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Abstract

In this paper, we study a distributed opportunistic scheduling problem to exploit the channel

fluctuations in wireless ad-hoc networks. In this problem, channel probing is followed by a transmission

scheduling procedure executed independently within each link in the network. We study this problem for

the popular block-fading channel model, where channel dependencies are inevitable between different

time instances during the channel probing phase. Different from existing works, we explicitly consider

this type of channel dependencies and its impact on the transmission scheduling and hence the system

performance. We use optimal stopping theory to formulate this problem, but at carefully chosen time

instances at which effective decisions are made. The problem can then be solved by a new stopping rule

problem where the observations are independent between different time instances. Since the stopping

rule problem has an implicit horizon determined by the network size, we first characterize the system

performance using backward induction. We develop one recursive approach to solve the problem and

show that the computational complexity is linear with respect to network size. Due to its computational

complexity, we present an approximated approach for performance analysis and develop a metric to

check how good the approximation is. We characterize the achievable system performance if we ignore

the finite horizon constraint and design stopping rules based on the infinite horizon analysis nevertheless.

We present an improved protocol to reduce the probing costs which requires no additional cost. We
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characterize the performance improvement and the energy savings in terms of the probing signals. We

show numerical results based on our mathematical analysis with various settings of parameters.

Index Terms

Opportunistic scheduling, media access control, ad-hoc networks, channel probing, block fading,

optimal stopping, backward induction.

I. INTRODUCTION

There have been many works on opportunistic scheduling to exploit the channel fluctuations in

the past decade. Instead of treating fading as a source of unreliability and trying to mitigate such

channel fluctuations, fading can be exploited by transmitting information opportunistically when

and where the channel is strong [1], [2]. On the other hand, opportunistic spectrum access and

spectrum sharing has been widely studied for cognitive radio networks [3]. Hence it is important

to understand the trade-off between the costs spent for channel sensing and the opportunities (e.g.

system throughputs) obtained for such systems. Most existing works on opportunistic scheduling

assume a cellular like system where a central scheduler tries to optimize the overall system

performance by selecting the on-peak user for data transmission [1], [4]–[8]. In contrast, in

ad-hoc networks it is necessary to access the wireless medium and schedule data transmission

in a distributed fashion. So far few existing works have studied this problem. Such examples

include rate adaptation with MAC design based on the RTS/CTS handshaking for IEEE 802.11

networks [9]–[11] and channel-aware ALOHA for uplink communications [12]–[14]. However,

rate adaptation focuses on exploiting temporal opportunities while leaving the media access

issue to the RTS/CTS mechanism. On the other hand, channel-aware ALOHA associates the

probability to access the uplink with the channel state information (CSI) assuming that each

user knows its own CSI. These schemes ignore the overhead due to the distributed nature of

ad-hoc networks when considering the joint media access and scheduling problem. In fact, these

costs should be counted into the protocol design in order to fully exploit the channel fluctuations

in the network.

In [15], the authors proposed to study a distributed opportunistic scheduling (DOS) problem for

ad-hoc networks, where M links contend the wireless medium and schedule data transmissions

in a distributed fashion. In such networks, the transmitter has no knowledge of other links’
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channel conditions, and even its own channel condition is not available before a successful

channel probing. The channel quality corresponding to one successful probing can either be

good or poor due to channel fluctuations. In each round of channel probing, the winner makes

a decision on whether or not to send data over the channel. If the winner gives up the current

opportunity, all links re-contend again, hoping that some link with better channel condition can

utilize the channel after re-contention. The goal is to optimize the overall system performance.

The authors show that the decision on further channel probing or data transmission is based only

on local channel conditions, and the optimal strategy is a threshold policy.

One key issue in the design and analysis of opportunistic scheduling protocols for wireless

ad-hoc networks is to seek an optimal trade-off between the costs to obtain the CSIs and the

opportunities that can be exploited based on these information. When channel probing is adopted

for this purpose, the problem reduces to the tradeoff between the durations elapsed for channel

probing and those remaining for data transmissions. The authors in [15] consider the constant

data time (CDT) model, where a fixed duration of T is available for data transmission regardless

of the time consumed for channel probing. To further understand this tradeoff and its impact on

the system performance, we consider the constant access time (CAT) model, where the total time

duration available is a fixed amount T and the protocol needs to decide how to split T between

channel probing and data transmissions in order to improve the system performance. On the other

hand, in [15] the winners’ channel rates were explicitly assumed to be independent during the

channel probing phase, which is an ideal assumption. As we will explain in Section III, there are

inevitable dependencies between the winners’ rates at different time instances during the channel

probing phase. In our previous conference paper [16], we analyzed the distributed opportunistic

scheduling problem for the CAT problem under the ideal assumption that the winners’ channel

rates are independent during the channel probing phase. In this paper, we further investigate

this problem under the popular block fading channel model. We explicitly consider how such

dependencies could impact the transmission scheduling and hence the system performance. We

use optimal stopping theory [17]–[19] to describe this problem, where we only choose the time

instances when an effective decision is taken to make our mathematical analysis tractable. The

new contributions of this paper include:

1) We study a distributed opportunistic scheduling problem under the popular block fading

channel model where there are inevitable dependencies between the winners’ channel rates
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during the channel probing phase. To the best of our knowledge, this problem has not been

studied in the literature.

2) We present a concept named “effective observation points”, where we only take observations

at time instances when effective decisions are made. In this approach, repeated decisions

by the same link are properly treated as a single decision. This approach makes our

mathematical analysis tractable, where winners’ channel rates in the probing phase are

not independent in the first place.

3) We characterize the optimal stopping rules and network throughputs for networks at different

scales. We show that the finite horizon analysis is necessary for networks whose sizes are

not large enough, otherwise the actual achievable network throughputs may deviate a lot

from the infinite horizon analysis results.

4) We propose a modified protocol to reduce the probing costs, which requires no additional

overhead for protocol design. By analytical and numerical results, we show that the new

protocol improves the system performance, in particular for scenarios when the network size

is not large or the network is “over-probed”. Furthermore, we show that the new protocol

can reduce the energy consumed in the channel probing phase considerably. This makes

the improved protocol of particular interest for networks whose nodes have limited battery

life.

This paper is organized as follows. In Section II we describe our system model for the

distributed opportunistic scheduling problem. In Section III we formulate the problem as an

optimal stopping problem and present our concept of effective observation points for analyzing

the problem. We first present a rigorous analysis for the CAT problem based on the finite

horizon approach in Section IV. Due to its computational complexity, in Section V we introduce

an approximate approach to characterize the system performance. In Section VI we present

a modified protocol to reduce the probing costs, and analyze the performance improvement

in network throughputs and energy savings in the channel probing phase. In Section VII we

introduce the results for the CDT problem and a performance comparison to the CAT problem.

We show our numerical results in Section VIII and finally conclude the paper in Section IX.
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II. SYSTEM MODEL AND MOTIVATION

In this section, we introduce our system model for the distributed opportunistic scheduling

problem. Similar to the problem discussed in [15], we assume M links share the wireless medium

without any centralized coordinator in an ad-hoc network. To access the wireless medium, all

links have to probe first. Suppose the links adopt a fixed probing duration τ . A collision channel

model is assumed, where a link wins the channel if and only if no other links are probing

simultaneously. If link m probes the channel with probability p(m), the duration of the n-th

round of channel probing is Tn = τKn, where Kn is the number of probings before the channel

is won by some link. Hence Kn has a geometric distribution Geom(ps) with parameter ps, where

ps =
M
∑

m=1

p(m)
∏

j 6=m

(

1 − p(j)
)

(1)

is the successful probing probability. Throughout this paper, we use superscript (m) to denote

variables related to the m-th link, and subscript n to denote variables related to the winner

in the n-th round of channel probing. We also use the terms “n-th round” of channel probing

and “time n” interchangeably. At the end of the n-th round, winner sn has an option to send

data through the channel at the current available rate Rn or to give up this opportunity. Based

on the current rate Rn, sn makes a decision on whether or not to utilize the channel for data

transmission in order to optimize the overall network throughput. If sn gives up the opportunity,

all links re-contend again. This procedure repeats until some link finally utilizes the channel.

The goal is that all links cooperate indirectly to make the channel accessible by some link with

a good enough channel quality.

The performance analysis in [15] relies on an important assumption: the winners’ channel

rates Rn are independent with respect to time n in the channel probing phase but can be locked

for a constant duration T in the data transmission phase. It should be noted that the independence

of R(m) within one block does not necessarily imply the independence of the winners’ rates Rn.

In fact, possible dependencies do exist between the winners’ channel rates Rn, since some link

m̃ might win the channel for multiple times within one block. This assumption can generally

hold when the network size (i.e. the number of links in the network) is infinitely large. It is not

necessarily true for a network with a finite size M . On the other hand, although opportunistic

scheduling has been shown to improve the system performance dramatically for large networks

[2], [8], [15], there are other factors we need to consider in the design of such systems. For
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example, we could take a look at the average waiting time for any link to access the medium

[20]. Suppose the channel fading are i.i.d. for all M links in the network. Then based on the

distributed opportunistic scheduling scheme [15], [16], any link m is able to access the current

block with a probability 1
M
. Hence it takes roughly M blocks before link m is able to send data

over the wireless channel. This will lead to a long delay for large networks. Hence for such kind

of systems, one practice approach is to consider multi-cell or multi-channel scheme [21]–[23]

to trade-off several design goals (e.g. throughput, delays). In line with that, we argue that it is

important to consider this problem for a network with a finite size M , which is the basis for a

more complex multi-cell or multi-channel system.

To investigate how the dependencies of the winners’ channel rates in the channel probing

phase affect the system performance, we study this distributed opportunistic scheduling problem

for the popular block fading channel model. We assume the channel rates are flat fading within

one block. Hence the channel rate R(m) for any link m does not change within one block. The

total block length Ts is separated into two parts as Ts = Tp +Td, where Tp is for channel probing

and Td is for data transmission. At the end of the n-th round of channel probing, the total time

duration for channel probing is Tp =
∑n

i=1 Ti. We consider the CAT model [16], [21], [22],

where the transmitter has a fixed duration Ts = T in total, leaving the available duration for

data transmission as Td = T −
∑n

i=1 Ti. If we decide to send data at the end of the n-th round,

the normalized network throughput is

Yn =
Rn · (T −

∑n
i=1 Ti)

T
. (2)

III. THE OPTIMAL STOPPING PROBLEM FORMULATION

In this section, we formulate the distributed opportunistic scheduling problem as an optimal

stopping problem. In particular, we present a concept named effective observation points to

facilitate the mathematical treatment of our problem.

The theory of optimal stopping [17]–[19] is about the problem of choosing a time to take a

given action based on sequentially observed random variables in order to maximize an expected

payoff. The stopping rule problem is defined by a sequence of random variables X1,X2, . . .

whose joint distribution is known and a sequence of real-valued reward functions Y0, Y1(x1), . . ..

Let (Ω,B, P ) be the probability space, and Fn be the sub-σ-field of B generated by X1, . . . ,Xn.

We have a sequence of σ-fields as F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . . ⊂ B. A stopping rule is defined
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as a random variable N ∈ {0, 1, . . . ,∞} such that the event {N = n} is in Fn. Our goal is to

choose a stopping rule N∗ to maximize the expected reward E[YN ]. If there is no bound on the

number of stages at which one has to stop, this is an infinite horizon problem and the optimal

return can be computed via the optimality equation. When there is a known upper bound on

the number of stages, it is a finite horizon problem and the optimal return can be solved by

backward induction. Details on this topic can be found in [17]–[19].

At the end of the n-th round, winner sn observes the probing duration Tn and the available

channel rate Rn. Recalling that Tn = τKn and the fact that τ is a constant, we denote the

observations at time n as a random vector Xn = (Rn, Kn) and one realization of Xn as xn =

(rn, kn). The σ-fields can be denoted as

Fn = {X1,X2, . . . ,Xn} = {R1, K1; R2, K2; . . . ; Rn, Kn} . (3)

Then sn makes a decision on whether or not to stop based on Fn, to maximize the overall

network throughput (2). Here a decision to “stop” means that sn decides to utilize the remaining

time duration for data transmissions. A decision to “continue” means that sn decides to give

up the current opportunity. Another round of channel probing and decision making then begins.

This probing and decision behavior continues within this block until winner sN finally utilizes

the channel for data transmissions, where N is the stopping time. It could be easily sensed and

detected by all other links at this point. Hence all links don’t send probing signals anymore until

the beginning of the next block. If this procedure is repeated for I blocks independently, the

decision making process can be described as

Y ∗ = max
N∈Fn

E
[

RN · (T − τ
∑N

i=1 Ki)
]

T
, (4)

where N is the stopping time. This procedure can be described as in Fig. 1.

Now the problem is to find an optimal rule N∗ to maximize the overall network throughput. To

do this, we need to characterize the joint distribution of Rn and Kn. We notice that Rn and Kn

are independent of each other, and Kn are also independent with respect to time n. However,

the winners’ channel rates Rn are not independent due to the block fading assumption. The

dependencies of Rn makes the mathematical analysis of this problem intractable. In this paper,

we tackle this problem by using effective observation points instead of the original observation

points in (3). The whole idea is motivated from the following fact: at time n, if the winner sn
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1: for each link m do

2: m probes the channel with a fixed probability p(m);

3: if m wins the channel then

4: m makes a decision on whether or not to send data over the channel;

5: if m decides to utilize the channel then

6: m sends data through the channel for a duration of T −
∑n

i=1 Ti (CAT) or T

(CDT), where n is the current index of channel probing;

7: end if

8: end if

9: end for

Fig. 1. The distributed opportunistic scheduling protocol

decides to give up the opportunity, the same decision will be repeated for all future ñ > n in

this block when the channel is won by sn again at time ñ. This is because utilizing the channel

at time ñ will only yield a smaller reward, i.e.

Yñ =
Rñ(T − τ

∑ñ
i=1 Ki)

T
<

Rn(T − τ
∑n

i=1 Ki)

T
= Yn, (5)

where we used the fact that Rñ = R(sñ) = R(sn) = Rn. It implies that an effective decision is

always made at the time instances when a link wins the channel for the first time. If we only

take observations at these time instances, the channel rates R̃n are independent. We denote the

σ-fields at these time instances as

F̃n =
{

R̃1, K̃1; R̃2, K̃2; . . . ; R̃n, K̃n

}

. (6)

Lemma 1: The solutions to the optimal stopping problem based on F̃n and Fn have different

distributions for the stopping time N . However, both solutions have the same network throughputs

and distributions for the elapsed probing durations L =
∑N

i=1 Ki.

Hence if we do not care how many times a given link m has given up its opportunity upon

winning the wireless medium, the problem is equivalent to analyzing the problem using F̃n

instead of Fn. For the rest of this paper, we always refer to the σ-fields at the effective observation

points unless noted otherwise. Hence we use the notations Fn, Tn, Kn instead of F̃n, T̃n, K̃n

for short for the rest of the paper.
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IV. A RIGOROUS PERFORMANCE ANALYSIS: THE FINITE HORIZON APPROACH

In this section, we characterize the optimal stopping rules and the network throughputs. We

analyze the protocol using σ-fields (6) recorded at those effective observation points. By this

notation, the number of effective probing links is monotonically decreasing as time n moves on,

even though physically all links are still probing the wireless medium as in Fig. 1. On the other

hand, since no recall is allowed, if link m gives up its opportunity at some point, link m cannot

reclaim it at a later time. As a result, the “last” winner must utilize the wireless medium for

data transmission, otherwise the channel will be completely wasted for this block. Hence the

stopping rule problem always has an implicit horizon at M , where M is the network size. The

problem should be treated as a finite horizon problem and be solved by the backward induction

approach [17]–[19].

We denote the optimal expected reward based on observations until the n-th round of channel

probing as λ∗
n = λ∗

n(x1, . . . ,xn). We will use the term the n-th round of channel probing,

“time n” or “stage n” interchangeably in this section. The backward induction procedure can be

described as

λ∗
M(x1, . . . ,xM) = YM(x1, . . . ,xM), (7)

λ∗
n(x1, . . . ,xn) = max

{

Yn(x1, . . . ,xn), E
[

λ∗
n+1(X1, . . . ,Xn,Xn+1)|X1 = x1, . . . ,Xn = xn

]}

,

(8)

where n = 0, 1, . . . ,M − 1, and Yn(x1, . . . ,xn) is the instant reward based on Fn. At stage n,

it is optimal to stop if Yn(x1, . . . ,xn) ≥ λ∗
n(x1, . . . ,xn) and to continue otherwise. The optimal

return at stage n is the instant payoff if the decision is to stop and the expected payoff if the

decision is to continue. The optimal network throughput is λ∗
0, i.e. the optimal expected reward

before taking any observations.

However, it is not practical to directly solve this problem using (7) and (8) for two reasons.

First, the channel rates rn are generally continuous variables. We have to discretize rn to use (7)

and (8). Second, the instant observation xn at time n is a two dimensional vector. To directly

apply the backward induction procedure on xn, there will be too many states in the state space.

The overwhelming computational complexity will restrict us to solve problems only with a

small M . In this paper, we develop one approach to reduce the computational complexity for

this procedure. First we note that the last item in (8) only depends on x1, . . . ,xn since the
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expectation is taken with respect to Xn+1. Hence we can denote it as

wn(x1, . . . ,xn) = E
[

λ∗
n+1(X1, . . . ,Xn,Xn+1)|X1 = x1, . . . ,Xn = xn

]

(9)

for short. Now the problem in (7) and (8) reduces to the calculation of wn(x1, . . . ,xn). Next, we

show that the calculation of wn(x1, . . . ,xn) does not need all of these observations x1, . . . ,xn.

To show this, we define the total number of probings up to time n as Ln =
∑n

i=1 Ki. Note that

Ln is a random variable. We denote one realization of Ln as ln.

Lemma 2: Suppose the network size is M ≥ 2, the expected reward at time n can be

characterized as

wn(x1, . . . ,xn) =































wM(rM , lM) for n = M,

wn(ln) for n = M − 1, . . . , 1,

w0 = λ∗
0 for n = 0.

(10)

Proof: Since the network size is M , the backward induction procedure has a horizon at stage

M . The reward at stage M is wM(x1, . . . ,xM) = max
{

0, rM (T−τlM )
T

}

. Hence wM(x1, . . . ,xM)

only depends on rM and lM , and it can be denoted as wM(rM , lM) for short.

Now we let n = M − 1 in (9). We can see that the expectation in (9) is taken with respect

to XM , i.e. RM and KM . We have showed that wM(x1, . . . ,xM) only depends on rM and

lM , but is independent of rM−1. Hence after taking the expectation, wM−1(x1, . . . ,xM−1) is still

independent of rM−1. On the other hand, wM−1(x1, . . . ,xM−1) does depend on lM−1, since lM−1

remains in the expression after taking expectations with respect to KM , where LM = LM−1+KM .

Hence wM−1 only depends on lM−1. We can iterate this procedure from n = M − 2 to n = 1.

As a result, for n = M − 1, . . . , 1, wn(x1, . . . ,xn) can be denoted as wn(ln) for short.

Finally, the network throughput is the optimal expected reward before taking any observations.

That is to say n = 0. In this case, ln can only be 0. Hence we can write it as w0 = λ∗
0 for short.

Following Lemma 2, we can use ln as the only state for the backward induction procedure.

The problem is reduced to a one-dimensional problem. To calculate w0, we need to calculate

w1(l1) for all possible l1, and then w2(l2) for all possible l2, and so on until stage M . Hence

the problem is to compute wn(ln) for n = 1, . . . ,M − 1 and wM(rM , lM).
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Theorem 1: The optimal stopping rule for the distributed opportunistic scheduling problem is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗
n ·

T

T − τ
∑n

i=1 Ki

}

. (11)

The optimal network throughput is w0 = λ∗
0. Suppose the network size is M . The finite horizon

analysis reduces to the calculation of w0, which eventually iterates all wn(ln) for n = 1, . . . ,M−1

and wM(rM , lM). The expected reward can be calculated recursively as

wn−1(ln−1) =
∑

k∈Ωn(ln−1)

(1 − ps,n)k−1ps,n · qn(ln−1, k) (12)

qn(ln−1, k) = Pn(k) · En(k) + [1 − Pn(k)] · wn(ln−1 + k), (13)

where qn(ln−1, k) is the conditional expected reward given Kn = k. Kn can take values in

Ωn(ln−1) = {k | τ · (ln−1 + k) < T, k ∈ N} ,

and Pn(k) and En(k) can be calculated as

Pn(k) = P

[

Rn >
wn(ln−1 + k) · T

T − τ(ln−1 + k)

]

En(k) = E

[

Rn

∣

∣

∣

∣

Rn >
wn(ln−1 + k) · T

T − τ(ln−1 + k)

]

·
T − τ(ln−1 + k)

T
.

Proof: To calculate wn−1(ln−1), we use n to substitute n− 1 in (9) and take expectation on

both sides of (8) as

wn−1(ln−1) = E [max{Yn(x1, . . . ,xn−1,Xn), wn(x1, . . . ,xn−1,Xn)}] , (14)

where the expectation is taken with respect to Xn. We further take its conditional expectation

with respect to Kn and write it as

wn−1(ln−1) =
∑

k∈Ωn(ln−1)

P [Kn = k] · qn(ln−1, k),

where qn(ln−1, k) is the conditional expectation of (14) given Kn = k. As we showed in Section

V, Kn has a geometric distribution with parameter ps,n. Hence we have P [Kn = k] = (1 −

ps,n)k−1ps,n. On the other hand, combing (2) and Lemma 2, we have

qn−1(ln−1, k) = E

[

max

{

Rn (T − τ(ln−1 + k))

T
,wn(ln−1 + k)

}]

.

Now if we take its conditional expectation with respect to the following event
{

Rn (T − τ(ln−1 + k))

T
> wn(ln−1 + k)

}

,



12

we can immediately have (13). This proves the theorem.

We can also bound the computational complexity of the procedure described in Theorem 1.

Proposition 1: To calculate the optimal network throughput w0 and the expected reward based

on a set of given observations {r1, k1; . . . ; rM , kM} with a relative error less than ǫ where 0 <

ǫ ≪ 1, the computational complexity of the procedure in Theorem 1 is

min

{

M ⌈T/τ⌉ ,
M
∑

n=1

n

⌈

log ǫ
1+ǫ

log(1 − ps,n)

⌉}

. (15)

Proof: For a network with size M , the backward induction procedure in Theorem 1 has M

stages. In the n-th stage, the procedure involves calculation of all possible wn(ln). For the CAT

problem, ln can simply be bounded as 1 ≤ ln ≤ ⌈T/τ⌉. Hence the computational complexity

in the n-th stage is at most ⌈T/τ⌉, and the total computational complexity of the backward

induction procedure is at most M⌈T/τ⌉.

On the other hand, since qn(ln−1, k) is the conditional expected reward if the probing duration

is Kn = k at time n, qn(ln−1, k) is a decreasing function of k. For a given integer kǫ, we have
∑

k>kǫ
P [Kn = k] · qn(ln−1, k)

∑

k≤kǫ
P [Kn = k] · qn(ln−1, k)

<

∑

k>kǫ
P [Kn = k] · qn(ln−1, kǫ)

∑

k≤kǫ
P [Kn = k] · qn(ln−1, kǫ)

=
1

1 − (1 − ps,n)kǫ
− 1, (16)

where we used the fact that Kn has a geometric distribution Geom(ps,n) with parameter ps,n.

To ensure the relative error in the calculation of wn−1(ln−1) is less than ǫ, we let the right hand

of (16) be less than ǫ. After some manipulation, we have kǫ ≥
log ǫ

1+ǫ

log(1−ps,n)
. Hence we only need

to iterate

⌈

log ǫ
1+ǫ

log(1−ps,n)

⌉

items in the n-th stage. Iterating this procedure from the top level n = 0

to n = M and noticing that l0 = 0, we immediately have our conclusion.

V. AN APPROXIMATION FOR PERFORMANCE ANALYSIS: THE INFINITE HORIZON

APPROACH

As we can see in Section IV, the computational complexity of backward induction can quickly

become overwhelming as M increases. In contrast, the infinite horizon analysis based on the

optimality equation [17]–[19] has a much smaller computational complexity. Hence we would

like to see if the performance analysis in Section IV can be approximated using the infinite

horizon approach. In this section, we analyze the protocol using the infinite horizon horizon

approach and develop a metric as a guideline to choose the appropriate approach for a given

network.
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Lemma 3: For the same stopping rule problem described in Section III, the infinite horizon

analysis yields an optimal network throughput slightly larger than that from the finite horizon

analysis. The gap decreases to 0 as the network size M → ∞.

If the network size M is large enough, this problem does not have a finite horizon and can

be analyzed using the optimality equation [17]–[19]. We make the following assumptions:

[A1] The total number of links M in the network is large enough;

[A2] The channel rates only take values in (0, +∞);

[A3] Each link m probes the wireless medium with probability p(m) = p;

[A4] The channel rates for all links have the same cumulative distribution function (CDF) FR(r).

Here [A1] ensures the problem does not have a finite horizon, and [A2]-[A4] make our mathe-

matical analysis tractable. To analyze this problem, we first characterize the distribution of Kn.

By the n-th round, n − 1 links in total have given up their opportunities in previous rounds.

Hence only the rest of the M − n + 1 links can contribute to an effective channel probing. If

we ignore the events when the channel is won by any of these n− 1 links, Kn has a geometric

distribution Geom(ps,n) with parameter ps,n, where

ps,n = (M − n + 1) · p(1 − p)M−1 (17)

is the successful probing probability in the n-th round. To better explain our results, we introduce

some notations that will be used frequently in our proof. We define a sequence of parameters

fn ,
ps,n

ps,1
= M−n+1

M
and a sequence of random variables K̃n = fnKn. Since fn is a constant,

K̃n also has a geometric distribution with mean E[K̃n] = fnE[Kn] = E[K1]. Hence K̃n and K1

can be considered equal in distribution [24], [25].

Theorem 2: The average network throughput λ∗
O of Fig. 1 is the solution of

E

[

1 +
M(M + 1)

(M + 0.5)2
·
τK̃1

T
−

λ

R0

]+

=
M(M + 1)

(M + 0.5)2
·

τ

Tps,1

, (18)

where E[·]+ is defined as E[X]+ = E[max(X, 0)]. The optimal stopping rule is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗
n ·

T

T − τ
∑n

i=1 Ki

}

, (19)

where λ∗
n is the solution of

E

[

1 −
τ

T

{

n
∑

i=1

Ki −
M(M + n + 1)

(M + 0.5)2
K̃1

}

−
λ

Rn

]+

=
M(M + n + 1)

(M + 0.5)2
·

τ

Tps,1

. (20)
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Proof: By [A2], we can rewrite the network throughput (2) at time n as Yn =
T−τ

∑n

i=1
Ki

T/Rn
.

This problem can be solved as a maximal rate of return problem. For a fixed rate λ, we define

a new reward function at time n as

Vn(λ) = T − τ
n
∑

i=1

Ki −
λT

Rn

. (21)

The problem is then to characterize the optimal rate λ∗
n and the stopping rule to achieve λ∗

n. First,

we need to show the existence of the optimal stopping rule. We notice that E{supn Vn(λ)} <

T < ∞. On the other hand, we can easily see that lim supn→∞ Vn(λ) → −∞ and Vn(λ) → −∞

a.s.. Putting them together leads to lim supn→∞ Vn(λ) → V∞(λ) a.s.. Hence an optimal stopping

rule exists and can be described by the optimality equation. By the definition of K̃n, we notice

that Ki = M
M−i+1

K̃i. Substituting it into (21) and using the i.i.d. property of K̃i, we have

Vn(λ) = T − τ
n
∑

i=1

M

M − i + 1
K̃i −

λT

Rn

= T − τK̃1

n
∑

i=1

M

M − i + 1
−

λT

Rn

.

Note that the above equation holds in distribution. Since the network size M is large enough and

the problem can be solved as an infinite-horizon problem, the number of rounds n is usually much

smaller compared to M . To calculate the above summation, we appropriate M
M−i+1

+ M
M−(n+1−i)+1

as 2M
M−n/2+0.5

. By repeating this procedure for all i ≤ n/2, we can appropriate Vn(λ) as

Vn(λ) ≈ T − τK̃1 ·
Mn

M − n/2 + 0.5
−

λT

Rn

.

Similarly, the payoff at time n + 1 can be written as

Vn+1(λ) ≈ T − τK̃1 ·
M(n + 1)

M − (n + 1)/2 + 0.5
−

λT

Rn+1

.

Meanwhile, note that Rn are i.i.d. by [A4]. Hence in the sense of distribution the difference

between Vn(λ) and Vn+1(λ) can be written as

∆Vn(λ) = Vn+1(λ) − Vn(λ) = −τK̃1 ·
M

M + 0.5





n + 1

1 − (n+1)/2
M+0.5

−
n

1 − n/2
M+0.5



 .

By [A1], we can approximate the item in the above square bracket as

(n + 1)

{

1 +
n+1

2

M + 0.5

}

− n

{

1 +
n
2

M + 0.5

}

=
M + n + 1

M + 0.5
. (22)

Substituting it into the optimality equation V ∗
n = max{Yn, E(V ∗

n+1|Fn)} [17]–[19], we have

V ∗
n (λ) = E

[

max

{

T − τ
n
∑

i=1

Ki −
λT

Rn

, V ∗
n (λ) − τK̃1 ·

M(M + n + 1)

(M + 0.5)2

}]

.
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According to optimal stopping theory [17]–[19], the optimal rate λ∗
n that maximizes the rate of

return should yield 0 for (21). If we substitute V ∗
n (λ∗

n) = 0 into the above equation and note

that E[K̃1] = 1/ps,1, we can rewrite the equation as (20). The uniqueness of λ∗
n can be easily

verified. The optimal stopping rule can be written as

N∗ = min

{

n ≥ 1 : T − τ
n
∑

i=1

Ki −
λ∗

nT

Rn

≥ V ∗
n (λ∗

n) = 0

}

,

which leads to (19) after some manipulation. The optimal network throughput is the expected

rate of return before taking any observations. Hence we get the optimal network throughput λ∗
O

if we let n = 0 in (20), which immediately yields (18).

The optimal network throughput (18) can be further simplified under certain conditions.

Proposition 2: Assume τ ≪ T , the network throughput λ∗
O of Fig. 1 can be approximated as

the solution of

E

[

1 −
λ

R0

]+

=
M(M + 1)

(M + 0.5)2
·

τ

Tps,1

. (23)

Proof: By [A1], we have
M(M+1)
(M+0.5)2

≈ 1. Since τ
T
≪ 1, the term τ

T
· M(M+1)
(M+0.5)2

K̃1 can be ignored

compared to 1 on the left hand of (18). This completes the proof.

An immediate question following Lemma 3 and Theorem 2 is: how good is the approximation

compared to the rigorous analysis in Section IV, in particular for networks at a finite size M? In

fact, we prefer to design stopping rule based on the analytical results from Theorem 2 due to its

low computational complexity even for a finite network size M . What will the actual achievable

network throughput be like?

To answer these questions, we present one metric which serves as a guideline when we decide

whether or not we could use the infinite horizon analysis. For a given network, if the problem

can be treated as in Section V, in a probabilistic sense the optimal stopping time N∗ should be

much smaller than the network size M . Hence one necessary condition is that the probability

P [N∗ > M ] should be small enough.

Theorem 3: For a network with size M , suppose the infinite horizon analysis in Theorem

2 yields a sequence of optimal expected network throughputs λ∗
n for Fig. 1. If τ ≪ T , the

probability P [N∗ > M ] can be approximated as

P [N∗ > M ] ≈
M
∏

n=1

FR(λ∗
n). (24)
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If this probability is not small enough, it is not recommended to design stopping rules based on

the infinite horizon analysis.

Proof: For a given integer k > 0, we have

P [N∗ > k] = P

[

min

{

n ≥ 1 : Rn ≥ λ∗
n ·

T

T − τ
∑n

i=1 Ki

}

> k

]

. (25)

Since τ ≪ T and the optimal stopping time N∗ is much smaller than M , we consider τ
T
·

∑n
i=1 Ki ≪ 1 for approximation. Substituting it into (25), we have

P [N∗ > k] ≈ P [min {n ≥ 1 : Rn ≥ λ∗
n} > k]

=
∏

n≤k

P [Rn < λ∗
n], (26)

where we used the fact that Rn are i.i.d.. To get (25), simply let k = M in (26).

On the other hand, if P [N∗ > M ] is not small enough, it implies that the stopping rule problem

cannot be treated as an infinite horizon problem. In this case, if we design a stopping rule based

on Theorem 2 nevertheless, the procedure will quickly reach the last stage and be forced to stop

then. In this case, the actually achieved network throughput is generally not optimal.

Theorem 4: Suppose the infinite horizon analysis yields a sequence of λ∗
n for a network with

size M . Suppose we design a stopping rule N̂ based on these rates and (19). If τ ≪ T , the

achievable network throughput based on N̂ is

λ̂∗ =
M
∑

n=1

E [Rn|Rn ≥ λ∗
n]

T − τ
∑n

i=1 1/ps,i

T
× [1 − FR(λ∗

n)]
n−1
∏

i=1

FR(λ∗
i ). (27)

Proof: According to the stopping rule (19), the expected reward can be written as

λ̂∗ =
M
∑

n=1

E [Yn(X1, . . . ,Xn) · P (N = n|X1, . . . ,Xn)]. (28)

The condition to stop at time n is Rn ≥ λ∗
n · T

T−τ
∑n

i=1
Ki
. When τ ≪ T , this condition can be

simplified as Rn ≥ λ∗
n. Hence the expected reward at time n can be written as a conditional

expectation, i.e.

E

[

Rn ·
T − τ

∑n
i=1 Ki

T

∣

∣

∣

∣

Rn ≥ λ∗
n

]

= E [Rn|Rn ≥ λ∗
n] ·

T − τ
∑n

i=1 1/ps,i

T
,

where we used the fact that Ki has a geometric distribution Geom(ps,i) and is independent from

Rn. On the other hand, by (26) the probability to stop at time n can be approximated as

P (N = n|X1, . . . ,Xn) =
n−1
∏

i=1

FR(λ∗
i ) −

n
∏

i=1

FR(λ∗
i ) = [1 − FR(λ∗

n)]
n−1
∏

i=1

FR(λ∗
i ). (29)

Substituting it into (28) together with the expected reward at time n, we have (27).
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VI. AN ENERGY EFFICIENT IMPROVEMENT OF THE PROTOCOL

In this section, we present an improved distributed opportunistic scheduling protocol, which

is directly motivated by the concept of effective observation points introduced in Section III.

According to (23), the network throughput λ∗
O decreases as the successful probing probability

ps,1 decreases. Hence to improve the network throughputs, we need to improve ps,1. For a given

network with size M , we can first tune the parameter p to maximize ps,1. To do this, we let n = 1

in (17) and take the first-order derivative as
∂ps,1

∂p
= M(1− p)M−2(1−Mp) = 0. The non-trivial

solution in (0, 1) is p∗ = 1/M . Hence to maximize ps,1, on average there is exactly Mp∗ = 1 link

probing the channel. The maximal successful probing probability is ps,1 = 1
1− 1

M

·
(

1 − 1
M

)M
for

M ≥ 2, which is a decreasing function of M . Hence the optimal throughput λ∗
O is a decreasing

function as M increases. From the perspective of channel probing costs, a smaller M is preferred

for better system performance. On the other hand, from (5) we can see that if link m ever gives

up the current opportunity, m will always repeat the same decision in the current block. Hence if

link m ever decides to send data in the current block, it should happen when m wins the channel

for the first time. If after that m still contends the medium, it would not lead to an effective

decision, and meanwhile it lowers the successful probability ps,n. Based on this observation, we

have an improved protocol as shown in Fig. 2 [16].

Suppose at time n the set of active probing links is Mn. This is the set of links whose current

state is TRUE in Fig. 2. Denoting its cardinality as Mn , ‖Mn‖, we have Mn = M − n + 1

following line 9 of Fig. 2. We can see that Mn is decreasing as time n moves on. The shrinking

of Mn is an important feature of the improved protocol. It not only reduces the probing costs,

but also ensures the winner sn is different at each time n. Hence the winners’ rates Rn are

independent in Fig. 2. At time n, the successful probing probability can be written as

ps,n = Mnp(1 − p)Mn−1. (30)

We now characterize the performance of the improved protocol shown in Fig. 2. First of

all, the finite horizon analyses described in Section IV can be applied in a similar way here.

The computational complexity can also be estimated similarly. The only difference is that the

successful probing probability ps,n in (12) should be calculated according to (30). Now we

analyze this problem assuming that it can be treated as an infinite horizon problem. By [A1],
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1: Link m sets its state as TRUE, where m = 1, . . . ,M ;

2: for each link m whose state is TRUE do

3: m probes the channel with a fixed probability p(m);

4: if m wins the channel then

5: m makes a decision on whether or not to send data over the channel;

6: if m decides to utilize the channel then

7: m sends data through the channel for a duration of T −
∑n

i=1 Ti (CAT) or T

(CDT), where n is the current index of channel probing;

8: else

9: m sets its state as FALSE;

10: end if

11: end if

12: end for

Fig. 2. The improved distributed opportunistic scheduling protocol

we can approximate the successful probing probability (30) as

ps,n ≈ Mp(1 − p)Mn−1 = Mp(1 − p)M−n. (31)

We can see that ps,1 < ps,2 < . . . < ps,n. Similar to Theorem 2, we introduce a sequence of

parameters gn ,
ps,n

ps,1
= (1 − p)−(n−1) and a sequence of random variables K̃n = gnKn. It is

easy to verify that K̃n and K1 can be considered equal in distribution and thus {K̃n} are i.i.d..

Theorem 5: The network throughput λ∗
P of Fig. 2 is the solution of

E

[

1 +
τ

T
· (1 − p)2K̃1 −

λ

R0

]+

= (1 − p)2 τ

Tps,1

. (32)

The optimal stopping rule is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗
n ·

T

T − τ
∑n

i=1 Ki

}

, (33)

where λ∗
n is the solution of

E

[

1 −
τ

T

{

n
∑

i=1

Ki − (1 − p)n+1K̃n+1

}

−
λ

Rn

]+

= (1 − p)n+1 τ

Tps,1

. (34)
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Proof: We use Vn defined in (21) in our proof. The existence of the optimal stopping

rule can be verified in the same way as in Theorem 2. To compute the optimal reward V ∗
n ,

we take a look at the reward after l steps since time n. By the definition of gn, we can write

Kn = (1 − p)n−1K̃n. Substituting it into (21), we have

Vn+l(λ) = T − τ
n
∑

i=1

(1 − p)i−1K̃i −



τ
n+l
∑

i=n+1

(1 − p)i−1K̃i +
λT

Rn+l



 .

If we start from time n + 1, the reward after l rounds is

Vn+l+1(λ) = T − τ
n
∑

i=1

(1 − p)i−1K̃i − τ(1 − p)nK̃n+1 −



τ
n+l+1
∑

i=n+2

(1 − p)i−1K̃i +
λT

Rn+l+1



 .

The item in the above square bracket is the recursive part for l rounds of observations since

time n + 1. We can rewrite it as

(1 − p)







τ
n+l
∑

i=n+1

(1 − p)i−1K̃i+1 +
λT

Rn+l+1







+ p ·
λT

Rn+l+1

.

By [A1], p should be reasonably small; otherwise the average number of probing links Mp will

be much larger than 1, leading to increased probing costs. Hence we can ignore the last term

and write the optimality equation as

V ∗
n (λ) = E

[

max

{

T − τ
n
∑

i=1

Ki −
λT

Rn

, (1 − p) (V ∗
n (λ) − τKn+1)

}]

.

Again, the optimal reward λ∗
n that maximizes the rate of return must satisfy V ∗

n (λ∗
n) = 0. We

substitute this into the optimality equation and rewrite it as

E

[

1 −
τ

T

{

n
∑

i=1

Ki − (1 − p)Kn+1

}

−
λ∗

n

Rn

]+

= (1 − p) ·
τ

T
E[Kn+1].

If we further notice that Kn+1 = 1/gn+1K̃n+1 = (1− p)nK̃n+1 and that K̃n+1 and K1 are i.i.d.,

we can rewrite the above equation as (34). The optimal stopping rule N∗ can be derived in the

same way as in Theorem 2. To get the optimal system throughput λ∗
P , we let n = 0 in (34) and

rewrite the equation as (32).

Similar to Section V, we further simplify the network throughput as Proposition 3 if τ ≪ T .

Based on this, we show that the modified protocol improves the network throughput as in

Proposition 4. The proofs are straight forward and are skipped due to space limitations.

Proposition 3: If τ ≪ T , the network throughput λ∗
P can be approximated as the solution of

E

[

1 −
λ

R0

]+

= (1 − p)2 ·
τ

Tps,1

. (35)
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Proposition 4: The improved protocol in Fig. 2 yields a higher network throughput compared

to the protocol in Fig. 1, i.e. λ∗
P > λ∗

O.

In the improved protocol any link who decides to give up the current opportunity for data

transmission will not probe the channel anymore until the beginning of the next block. Hence

these links can temporarily switch to a sleep mode until the beginning of the next block and

reduce the energy used for channel probing. This could be very useful for mobile ad-hoc or

sensor networks where most of their mobile nodes have limited battery life.

Similar to the analyses for throughputs, we focuse on the total energy savings for all links

in the channel probing phase, not for a specific link. Suppose each probing signal consumes

roughly a constant energy of c. Then the energy consumed during the channel probing phase

can be written as c
∑N

i=1 Zi, where Zi is the number of probing signals sent during the i-th round

of channel probing, and N is the stopping time associated with the stopping rule. Hence the

average energy spent during the channel probing phase is z = cE
[

∑N
i=1 Zi

]

. Using law of total

expectations, we can write

z = cE

[

E

[

N
∑

i=1

Zi

∣

∣

∣

∣

∣

N

]]

= c
∑

n

P [N = n]
n
∑

i=1

E[Zi]. (36)

Theorem 6: The average energy consumed for channel probing of Fig. 1 can be written as

zO = c
∑

n

P [N∗
O = n] ·

1

(1 − p)M−1

n
∑

i=1

M

M − i + 1
, (37)

where N∗
O is the optimal stopping rule for Fig. 1, and the average probing energy of Fig. 2 can

be written as

zP = c
∑

n

P [N∗
P = n] ·

1

(1 − p)M−1

1 − (1 − p)n

1 − (1 − p)
, (38)

where N∗
P is the optimal stopping rule for Fig. 2.

Proof: As we mentioned in Section III, we will use the notation of F̃n in the proof. For

the protocol in Fig. 1, in the i-th round there are a total of K̃i probings, each of which has a

duration of τ and on average Mp links sending probing signals. Hence there are on average

E[Zi] = Mp · E[K̃i] probing signals sent in the i-th round. Hence we can write

E[Zi] = Mp ·
1

(M − i + 1)p(1 − p)M−1
=

1

(1 − p)M−1
·

M

M − i + 1
.

Substitue the above equation into (36), we can immediately have (37).
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On the other hand, for the improved protocol in Fig. 2, in the i-th round there are a total of

K̃i probings, and each of them has on average (M − i + 1)p links sending probing signals. This

is because in the improved protocol once a link gives up its opportunity, he would not probe

again until the beginning of the next block. Hence we can write

n
∑

i=1

E[Zi] =
n
∑

i=1

(M − i + 1)p ·
1

(M − i + 1)p(1 − p)M−i
=

1

(1 − p)M−1
·
1 − (1 − p)n

1 − (1 − p)
.

Combine the above equation with (36), we have (38).

In Theorem 6, the probability of P [N∗ = n] can be approximated in the same way as (29).

VII. THE CONSTANT DATA TIME PROBLEM

Our analyses in Section IV, V and VI can be applied to the CDT problem in a similar way.

In the CDT problem [15], [21], [22], the transmitter has a fixed duration Td = T for data

transmission, regardless of the duration Tp elapsed for channel probing. The normalized network

throughput to utilize the channel at the end of the n-th round is

Yn =
Rn · T

T +
∑n

i=1 Ti

. (39)

We show the analytical results for the CDT problem in this section and compare its numerical

results to that of the CAT problem in Section VIII.

First of all, due to the block fading assumption, the CDT problem also has an implicit horizon

at M . Hence the CDT problem for the original protocol in Fig. 1 or the improved protocol in

Fig. 2 should be treated as a finite horizon problem.

Theorem 7: The network throughput of the CDT problem based on backward induction is

w0 = λ∗
0, and the optimal stopping rule is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗
n ·

(

1 +
τ

T

n
∑

i=1

Ki

)}

. (40)

The finite horizon analysis reduces to the calculation of w0, which eventually iterates all wn(ln)

for n = 1, . . . ,M − 1 and wM(rM , lM). The expected reward can be calculated recursively as

wn−1(ln−1) =
∑

k∈N

(1 − ps,n)k−1ps,n · qn(ln−1, k) (41)

qn(ln−1, k) = Pn(k) · En(k) + [1 − Pn(k)] · wn(ln−1 + k), (42)
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where qn(ln−1, k) is the conditional expected reward given Kn = k, and Pn(k) and En(k) can

be calculated as

Pn(k) = P

[

Rn > wn(ln−1 + k) ·
T + τ(ln−1 + k)

T

]

En(k) = E

[

Rn

∣

∣

∣

∣

Rn > wn(ln−1 + k) ·
T + τ(ln−1 + k)

T

]

×
T

T + τ(ln−1 + k)
.

Proposition 5: For the CDT problem, to calculate the optimal network throughput w0 and

the expected reward for given observations {r1, k1; . . . ; rM , kM} with a relative error less than

ǫ where 0 < ǫ ≪ 1, the computational complexity of the procedure in Theorem 7 is at most
∑M

n=1 n
⌈

log ǫ
1+ǫ

log(1−ps,n)

⌉

.

Similar to Section V, we prefer to analyze the CDT problem using infinite horizon approach

when it can yield a good approximation to the finite horizon approach. The proof of Theorem

8 can be found in Appendix A.

Theorem 8: The average network throughput λ∗
O of the CDT problem is the solution of

E

[

R0

λ
+

M(M + 1)

(M + 0.5)2
·
τK̃1

T
− 1

]+

=
M(M + 1)

(M + 0.5)2
·

τ

Tps,1

. (43)

The optimal stopping rule N∗ is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗
n ·

(

1 +
τ

T

n
∑

i=1

Ki

)}

, (44)

and λ∗
n is the solution of

E

[

Rn

λ
−

τ

T

{

n
∑

i=1

Ki −
M(M + n + 1)

(M + 0.5)2
K̃1

}

− 1

]+

=
M(M + n + 1)

(M + 0.5)2
·

τ

Tps,1

. (45)

Proposition 6: Assume τ ≪ T , the network throughput λ∗
O for the CDT problem can be

approximated as the solution of

E
[

R0

λ
− 1

]+

=
M(M + 1)

(M + 0.5)2
·

τ

Tps,1

. (46)

In one block, the available duration for data transmission is T−τ
∑n

i=1 Ki for the CAT problem

and T for the CDT problem respectively. Hence intuitively the protocol in Fig. 1 should yield

a higher network throughput for the CDT model.

Proposition 7: Denote λ∗
CAT and λ∗

CDT as the optimal network throughput for the CAT and

CDT problem respectively, we have λ∗
CAT < λ∗

CDT .
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Proof: For any r > λ∗
CAT , we have 1 − λ∗CAT

r
< r

λ∗

CAT

− 1. By taking integration on both

sides of the inequality, we have

E

[

R0

λ∗
CAT

− 1

]+

> E

[

1 −
λ∗

CAT

R0

]+

=
M(M + 1)

(M + 0.5)2
·

τ

Tps,1

= E

[

R0

λ∗
CDT

− 1

]+

,

where the first and second equality is from Proposition 2 and Proposition 6 respectively. If we

compare the first and last item in the above inequality, we have λ∗
CAT < λ∗

CDT .

Theorem 9: Suppose the infinite horizon analysis yields a sequence of rates λ∗
n for a network

of size M . If τ ≪ T , the probability P [N∗ > M ] can be approximated as

P [N∗ > M ] ≈
M
∏

n=1

FR(λ∗
n). (47)

If this probability is not small enough, it is not recommended to design stopping rules based

on the infinite horizon analysis. Otherwise if we use the stopping rule based on these rates and

(44), the achievable network throughput is

λ̂∗ =
M
∑

n=1

E [Rn|Rn ≥ λ∗
n]

T

T + τ
∑n

i=1 1/ps,i

× [1 − FR(λ∗
n)]

n−1
∏

i=1

FR(λ∗
i ). (48)

For the improved protocol shown in Fig. 2, the performance for the CDT problem can be

shown in Theorem 10. The proof of Theorem 10 can be found in Appendix B.

Theorem 10: The network throughput λ∗
P of Fig. 2 for the CDT problem is the solution of

E
[

R0

λ
+

τ

T
· (1 − p)2K̃1 − 1

]+

= (1 − p)2 τ

Tps,1

. (49)

The optimal stopping rule N∗ is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗
n ·

(

1 +
τ

T

n
∑

i=1

Ki

)}

, (50)

where λ∗
n is the solution of

E

[

Rn

λ
−

τ

T

{

n
∑

i=1

Ki − (1 − p)n+1K̃n+1

}

− 1

]+

= (1 − p)n+1 τ

Tps,1

. (51)

Proposition 8: If τ ≪ T , we can approximate the network throughput λ∗
P as the solution of

E
[

R0

λ
− 1

]+

= (1 − p)2 τ

Tps,1

. (52)
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VIII. NUMERICAL RESULTS

In this section, we show numerical results based on our discussions from Section IV to Section

VII. We consider an ad-hoc network where the wireless medium is Rayleigh fading within each

block. The channel rate can be written as

R(h) = log2(1 + ρh) bits/s/Hz,

where ρ is the average signal-to-noise ratio (SNR), and h is the channel gain corresponding to

Rayleigh fading. Hence the probability density function (PDF) of h can be written as

f(h) =
h

σ2
e−

h2

2σ2 , h ≥ 0.

We assume T = 1 fixed throughout all simulations in this section. We compare numerical results

from the finite horizon and the infinite horizon analysis with various settings of the parameters

M , p, τ and ρ. For performance comparison purposes, we also show network throughputs from

a pure random access approach, where the first winner of the wireless medium always utilizes

the channel for data transmission, regardless of the available channel rates.

In Fig. 3, we show numerical results from both the infinite horizon and finite horizon analysis,

where the network size is M and other parameters are p = 1/M , τ = 0.01, ρ = −10dB

and σ = 1. In Fig. 3(a), the dashed line shows the network throughputs for the pure random

access scheme. Clearly we can see that the distributed opportunistic scheduling schemes show

a considerable performance improvement, e.g. 57% improvement at a network size M = 30 in

Fig. 3(a).

On the other hand, we notice that the finite horizon and infinite horizon analysis yield quite

different network throughputs, especially when the network size M is not large enough. Fig. 3(a)

shows the network throughputs for the distributed opportunistic scheduling protocol described in

Fig. 1, where the line with “◦” is from the finite horizon analysis and the line with “�” is from

the infinite horizon analysis. The network throughputs show opposite trends as the network size

M increases in Fig. 3(a). The network throughput from the infinite horizon analysis decreases

while the network throughput from the finite horizon analysis increases. This is because in the

infinite horizon analysis, there is enough multiuser diversity to be exploited. In the finite horizon

analysis, there is not enough multiuser diversity to be exploited when the network size M is

small, which is constrained by the finite horizon. Hence the infinite horizon analysis always
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Fig. 3. Numerical results for ad-hoc networks with M links, where the parameters are p = 1/M , τ = 0.01, ρ = −10dB and

σ = 1: (a) network throughputs; (b) P [N∗ > M ]; (c) energy savings in probing signals.

shows a larger network throughput than the finite horizon analysis, and the gap between these

two lines gradually decreases to 0 as the network size M increases. For example, the two lines

show a gap of 8.7% at M = 10, and the gap drops to 4.9% at M = 20. In Fig. 3(b), we

show the estimated probability P [N∗ > M ] in Theorem 3. We can see that P [N∗ > M ] is as

high as 20% at M = 10, but drops quickly to 5% at M = 20. Hence for a given network, the

estimated P [N∗ > M ] serves as a measure of how well the problem can be treated as an infinite

horizon problem. In line with this guideline, the line with “⋄” in Fig. 3(a) shows the actual
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achievable rewards based on Theorem 4 if the stopping rule is designed based on the results

from the infinite horizon analysis. To our surprise, the actual reward is much smaller than the

one from the infinite horizon analysis. This gap is pretty large when the network size M is not

large enough, say M ≤ 20 in Fig. 3(a). This observation agrees with the trend of P [N∗ > M ] in

Fig. 3(b). Hence if the problem is not suitable to be treated as an infinite horizon problem, it is

not recommended to design stopping rules based on the infinite horizon analysis; otherwise the

actual achievable rewards may deviate a lot from the infinite horizon analysis results for small

and medium-size networks.

In addition, Fig. 3(a) shows the network throughputs for the improved protocol described in

Fig. 2, where the line with “⊲” is from the finite horizon analysis and the line with “⊳” is from

the infinite horizon analysis respectively. We can see that the improved protocol always yields

a slightly better performance. For example, the line with “⊲” steadily shows a 2% performance

improvement over the line with “◦” based on the finite horizon analysis. This coincides with our

theoretical result in Proposition 4. Even though the performance improvement is not significant,

it is still worth mentioning since there is no additional cost in the protocol design of Fig. 2. This

performance improvement can be considered as a “free ride” based on the concept of effective

observation points. On the other hand, in Fig. 3(c) we show the energy savings in probing signals

that can be achieved by the improved protocol, where the y-axis is zP /zO for each M . We can

see that the improved protocol can considerably reduce the total number of probing signals sent

in the network. For example, at M = 30 the improved protocol only needs 67% of the probing

signals sent in the original protocol in Fig. 1. This results in an saving of 33% in energy savings

for probing signals. Hence with only a simple modification, the improved protocol can slightly

improves the network throughputs while considerably saves energy used for probing signals.

This is of particular interest for mobile ad-hoc networks or sensor networks where many nodes

in the network have limited battery life.

In Fig. 4(a)-(d), we compare network throughputs with different parameters, where we vary one

parameter at a time from the default parameter settings. We first show the network throughputs

under two different scenarios for p in Fig. 4(a) and Fig. 4(b) respectively. Fig. 4(a) shows the

network throughputs for p = 0.01, which represents an “under-probed” scenario since Mp < 1.

We can see that the protocols yield smaller throughputs compared to Fig. 4(a). On the other hand,

the improved protocol almost has the same performance as the original protocol. In this case, it
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Fig. 4. Numerical results for ad-hoc networks with M links, where the default parameters are p = 1/M , τ = 0.01, ρ = −10dB

and σ = 1: (a) network throughputs with p = 0.01; (b) network throughputs with p = 0.1; (c) network throughputs with

τ = 0.05; (d) network throughputs with ρ = 10dB.

would not help to reduce the probing costs since the system is already under-probed. Fig. 4(b)

shows the opposite scenario with p = 0.1 where the medium is “over-probed” since Mp > 1.

The network throughputs are also smaller compared to Fig. 4(a). However, the improved protocol

shows a 5% performance improvement compared to the original protocol. Recall that this quantity

is 2% in Fig. 4(a). In this case, it helps to reduce the probing costs since the network is over-

probed. In Fig. 4(c), we show the network throughputs with a larger probing cost τ = 0.05.
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Fig. 5. Numerical results for the CDT problem for ad-hoc networks with M links, where the parameters are p = 1/M ,

ρ = −10dB and σ = 1: (a) network throughputs with τ = 0.01; (b) network throughputs with τ = 0.05.

With larger probing costs the protocols yield smaller network throughputs. Meanwhile, there is

a larger gap between the finite horizon and infinite horizon analysis results. This is because with

larger τ/T , a smaller horizon is imposed for the CAT problem, which makes it less likely to be

treated as an infinite horizon problem. Fig. 4(d) shows the network throughputs with ρ = 10dB.

With higher SNR, the protocols have much better network throughputs. However, compared to

the random access scheme, the performance gain from opportunistic scheduling is only 13%.

This shows that the opportunistic scheduling scheme is particularly useful at lower SNR regions,

where the random access scheme does not perform well in the first place.

In comparison, Fig. 5 shows numerical results for the CDT problem with the same default

parameters. Similar to the CAT problem, in Fig. 5(a) we can see the infinite horizon analysis

always yields larger network throughputs than the finite horizon analysis. The gap of the network

throughputs between them is more than 30%, but eventually decreases to 0 as the network size

M is large enough. On the other hand, with the same parameters the CDT problem in Fig. 5(a)

yields slightly larger network throughputs than the CAT problem in Fig. 3(a). This coincides

with our theoretical result in Proposition 7. On the other hand, we can see that the line with

“⋄” in Fig. 5(a) approaches the finite horizon analysis faster than that of Fig. 3(a). It implies

that the CDT problem requires a smaller network size M than the CAT problem for using the
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infinite horizon analysis. In addition, Fig. 5(a) shows the network throughputs from the improved

protocol. Similar to Fig. 3(a), the improved protocol always yields a slightly better performance

from both analyses. Finally Fig. 5(b) shows the network throughputs for a larger probing cost

τ = 0.05. We can see that the gap in the network throughputs between the two analyses is 10.6%,

while this gap for the CAT problem is 14.7% in Fig. 3(c). It implies that for the same network the

CAT problem shows a smaller horizon compared to the CDT problem. This coincides with our

earlier observation: to safely use infinite horizon analysis, the CAT problem generally requires

a larger network size M . Furthermore, comparing both lines with “⋄” in Fig. 3(c) and Fig. 5(b),

we can see that the real rewards that can be achieved by the stopping rules from the infinite

horizon analysis are very different. For the CAT problem, the expected real reward has a huge

gap from the result based on the finite horizon analysis. For the CDT problem, the expected real

reward approximates the result based on finite horizon analysis pretty well when the network

size M is large enough, say M = 15. This implies that when the probing cost is high, it is

particularly not recommended to design stopping rules based on the infinite horizon analysis for

the CAT problem. The source of this difference lies in that there is always a constant duration

of T for data transmission in the CDT problem.

IX. CONCLUSIONS

In this paper, we studied a distributed opportunistic scheduling problem for wireless ad-hoc

networks under the popular block fading model. In this problem, we considered the inevitable

dependencies between winners’ channel rates at different time instances during the channel

probing phase and their impact on the transmission scheduling. We formulated this problem

using optimal stopping theory, but at carefully chosen time instances when effective decisions

are made by merging repeated decisions. We mainly introduced our results using the CAT model.

Since the problem has an implicit finite horizon constraint, we first characterized its performance

using backward induction. We presented one recursive approach to reduce its computational

overhead and derived an upper bound for its computational complexity. Due to the computational

complexity, we proposed an approximated approach based on the infinite horizon analysis and

developed a measure to check how well the problem can be treated as an infinite horizon problem.

We estimated the achievable network throughput if we ignore the finite horizon constraint and

use the stopping rule based on the infinite horizon analysis nevertheless. We then presented
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an improved protocol to reduce the probing costs which requires no additional design cost. We

showed that the modified protocol can slightly improve the network throughputs and considerably

save energy for channel probing.

APPENDIX A

Similar to the CAT problem, we solve this problem as a maximal rate of return problem. For

a fixed rate λ > 0, we define a new payoff at time n as

Vn(λ) = RnT − λ

(

T + τ
n
∑

i=1

Ki

)

. (53)

To show the existence of the optimal rule, we first notice that E{supn Vn} < ∞. On the other

hand, we can see that lim supn→∞ Vn → −∞ and Vn → −∞ a.s.. Putting them together leads

to lim supn→∞ Vn → V∞ a.s.. Hence an optimal stopping rule exists and can be given by the

optimality equation. Note that we used the equation Ki = M
M−i+1

K̃i in the proof of Theorem 2.

If we substitute it into (53) and notice the i.i.d. property of K̃i, we can rewrite (53) as

Vn(λ) = RnT − λT − λτK̃1

n
∑

i=1

M

M − i + 1
.

The above equation should be understood in distribution. By taking the average of M and

M − n + 1, we approximate Vn(λ) as

Vn(λ) ≈ RnT − λT − λτK̃1 ·
Mn

M − n/2 + 0.5
.

Similarly, the payoff at time n + 1 can be written as

Vn+1(λ) ≈ Rn+1T − λT − λτK̃1 ·
M(n + 1)

M − (n + 1)/2 + 0.5
.

Meanwhile, note that Rn are i.i.d. according to [A4]. Hence in the sense of distribution the

difference between Vn(λ) and Vn+1(λ) can be written as

λτK̃1 ·
M

M + 0.5





n + 1

1 − (n+1)/2
M+0.5

−
n

1 − n/2
M+0.5



 .

The item in the above square bracket has been calculated as (22) in the proof of Theorem 2. If

we substitute it into the optimality equation, we have

V ∗
n (λ) = E

[

max

{

RnT − λT − λτ
n
∑

i=1

Ki, V
∗
n (λ) −

M(M + n + 1)

(M + 0.5)2
· λτK̃1

}]

.
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The optimal rate λ∗
n that maximizes the rate of return should yield V ∗

n (λ∗
n) = 0. If we substitute

it into the optimality equation and notice E[K̃1] = 1/ps,1, we immediately have (45). The

uniqueness of λ∗
n can be verified easily. The optimal stopping rule can be written as

N∗ = min

{

n ≥ 1 : RnT − λ∗
nT − λ∗

nτ
n
∑

i=1

Ki ≥ V ∗
n (λ∗

n) = 0

}

,

which immediately leads to (44). If we let n = 0 in (45), we get (43). The solution of (43) is

the optimal system throughput λ∗
O.

APPENDIX B

We use Vn defined in (53) in our proof. The existence of the optimal stopping rule can be

verified in the same way as Theorem 8. To compute the optimal payoff V ∗
n , we take a look at

the payoff after l steps since time n. Note that we have used the equation Kn = (1 − p)n−1K̃n

in the proof of Theorem 5. If we substitute it into (53), we have

Vn+l(λ) = −λT − λτ
n
∑

i=1

(1 − p)i−1K̃i +



Rn+lT − λτ
n+l
∑

i=n+1

(1 − p)i−1K̃i



 .

If we start from time n + 1, the payoff after l rounds is

Vn+l+1(λ) = −λT−λτ
n
∑

i=1

(1 − p)i−1K̃i−λτ(1−p)nK̃n+1+



Rn+l+1T − λτ
n+l+1
∑

i=n+2

(1 − p)i−1K̃i



 .

The item in the above square bracket is the recursive part for l rounds of observations since

time n + 1. We can rewrite it as

(1 − p)







Rn+l+1T − λτ
n+l
∑

i=n+1

(1 − p)i−1K̃i+1







+ p · Rn+l+1T.

By [A1], p should be reasonably small; otherwise the average number of probing links Mp are

much larger than 1, leading to increased probing costs. Hence we can ignore the last term and

write the optimality equation as

V ∗
n (λ) = E

[

max

{

RnT − λT − λτ
n
∑

i=1

Ki, (1 − p) (V ∗
n (λ) − τKn+1)

}]

.

Again, the optimal payoff λ∗
n that maximizes the rate of return must satisfy V ∗

n (λ∗
n) = 0. We

substitute it into the optimality equation and rewrite it as

E

[

Rn

λ∗
n

−
τ

T

{

n
∑

i=1

Ki − (1 − p)Kn+1

}

− 1

]+

= (1 − p) ·
τ

T
E[Kn+1].
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If we further notice that Kn+1 = 1/gn+1K̃n+1 = (1 − p)nK̃n+1 and K̃n+1 and K1 are i.i.d., we

can rewrite the above equation as (51). The optimal stopping rule N∗ can be derived in the same

way as in Theorem 8. To get the overall optimal system throughput λ∗
P , we let n = 0 in (51)

and rewrite the equation as (49).
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