interference model is essential
for the functioning of RTS/CTS based CSMA algorithm.

Thus, each generalized link-l has a set of interfering links
denoted by Il. Thus, if l′ ∈ Il, l and l′ cannot transmit
simultaneously. Note that the notion of generalized links easily
accounts for the fact that the interfering node-pairs of a
node-pair can be different in different bands. To keep the
exposition focused, for now and unless stated otherwise, we
ignore adjacent channel interference (ACI) (due to imperfect
RF hardware causing transmit power to leak into adjacent

bands) in multi-band networks [8]. In Section IV-D, we outline
how our model, algorithm, and analysis can be easily adapted
to account for ACI.

Some of the useful notations are shown in Table I.

TABLE I
TABLE OF NOTATIONS

M Number of available frequency band
fj Frequency band indexed j, j = 1, 2, . . . ,M
V Set of mesh nodes; |V| = V
Ej Set of connected node pairs in fj
H Set of single-hop

source destination pairs; |H| = H
L Set of links, |L| = L
head(l) and Receiving and transmitting
tail(l) node of link l.
band(l) Frequency band of link l.
rl Data rate of generalized link l
Il Set of links that interfere with link l

(the interfering links belong to band(l).)
wl Weight of generalized link l (wl = qh

if l is a link between h node-pair)
St Set of activated links under

MAXIMAL GAIN schedule at time-slot t
St(fj) Set of activated links over band fj

in MAXIMAL GAIN schedule at time-slot t

Some useful definitions: Finally, we provide a few useful
definitions. Using standard definition, we say I ⊆ V is
independent set of a graph G(V, E) if no two vertices in I
share an edge.
Definition 3 (2-hop neighborhood MIS cover). The 2-hop
neighborhood maximum independent set (MIS) cover of a
vertex v (denoted by κj(v)) in a network graph Gj(V, Ej)
over frequency band fj is defined as the maximum size of
an independent set in the graph induced by the nodes that
lie within 2 hops of v in Gj(V, Ej). We also define 2-hop
neighborhood MIS cover of Gj(V, Ej) as κj = maxv∈V κj(v).

Finally, we will use the standard definitions of interfer-
ence degree in [6], [20], throughput optimality and stability
region [20]. Denote by S the set of all feasible schedules.
Definition 4 (Interference degree). The interference degree of
link l is defined as the maximum number of links that can be
activated simultaneously over band(l) in a schedule. We will
denote the interference degree of link l as βl and we also define
the interference degree of the network as βmax = maxl βl.

Definition 5 (Stability region and throughput optimality). The
stability region Λ is the set of all arrival rates λ such that
λ =

∑
i φiSi, Si ∈ S for some φi, with 1 ≥ φi ≥ 0,∀i and∑

i φi = 1.
An algorithm which stabilizes (the queues remain bounded)

all arrival rates λ ∈ Λ is said to be throughput-optimal. An
algorithm which stabilizes all arrival rates λ ∈ Λ

µ , for some
µ > 1 is said to be a µ-factor throughput-optimal algorithm.

B. Scheduling Problem

The scheduling problem we consider is to activate a set St
of generalized links at each time t, so that the set of activated
links satisfy the following constraints.

1. Interference constraint (SI): As we described earlier in
this section, this states that, if l is activated no link in
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the interference neighborhood Il can be activated. The
secondary interference constraint along with our notion
of generalized link also captures the following important
constraint in multi-band networks: if a node v is involved
in communication with node u over frequency band fj over
a radio, no other node can communicate with v over fj at
the same instant.

2. Maximum Radio Constraint (MR): Since there are K
radios at a node, at a time, there can be at most K active
links that are part of a node with each link belonging to
distinct bands.

Our goal in this paper is to derive a distributed scheduling
algorithm, that has the following properties.

(P1.) Low Complexity: The schedule computation com-
plexity should be independent of the overall network size,
number of available bands M and number of radios K. Since
this requirement is too stringent, we relax this slightly to
allow the complexity to have poly-logarithmic dependence on
the maximum degree but independent of M , K, and overall
network size.

(P2.) Optimal delay scaling: The scheduling policy should
provide an order-optimal delay guarantee of E[Qtot] =
O(H) , where Qtot is the total queue length in the entire
network. Note that the requirement of delay to grow linearly
with number of single-hop pairs is stronger than requiring the
delay to be polynomial in the network size.

(P3.) Minimizing throughput-loss: We want our algorithm to
be a µ-factor throughput optimal (see Definition 5) algorithm,
where µ ≥ 1. This is motivated by the fact that, achieving
the delay scaling in P2 with a polynomial algorithm is bound
to result in some loss in throughput [30]. We will propose
MAC such that µ is an universal constant under an isotropic
propagation model in every frequency band.

IV. SYNCHRONOUS MAXIMAL-GAIN
We now propose our local search based algorithm. In this

section, we will assume that the nodes are synchronized; in
a subsequent section, we show how our algorithm can be
adapted to asynchronous setting.

In the rest of this section, we assume a time-slot based
system. Nodes are synchronized and each time-slot has two
phases: schedule computation phase and data transmission
phase. Our focus is on the schedule computation phase. The
schedule computation phase is further divided into a certain
number of mini-slots over which schedule is computed. The
duration of each mini-slot is just long enough for one round
of RTS-CTS message exchange.

A. Intuition and Algorithm Overview

A local search based algorithm has the following underlying
principle: the solution iteratively moves from one state (i.e.,
feasible solution) to another neighboring state such that the
new state provides improvement in the objective. The chal-
lenge often lies in appropriate definition of neighborhood-
states of every state (the neighborhood of different states
can overlap), such that the algorithm achieves the desired
goals of distributed implementability, fast convergence, and
provable approximation to the optimum. In our case, there

is an additional challenge arising from the fact the weights
(queue-lengths) are dynamic quantities.

To aid our discussion, we first introduce a few notations.
First of all, we say “link l is active in S” to mean “link l is a
part of schedule S.” For any feasible schedule S (defined by a
set of non-interfering (generalized) links), we will denote by
S(fj) as the set of active generalized links in S over frequency
band fj . Clearly, S = ∪jS(fj). Also, let St be a feasible
schedule at time t. Note that, feasibility of St also means that
no node has more than K (number of radios) active links. We
use the terms “state” and “feasible schedule” interchangeably.
Towards developing a local search based algorithm, we first
define our notion of neighboring states.

Neighborhood states: Let H1, H2, H3 . . . be a disjoint
partition of all nodes V with the following two properties: (i)
the sub-graph of G1(V, E1) (the network graph is the lowest
frequency band) induced by Hk has a star-subgraph containing
all nodes in Hk, i.e., there is a node uk (called star-center or
leaders) that can communicate with all other nodes in Hk,
(ii) the star-centers of H1, H2, H3, . . . form an independent
set in G1(V, E1). Figure 1 illustrates this partition. The reason
for such a partition will become clear soon. We will refer
to each Hk as a group. For a feasible schedule S, let SHk

be the set of active links in S outgoing from some node in
group Hk, i.e., SHk = {l ∈ S : tail(l) ∈ Hk}. A feasible
schedule S′ is a neighboring state of another schedule S, if,
for each k, there is at most one frequency band where S′Hk

has additional active links compared to SHk . More precisely,
S′ is a neighbor of S, iff, for each k, all generalized links
belonging to set S′Hk \SHk operate over the same frequency
band. We will denote by nghbr(S) the neighboring states of a
state S.

Fig. 1. Illustration of partitioning the network graph G1(V, E1). Each
group has a star-subgraph containing all nodes in group; red (shaded)
nodes are star-centers (leaders).

Overview of the algorithm: In each time-slot, our MAC
chooses a new schedule by performing a single iteration of
local-search. Given a partitioning of V into H1, H2, . . . and
our definition of nghbr(S), the high-level steps of our MAC
algorithm are as follows.

1) Random Selection of Bands: Because of our definition of
neighboring states, for any group Hk, a new schedule
can activate additional links in at most one frequency
band. In this step, each group independently chooses a
frequency band at random; this random frequency band
is used for activating new outgoing links from Hk. Of
course, instead of choosing a band at random, another
option could be to choose a frequency band that yields
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maximum improvement in the total weight over the
current schedule. However, such a operation can incur
significant overhead and will have computational and
messaging complexity O(M). We show that, random
selection of a band just works fine.

2) Computing maximum improvement links: Once a fre-
quency band is chosen at random for every group Hk,
the next step is to find a link/s whose activation over
this band results in maximum improvement in the total
weight of all links outgoing from Hk. We will call these
links high-priority links. Note that, if a new link is
activated, some other links may have to be deactivated
(removed from the existing schedule) for the new sched-
ule to be feasible.

3) Computing schedule: Observe that, the new high priority
links cannot be activated all at once as some of them
could interfere with each other. This final step com-
putes a new feasible schedule by only selecting a non-
interfering sub-set of high-priority links. This selection
can be performed using CSMA-CA or any standard
random access protocol (in every band) among the
high priority nodes. All non-high priority links continue
transmission only if no high-priority link can be sensed.

So far we have just provided an overview of the algorithm,
the above steps also have to be performed in a distributed
manner. In Algorithm I, we show the precise details of how
this can be done.
Remark 2 (Compelxity). The complexity of schedule com-
putation is dominated by distributed computation of the maxi-
mum gain link in every group. As we describe in Section IV-B,
this can be performed in O(ln2 ∆) mini-lots (the duration of
mini-slot is long enough to exchange an RTS-CTS message)
which is essentially the time-complexity of schedule computa-
tion.

B. Computing Maximum Gain in a Group

In the description of MAXIMAL GAIN Algorithm, we have
assumed that, each group can compute the maximum gain in
the group in Tcomp = O(ln2 ∆) mini-slots. Recall that, these
mini-slots belong to schedule computation phase of a slot.
We now adapt binary search for a broadcast environment to
achieve this.

We first argue that, it is sufficient to prove the result by
assuming that broadcast messages from nodes in any group
do not collide with that of other groups. To see this, suppose
we assign color to each group so that any two groups that
have interfering nodes are not assigned the same color6. Under
isotropic propagation, simple geometric considerations show
that χ = O(1) colors suffice. Thus, we can color-code the
mini-slots in a round-robin manner and allow each group
to perform the steps of max-computation only in mini-slots
corresponding to its color. Thus, if each group requires Tcomp
mini-slots, the overall computation would require χTcomp =
O(Tcomp) mini-slots. Note that, the coloring is a one-time
procedure that can be done in a distributed manner at the
beginning of network operation.

6This is similar to frequency planning in GSM networks.

Algorithm I
ALGORITHM MAXIMAL-GAIN SCHEDULE

1: Grouping and initialization (one time operation at time-0): At time-0,
the nodes are partitioned into groups and initialized using the following
steps:

1) Use any known distributed computing algorithm (e.g. [25]) to com-
pute an independent dominating set5. D in the graph G1(V,E1).
Nodes in D are called leaders.

2) Every node not in D becomes a follower of any one neighboring
leader. A leader along with all its followers are referred to as a
group. Let H1, H2, . . . denote the groups.

3) All nodes in a group choose a common seed for random number
generation.

2: for all time-slots t do
3: Every node uses the seed common to its group to select a frequency

band uniformly at random from the M available bands.
4: Gain computation by nodes: Every node v computes the gain in total

weight of outgoing links from v if some outgoing link from v were
activated over the randomly selected frequency band. Denoting the
randomly selected band for node v as f(v), this computation is as
follows:

1) For every node v, if a new outgoing link from v were to be
activated over f(v), some link l′ may have to be deactivated to
maintain the feasibility of the new schedule. This link l′ (with v
as one end) is any link that is active over band f(v) in schedule
St−1; if no such link exists in St−1, but all K radios of v are
used up in St−1, then l′ is the one with the minimum value of
wlrl. If there is such an l′, then v computes loss(v) = wl′rl′
based on the above; else loss(v) = 0.

2) The net gain due to node v activating a link over band fj is
computed as follows.

gain(v) = max
{l:tail(l)=v,band(l)=fj}

(wl(t)− loss(v))+ (1)

5: Computing maximum gain link in every group: Every group computes
the outgoing link in that group with the maximum gain in a distributed
manner. In Section IV-B, we show that, this can be done with minor
modifications in CSMA protocol in O(ln2 ∆) mini-slots where a mini-
slot is the time taken to exchange a pair of RTS-CTS message between
communicating nodes. At the end of this step, every node knows which,
if any, of its outgoing link has maximum gain. These nodes are termed
high-priority nodes.

6: Contention resolution among high-priority nodes: Finally, the high-
priority nodes perform CSMA like contention resolution in their
selected frequency band. All other nodes that are not high priority,
but were active in St−1, continue their transmission only if they do
not sense the channel to be occupied by a high-priority node (this is
inferred by listening to RTS/CTS in the contention resolution phase.)

7: end for

The following simple procedure computes the maximum-
gain link in a group in Tcomp = O((ln ∆)2) mini-slots.

LOCAL MAX: Computing maximum gain in a group

Each group is isomorphic to a start graph. We will call the start-
center as group leader and every other node as follower. Suppose Nv
is the number of nodes in a group to which node v belongs. Gain of
a node is given by (1).

Step 1: Initially every follower node with positive gain is a
candidate winner node. Initialize broadcast probability of every
node v with positive gain as

pbc(v) =
1

2Nv

Step 2: In the next mini-slot, with probability pbc(v), a follower
v sends an RTS message containing its gain (say the value is g).
If there are no collisions, the group leader sends a CTS echoing
the gain.
Step 3: In case of CTS, all follower nodes with equal or lower
gain than g, remove them from the list of candidate winners.
Step 4: Once every C1(1 + ln(Nv)) mini-slots, every candidate
node v updates pbc(v) as

pbc(v)← 1.5pbc .
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Here C1 is a positive constant.
Step 5: Step 2-4 are are repeated with the remaining candidate
winners for C2 ln(Nv)(1 + ln(Nv)) mini-slots, where C2 is a
positive constant.

Lemma IV.1. Suppose we choose C1 = 1/ ln(9/8) and
C2 = C1/ ln(1.5). Then, Procedure LOCAL MAX computes
the maximum gain in a group in Tcomp = O(ln ∆)2 mini-slots
with probability at least 1/2, where ∆ is the maximum degree
of the communication graphs over all bands..

Proof: See the longer version [7].

C. Throughput and Delay Guarantee

The following result states the throughput and delay guar-
antee of MAXIMAL-GAIN scheduling algorithm in terms of
the graph-parameters κ1 and βmax defined in Section III.

Theorem 1. The MAXIMAL-GAIN Algorithm has time-
complexity of O((ln ∆)2) times the time required to exchange
an RTS-CTS message between two neighbors. The algorithms
provides the following guarantees:

(i) MAXIMAL-GAIN algorithm stabilizes all arrival rate
vectors λ such that λ ∈ Λ

µ , where

µ = βmax(1 + 2(1 + κ1)) . (2)

(ii) If λ + ε ∈ Λ/µ for some ε > 0, then the total
queue length achieved by the MAXIMAL-GAIN algorithm,
Qtot(t) =

∑
h qh(t) satisfies

lim sup
T→∞

1

T

T−1∑
t=0

E[Qtot(t)] =
c1 MH

ε
,

where c1 is a universal constant independent of the network
parameters and radio resources.

The proof is relegated to the Appendix.

Remark 3 (On total queue length bound). Part (ii) of The-
orem 1 can also be stated in terms of offered load ρ < 1.
Suppose λ ∈ ρΛ. Then under mild technical conditions (see
Proposition 4, [18]) that hold for most practical topologies,
one can choose ε = c2(1 − ρ/µ) for network independent
constant c2, and thus leading to a total queue-length bound
of O(MH/(1− ρ/µ)).
Remark 4 (On the proof of Theorem 1). Since we perform
a single iteration of local search in each time-slot, each
subsequent iteration of local search is with a modified weight
(queue-length). The main technical contribution of the proof
is in showing that our local search based algorithm converges
even though the weights (or queue-lengths) are changing
dynamically. This is unlike Glauber Dynamics based local
search where the weights must be a slowly-changing function
of queue-length for convergence to happen [26].

Remark 5 (Refinements of Theorem 1). The results of Theo-
rem 1 can be further refined as follows:

1) Suppose the MAXIMAL-GAIN algorithm repeats the
randomized algorithm for computing LOCAL-MAX
ln(1/ε)/ ln(2) times so that the maximal gain in a group
is computed with probability at least 1−ε instead. Then,

the achievable throughput region in Theorem 1 improves
to Λ/µ′ where

µ′ = βmax(1 + 1+κ1

1−ε ) , (3)

and time complexity of the algorithm becomes
O((ln ∆)2 ln(1/ε)) times the time required to exchange
an RTS-CTS message between two neighbors.

2) We have stated Theorem 1 simply in terms of generic
graph parameters. However, we can provide improved
bound in terms of one-time grouping that we perform.
Precisely, let the grouping be such that any general-
ized link is interfered by links from at most σ distinct
groups other than its own group. Then, combined with
ln(1/ε)/ ln(2) repetitions of randomized LOCAl-MAX,
the achievable throughput region in Theorem 1 improves
to Λ/µ′′ where

µ′′ = βmax(1 + 1+σ
1−ε ) . (4)

Thus, if the one-time grouping can be performed effi-
ciently so that σ is low, then the bounds can be much
better.

1) Performance guarantee for special cases: Using The-
orem 1 and refinements in Remark 5, we can show that he
throughput guarantee can be bounded by a constant for many
practical networks:
• Example 1. Under isotropic propagation, simple geomet-

ric considerations show that the 2-hop neighborhood MIS
cover is a constant independent of network parameters,
i.e., κ1 = O(1). Along with the fact that the interference
degree, βmax is a constant under isotropic propagation,
the throughput loss of MAXIMAL-GAIN schedule is at
most O(1) fraction of full throughput.

• Example 2. In a linear chain or ring based network
graph, the throughput guarantee is 1/8 (using (4)) of the
maximum throughput. Assuming efficient grouping, same
bound holds for a network formed by combining several
linear chains where the nodes from two different chains
interfere only where the chains intersect. This kind of
network is representative of infrastructure based wireless
networks deployed by placing nodes along city roads.

• Example 3. For tree graphs such that the tree junctions
are at least 2-hops away, the throughput guarantee can be
shown to be within around 1/8 of maximum throughput
if the set of group leaders include all tree junctions.

In Section VI, we show that the actual throughput guarantee
of MAXIMAL-GAIN is much better in practice for random
topologies and grid. In fact, in all our evaluations even under
asynchronous setting, we found that the throughput loss of our
algorithm is never more than 20%.

2) Comparison with other algorithms: It is instructive to
compare the theoretical performance of our algorithm with two
popular algorithms: greedy maximal scheduling (GMS) [19],
[20] and Q-CSMA [14], [24], [26] across three important
measures: complexity, throughput, and delay. Our algorithm
has a throughput guarantee factor µ = βmax(1 + 2(1 + κ1))
that has two multiplicative terms: a term βmax arising due
to greedy computation of maximal gains link within a group,
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and a term (1 + 2(+κ1)) arising due to contention resolution
among winner links of different groups. The second term is
essential due to grouping mechanism which is key to making
our algorithm distributed with a complexity that simply scales
as O((ln ∆)2) which is independent of the network size. On
the other hand, greedy maximal scheduling (GMS) [19], [20]
adapted to our setting has a throughput guarantee factor of
βmax and provides optimal throughput scaling as with our
algorithm. However, the price of GMS is in terms of much
higher computational complexity. Indeed, even a distributed
implementation of greedy maximal schedule could easily
require Ω(MH log(MH)) mini-slots [20] and this could be
difficult to implement even for moderate values of number of
bands (M ) and number of hops (H). Thus, the κ1 dependent
second term in our performance guarantee can be viewed as
the cost of distributed implementability with a complexity
that is practically independent of network size and fully
independent of number of bands. Finally, Q-CSMA or Glauber
Dynamics based algorithm when applied to our setting would
provide a throughput of 100% and distributed-complexity that
is essentially O(1); however, the price of such an algorithm is
that total queue length is not guaranteed to be even polynomial
in the network parameters like number of nodes, bands etc.
Thus, our algorithm strikes a trade-off between distributed-
complexity, throughput, and delay guarantee by simultaneously
guaranteeing bounded throughput loss, network independent
distributed complexity, and linear (in number of hops) delay
scaling. Our evaluation in Section VI using multi-band asyn-
chronous versions of the algorithms show that, throughput of
MAXIMAL-GAIN is typically within 80% of throughput of Q-
CSMA and almost on par with GMS, and average delays are
considerably better than both Q-CSMA and GMS.
D. Extensions

Extensions to account for ACI: Due to leakage in adjacent
frequency band caused by non-ideal filters in transmitters,
interference can be also caused by radios transmitting in
adjacent frequency band [8]. We can account for this by
defining the interfering links Il to be a union of links causing
secondary interference and links causing ACI. Some minor
modifications are required in the local computation of gain in
MAXIMAL GAIN scheduler. We skip the details.

Extensions to multi-hop setting: Our algorithm can be
extended to a multi-hop setting by choosing the weights
using “queue back-pressure” mechanism developed in [33].
Essentially, instead of choosing the weights as queue-lengths,
they must be chosen as differential queue-length as compared
to next hop. Some minor changes are required to ensure that
nodes can learn suitable information from the neighborhood
to compute the queue back-pressure based weights.

V. ASYNCHRONOUS MAXIMAL-GAIN

We now use the design philosophy of synchronous
Maximal-Gain algorithm to develop a distributed MAC sched-
uler for wireless networks where nodes could be asynchronous
or where control packets could be lost. Since the asynchronous
model is difficult to analyze without further assumptions, we
will provide simulation evaluation of this asynchronous MAC
in Section VI.

Due to multi-radio multi-band setting, there are two key
challenges in extending our synchronous MAC to an asyn-
chronous setting. First, since there are fewer radios (per node)
than bands in a typical setting, it is difficult for nodes to keep
track of activities and availabilities of different bands. Second,
nodes in a group may not have up to date information on the
maximum-gain link.

To alleviate the first problem, we assume that each wireless
node has one extra radio for exchange of control messages on a
dedicated control band which is a standard approach [17]. All
nodes use the control band to send RTS/CTS messages to re-
serve an intended band (the intended band is decided using our
algorithm described shortly). To alleviate the second problem,
we use the design philosophy of synchronous Maximal-Gain
scheduler as follows. Recall that in the synchronous Maximal-
Gain algorithm, in each scheduling slot, each group does the
following: (i) choose a band at random and (ii) the maximum-
gain link contends for channel access in the chosen band.
This can be viewed as assigning priorities to (generalized)
links as follows: any maximum-gain link in a randomly picked
band has highest priority (HP), the links that transmitted in
the previous transmission opportunity but has no HP link in
the interference neighborhood, have medium priority (MP), all
other links have low priority (LP) and can transmit only if no
HP and MP links contend. The prioritization of the links can
be achieved by allowing links of different priorities to contend
in different parts of contention window as described shortly.

With the above intuition, we now describe our asynchronous
MAC scheduler. In the following, we assume that the
grouping of the nodes is done identical to that described
for the synchronous algorithm. The star-centers are called
leaders and they have some extra functionalities. Later in this
section, we describe a method to eliminate the role of a leader.

The Asynchronous MAXIMAL-GAIN Algorithm

Leader’s algorithm: The leader in each group performs two key
functions: maintaining, updating, and broadcasting information about
the group members, and selecting the maximum-gain link dynami-
cally.
(1) Information update: All nodes send RTS/CTS messages over

the control band for an intended link (the choice of the intended
link is described later in the algorithm). Any RTS/CTS message
contains the following: (i) queue-length information of the intended
link, (ii) the frequency band of the intended link, (iii) and the data
rate of the intended link. Whenever a leader hears an RTS/CTS
message from a group member over the control band, it does the
following:
• Weight Update: It updates the queue size of the intended link

from the information embedded in the RTS/CTS messages.
• Data rate update: If the data rate of the intended link has

changed, then this is also updated.
Nodes also send queue length updates when change in queue length
due to packet arrivals is beyond a threshold.

(2) Maximum-Weight Link Selection: Once every T time units, a
leader chooses a random band and selects the maximum-gain link
in its group using information of the weights and the data rates of
each link (see Eqn. 1). The leader then broadcasts over the control
channel the identity of the chosen maximal-gain generalized link,
and also the identity of an existing active link that has to be
deactivated (if any). This is because, gain computation requires
that one link is activated at the expense of an existing active link.
The value of T is a design parameter and is typically of the order
of a few MAC packet transmission times.
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Node’s algorithm: For every node, corresponding to each radio is
a set of 3 lists of (generalized) links, namely High Priority (HP)
list, Medium Priority (MP) list and Low Priority (LP) list. There are
two components of node’s algorithm: addition and deletion into these
lists, and prioritized CSMA/CA based on these lists. These two are
described below.
(1) Addition and deletion into HP, MP, LP lists: The lists are

updated as follows for each radio of each node.
• HP: If a node hears a broadcast (over the control band) from
its leader indicating that it is the transmitter of the maximum-gain
generalized link, it adds this link to the HP list. A link is removed
from the HP list once it gets activated for the first time.
• MP: Any link that gets removed from the HP list is added to the
MP list of the same radio. A link in MP list is removed only when
it loses contention of the channel over the band corresponding to
the link.
• LP: Every other link, that is not a part of HP or MP list belongs
to LP list. It gets removed only when a link is added to any HP list
using the method described above. We ensure that a link belongs
to LP list of all radios or none of the radios.

(2) Maximal-Gain CSMA/CA: Whenever a radio becomes free, it
performs the following steps:
(i) Step-1: The radio visits the lists in order of priority (first HP,

followed by MP and then LP) and picks the first inactive link
that has non-zero queue length.

(ii) Step-2: The radio switches to the selected link’s band and
assesses if the channel is free. If it is free, it transmits
an RTS message over the control channel at a slot selected
uniformly between [0, CW/2 − 1] if it is an HP-link, be-
tween [CW/2, 3CW/4 − 1] if it is an MP-link, and between
[3CW/4, CW−1] if it is an LP-link. The RTS message contains
the following information (i) the destination and communication
band, and (ii) queue size of the link. When the destination node
receives an RTS, it responds with a CTS if resources (radio and
band) are available to it. The CTS also echoes the information
in the RTS.

(iii) Step-3: If the contention is successful, then transmission
happens for a constant time interval TXOPT for HP-links,
and for one packet duration for MP and LP links. The constant
duration TXOPT is chosen so that multiple packets can be
transmitted (typically a few ms).

Eliminating the role of group leaders: Since grouping is
still necessary, first we ensure that members of the group pick
the same random band at every decision epoch, as required
by our algorithm, by using the same source of randomness
(assume small clock drifts). Same source of randomness within
a group can be achieved in the initialization phase by using
the MAC address of the neighboring node who initiates group
formation first. Second, since the control channel is in the
lowest frequency band, all nodes in a group overhear all
RTS/CTS messages thus making sure every node can locally
compute the maximum gain link in the group.

Grouping periodicity: The grouping in our algorithm im-
plicitly assumes a static network. In presence of node churn,
grouping can be performed incrementally as follows. New
nodes that join can either join an existing group if there is
leader in the neighborhood, else, the node can start a new
group. In addition, a periodic and infrequent re-grouping can
be performed to have fewer groups.

Overheads: The RTS/CTS messages in our protocol contain
more information than the standard CSMA/CA RTS/CTS
messages. We quantify these overheads for practical networks.
The RTS/CTS message contains three pieces of information
(i) destination and band, (ii) queue size of the link and (iii)
identity of radios to be used at source and destination. The

first piece of information requires 6 bytes for the destination
MAC and 1 byte for the band (we do not expect more than
256 bands). For the second piece of information, we assume
that the queue size does not exceed 256 packets, requiring one
byte. Finally the identity of the radio requires not more than
1 byte. Therefore the total overhead is less than 9 bytes.

Robustness: Our protocol is robust in the sense that it works
even with slightly outdated queue size information with the
leaders. Furthermore, it also does not require the nodes in
the group to receive every broadcast about maximal-gain links
from the leader correctly. We validate this in Section VI.

VI. EVALUATION

The goals of our simulation experiments are to (i) inves-
tigate average delay performance of our MAXIMAL-GAIN
algorithm (ii) evaluate the performance of our algorithm in
terms of throughput and (iii) evaluate the robustness of our
algorithm with respect to loss of control messages in the
network. We compare asynchronous MAXIMAL-GAIN algo-
rithm against two popular algorithms: asynchronous and multi-
radio multi-band band extension to Q-CSMA algorithm [24]
called MB-QSMA, and a multi-radio and multi-band version
of greedy maximal scheduling [19], [20] called MB-GMS.
Roughly speaking, Q-CSMA functions as follows. A link
is activated if it wins contention in a CSMA like manner;
however, a link decides to contend only if the following two
conditions are met: (a) if no other link in the communication
range of this link was active in the previous slot (b) the
link gets a head upon tossing a coin with probability of
head as a suitable increasing function of queue length. MB-
QCSMA has two minor changes. (a) The link contention is
conditional to availability of a free radio at the node and
(b) contentions are done on a control channel with partitions
in time, for links of each band. We call our extension MB-
QCSMA. It is easy to show that MB-QCSMA achieves 100%
throughput, and thus, this allows us to quantify the throughput
loss of asynchronous MAXIMAL-GAIN. We also perform
comparison with MB-GMS where greedy maximal schedule is
computed with generalized-links (instead of links in traditional
GMS) every TXOPT period of time; links that are part of
greedy maximal schedule use RTS-CTS to occupy channel
for TXOPT time duration. Recall that high priority links in
asynchronous MAXIMAL-GAIN also stay active for TXOPT
time duration.

All our algorithms are implemented over a packet-level,
realistic, network simulator called OMNET++ [1]. We use the
MIXIM framework for 802.11g like physical layer.

A. Setup

Topology and traffic: We study the network performance
for single-hop flows for two types of topologies (a) 25 nodes
are placed on a grid in a 2500 m2 area. (b) 25 nodes are
randomly deployed in the same area, with a minimum distance
of 15 m. Source-destination pairs are generated randomly.
To model burstiness of packet arrivals, burst length is drawn
from a Zipfian distribution with parameter 1.6, and burst
inter-arrival times are drawn from an exponential distribution.
To generate realistic interference and RSSI values, we use
standard frequency dependent ITU path loss models [4].
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Fig. 2. Throughput attained by Asyncronous Maximal Gain as compared
to MB-QCSMA and MB-GMS. Note that, ignoring overheads, MB-CSMA
achieves 100% throughput

Fig. 5. (a): Queue evolution of a typical bottleneck node over 10 seconds.
(b): CDF of the queue length values of a bottleneck node over 10 seconds.
Note that the probability of queue length being less than 25 is close to 50%
with MB-QCSMA while it is close to 100% in MAXIMAL-GAIN.

For grid deployment, we present results that are averaged
over 60 runs for 5 seconds (1000 simulation slots) with
different seeds. For random deployments, we generate 12
random networks and generate traffic with 5 different seeds
for each network.

Parameters: We present the results for nodes with two and
three data radios and using 8-12 frequency bands randomly
chosen from among the TV whitespace bands (512 - 698
MHz). We choose these numbers because we observe that
several cities in US have around these many whitespaces
available. Each whitespace band is 6 MHz wide.

B. Results

Delay gains: We compare the network-wide average delay
of MAXIMAL-GAIN with MB-GMS (Figure 3) and MB-
QCSMA (Figure 4). We show the C-CDF of delay improve-
ments (average queue length with MB-QCSMA / Average
queue length with MAXIMAL-GAIN) with our asynchronous
algorithm for a moderate load (50%) and high load (80%). to
answer the question : how often are the delay gains significant?
We show the results for 25 node grid deployment with 8 bands
and 25 node random deployment with 12 bands. Compared
to MB-QCSMA, as shown in Figure 4, under medium load
conditions, the gains are 2× (1.75×) or more in 50% of the
runs, and 1.75× (1.5×) or more in 80% of the runs for grid
(random) topology. Also, compared to MB-GMS, as shown in
Figure 3, under high-load conditions the gains are 2× (2.25×)
or more in 50% of the runs, and 1.75× (2×) or more in 80%
of the runs for grid (random) topology. Similar gains were
observed with 12 (8) bands for grid (random) topologies.

To understand this network-level behaviour more clearly,
we observe the behavior of queues at individual nodes in

the network. Figures 5(a) and 5(b) plot the queue evolu-
tion of one of the congested nodes in the network over a
period of 10 seconds. We clearly see that the MB-QCSMA
algorithm allows the queue size to grow large before giving
the link preferential treatment and draining it. On the other
hand, the MAXIMAL-GAIN algorithm drains all queues more
uniformly. In Figure 5(b), we plot the CDF of the queue sizes
and we observe that, with MAXIMAL-GAIN, queue length is
less than 10 for 97% of the time, whereas queue length is less
than 10 in only 15% of the time with MB-QCSMA. We also
observed similar trends in comparison to MB-GMS.

Our key takeaways are as follows:
• The delay gains are more significant (typically in the

range 2− 4×) under heavy load.
• The gains are more prominent for regular topologies like

grid, pointing towards the increased benefit of our MAC
in scenarios of careful network deployment.

• Our algorithm not only shows gains in average queue-
length or delay, but also ensures short queue-lengths on
most times during network operation. Thus, our MAC
allows the designer to use a small MAC-layer buffer.

Throughput loss: We increase the average arrival rates
for flows in the network, till the queues at the nodes start
exploding. We call the maximum average arrival rate that the
network can support as the maximum stabilizable rate of the
network under a given scheduling algorithm. As shown in
Figure 2, the maximum stabilizable rate of MAXIMAL-GAIN
algorithm is within 80-90% of the maximum stabilizable rate
of Q-CSMA algorithm. Also, in most instances, the throughput
attained by our algorithm is on par with or better than
MB-GMS. Thus, we summarize that, the throughput loss of
our delay oriented MAXIMAL-GAIN MAC is no more than
10− 20%.

Robustness: MAXIMAL-GAIN algorithm requires the
leader to overhear all RTS/CTS communications in the group
for correct operation. In practice, it is possible that the leader
does not hear all RTS/CTS messages, due to collisions and
losses and hence has some outdated information. To measure
the robustness of our algorithm to such gaps in accuracy, we
vary the probability with which the RTS/CTS messages are
overheard by the leader and measure the resulting throughput
and delay in the network. We did not observe any significant
drop in either throughput or delay performance across several
runs even when the probability of not hearing messages was
increased to 50%. Thus, our algorithm is robust to somewhat
outdated information.

VII. CONCLUSION

In this paper we have shown that design of practical
distributed algorithms for multi-band multi-radio networks are
possible that achive low delays, almost achieve full throughput,
and have low overhead and complexity.
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APPENDIX A
PROOF OF THEOREM 1

We will start by proving Part 1 of Theorem 1. Then, we
will show that the Part 2 of Theorem 1 follows from Part 1
along the lines of proof of delay bound in [18].

Proof of Part 1 of Theorem 1: The max-weight (MW)
schedule, defined by the schedule that maximizes the total
weight (queue length times the link rate), in every time-slot
stabilizes the network [33]. In [11], the result was generalized
to show that, any schedule such that the total weight differs
from the max-weight schedule at most by an additive constant
also stabilizes the network. While [11] showed it for switch
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scheduling, the technique is very general and can be adapted
to show the following generic result for our framework.

Lemma A.1 (Adapted from [11]). Suppose a randomized
algorithm has total weight W (t) at time t and let W ∗(t) be
the weight of the MW schedule. If

E [W ∗(t)− kW (t)] < C , (5)

for some C < ∞ and k < ∞, then the algorithm stabilizes
any arrival λ ∈ Λ

k .

Thus, if we show that MAXIMAL-GAIN schedule satis-
fies (5) for k = µ as defined in Theorem 1, then Part 1
immediately follows. We will now argue that the condition
given by (5) is satisfied by a scheduling algorithm, if the
following inequality holds for some |α| < 1:

E[W ∗(t)− µW (t)] ≤ αE[W ∗(t)− µW−1(t)] , (6)

where W−1(t) is the total weight at time t of the schedule at
time t−1 (denoted by St−1). In other words, if we activate at
time t the same set of links as the schedule at t− 1, the total
weight is denoted by W−1(t). We will now show (6)⇒(5).

First consider the case 0 ≤ α < 1. We introduce some
notations. Let δ1 be the upper bound on the expected total
weight increase that is possible from one slot to the subsequent
slot if the arrival rates are in the stable region. Similarly, let δ2
be the bound on maximum decrease in weight possible from
one slot to the subsequent slot. Clearly, there exists δ1 < ∞
because

E[W ∗(t) | W ∗(t− 1)] ≤W ∗(t− 1) +
∑
h∈H

E[Ah(t)]

=W ∗(t− 1) +
∑
h

λh

⇒ E[W ∗(t)] ≤ E[W ∗(t− 1)] +
∑
h

λh

which follows from the fact that, from t−1 to t, each weight
increases by at most the number of arrivals at t. Thus, we
can choose δ1 =

∑
h λh. Also, δ2 < ∞ because the number

of packets that can be served over a time slot is bounded.
Now, using the facts that E[W ∗(t)] ≤ E[W ∗(t− 1)] + δ1 and
W−1(t) ≥ W (t − 1) − δ2 (because W−1(t) and W (t − 1)
are the total weight of the same schedule but in successive
time-slots), we have the following if (6) holds:

E[W ∗(t)− µW (t)] (7)
≤ αE[W ∗(t)− µW−1(t)]

≤ α(E[W ∗(t− 1)]− µE[W (t− 1)]) + α(δ1 + µδ2)

≤ α2(E[W ∗(t− 2)]− µE[W (t− 2)]) + (δ1 + µδ2)(α+ α2)

≤ α

1− α ((δ1 + µδ2)) ,

where, we have assumed that the system was started at time
t = −∞ with W ∗ = 0 and W = 0.

The case when −1 < α ≤ 0 follows by defining δ1 as the
upper bound on the decrease of expected total weight that is
possible from one slot to the subsequent slot, and by defining
δ2 be the bound on maximum increase in weight possible from
one slot to the subsequent slot. A similar calculation can then
be performed.

Thus, we have argued that, (6) implies (5) with k = µ which
in turn implies Part 1 of Theorem 1. The following Lemma
asserts that Equation 6 holds from which the desired result
follows.

Lemma A.2. The Maximal-Gain algorithm satisfies

E [W ∗(t)− µW (t)] ≤ αE [W ∗(t)− µW−1(t)] ,

where

µ = βmax(1 + 2(1 + κ1)) , α = 1− (θ + θ
2(1+κ1) ) ,

and θ = 1− (1− 1
M )1+κ1 .

Remark 6. Note that |α| < 1 because 0 < θ +
θ/(2(1 + κ1)) < 2. This is true for any M and κ1.

Proof:
Let St be the set of activated/scheduled links in time slot

t and let St(fj) be the set of those links that operate over
frequency band fj . We will index by k the groups formed by
the grouping in MAXIMAL-GAIN scheduling. Let Lk(j, t) ⊆
St(fj) be the set of all generalized links on band fj activated
at time t such that the node tail(l) belongs to group k.

First, we lower bound W (t) − W−1(t). To do this, we
consider two kinds of links: winner links that are egress from
a node based on the outcome of Algorithm LOCAL-MAX
described in Section IV-B, and every other links that were
also active in the previous time slot but who lose their weight
as new winner links get activated. Clearly, the winner nodes
that become a part of the schedule deactivate some links in
their interference neighborhood. Let W+(t) be the random
variable denoting the total gain in weight of winner links at
time t compared to their total weight if St−1 was also used at
time t; and let W−(t) the random variable denoting the loss
in weight of deactivated links compared to their total weight
if St−1 was also used at time t.

W (t)−W−1(t) = W+(t)−W−(t) (8)

In the following, we will first lower bound E[W+(t)|St,w(t)]
and then upper bound E[W−(t)|St,w(t)]. We will now in-
troduce some notations. Recall that in the MAXIMAL-GAIN
algorithm, each group leader selects a band at random and
picks the links with the maximum gain to transmit. This link
then does CSMA contention to transmit on the chosen band.
It may well be that the chosen link is unable to transmit since
some other link in an interfering group wins the contention on
that band. Define the indicator variable Ik,j as

Ik,j =


1 if group k chooses band fj at random

and winner captures channel

0 else

We also define

Imax
k,j =


1 if group k succeeds in computing

the max gain in the group

0 else

Now define dl(t) and el(t) as the total weight decrease due to
deactivation of other active links (that were active in St−1) at
tail(l) and head(l), respectively. Now note that, for all possible
sample paths, we can bound the random variable W+(t) as

W+(t) ≥
∑
k,j

Ik,jI
max
k,j max

l∈Lk(j,t−1)
(([wl(t)rl − dl(t)])+) (9)
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because the term maxl∈Lk(fj ,t−1)[wl(t)rl−dl(t)]+ represents
the maximum gain in group k at time t (see eqn. (1) in Step-
4(2) of Algorithm I). We also have,

max
l∈Lk(j,t−1)

[wl(t)rl − dl(t)]+

≥ max
l∈Lk(j,t−1)∩L∗(j,t)

[wl(t)rl − dl(t)]+

≥ max
l∈Lk(j,t−1)∩L∗(j)

[wl(t)rl]−
∑

l∈Lk(j,t−1)

dl(t)

Here L∗(j, t) is the set links of which are allocated band j in
the optimal allocation at time t. The first step follows from the
fact constraining the allocation over the set Lk(j, t)∩L∗(j, t)
will only decrease the value of the expression, and the second
step follows from the fact that maximum of values of elements
is less than the sum of their values. Note that we have,

max
l∈Lk(j,t−1)∩L∗(j,t)

[wl(t)rl] ≥
1

βmax

∑
l∈Lk(j,t−1)∩L∗(j,t)

wl(t)rl,

where βmax is the interference degree of the network. This is
because max is greater than the average and there can be at
most βmax links active on a band in a group. We thus have

max
l∈Lk(j,t−1)

[wl(t)rl − dl(t)]+

≥

 ∑
l∈Lk(j,t−1)∩L∗(j,t)

wl(t)rl
βmax

−
∑

l∈Lk(j,t−1)

dl(t)

+

(10)

Substituting (10) in (9) followed by taking expectations in (9),
we obtain

E
[
W+(t)|St−1,w(t)

]
(11)

≥
∑
k,j

1
2
pk,j

 ∑
l∈Lk(j,t−1)∩L∗(j,t)

wl(t)rl
βmax

−
∑

l∈Lk(j,t)

dl(t)

+

,

(12)

where Pr{Ik,j = 1} = pk,j and we have also used the fact
that Pr{Imax

k,j = 1} ≥ 1/2 (from Lemma IV.1). Denoting by
Xk,j the random variable for the number of winner links of
other groups on band j that interfere with group k’s winner
at time t (these links are also picked as winners by their
respective leaders over the same band as k). Assuming that
the contention resolution is perfect in the sense that (i) with
probability one, at least one of the contending nodes grab
channel access, and (ii) all contending nodes are equally likely
to get channel access, we can now bound pk,j as follows:

pk,j = Pr(leader chooses band fj)

× Pr

(
winner link in group

wins contention | band fj is chosen
)

=
1

M
E
[

1

1 +Xk,j

]
Since the number of interfering links of winner link in a group
is upper bounded by κ1, Xk,j can shown to be stochastically
dominated from above by the distribution BIN(κ1, 1/M) (i.e.,
Pr(Xk,j ≥ n) ≤ Pr(BIN(κ1, 1/M) ≥ n) ∀n ≥ 0). Thus it
follows that,

pk,j ≥
1

M
E
[

1

1 + BIN(κ1,
1
M )

]
(13)

=
1

M

κ1∑
n=0

1
1+n

(
κ1

n

)(
1
M

)n (
1− 1

M

)κ1−n
= θ

1+κ1
,

where θ = 1 − (1 − 1/M)κ1+1 and the last equality follows
from standard computations with Binomial distribution. Sub-
stituting (13) into (11) we obtain the following.

E
[
W+(t)|St−1,w(t)

]
≥ θ

2(1 + κ1)

∑
k,j

 ∑
l∈Lk(j,t)∩L∗(j,t−1)

wl(t)rl
βmax

−
∑

l∈Lk(j,t−1)

dl(t)

 ≥ θ

2(1 + κ1)

(
W∗(t)
βmax

−W−1(t)
)

(14)

We will now derive an upper bound on W−(t). Note that,

E
[
W−(t) | St−1,w(t)

]
=

∑
l∈St−1

wl(t)rl.Pr

(
l is in the interference neighborhood

of a winner link

)
≤

∑
l∈St−1

wl(t)rl(1− (1− 1
M )1+κ1) = θW−1(t) (15)

Substituting, (14) and (15) into (8), we finally get

E[W (t)−W−1(t)] ≥W ∗(t)
θ

2βmax(1 + κ1)
−(θ+ θ

2(1+κ1)
)W−1(t)

(16)
which upon further rearrangement of term yields

E [W ∗(t)− µW (t)] ≤ αE [W ∗(t)− µW−1(t)]

where

µ = βmax(1 + 2(1 + κ1)) , α = 1− (θ + θ
2(1+κ1) ) ,

where θ = 1− (1− 1
M )1+κ1 .

As argued before, Lemma A.2 implies Lemma A.1 with
k = µ which in turn implies Part 1 of Theorem 1.

Proof of Part 2 of Theorem 1: This part follows along
the lines of the delay analysis in [18] with some minor
modifications. See [7] for a proof sketch. �


	I Introduction
	I-A Our Contributions

	II Related Work
	III Preliminaries
	III-A Network Model
	III-B Scheduling Problem

	IV Synchronous MAXIMAL-GAIN
	IV-A Intuition and Algorithm Overview
	IV-B Computing Maximum Gain in a Group
	IV-C Throughput and Delay Guarantee
	IV-C1 Performance guarantee for special cases
	IV-C2 Comparison with other algorithms

	IV-D Extensions

	V Asynchronous Maximal-Gain
	VI Evaluation
	VI-A Setup
	VI-B Results

	VII Conclusion
	References
	Appendix A: Proof of Theorem 1

