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The Role of Persistent Graphs

in the Agreement Seeking of Social Networks ∗

Guodong Shi and Karl Henrik Johansson†

Abstract

This paper investigates the role persistent arcs play for a social network to reach a global

belief agreement under discrete-time or continuous-time evolution. Each (directed) arc in the

underlying communication graph is assumed to be associated with a time-dependent weight

function which describes the strength of the information flow from one node to another. An

arc is said to be persistent if its weight function has infinite L1 or ℓ1 norm for continuous-

time or discrete-time belief evolutions, respectively. The graph that consists of all persistent

arcs is called the persistent graph of the underlying network. Three necessary and sufficient

conditions on agreement or ǫ-agreement are established, by which we prove that the persistent

graph fully determines the convergence to a common opinion in social networks. It is shown

how the convergence rates explicitly depend on the diameter of the persistent graph. The

results adds to the understanding of the fundamentals behind global agreements, as it is only

persistent arcs that contribute to the convergence.

Keywords: Consensus, Persistent Graphs, Social Networks, Dynamical Systems

1 Introduction

Recent years have witnessed wide research interest in opinion dynamics and information ag-

gregation of social networks. Individuals are equipped with beliefs or opinions which updated

as information is exchanged from time to time; how beliefs are propagated depends on the

interactions between individuals.

∗This work has been supported in part by the Knut and Alice Wallenberg Foundation, the Swedish Research

Council and KTH SRA TNG.
†G. Shi and K. H. Johansson are with ACCESS Linnaeus Centre, School of Electrical Engineering, Royal

Institute of Technology, Stockholm 10044, Sweden. Email: guodongs@kth.se, kallej@kth.se

1

http://arxiv.org/abs/1112.1338v2


DeGroot’s model is a classical model on belief evolution [10]. It is simply formulated as a

discrete-time linear system, where the state transition matrix is time-invariant and row stochas-

tic. The ij-entry of the transition matrix of DeGroot’s model represents the weight of the arc

which marks the influence of j to i. The convergence to an agreement is equivalent to the conver-

gence to a stationary distribution of the finite-state Markov chain given by the same transition

matrix. Results from Markov chain analysis can therefore be used in the agreement analysis

[10, 7, 8]. Variations of DeGroot’s model are considered in [11, 12, 13, 14] for the study of

opinion dynamics in social networks. Here if an asymptotic belief agreement can be reached or

not has always been a central question.

Consensus problems which are very related to DeGroot’s model appear in many different

contexts in the study of computer science and engineering, e.g., decentralized and parallel com-

putations [15, 36, 37], coordinations of autonomous agents [16, 22, 20, 21] and sensor networks

[38, 39, 32]. Agreement seeking has been extensively studied in the literature for both discrete-

time and continuous-time models [16, 15, 40, 20, 18, 27, 28, 19, 17, 25, 30, 26].

The communication graph plays an important role in proper conditions to ensure a consensus.

In most existing work, the arc weights, which reflect the strength of the influence from one

node to another, are assumed to either be constant whenever two nodes meet with each other

[10, 18, 17], or in a compact set with positive lower and upper bounds [40, 16, 27, 28, 13].

However, in reality, the arc weights may vary in a wide range, and may even fade away. Moreover,

different arcs may have quite different persistency properties. For instance, the opinion of people

may be heavily influenced over short time periods by political campaigns, but over long time

periods persistent links to family and friends might be more important. This is to say, the weights

of the opinions from different sources are in practice generally time-varying and highly irregular

over the underlying communication graph, and therefore, links can be impulsive, vanishing,

persistent, etc. Then an interesting question arises: are there certain arcs which are the ones

that actually generate the convergence to a consensus and how do their graph properties influence

the convergence rate?

The central aim of the paper is to build a model to classify different arcs in the underlying

communication graph, and then give a precise description on how the persistent arcs indeed

determine the agreement seeking. We define the persistent graph as the graph having links

whose weight functions have infinite L1 or ℓ1 norm for continuous-time or discrete-time belief

dynamics, respectively. Global agreement and ǫ-agreement are defined as whether the max-
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imum state difference converges to zero, and whether the convergence is exponentially fast,

respectively. For the discrete-time case, a necessary and sufficient condition is obtained on ǫ-

agreement under general stochasticity, self-confidence and arc balance assumptions. Then for

the continuous-time case, two necessary and sufficient conditions are established on global agree-

ment and ǫ-agreement, respectively. In this way, we precisely state how the persistent graph

plays a fundamental role in consensus seeking. Additionally, comparisons of our new conditions

are given with existing results and the relations between the discrete-time and continuous-time

evolutions are highlighted.

The rest of the paper is organized as follows. In Section 2, we introduce the network model

and define the problem of interest. Then in Sections 3 and 4, the main results and convergence

analysis are presented for discrete-time and continuous-time dynamics, respectively. Finally

some discussions and concluding remarks are given in Sections 5 and 6.

2 Problem Definition

In this section, we present the social network model and define the considered problem. To this

end, we first introduce some basic graph theory [4].

A (simple) digraph G = (V, E) consists of a finite set V = {1, . . . , n} of nodes and an arc

set E , where each arc (i, j) ∈ E is an ordered pair from node i ∈ V to another node j ∈ V. If

the arcs are pairwise distinct in an alternating sequence v0e1v1e2v2 . . . ekvk of nodes vi and arcs

ei = (vi−1, vi) ∈ E for i = 1, 2, . . . , k, the sequence is called a (directed) path with length k. A

path from i to j is denoted i → j, and the length of i → j is denoted |i → j|. A path with

no repeated nodes is called a simple path. If there exists a path from node i to node j, then

node j is said to be reachable from node i. Each node is thought to be reachable by itself. A

node v from which any other node is reachable is called a center (or a root) of G. G is said to be

strongly connected if it contains path i→ j and j → i for every pair of nodes i and j; G is said

to be quasi-strongly connected if G has a center [5, 25].

The distance from i to j, d(i, j), is defined as the length of a shortest (simple) path i→ j when

j is reachable from i, and the diameter of G as d0 = max{d(i, j)|i, j ∈ V, j is reachable from i}.

In this paper, we consider a social network model with node set V = {1, . . . , n}. Let the

digraph G∗ = (V, E∗) denote the underlying graph of the considered social network. The under-

lying graph indicates all potential interactions between nodes. Node j is said to be a neighbor
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of i at time t when there is an arc (j, i) ∈ E∗; each node is supposed to be a neighbor of itself.

Let Ni = {i} ∪ {j : (j, i) ∈ E∗} denote the neighbor set of node i.

Let xi(t) ∈ R be the belief of node i at time t. Time is either discrete or continuous. The

initial time is t0 ≥ 0 in both cases and each node is equipped with an initial belief xi(t0). The

belief updating rule is in discrete time:

xi(t+ 1) =
∑

j∈Ni

Wij(t)xj(t), i = 1, . . . , n (1)

and in continuous time:

ẋi(t) =
∑

j∈Ni

Wij(t)
[

xj(t)− xi(t)
]

, i = 1, . . . , n. (2)

Here Wij(t) : [0,∞) → [0,∞) is a nonnegative scalar function which represents the weight of

arc (j, i). Clearly Wij(t) describes the strength of the influence of node j on i. Since Wij(t) = 0

may happen from time to time, the graph is indeed time-varying.

We define

ψ(t)
.
= min

i∈V
{xi(t)}, Ψ(t)

.
= max

i∈V
{xi(t)}

as the minimum and maximum state value at time t, respectively. Then

H(t)
.
= Ψ(t)− ψ(t)

is a natural agreement measure marking the maximum distances between the individual beliefs.

The considered global agreement and ǫ-agreement for both the discrete-time and continuous-time

updating rules are defined as follows.

Definition 1 (a) Global agreement is achieved if for any x(t0)
.
= (x1(t0) . . . xn(t0))

T ∈ Rn, we

have

lim
t→∞

H(t) = 0. (3)

(b) Global ǫ-agreement is achieved if there exist two constants 0 < ǫ < 1 and T0 > 0 such

that for any x(t0) ∈ R
n and t ≥ t0, we have

H(t+ T0) ≤ ǫH(t). (4)

Remark 1 A global agreement only requires that H(t) will converge to zero as t tends to infinity.

If it is further required that the convergence speed is at least exponentially fast, we use global

ǫ-agreement. This definition of ǫ-agreement and other similar concepts have been widely used to

characterize the convergence rate of consensus evolutions in the literature, e.g., [18, 40, 41, 42].
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The goal of this paper is to distinguish the arcs from the underlying graph that are persistent

over a long time range and how they influence global agreement. To be precise, we impose the

following definition for persistent arcs and persistent graphs based on the L1 or ℓ1 norms of the

weight functions.

Figure 1: The underlying graph consists of persistent arcs (solid) and vanishing arcs (dashed).

The persistent graph is shown to play a fundamental role for the convergence to an agreement.

Definition 2 (a) An arc (j, i) ∈ G∗ is a persistent arc of the discrete-time updating rule (1) if

∞
∑

t=0

Wij(t) = ∞,

and a persistent arc of the continuous-time updating rule (2) if

∫ ∞

s
Wij(t)dt = ∞ for all s ≥ 0.

(b) The graph Gp = (V, Ep) that consists of all persistent arcs is called the persistent graph.

Next, in Sections 3 and 4, we will investigate the discrete-time and continuous-time updating

rules, respectively. We will establish sufficient and necessary conditions on global agreement and

ǫ-agreement, which illustrate that the notion of persistent graphs is critical to the convergence.

3 Discrete-time Belief Evolution

In this section, we focus on the discrete-time belief evolution (1). In order to obtain the main

result, we need the following assumptions.

A1 (Stochasticity)
∑

j∈Ni
Wij(t) = 1 for all i ∈ V and t ≥ 0.
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A2 (Self-confidence) There exists 0 < η < 1 such that Wii(t) ≥ η for i ∈ V and t ≥ 0.

A3 (Arc Balance) There exists a constant A > 1 such that for any two arcs (j, i), (m,k) ∈ Ep

and t ≥ 0, we have

A−1Wij(t) ≤Wkm(t) ≤ AWij(t).

The main result for the discrete-time updating rule (1) on global ǫ-agreement is as follows.

Theorem 1 Suppose A1, A2 and A3 hold. Global ǫ-agreement is achieved for (1) if and only if

(a) Gp is quasi-strongly connected;

(b) there exist a constant a∗ > 0 and an integer T∗ > 0 such that
∑t+T∗−1

s=t Wij(s) ≥ a∗ for

all t ≥ 0 and (j, i) ∈ Ep.

In fact, if (a) and (b) hold, then we have

H(t+ d0T∗) ≤
(

1−
ηd0T∗

2
·
(a∗
T∗

)d0
)

H(t) (5)

for all t ≥ t0, where d0 represents the diameter of Gp.

Remark 2 Consensus convergence for many variations of (1) has been extensively studied in

the literature, e.g., [1, 13, 12, 7, 8, 16, 21, 20, 27]. As for convergence rate, a relatively con-

servative bound is given in [1, 16], and then generalized in [28, 41]. Recently a sharper bound

for convergence rate was obtained in [42]. The self-confidence condition A2 is generally not

necessary to ensure a consensus, but the convergence properties may be quite different without

A2, especially for the case with time-varying graphs.

Remark 3 Most of existing results are based on the assumption that all weight functions Wij(t)

in the underlying graph have a positive lower bound whenever they are not zero. Here we just

need the self-loop weights, Wii(t), i = 1, . . . , n, to have a positive lower bound. As indicated by

the proof below, the sufficiency statement of Theorem 1 relies on the self-confidence assumption

A2, while the arc balance assumption A3 is used in the necessity part.

Before we state the proof, we introduce some more notations, which will be used throughout

the rest of the paper. For two sets S1 and S2, S1 \S2 is defined as S1 \S2 = {z : z ∈ S1, z /∈ S2}.

For the underlying graph G∗ = (V, E∗) and the persistent graph Gp = (V, Ep), we denote

θ(t) =
∑

(j,i)∈E∗\Ep

Wij(t), (6)
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and

ξ+(t;m) =
∑

j∈Nm\{m}

Wmj(t), ξ+0 (t;m) =
∑

j∈Nm\{m},(j,m)∈Ep

Wmj(t). (7)

In the following two subsections, we prove the necessity and sufficiency parts of Theorem 1,

respectively.

3.1 Necessity

We need to show that a global ǫ-agreement cannot be achieved without either condition (a) or

(b).

The upcoming analysis relies on the following well-known lemmas.

Lemma 1 Suppose 0 ≤ pk < 1 for all k. Then
∑∞

k=0 pk = ∞ if and only if
∏∞

k=0(1− pk) = 0.

Lemma 2 log(1− t) ≥ −2t for all 0 ≤ t ≤ 1/2.

We have the following proposition indicating that Gp being quasi-strongly connected is not

only a necessary condition for (1) to reach global ǫ-agreement, but also necessary for (simple)

global agreement, even in the absence of assumptions A2 and A3.

Proposition 1 Suppose A1 holds. If global agreement is achieved for (1), then Gp is quasi-

strongly connected.

Proof. Suppose Gp is not quasi-strongly connected. Then there exist two distinct nodes u

and w such that Vu ∩ Vw = ∅, where Vu = {nodes from which u is reachable in Gp} and Vw =

{nodes from which w is reachable in Gp}. Moreover, there is no arc entering either Vu or Vw in

the persistent graph Gp. Let xi(t0) = 0 for all i ∈ Vu, and xi(t0) = 1 for all i ∈ V \ Vu. Denote

ℓ(t) = maxi∈Vu xi(t) and ~(t) = mini∈Vw xi(t). We define g+(t;m) =
∑

j∈Nm,j /∈Vu
Wmj(t) for

m ∈ Vu and f+(t; k) =
∑

j∈Nk,j /∈Vw
Wkj(t) for k ∈ Vw. We further denote

ζ+u (t) =
∑

m∈Vu

g+(t;m); ζ+w (t) =
∑

k∈Vw

f+(t; k).

It is straightforward to see that ψ(t) is non-decreasing and Ψ(t) is non-increasing for (1). It

follows that xi(t) ∈ [0, 1] for all i and t ≥ t0. There are two cases.
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(i). First, for any m ∈ Vu, we have

xm(t0 + 1) =
∑

j∈Nm

Wmj(t0)xj(t0) ≤ 0 ·
(

1− g+(t0;m)
)

+ 1 · g+(t0;m) ≤ ζ+u (t0),

which yields ℓ(t0 + 1) ≤ ζ+u (t0) immediately. Then, for the next slot we have that for any

m ∈ Vu,

xm(t0 + 2) =
∑

j∈Nm

Wmj(t0 + 1)xj(t0 + 1)

≤
∑

j∈Nm,j∈Vu

Wmj(t0 + 1)ℓ(t0 + 1) +
∑

j∈Nm,j /∈Vu

Wmj(t0 + 1) · 1

= ζ+u (t0) ·
(

1− g+(t0 + 1;m)
)

+ g+(t0 + 1;m)

≤ ζ+u (t0) + ζ+u (t0 + 1), (8)

which leads to ℓ(t0+1) ≤ ζ+u (t0)+ ζ
+
u (t0+1). Continuing we get that for any s = 1, 2, . . . ,

we have

ℓ(t0 + s) ≤
t0+s−1
∑

t=t0

ζ+u (t) ≤
∞
∑

j=t0

θ(t) <∞ (9)

because there is no arc entering Vu in the persistent graph Gp.

(ii). Consider now Vw. According to the definition of θ(t), there exists T1 > 0 such that when

θ(t) < 1, t ≥ T1. Let t0 ≥ T1. Then we have ζ+w (t) ≤ θ(t) < 1 for all t ≥ t0 since there is

no arc entering Vw in the persistent graph Gp.

Similarly we obtain ~(t0 + 1) ≥ 1− ζ+w (t0) since for any k ∈ Vw, we have

xk(t0 + 1) =
∑

j∈Nk

Wkj(t0)xj(t0) ≥ 0 · f+(t0; k) + 1 ·
(

1− f+(t0; k)
)

≥ 1− ζ+w (t0).

Furthermore, for any k ∈ Vw, one has

xk(t0 + 2) ≥ 0 · f+(t0 + 1; k) +
(

1− f+(t0; k)
)

·
(

1− ζ+w (t0)
)

≥
(

1− ζ+w (t0 + 1)
)

·
(

1− ζ+w (t0)
)

, (10)

and thus ~(t0 +2) ≥
(

1− ζ+w (t0 +1)
)

·
(

1− ζ+w (t0)
)

. Proceeding the analysis we know that

for any s = 1, 2, . . . ,

~(t0 + s) ≥
t0+s−1
∏

t=t0

(

1− ζ+w (t)
)

≥
∞
∏

t=t0

(

1− θ(t)
)

≥
∞
∏

t=T1

(

1− θ(t)
) .
= σ∗ > 0, (11)

where σ∗ exists from Lemma 1 and the definition of θ(t).
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Because
∑∞

j=0 θ(t) <∞, we can always choose t0 sufficiently large so that
∑∞

j=t0
θ(t) ≤ σ∗/2.

Therefore, (9) and (11) lead to H(t0+ s) ≥ ~(t0+ s)− ℓ(t0+ s) ≥ σ∗/2 > 0. A global agreement

is thus impossible. This completes the proof. �

We establish a lemma on the upper and lower bounds for some particular nodes.

Lemma 3 Suppose A1 holds. Let xm(t) = µψ(t) + (1 − µ)Ψ(t) with 0 ≤ µ ≤ 1. Then for any

integer T > 0, we have:

xm(t+ T ) ≤ µ

t+T−1
∏

s=t

(

1− ξ+(s;m)
)

· ψ(t) +
(

1− µ

t+T−1
∏

s=t

(

1− ξ+(s;m)
)

)

·Ψ(t). (12)

and

xm(t+ T ) ≥ µ
t+T−1
∏

s=t

(

1− ξ+(s;m)
)

·Ψ(t) +
(

1− µ
t+T−1
∏

s=t

(

1− ξ+(s;m)
)

)

· ψ(t). (13)

Proof. When xm(t) = µψ(t) + (1− µ)Ψ(t), for time t+ 1, we have

xm(t+ 1) =
∑

j∈Nm

Wmj(t)xj(t)

≤
(

1− ξ+(t;m)
)

·
(

µψ(t) + (1− µ)Ψ(t)
)

+ ξ+(t;m)Ψ(t)

= µ
(

1− ξ+(t;m)
)

· ψ(t) +
(

1− µ
(

1− ξ+(t;m)
)

)

Ψ(t). (14)

For time t+ 2, we obtain

xm(t+ 2) ≤
(

1− ξ+(t+ 1;m)
)

·
[

µ
(

1− ξ+(t;m)
)

· ψ(t) +
(

1− µ
(

1− ξ+(t;m)
)

)

Ψ(t)
]

+ ξ+(t+ 1;m)Ψ(t)

= µ
t+1
∏

s=t

(

1− ξ+(s;m)
)

· ψ(t) +
(

1− µ
t+1
∏

s=t

(

1− ξ+(s;m)
)

)

·Ψ(t). (15)

Continuing, we obtain (12).

In equality (13) can be easily obtained using a symmetric analysis as for (12). �

We are now in a place to present the following conclusion, which shows the necessity of

condition (b) in Theorem 1.

Proposition 2 Suppose A1 and A3 hold. If global ǫ-agreement is achieved for (1), then there

exist a constant a∗ > 0 and an integer T∗ > 0 such that
∑t+T∗

s=t Wij(s) ≥ a∗ for all t ≥ 0 and

(j, i) ∈ Gp.
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Proof. We prove the conclusion by contradiction. Suppose the condition does not hold. Then

∀0 < ǫ < 1, T > 0,∃t∗(T, ǫ) ≥ 0 and (j∗, i∗) ∈ Ep such that

t∗+T−1
∑

s=t∗

Wi∗j∗(s) <
1

2
A−1(n− 1)−1 · log

(1 + ǫ

2

)−1
. (16)

Since (j∗, i∗) ∈ Gp, it is straightforward to see that t∗(T, ǫ) → ∞ as T → ∞ for any fixed ǫ.

Thus, we can assume that (16) also holds for the arcs in E∗ \ Ep. Moreover, without loss of

generality, we can also assume that ξ+(s; i) ≤ 1/2 for all i and t∗ ≤ s ≤ t∗ + T − 1. With arc

balance assumption A3 and Lemma 2, (16) implies

t∗+T−1
∏

s=t∗

(

1− ξ+(s; i)
)

= e
∑t∗+T−1

s=t∗
log

(

1−ξ+(s;i)
)

≥ e−2
∑t∗+T−1

s=t∗
ξ+(s;i) > e

− log

(

1+ǫ
2

)−1

=
1 + ǫ

2

(17)

for all i ∈ V.

Moreover, taking xm(t∗) = ψ(t∗) and xk(t∗) = Ψ(t∗), we know from Lemma 3 that

xm(t∗ + T ) ≤
t∗+T−1
∏

s=t∗

(

1− ξ+(s;m)
)

· ψ(t∗) +
(

1−
t∗+T−1
∏

s=t∗

(

1− ξ+(s;m)
)

)

·Ψ(t∗) (18)

and

xk(t∗ + T ) ≥
t∗+T−1
∏

s=t∗

(

1− ξ+(s; k)
)

·Ψ(t∗) +
(

1−
t∗+T−1
∏

s=t∗

(

1− ξ+(s; k)
)

)

· ψ(t∗). (19)

Therefore, with (17), (18) and (19), we eventually obtain

H(t∗ + T ) ≥ xk(t∗ + T )− xm(t∗ + T )

≥
[

t∗+T−1
∏

s=t∗

(

1− ξ+(s; k)
)

+

t∗+T−1
∏

s=t∗

(

1− ξ+(s;m)
)

− 1
]

· H(t∗)

>
(

2 ·
1 + ǫ

2
− 1

)

H(t∗)

= ǫH(t∗). (20)

The desired conclusion thus follows. �

The necessity claim in Theorem 1 follows from Propositions 1 and 2.

3.2 Sufficiency

We now present the sufficiency proof of Theorem 1. In fact, we are going to prove a stronger

statement which does not rely on the arc balance assumption A3.

10



Proposition 3 Suppose A1 and A2 hold. Global ǫ-agreement is achieved for (1) if Gp is

quasi-strongly connected and there exist a constant a∗ > 0 and an integer T∗ > 0 such that
∑t+T∗−1

s=t Wij(s) ≥ a∗ for all t ≥ 0 and (j, i) ∈ Gp.

Proof. Let i0 ∈ V be a center of Gp. Take t0 ≥ 0. Assume first that

xi0(t0) ≤
1

2
ψ(t0) +

1

2
Ψ(t0). (21)

Then from Lemma 3, one has

xi0(t0 + T ) ≤
1

2

t0+T−1
∏

s=t0

(

1− ξ+(s; i0)
)

· ψ(t0) +
(

1−
1

2

t0+T−1
∏

s=t0

(

1− ξ+(s; i0)
)

)

·Ψ(t0)

≤
ηT

2
ψ(t0) +

(

1−
ηT

2

)

Ψ(t0) (22)

for all T = 0, 1, . . . .

Denote V1 as the node set consisting of all the nodes of which i0 is a neighbor in Gp,

i.e., V1 = {j : (i0, j) ∈ Ep}. Note that V1 is nonempty because i0 is a center. For any

i1 ∈ V1, there exists an instance t̄1 ∈ [t0, t0 + T∗ − 1] such that Wi1i0(t̄1) ≥ a∗/T∗ because
∑t0+T∗−1

t=t0
Wi1i0(t) ≥ a∗. Suppose t̄1 = t0 + ̺1 with ̺1 ∈ [0, T∗ − 1]. Then with (22), we have

xi1(t̄1 + 1) = xi1(t0 + ̺1 + 1) ≤Wi1i0(t0 + ̺1)xi0(t0 + ̺1) +
(

1−Wi1i0(t0 + ̺1)
)

Ψ(t0)

≤
a∗
T∗

·
[η̺1

2
ψ(t0) +

(

1−
η̺1

2

)

Ψ(t0)
]

+
(

1−
a∗
T∗

)

Ψ(t0)

= η̺1 ·
a∗
2T∗

· ψ(t0) +
(

1− η̺1 ·
a∗
2T∗

)

Ψ(t0). (23)

Based on Lemma 3, we can further conclude

xi1(t0 + ̺1 + T ) ≤ η̺1+T−1 ·
a∗
2T∗

· ψ(t0) +
(

1− η̺1+T−1 ·
a∗
2T∗

)

Ψ(t0) (24)

for all T = 1, 2, . . . , which implies

xi1(t0 + T∗ +K) ≤ ηT∗+K ·
a∗
2T∗

· ψ(t0) +
(

1− ηT∗+K ·
a∗
2T∗

)

Ψ(t0), K = 0, 1, . . . . (25)

Next, since Gp is quasi-strongly connected, we can denote V2 as the node set consisting of all

the nodes each of which has a neighbor in {i0}∪V1 within Gp. For any i2 ∈ V2, there exist a node

i∗ ∈ {i0}∪V1 and an instance t̄2 = t0+T∗+̺2 with ̺2 ∈ [0, T∗−1] such that Wi2i∗(t̄1) ≥ a∗/T∗.

Similarly we have

xi2(t̄2 + 1) ≤Wi2i∗(t0 + T∗ + ̺2)xi∗(t0 + T∗ + ̺2) +
(

1−Wi2i∗(t0 + T∗ + ̺2)
)

Ψ(t0)

≤
a∗
T∗

·
[

ηT∗+̺2 ·
a∗
2T∗

· ψ(t0) +
(

1− ηT∗+̺2 ·
a∗
2T∗

)

Ψ(t0)
]

+
(

1−
a∗
T∗

)

Ψ(t0)

=
ηT∗+̺2

2
·
(a∗
T∗

)2
· ψ(t0) +

(

1−
ηT∗+̺2

2
·
(a∗
T∗

)2
)

Ψ(t0), (26)
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and therefore

xi2(t0 + 2T∗ +K) ≤
η2T∗+K

2
·
(a∗
T∗

)2
ψ(t0) +

(

1−
η2T∗+K

2
·
(a∗
T∗

)2
)

Ψ(t0), K = 0, 1, . . .

Proceeding the estimate, V3, . . . ,Vk can be similarly defined until
(

∪k
i=1 Vi

)

∪ {i0} = V.

Moreover, it is not hard to see that i0 can be selected so that k = d0, where d0 is the diameter

of Gp, and thus

xi(t0 + d0T∗) ≤
ηd0T∗

2
·
(a∗
T∗

)d0 · ψ(t0) +
(

1−
ηd0T∗

2
·
(a∗
T∗

)d0
)

Ψ(t0), i = 1, . . . , n (27)

which yields

Ψ(t0 + d0T∗) ≤
ηd0T∗

2
·
(a∗
T∗

)d0 · ψ(t0) +
(

1−
ηd0T∗

2
·
(a∗
T∗

)d0
)

Ψ(t0). (28)

With (28), we eventually have

H(t0 + d0T∗) ≤
ηd0T∗

2
·
(a∗
T∗

)d0 · ψ(t0) +
(

1−
ηd0T∗

2
·
(a∗
T∗

)d0
)

Ψ(t0)− ψ(t0)

=
(

1−
ηd0T∗

2
·
(a∗
T∗

)d0
)

H(t0). (29)

For the opposite case of (21) with

xi0(t0) >
1

2
ψ(t0) +

1

2
Ψ(t0), (30)

(29) is obtained using a symmetric argument by bounding ψ(t0 + d0T∗) from below.

Therefore, the desired conclusion follows with ǫ = 1− ηd0T∗

2 ·
(

a∗
T∗

)2
and T0 = d0T∗ since (29)

holds independent with the choice of t0. �

4 Continuous-time Belief Evolution

In this section, we turn to the continuous-time updating rule. We need an assumption on the

continuity of each weight function Wij(t) for the existence of trajectories of (2).

A4 (Continuity) Each Wij(t), (j, i) ∈ E∗ is continuous except for a set with measure zero.

With assumption A4, the set of discontinuity points for the right-hand side of equation

(2) has measure zero. Therefore, the Caratheodory solutions of (2) exist for arbitrary initial

conditions, and they are absolutely continuous functions that satisfy (2) for almost all t on the

maximum interval of existence [3, 9]. In the following, each solution of (2) is considered in the

sense of Caratheodory without explicit mention.
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Let us first study the feasibility of the solutions of (2). Consider (2) with initial condition

x(t0) = (x1(t0), . . . , xn(t0))
T = x0 ∈ Rn, t0 ≥ 0.

The upper Dini derivative of a function h : (a, b) → R at t is defined as

D+h(t) = lim sup
s→0+

h(t+ s)− h(t)

s

The next result is useful for the calculation of Dini derivatives [6, 25].

Lemma 4 Let Vi(t, x) : R × Rm → R, i = 1, . . . , n, be C1 and V (t, x) = maxi=1,...,n Vi(t, x).

If I(t) =
{

i ∈ {1, . . . , n} : V (t, x(t)) = Vi(t, x(t))
}

is the set of indices where the maximum is

reached at t, then D+V (t, x(t)) = maxi∈I(t) V̇i(t, x(t)).

The following lemma establishes the monotonicity of Ψ(t) and ψ(t).

Lemma 5 For all t ≥ t0 ≥ 0, we have D+Ψ(t) ≤ 0 and D+ψ(t) ≥ 0.

Proof. We prove D+Ψ(t) ≤ 0. The other part can be proved similarly.

Let I0(t) represent the set containing all the agents that reach the maximum in the definition

of Ψ(t) at time t, i.e., I(t) = {i ∈ V| xi(t) = Ψ(t)}. Then according to Lemma 4, we obtain

D+Ψ(t) = max
i∈I0(t)

ẋi(t) = max
i∈I0(t)

[

∑

j∈Ni

Wij(t)(xj(t)− xi(t))
]

≤ 0, (31)

which completes the proof. �

Lemma 5 implies, H(t) is non-increasing for all t ≥ t0, and therefore each (Caratheodory)

trajectory of (2) is bounded within the initial states of the nodes. As a result, the trajectories

exist in [t0,∞) for any initial condition.

The main result on global consensus and ǫ-consensus is stated in the following two theorems.

Theorem 2 Suppose A3 and A4 hold. Global agreement is achieved for (2) if and only if Gp is

quasi-strongly connected.

Theorem 3 Suppose A3 and A4 hold. Global ǫ-agreement is achieved for (2) if and only if

(a) Gp is quasi-strongly connected;

(b) there exists two constants a∗, τ0 > 0 such that
∫ t+τ0
t Wij(s)ds ≥ a∗ for all t ≥ 0 and

(j, i) ∈ Gp.

Moreover, if (a) and (b) hold, then we have

H
(

t+ τ0 ·
⌈d0 log 2

a∗

⌉)

≤
(

1−
md0

0

2

)

H(t), (32)
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where m0 =
(

ω0
2

)2 1
(n−1)A with ω0 = e−

∫∞
0 θ(t)dt, d0 is the diameter of Gp, and ⌈z⌉ represents the

smallest integer which is no smaller than z.

Theorem 2 implies that the connectivity of the persistent graph Gp totally determines whether

an agreement can be achieved globally. Furthermore, Theorem 3 implies that
∫ T
0 Wij(t)dt =

O(T ) is a critical condition to ensure a global ǫ-consensus.

Remark 4 Consensus for (2) was first studied in [17], where the convergence rate was shown

to be determined by the second largest eigenvalue of the Laplacian of the communication graph.

Further discussions can be found in [21, 25, 30].

Remark 5 Theorems 2 and 3 still hold if assumption A3 is replaced by the following integral

version.

A5. (Integral Arc Balance) There exists a constant A > 1 such that for any two arcs (j, i), (m,k) ∈

Ep, we have

A−1

∫ b

a
Wij(t)dt ≤

∫ b

a
Wkm(t)dt ≤ A

∫ b

a
Wij(t)dt

for all 0 ≤ a < b.

Remark 6 If we have
∫ T
t=t0

Wij(t)dt = ∞, (j, i) ∈ Gp for some finite T , it follows from the proof

of Theorem 2 below that (2) will reach a global agreement in finite time when t tends to T .

4.1 Preliminaries

In this subsection, we establish two lemmas which describe the boundaries of how much each

individual arc affects the nodes’ dynamics. Then the proof of Theorems 2 and 3 will be proposed

in the next two subsections.

Lemma 6 Suppose xm(s) ≤ µψ(s) + (1− µ)Ψ(s) for some s ≥ t0 and m ∈ V with 0 ≤ µ ≤ 1 a

giving constant. Then we have

xm(t) ≤ µe−
∫ t

s
ξ+(τ ;m)dτψ(s) +

[

1− µe−
∫ t

s
ξ+(τ ;m)dτ

]

Ψ(s) (33)

for all t ≥ s.

Proof. Based on Lemma 5, we see that

ẋm(t) =
∑

j∈Nm

Wmj(t)
[

xj(t)− xm(t)
]

≤
∑

j∈Nm

Wmj(t)
[

Ψ(s)− xm(t)
]

= −ξ+(t;m)
[

xm(t)−Ψ(s)
]

, t ≥ s. (34)
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This implies

xm(t) ≤ e−
∫ t

s
ξ+(τ ;m)dτxm(s) +

[

1− e−
∫ t

s
ξ+(τ ;m)dτ

]

Ψ(s)

≤ µe−
∫ t

s
ξ+(τ ;m)dτψ(s) +

[

1− µe−
∫ t

s
ξ+(τ ;m)dτ

]

Ψ(s) (35)

by Grönwall’s inequality. The proof is completed. �

We give a lemma investigating the dynamic evolution between two connected nodes.

Lemma 7 Suppose (l,m) ∈ E∗ and there exists a constant 0 < µ < 1 such that

xl(t) ≤ µψ(s0) + (1− µ)Ψ(s0), t ∈ [s0, s]

for t0 ≤ s0 < s. Then we have

xm(t) ≤ µ

∫ t

s0

e−
∫ t

u
ξ+(τ ;m)dτWml(u)du · ψ(s0)

+
[

1− µ

∫ t

s0

e−
∫ t

u
ξ+(τ ;m)dτWml(u)du

]

Ψ(s0), t ∈ [s0, s]. (36)

Proof. Similar to (34), for any t ∈ [s0, s], we have

ẋm(t) ≤
[

ξ+(t;m)−Wml(t)
]

·
[

Ψ(s0)− xm(t)
]

+Wml(t)
[

µψ(s0) + (1− µ)Ψ(s0)− xm(t)
]

.

Therefore, noting the fact that

∫ t

s0

e−
∫ t

u
ξ+(τ ;m)dτ ξ+(u;m)du =

∫ t

s0

d

du

[

e−
∫ t

u
ξ+(τ ;m)dτ

]

= 1− e
−

∫ t

s0
ξ+(τ ;m)dτ

,

we obtain

xm(t) ≤ e
−

∫ t

s0
ξ+(τ ;m)dτ

xm(s0) +

∫ t

s0

e−
∫ t

u
ξ+(τ ;m)dτ

[

ξ+(u;m)−Wml(u)
]

du ·Ψ(s0)

+

∫ t

s0

e−
∫ t

u
ξ+(τ ;m)dτWml(u)du ·

[

µψ(s0) + (1− µ)Ψ(s0)
]

≤ e
−

∫ t

s0
ξ+(τ ;m)dτ

Ψ(s0) +

∫ t

s0

e−
∫ t

u
ξ+(τ ;m)dτ

[

ξ+(u;m) −Wml(u)
]

du ·Ψ(s0)

+

∫ t

s0

e−
∫ t

u
ξ+(τ ;m)dτWml(u)du ·

[

µψ(s0) + (1− µ)Ψ(s0)
]

= µ

∫ t

s0

e−
∫ t

u
ξ+(τ ;m)dτWml(u)du · ψ(s0)

+
[

1− µ

∫ t

s0

e−
∫ t

u
ξ+(τ ;m)dτWml(u)du

]

Ψ(s0), t ∈ [s0, s] (37)

by Grönwall’s inequality and some simple manipulations. This completes the proof. �
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4.2 Proof of Theorem 2

Sufficiency

Let i0 ∈ V be a center of Gp. Assume first that

xi0(t0) ≤
1

2
ψ(t0) +

1

2
Ψ(t0). (38)

Denote ω0 = e−
∫∞

0
θ(t)dt. Then we have 0 < ω0 ≤ 1. Thus, based on Lemma 6 and noting the

fact that ψ(t0) ≤ Ψ(t0), we have

xi0(t) ≤
1

2
e
−

∫ t

t0
ξ+(τ ;i0)dτψ(t0) +

[

1−
1

2
e
−

∫ t

t0
ξ+(τ ;i0)dτ ]Ψ(t0)

≤
ω0

2
e
−

∫ t

t0
ξ+0 (τ ;i0)dτψ(t0) +

[

1−
ω0

2
e
−

∫ t

t0
ξ+0 (τ ;i0)dτ

]

Ψ(t0).

Define

t̂1 = inf
{

t ≥ t0 : e
−

∫ t

t0
ξ+0 (τ ;i0)dτ =

1

2

}

. (39)

We see that t̂1 is finite from the definition of Ep. As a result, we obtain

xi0(t) ≤
ω0

4
ψ(t0) +

[

1−
ω0

4

]

Ψ(t0), t ∈ [t0, t̂1]. (40)

Next, we denote the node set consisting of all the nodes of which i0 is a neighbor in Gp as

V1, i.e., V1 = {j : (i0, j) ∈ Ep}. Note that V1 is nonempty because i0 is a center. Then for any

i1 ∈ V1, we see from Lemma 7 that

xi1(t̂1) ≤
ω0

4

∫ t̂1

t0

e−
∫ t̂1
u

ξ+(τ ;i1)dτWi1i0(u)du · ψ(t0)

+
[

1−
ω0

4

∫ t̂1

t0

e−
∫ t̂1
u

ξ+(τ ;i1)dτWi1i0(u)du
]

Ψ(s0)

≤
ω2
0

4

∫ t̂1

t0

e−
∫ t̂1
u

ξ+0 (τ ;i1)dτWi1i0(u)du · ψ(t0)

+
[

1−
ω2
0

4

∫ t̂1

t0

e−
∫ t̂1
u

ξ+0 (τ ;i1)dτWi1i0(u)du
]

Ψ(s0). (41)

The arc balance assumption A3 implies that

∫ t̂1

u
ξ+0 (t; i1)dt ≤

∫ t̂1

u
(n− 1)AWi1i0(t)dt,
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which yields

∫ t̂1

t0

e−
∫ t̂1
u

ξ+0 (τ ;i1)dτWi1i0(u)du ≥

∫ t̂1

t0

e−(n−1)A
∫ t̂1
u

Wi1i0
(τ)dτWi1i0(u)du

=
1

(n− 1)A

∫ t̂1

t0

d

du
e−(n−1)A

∫ t̂1
u

Wi1i0
(τ)dτ

=
1

(n− 1)A
·
[

1− e−(n−1)A
∫ t̂1
t0

Wi1i0
(τ)dτ

]

. (42)

On the other hand, we also have

∫ t̂1

t0

ξ+0 (t; i0)dt ≤

∫ t̂1

t0

(n− 1)AWi1i0(t)dt.

Thus, we know from (42) and the definition of t̂1 that

∫ t̂1

t0

e−
∫ t̂1
u

ξ+0 (τ ;i1)dτWi1i0(u)du ≥
1

(n− 1)A
·
[

1− e−(n−1)A
∫ t̂1
t0

Wi1i0
(τ)dτ

]

≥
1

(n− 1)A
·
[

1− e−
∫ t̂1
t0

ξ+0 (τ ;i0)dτ
]

=
1

2(n− 1)A
. (43)

Equations (41) and (43) result in

xi1(t̂1) ≤
m0

2
ψ(t0) + (1−

m0

2
)Ψ(t0) (44)

for all i1 ∈ V1, where m0 =
(

ω0
2

)2 1
(n−1)A .

We continue to estimate the upper bound of nodes in {i0} ∪ V1 when t ≥ t̂1. Define

Y(t) = max
i∈{i0}∪V1

xi(t).

Then Y(t̂1) ≤
m0
2 ψ(t0) + (1− m0

2 )Ψ(t0). Similar to Lemma 6, we find that

D+Y(t) ≤ −β(t)[Y(t)−Ψ(t̂1)], t ≥ t̂1,

where β(t) =
∑

i∈{i0}∪V1,j /∈{i0}∪V1
Wij(t). This implies

Y(t) ≤ e
−

∫ t

t̂1
β(τ)dτ

Y(t̂1) +
[

1− e
−

∫ t

t̂1
β(τ)dτ

]

Ψ(t̂1)

≤ e
−

∫ t

t̂1
β(τ)dτ

[m0

2
ψ(t0) + (1−

m0

2
)Ψ(t0)

]

+
[

1− e
−

∫ t

t̂1
β(τ)dτ

]

Ψ(t0)

≤
m0

2
· ω0e

−
∫ t

t̂1
β̂(τ)dτ

ψ(t0) +
[

1−
m0

2
· ω0e

−
∫ t

t̂1
β̂(τ)dτ

]

Ψ(t0), (45)

where β̂(t) =
∑

i∈{i0}∪V1,j /∈{i0}∪V1,(j,i)∈Ep Wij(t). We can then define

V2 =
{

j /∈ {i0} ∪ V1 : ∃i ∈ {i0} ∪ V1 s.t. (i, j) ∈ Ep
}
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and

t̂2 = inf
{

t ≥ t̂1 : e
−

∫ t

t̂1
β̂(τ)dτ

=
1

2

}

and similar analysis with (44) gives a bound to any node i2 ∈ V2 as

xi2(t̂2) ≤
m2

0

2
ψ(t0) +

(

1−
m2

0

2

)

Ψ(t0). (46)

Moreover, (46) also holds for nodes in {i0} ∪ V1.

Since Gp has a center, we can proceed the estimation to nodes in V2, . . . ,Vk until
(

∪k
j=1Vj

)

∪

{i0} = V with t̂2, . . . , t̂k such that

xi(t̂k) ≤
mk

0

2
ψ(t0) + (1−

mk
0

2
)Ψ(t0) (47)

for all i ∈ V, which leads to

Ψ(t̂k) ≤
mk

0

2
ψ(t0) + (1−

mk
0

2
)Ψ(t0). (48)

We see that i0 can be chosen so that k ≤ d0 always holds, where d0 is the diameter of Gp.

Denoting t1 = t̂k, we eventually arrive at

H(t1) = Ψ(t1)− ψ(t1) ≤
md0

0

2
ψ(t0) +

(

1−
md0

0

2

)

Ψ(t0)− ψ(t0) =
(

1−
md0

0

2

)

H(t0). (49)

Although the analysis up to now is based on assumption (38), we see that (49) also holds

for the other case with xi0(t0) >
1
2ψ(t0) +

1
2Ψ(t0) using a symmetric argument by investigating

the lower bound of ψ(t1).

Similar estimate can be carried out for tk, k = 2, 3, . . . , which leads to

H(tk+1) ≤
(

1−
md0

0

2

)

H(tk) (50)

for all tk, k = 1, 2, . . . , which yields

H(tk) ≤
(

1−
md0

0

2

)k
H(t0). (51)

Therefore, we can now conclude that limt→∞H(t) = 0 because H(t) is non-increasing and

0 < m0 < 1. The sufficiency statement of Theorem 2 is thus proved.

Necessity

We follow the same line as the proof of Proposition 1. Suppose Gp is not quasi-strongly

connected. Let Vu, Vw, ℓ(t) and ~(t) follow the definitions in the proof of Proposition 1. Also
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let xi(t0) = 0 for all i ∈ Vu, and xi(t0) = 1 for all i ∈ V \ Vu. According to Lemma 5, we have

xi(t) ∈ [0, 1].

Based on Lemma 4, we have

D+ℓ(t) = max
i∈I1(t)

[

∑

j∈Ni

Wij(t)
(

xj(t)− xi(t)
)

]

≤ max
i∈I1(t)

[

∑

j∈Ni\Vu

Wij(t)
(

xj(t)− xi(t)
)

]

= max
i∈I1(t)

[

∑

j∈Ni, (j,i)∈E∗\Ep

Wij(t)
(

xj(t)− xi(t)
)

]

≤ θ(t) ·
(

1− ℓ(t)
)

(52)

where I1(t) is the index set that contains the nodes where the maximum is reached and θ(t) is

defined in (6).

Similarly we have

D+
~(t) = min

i∈I2(t)

[

∑

j∈Ni

Wij(t)
(

xj(t)− xi(t)
)

]

≥ min
i∈I2(t)

[

∑

j∈Ni\Vw

Wij(t)
(

xj(t)− xi(t)
)

]

= min
i∈I2(t)

[

∑

j∈Ni, (j,i)∈E∗\Ep

Wij(t)
(

xj(t)− xi(t)
)

]

≥ −θ(t) · ~(t) (53)

where I2(t) is the index set that contains the nodes where the minimum is reached.

With (52) and (53), denoting L(t) = ~(t)− ℓ(t), we obtain

D+L(t) ≥ −θ(t) · (~(t)− ℓ(t) + 1) = −θ(t) · (L(t) + 1),

which is equivalent to

D+
[

e
∫ t

t0
θ(τ)dτ

(L(t) + 1)
]

≥ 0. (54)

Therefore, we have

L(t) ≥ 2e
−

∫ t

t0
θ(τ)dτ

− 1. (55)

Since
∫∞
0 θ(t)dt < ∞, we can choose t0 sufficiently large to ensure e

−
∫ t

t0
θ(τ)dτ

≥ 2
3 for all

t ≥ t0. This leads to H(t) ≥ L(t) ≥ 1/3, t ≥ t0. The necessity part of Theorem 2 thus follows.
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4.3 Proof of Theorem 3

We first prove the necessity statement. Based on Theorem 2, we only need to prove that

condition (b) in Theorem 3 is necessary. Suppose (b) in Theorem 3 does not hold. Then

∀0 < ǫ < 1, T > 0,∃t∗(T, ǫ) ≥ 0 and (j0, i0) ∈ Ep such that

∫ t∗+T

t∗

Wi0j0(τ)dτ < A−1(n− 1)−1 ·
log ǫ−1

2
. (56)

Since (j0, i0) ∈ Gp, it is not hard to see that t∗(T, ǫ) → ∞ as T → ∞ for any fixed ǫ. Thus,

without loss of generality, we can assume that (56) also holds for the arcs in E∗ \ E
p. Moreover,

assumption A3 implies

∫ t∗+T

t∗

Wij(τ)dτ < (n− 1)−1 ·
log ǫ−1

2
(57)

for all (j, i) ∈ Ep.

From similar argument we used to obtain (54),

D+H(t) ≥ −2
[

∑

(j,i)∈E∗

Wij(t)
]

H(t), t ≥ t0. (58)

Therefore, letting the system initial time be t0 = t∗ with H(t∗) > 0, where t∗ is defined in (56),

we see from (56) and (57) that

2
∑

(j,i)∈E∗

∫ t∗+T

t∗

Wij(τ)dτ < log ǫ−1. (59)

Consequently, (58) and (59) lead to

H(t∗ + T ) ≥ e−2
∑

(j,i)∈E∗

∫ t∗+T

t∗
Wij(τ)dτH(t∗) > ǫH(t∗). (60)

Then the necessity part of Theorem 3 holds because ǫ and T are arbitrarily chosen in (60).

Next, we prove the sufficiency part of Theorem 3 based on the convergence analysis in the

proof of Theorem 2.

When there exist two constants a∗, τ0 > 0 such that
∫ t+τ0
t Wij(τ)dτ ≥ a∗ for all t ≥ 0 and

(j, i) ∈ Gp, we have
∫ t+τ0

t
b0(τ)dτ ≥ a∗, t ≥ 0, (61)

where b0(t) = min(j,i)∈Gp Wij(t).

Let us revisit the proof of Theorem 2. The definition of t̂1 in (39) satisfies

t̂1 = inf
{

t ≥ t0 : e
−

∫ t

t0
ξ+0 (τ ;i0)dτ =

1

2

}

≤ inf
{

t ≥ t0 : e
−

∫ t

t0
b0(τ)dτ =

1

2

}

. (62)
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Similarly, for t̂j , j = 2, . . . , k with k ≤ d0, we have

t̂j ≤ inf
{

t ≥ t̂j : e
−

∫ t

t̂j−1
b0(τ)dτ

=
1

2

}

. (63)

Thus, for t1 = t̂k in (49), it holds that

t1 ≤ inf
{

t ≥ t0 : e
−

∫ t

t0
b0(τ)dτ =

(1

2

)d0}

= inf
{

t ≥ t0 :

∫ t

t0

b0(τ)dτ = d0 log 2
}

. (64)

Based on (61), we have
⌊ t− t0

τ0

⌋

a∗ ≤

∫ t

t0

b0(τ)dτ,

where ⌊z⌋ represents the largest integer which is no larger than z. This immediately implies

t1 ≤ t0 + τ0 ·
⌈d0 log 2

a∗

⌉

, (65)

where ⌈z⌉ represents the smallest integer which is no smaller than z.

Therefore, it can be concluded from Lemma 5 and (49) that

H
(

t0 + τ0 ·
⌈d0 log 2

a∗

⌉)

≤
(

1−
md0

0

2

)

H(t0). (66)

The desired conclusion follows since (66) holds independent with the choice of t0. Thus, we have

now completed the proof of Theorem 3.

5 Discussions

In this section, we present some comparisons between our results with existing work, and com-

parisons between the discrete-time and continuous-time belief evolutions.

5.1 Relation to Cut-balanced Graphs

In [43], a cut-balance condition is introduced in the sense that there exists a constant K ≥ 1

such that for all t and any nonempty subset S ⊆ V, it holds that

K−1
∑

i∈S,j /∈S

Wji(t) ≤
∑

i∈S,j /∈S

Wij(t) ≤ K
∑

i∈S,j /∈S

Wji(t). (67)

If the persistent graph Gp is strongly connected, the arc balance assumption A3 implies

condition (67) over Gp. Therefore, in this particular case, assumption A3 is a special case of the

cut-balance condition in [43], though assumption (67) in [43] is over the underlying graph G∗ .
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Except for this slight difference, the convergence statements in Theorem 1 and Theorem 2 are

consistent with the results given in [43] for strongly connected graphs.

On the other hand, when Gp is quasi-strongly connected, the cut-balance condition never

holds even under assumption A3, because there may be no arc pointing to the center node.

Hence, in general, the results given in this paper provides conditions for node agreement inde-

pendent of the conditions in [43].

5.2 Discrete-time vs. Continuous-time

Theorems 1 and 3 share quite similar structure and statement. However, there are some essential

differences between them.

(a) The discrete-time result in Theorem 1 highly relies on the self-confidence condition A2.

Without A2, oscillations among the nodes may become inevitable and periodic solutions

of (1) may arise for almost all initial condition even under A1 and A3. Note that the arc

balance condition A3 is only useful for the necessity part of Theorem 1.

(b) For the continuous-time result in Theorem 3, each self weight Wii(t) does not even show

up in the model (2). The arc balance condition A3 is essential for the dynamics. Without

A3, oscillations may occur if the arc weights of the persistent graph alternatively become

large.

Therefore, we can conclude that the self-confidence condition is critical for discrete-time

belief agreement, as is the arc balance condition for continuous-time case.

An interesting question is whether a similar conclusion can be made for the discrete-time

model (1) as the statement in Theorem 2. This question is open and needs additional explo-

rations. More general discussion on this problem can be found in [44] on the ergodicity of

stochastic chains.

6 Conclusions

Individuals are equipped with beliefs in social activities. The evolution of the beliefs can be

modeled as dynamical systems over graphs using for instance the widely studied consensus algo-

rithms. This paper studied persistent graphs under discrete-time and continuous-time consensus

algorithms. Sufficient and necessary conditions were established on the persistent graph for the

22



network to reach global agreement or ǫ-agreement. It was shown that the persistent graph

essentially determines both the convergence and convergence rate to an agreement.
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