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Abstract—Today’s wireless networks are increasingly crowded
with an explosion of wireless users, who have greater and more
diverse quality of service (QoS) demands than ever before.
However, the amount of spectrum that can be used to satisfy
these demands remains finite. This leads to a great challenge
for wireless users to effectively share the spectrum to achieve
their QoS requirements. This paper presents a game theoretic
model for spectrum sharing, where users seek to satisfy their
QoS demands in a distributed fashion. Our spectrum sharing
model is quite general, because we allow different wireless
channels to provide different QoS, depending upon their channel
conditions and how many users are trying to access them.
Also, users can be highly heterogeneous, with different QoS
demands, depending upon their activities, hardware capabilities,
and technology choices. Under such a general setting, we show
that it is NP hard to find a spectrum allocation which satisfiesthe
maximum number of users’ QoS requirements in a centralized
fashion. We also show that allowing users to self-organize through
distributed channel selections is a viable alternative to the
centralized optimization, because better response updating is
guaranteed to reach a pure Nash equilibria in polynomial time.
By bounding the price of anarchy, we demonstrate that the worst
case pure Nash equilibrium can be close to optimal, when users
and channels are not very heterogenous. We also extend our
model by considering the frequency spatial reuse, and consider
the user interactions as a game upon a graph where players
only contend with their neighbors. We prove that better response
updating is still guaranteed to reach a pure Nash equilibrium in
this more general spatial QoS satisfaction game.

Index Terms—Distributed spectrum sharing, game theory,
Nash equilibrium, quality of service (QoS)

I. I NTRODUCTION

The number of wireless devices such as smart-phones con-
tinues to increase rapidly in today’s market, while the amount
of spectrum available for these devices remains limited. More-
over, many new wireless applications such as high definition
video streaming and online interactive gaming are emerging,
making the quality of service (QoS) demands of wireless users
higher and more varied. Thus there is an urgent need to study
the issue of how to efficiently share the limited spectrum to
satisfy the QoS demands of as many users as possible.

There are two different approaches to address this issue.
The first approach is acentralizedapproach, where a net-
work operator optimizes the spectrum resources to meet the
users’ QoS requirements. This approach puts most of the
implementation complexity at the operator side, and wireless
devices do not need to be very sophisticated. However, as the
networks grow larger and more heterogeneous, this approach
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can become unsuitable for two reasons. Firstly, the QoS
demands of wireless users are highly heterogeneous, which
implies that the operator needs to gather massive amounts of
information from users in order to perform the centralized
optimization. Secondly, finding the system-wide optimal QoS
demand satisfaction solution is computationally challenging –
in fact we show that it is NP hard. It is hence difficult for the
operator to compute the optimal solution to meet users’ real-
time QoS demands. The alternative approach is adecentralized
approach, where each wireless user makes the spectrum access
decision locally to meet its own QoS demand, while taking the
network dynamics and other users’ actions into consideration.
This is feasible since new technologies like cognitive radio
[1] give users the ability to scan and switch channels easily.
The decentralized approach enables more flexible spectrum
sharing, scales well with the network size, and is particular
suitable when users belong to multiple network entities.

In this paper, we focus on the decentralized approach, and
propose a new framework ofQoS satisfaction gamesto model
the distributed QoS demand satisfaction problem among the
users. Game theory is a useful tool for designing distributed
algorithms that allow users to self-organize, optimize their
channel selections, and satisfy their QoS demands. Our QoS
satisfaction game framework is developed, based on the theory
of congestion games [2]. The central idea behind congestion
games is that there are manyplayers, each of which selects a
resourceto use. A player’s utility is a non-increasing function
of the total number of players using the same resource. The
distributed QoS satisfaction problem can be modeled using
congestion games by thinking of the players as wireless
users, while the resources represent different channels [3]. The
satisfaction of a user’s QoS demand depends on its congestion
level, i.e., how many users are competing for its channel. In
our QoS satisfaction game, a player achieves a unit utility
when its channel’s data rate is sufficiently high to satisfy its
QoS demand. Otherwise, the player’s utility is negative andit
is better off by switching channels (to improve the payoff) or
turning off its transmitter (to receive a zero payoff).

A. Related Work

Rosenthal proposed the original congestion game model [2]
for the scenario where different resources can have different
utility functions associated with them (i.e., heterogenous re-
sources) but all players have the same utility function for any
particular resource (i.e., homogenous players). This kindof
system has a pleasing feature known as thefinite improvement
property- which means that when the system evolves because
players asynchronously perform better response updates (i.e.,
the players selfishly improve their resource choices), the
system is guaranteed to reach a pure Nash equilibrium in a
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finite number of steps. Apure Nash equilibriumis a system
state where no player has any incentive to deviate unilaterally.

However, the original congestion game is not general
enough to model spectrum sharing, because it assumes that
players are homogenous, whereas wireless network users are
often highly heterogenous. The congestion games with player-
specific utility functions considered in [4] are more appropriate
for this modeling purpose. Authors in [3], [5]–[7] have adopted
such a game model for studying spectrum sharing problems.
However, unlike classical congestion games, these games are
not necessarily guaranteed to possess the finite improvement
property.

Spatial reuseis another feature of wireless networks that
the original congestion game model does not account for. In
reality only nearbyusers on the same channel will interfere
with each other. Users which are distantly separated will not
cause congestion to each other. A congestion game on a
graph can be used to realistically capture the spatial aspect
of spectrum sharing. The idea behind such a system is that a
user’s utility only depends upon the number of users of the
same channelwho are linked to them in the graph. In [8],
we introduced a general class of congestion games on graphs
that are appropriate for modeling spectrum sharing. Although
there are many subclasses of these games which always admit
the finite improvement property, we demonstrated that there
exist congestion games on graphs that do not haveany pure
Nash equilibria. We have also further developed several more
elaborate graphical congestion game models [9]–[12] with
applications to spectrum sharing.

A common assumption within most previous congestion
game based spectrum sharing literature (e.g., [3], [5]–[7], [9],
[12]) is that a user’s utility strictly increases with its received
data rate (and hence strictly decreases with the congestion
level). This is true, for example, when users are running
elastic applications such as file downloading. However, there
are many other types of applications with more specific
QoS requirements, such as VoIP and video streaming. These
inelastic applications cannot work properly when their QoS
requirements (e.g., data rates) are unmet, and do not enjoy any
additional benefits when given more resources than needed.
This kind of traffic is becoming increasingly popular over the
wireless networks (e.g., mobile video traffic exceeded50%
percent of all wireless traffic in 2011 according to the report by
Cicso [13]).This motivates the QoS satisfaction game model
in this paper.

Rather than assuming that users wish to increase their data
rates whenever possible, we assume that each user has a fixed
QoS demand. If the demand is satisfied, then the user has no
inclination to change his choice of resource. Our game model
was inspired by thegames in satisfaction formconsidered in
[14]. In [14] the authors considered other games where players
wish to satisfy demands, and the authors design algorithms to
find satisfaction equilibria, which are strategy profiles where
all users are satisfied. In our paper, we consider the more
general case where some users’ QoS requirements may not be
satisfied (given the limited spectrum resource). The case where
a satisfaction equilibrium exists becomes a special case ofour
model. Moreover, we also take into account the issue of spatial

reuse. This makes the modeling more practical for wireless
communication systems. The generalizations considered inour
model result in more challenges and significant differencesin
analysis.

When discussing the achievability of the equilibrium, we
focus on dynamics where one player can perform a better
response update each time. There are many alternative typesof
dynamics we could consider, such as smoothed best response
dynamics and imitation dynamics [15]. We could also consider
the replicator dynamics from evolutionary game theory. Ref-
erence [16] showed that replicator dynamics can be used for
spectrum sharing using appropriate message passing protocols.
Replicator dynamics is most useful when the user population
is large, and in which case the system will follow continuous
(essentially deterministic) dynamics which normally converge
to evolutionarily stable strategies. However, many techniques
from evolutionary game theory rely upon the assumption the
players are homogenous, while our wireless users are typi-
cally heterogenous. Another issue is that translating replicator
dynamics into the spatial setting (i.e., a game on a graph) is
quite difficult.

B. Contributions

Our main results and contributions can be summarized as
follows:

• A general QoS satisfaction game framework:We for-
mulate the distributed QoS demand satisfaction problem
among wireless users as a QoS satisfaction game, which
is general enough to capture the details of spectrum
sharing over a wide range of scenarios, with heterogenous
channels and users. Despite allowing for heterogenous
channels, heterogenous users, and spatial interactions, we
still obtain several significant analytic results.

• Remarkable convergence properties:We prove that every
QoS satisfaction game has the finite improvement prop-
erty. This is remarkable because many congestion games
with heterogenous resources and players do not have
this feature. More importantly, it enables us to design
a distributed QoS satisfaction algorithm which allows
wireless users to easily self-organize into a pure Nash
equilibrium.

• Spatial generalization:We generalize the model by think-
ing of users as vertices, which are linked in a graph and
can only interfere with their neighbors. We show that the
resulting QoS games on graphs also possess the finite
improvement property.

The rest of the paper is organized as follows. We introduce
the QoS satisfaction game model and study its properties in
Sections II and III, respectively. We then generalize the game
model with spatial reuse in Section IV. We then propose
the distributed QoS satisfaction algorithm and evaluate its
performance by simulations in Section V. Finally, we conclude
the paper in Section VI.Most proofs are provided in the
Appendix.

II. QOS SATISFACTION GAME

In this section we formally define the QoS satisfaction
game model for spectrum sharing. Spectrum sharing is a



promising approach to address the spectrum under-utilization
problem. Field measurements by Shared Spectrum Coopera-
tion in Chicago area shows that the overall average utilization
of a wide range of different types of spectrum bands is lower
than 20% [18]. In order to improve the overall spectrum
utilization, several countries have recently reformed their
policy (such as the FCC’s ruling for the TV white space
[19]) and allow spectrum sharing, such that unlicensed users
equipped with cognitive radios can access the channels which
are tentatively not used by the licensed spectrum users. In
this paper, we consider the spectrum sharing problem among
multiple unlicensed users who run different applications and
hence have heterogeneous QoS demands.

A. Game model

A QoS satisfaction game is defined by a tuple
(N , C, (Qc

n)n∈N ,c∈C, (Dn)n∈N ) where:
• N = {1, . . . , N} is the set ofwireless unlicensed users,

also referred as theplayers.
• C = {1, . . . , C} is the set ofchannels. Each unlicensed

user may select one channel to access. Furthermore, we
introduce the element0 to represent thedormant state.
Choosing the dormant state will be beneficial when an
unlicensed user’s QoS demand cannot be satisfied due to
limited resources. In such a case the user can choose
the dormant state0, which corresponds to ceasing its
transmission to save power consumption. Now we use the
term ‘dormant state’ instead of ‘virtual channel’ since it
involves introducing less new concepts, and we no longer
have to speak of “real” channels. In summary, each un-
licensed user/player has a strategy setC̃ = {0, 1, . . . , C}
which consists of all channels, together with the dormant
state. Thestrategy profile of the game is given as
x = (x1, x2, . . . , xN ) ∈ C̃N , where each unlicensed user
n chooses a strategyxn ∈ C̃.

• Qc
n(·) is a non-increasing function that characterizes the

data rate received by an unlicensed usern who has
selected channelc. Specifically, we haveQc

n(I
c(x)) =

θcnB
c
ng

c
n(I

c(x)), with Ic(x) = |{n ∈ N : xn = c}|
being thecongestion levelof channelc, i.e., the number
of users who choose channelc. We detail the parameters
in Qc

n as follows.
– θcn ∈ {0, 1} is the channel availability indicator.

When channelc is occupied by licensed users and
not available for unlicensed usern, we haveθcn = 0,
in which caseQc

n(I
c(x)) = 0 for any value of

Ic(x). For a limited period of time, the usage of
spectrum by licensed users is assumed to be static
(but can change in different periods)1. This is appro-
priate for modeling the TV spectrum, for example,
where the activities of licensed users change very
slowly. According to the most recent ruling by the

1We show in Theorem 7 that the proposed QoS satisfaction game algorithm
can converge in a fast manner (e.g., less than one second in practical 802.11
systems). In this case, as long as the activities of licensedusers change in a
larger timescale in terms of seconds/miniutes/hours (e.g., TV/daytime radio
broadcasting), we can still implement the QoS satisfactiongame solution for
the system.

FCC, unlicensed users can reasonably and accurately
determine the spectrum availability within a short
amount of time by consulting a database [19]. When
channelc is available for the spectrum access by
an unlicensed usern (i.e., θcn = 1), we have
Qc

n(I
c(x)) > 0.

– Bc
n is the mean channel throughput of usern on

channelc. We allow user specific throughput func-
tions, i.e., different users may have differentBc

n

even on the same channelc. This enables us to
model users with different transmission technolo-
gies, different coding/modulation schemes, different
channel conditions, and different reactions to the
same licensed user on the channel. For example, we
can compute the maximum channel throughputBn

c

according to the Shannon capacity as

Bn
c =Wc log2

(

1 +
ζnz

n
c

ωn
c

)

, (1)

where Wc is the bandwidth of channelc, ζn is
the fixed transmission power adopted by usern
according to the requirements such as the primary
user protection,ωn

c denotes the background noise
power, andznc is the user-specific channel gain.

– gcn(I
c(x)) is the channel contention function that

describes the probability that usern can successfully
grab the channelc for data transmissions given
the congestion levelIc(x). In general,gcn(I

c(x))
decreases as the number of contending usersIc(x)
increases. For example, if we adopt the TDMA
mechanism for the medium access control (MAC)
to schedule users in the round-robin manner, then
we havegcn(I

c(x)) = 1
Ic(x) .

• Dn ≥ 0 is the data rate demand of unlicensed usern.
For example, listening to an MP3 online will require a
smallDn, whereas watching a high definition streaming
video requires a largeDn.

The utility of an unlicensed usern in strategy profilex is

Un(x) =











1, if xn 6= 0 andQxn

n (Ixn(x)) ≥ Dn,

0, if xn = 0,

−1, if xn 6= 0 andQxn

n (Ixn(x)) < Dn.

(2)

A satisfied useris an unlicensed usern who chooses a channel
xn 6= 0 and receives a data rateQxn

n (Ixn(x)) not smaller
than its QoS demandDn. A satisfied users receives a utility
of 1. A dormant user is an unlicensed usern choosing the
dormant statexn = 0. Such a dormant user does not receive
any benefit (as it achieves a zero data rate) or any penalty (asit
does not waste any energy), and gets a utility ofUn(x) = 0. A
suffering user is an unlicensed usern who chooses a channel
xn 6= 0 but receives a data rateQxn

n (Ixn(x)) below its QoS
demandDn. Such a suffering user expends power without
gaining any benefit, and so it gets a utility ofUn(x) = −1.

A suffering user can always increase their utility by becom-
ing dormant without harming any other user. This suggests that
rational (i.e., utility maximizing) players will eventually end
up at strategy profiles which contain no suffering users. We



say that a strategy profile isnatural if it holds no suffering
users.

It is worth noting that we can easily generalize our model
by allowing an unlicensed usern to receive a utility ofun
if it is satisfied,vn if it is dormant, andtn if it is suffering,
whereun > vn > tn. Making this generalization does not
affect the better response dynamics or the set of pure Nash
equilibria discussed later on, because the preference orderings
of the strategies in the generalized game are the same as in
our current model2. Our results about convergence (Theorem
1) and computational complexity (Theorem 2) also remain true
for games with generalized utility functions. However, since
the generalized games allow different players to receive differ-
ent utilities when satisfied, our results about social optimality
(Theorems 4 and 5) may not hold for the generalized games.
In this paper, we will restrict our attention to the utility choices
of 1, 0, and−1. The case of generalized utility functions will
be further explored in a future work. Since our study focuses
on the perspective of unlicensed users, we will use the terms
“user” and “unlicensed user” interchangeably in the following
analysis.

B. Key game concepts

Definition 1 (Social Welfare). The social welfare
∑N

n=1 Un(x) of a strategy profilex is the sum of all
players’ utilities.

Definition 2 (Social Optimum). A strategy profilex is a
social optimum when it maximizes social welfare.

Definition 3 (Better Response Update). The event where a
playern changes its choice of strategy fromxn to c is a better
response update if and only ifUn(c,x−n) > Un(xn,x−n),
where we write the argument of the function asx = (xn,x−n)
with x−n = (x1, . . . , xn−1, xn+1, . . . , xN ) representing the
strategy profile of all players except playern.

Definition 4 (Pure Nash Equilibrium ). A strategy profilex
is a pure Nash equilibrium if no players atx can perform a
better response update, i.e.,Un(xn,x−n) ≥ Un(c,x−n) for
any c ∈ C̃ andn ∈ N .

Definition 5 (Finite Improvement Property ). A game has
the finite improvement property ifanyasynchronous better re-
sponse update process3 terminates at a pure Nash equilibrium
within a finite number of updates.

C. Transformation to an equivalent interference threshold
form

For the discussion convenience, we will introduce an equiv-
alent interference-threshold form of the QoS satisfactiongame.
The key idea is to relate a user’s received congestion level with
its QoS demand satisfaction.

Since the data rate functionQc
n(I

c) is non-increasing with
the congestion levelIc, there must exist a critical threshold

2Technically speaking, our game is weakly isomorphic [20] tothis gener-
alized version.

3Where no more than one player updates his strategy at any given time.

valueT c
n, such thatQc

n(I
c) ≥ Dn if and only if the congestion

level Ic ≤ T c
n. Formally, given a pair of(Qc

n, Dn), we shall
define the thresholdT c

n of channelc with respect to usern to
be an integer such that

• If Qc
n(I

c) < Dn for eachIc ∈ N , thenT c
n = 0 (hence

usern’s QoS demand can never be satisfied on channel
c even if it is the only user on this channel),

• If Qc
n(I

c) > Dn for eachIc ∈ N , then T c
n = N +

1 (hence usern’s QoS demand is always satisfied on
channelc even if all users use this channel)4,

• OtherwiseT c
n is equal to the maximum integerIc ∈ N

such thatQc
n(I

c) ≥ Dn.
These conditions guarantee that

Qc
n(I

c) ≥ Dn ⇔ Ic ≤ T c
n. (3)

We can then express a QoS satisfaction gameg =
(N , C, (Qc

n)n∈N ,c∈C, (Dn)n∈N ) in the interference threshold
form g′ = (N , C, (T c

n)n∈N ,c∈C). And the utility of usern can
be computed accordingly as

Un(x) =











1, if xn 6= 0 andIxn(x) ≤ T xn

n ,

0, if xn = 0,

−1, if xn 6= 0 andIxn(x) > T xn

n .

(4)

The interference threshold transformation reduces the size
of parameters by replacing(Qc

n, Dn) with T c
n. Moreover, the

result in (3) ensures that the original gameg is equivalent to
the gameg′, since the utilityUn(x) received by playern in g is
the same as that received by playern in g′ for every strategy
profile x and playern. For the rest of the paper, we will
analyze the QoS satisfaction game in the interference threshold
form. Note that Equations (2) and (4) are equivalent. It is just
that we write the latter expression in terms of thresholds.

III. PROPERTIES OFTHE QOS SATISFACTION GAME

Now we explore the properties of QoS satisfaction games,
including the existence of pure Nash equilibria and the finite
improvement property. We shall also describe the conditions
under which a social optimum is also a pure Nash equilibrium.

A. Characterization of pure Nash equilibria

Each player is either satisfied or dormant when a game is at
pure Nash equilibrium. To see this, consider a strategy profile
x where a playern is suffering. Now the action where playern
changes its strategy to the dormant state0 is a better response
update for this user. Since suffering users can always do better
response updates, such a strategy profilex cannot be a pure
Nash equilibrium.

Next we show in Theorem 1 that every QoS satisfaction
game has the finite improvement property (which is a sufficient
condition for the existence of a pure Nash equilibrium).

Theorem 1. Every N -player QoS satisfaction game has
the finite improvement property. Moreover, any asynchronous

4It is possible to setT c
n to be any number greater thanN while still

satisfy condition (3). The reason of choosingT c
n = N + 1 is to bound the

differences between thresholds, which helps the proof of fast convergence of
the distributed algorithm in Theorem 7.



better response update process is guaranteed to reach a pure
Nash equilibrium with no more than4N +3N2 asynchronous
better response updates (irrespective of the initial strategy
profile, or the order in which the players update).

Theorem 1 is a direct consequence of the more general
result Theorem 7 in Section IV. Theorem 1 is very important,
because it implies that the general QoS satisfaction games
(with heterogenous channels and users) can self organize into
a stable state effectively. This fact allows us to design the
distributed QoS satisfaction algorithm in Section V-A, which
has a fast convergent property. Although Theorem 1 shows that
pure Nash equilibria can be found relatively easily, it doesnot
offer any insight into how to select the most beneficial pure
Nash equilibria. Equilibrium selection seems to be a difficult
problem in the general case. However, we show how to find
pure Nash equilibria which are social optimum for special
cases in Subsections III-D and III-E.

B. Finding a social optimum is NP hard

Although Theorem 1 implies that pure Nash equilibria are
easy to construct, it turns out that finding a social optimum
can be extremely challenging.

Theorem 2. The problem of finding a social optimum of a
QoS satisfaction game is NP hard.

The problem of finding a social optimum of a QoS satis-
faction game has some resemblance to the Knapsack problem
(where items have different weights and values, and the
objective is to maximize the value of items chosen without
exceeding a given total weight threshold). The key difference
is that the thresholds in our problem are associated with
the players/items we are choosing, and there are multiple
channels/knapsacks to allocate our players to. Our proof (given
in Appendix A) is based upon showing that the 3-dimensional
matching decision problem (which is well known to be NP
complete [21]) can be reduced to the problem of finding a
social optimum of a QoS satisfaction game where thresholds
T c
n ∈ {1, 3} for eachn and c. Theorem 2 provides the major

motivation for our game theoretic study, because it suggests
that the centralized spectrum sharing problem is fundamentally
difficult. It therefor makes sense to explore decentralized
alternatives such as a game based spectrum sharing.

C. Price of anarchy

Although Theorem 2 suggests that finding an optimal strat-
egy profile can be very difficult, we do know from Theorem
1 that pure Nash equilibria can be found with relative ease.
This naturally raises the question of how the social welfareof
pure Nash equilibria compare to the maximum possible social
welfare. In other words,how much social welfare can be lost
by allowing the players to organize themselves, rather than
being directed to a social optimum?

To gain insight into this issue, we study the price of anarchy
[22]. Recall thatC̃N is the set of strategy profiles of our game.
Let Ξ ⊆ C̃N denote the set of pure Nash equilibria of our

game. Note that Theorem 1 implies thatΞ is non-empty. Now
the price of anarchy

PoA =
max{

∑N

n=1 Un(x) : x ∈ C̃N}

min{
∑N

n=1 Un(x) : x ∈ Ξ}
, (5)

is defined to be the maximum social welfare of a strategy
profile, divided by the minimum welfare of a pure Nash
equilibrium. The social welfare of a system at a pure Nash
equilibrium can be increased by at mostPoA times by
switching to a centralized solution.

Theorem 3. Consider a QoS satisfaction game
(N,C, (T c

n)n∈N ,c∈C), where T c
n ≥ 1 for each playern

and each channelc. ThePoA of this game satisfies

PoA ≤ min

{

N,
max{T c

n : n ∈ N , c ∈ C}

min{T c
n : n ∈ N , c ∈ C}

}

. (6)

The proof is given in Appendix B. The constraintT c
n ≥ 1

insures that some player will be satisfied in every pure Nash
equilibrium of the game, and avoid the possibility of the
PoA involving “division by zero”. Theorem 3 implies that
the performance of every pure Nash equilibrium will be close
to optimal when the minimum threshold of a user-channel pair
is close to the maximum threshold of a user-channel pair. This
is a very significant result, when one considers that pure Nash
equilibria can be easily reached by better response updates
(Theorem 1) while finding social optima is NP hard (Theorem
2). Motivated by Theorem 3, we next study two special cases
of QoS satisfaction games with homogenous settings, i.e.,
homogeneous users and homogenous channels. In both cases,
the social optimum can be actually achieved at a pure Nash
equilibrium.

D. QoS satisfaction games with homogenous users

We first study the case of homogeneous users. We say
that a QoS satisfaction game hashomogenous userswhen
T c
1 = T c

2 = . . . = T c
N , for eachc ∈ C (i.e., each player

has the same threshold for any channelc). This corresponds
to the case that all users have the same data rate function
Qc

n on the same channelc (but they may have different data
rates on different channels) and the same demandDn. For
example, spectrum sharing in a network of RFID tags in a
warehouse may correspond to such a QoS satisfaction game,
because every device experiences the same environment and
requires a similar data rate to operate.

When discussing QoS satisfaction games with homogenous
users, we drop the subscripts and useT c to denote the
common threshold of all players on channelc. Since users are
homogenous, we only need to keep track of how many users
choose each channel in order to describe the game dynamics.
Next we will show that any pure Nash equilibrium in a QoS
satisfaction games with homogenous users is also a social
optimum.

Theorem 4. Let x be a strategy profile of a QoS satisfac-
tion game withN homogenous users andC channels, with
thresholdsT 1, T 2, . . . , TC . The following three statements are
equivalent:



1) x is a pure Nash equilibrium;
2) There are no suffering users inx and the number of

satisfied users ismin{N,
∑C

c=1 T
c}.

3) x is a social optimum.

The proof is given in Appendix C. Theorems 1 and 4
together imply that any sufficiently long asynchronous better
response updating sequence will converge to a social optimal
in polynomial time when the game has homogenous users.
Moreover, Theorem 4 implies that when

∑C

c=1 T
c ≥ N , there

exists a satisfaction equilibrium [14] where all the players can
be satisfied.

E. QoS satisfaction games with homogenous channels

We next consider the case that thechannelsare homoge-
nous. We say a QoS satisfaction game hashomogenous
channels when T 1

n = T 2
n = . . . = TC

n , for each usern
(i.e., all channels have the same threshold from any player’s
perspective). This corresponds to the case that each usern has
the same data rate functionQc

n on all the channels, but dif-
ferent users may have different demandsDn. QoS satisfaction
games with homogenous channels are highly relevant, because
technologies such as frequency interleaving can been adopted
in many wireless systems such as IEEE 802.11g networks
[23] to make channels homogeneous (i.e., having the same
bandwidth and experiencing frequency flat fading).

When discussing QoS satisfaction games with homogenous
channels, we drop the superscripts and useTn to denote
the common threshold of playern for all channels. The
update process can reach a pure Nash equilibrium according
to Theorem 1.

We next discuss the optimality of pure Nash equilibria.
Firstly note that, a pure Nash equilibrium may not be a social
optimal. For example, let us consider a game of six users,
with thresholdsT1 = T2 = 2, T3 = T4 = T5 = T6 = 4,
and two channels. The game has a pure Nash equilibrium
x = (0, 0, 1, 1, 2, 2) with four satisfied users, which is not
a social optimum. The strategy profiley = (1, 1, 2, 2, 2, 2),
where all six users are satisfied, is a social optimum.

Second, a social optimum may not be a pure Nash equi-
librium. We take the game with six users and thresholds
T1 = T2 = 2, T3 = T4 = T5 = 3, T6 = 4, and two
channels as an example. The game has a social optimum
x = (1, 1, 2, 2, 2, 0) (with five satisfied users), which is not a
pure Nash equilibrium because user6 can do a better response
update by switching to channel1.

Surprisingly, there always exists a pure Nash equilibrium
that is a social optimum for a game with homogenous chan-
nels. Moreover, we present an algorithm (Algorithm 1) that
always generates a social optimum which is a pure Nash
equilibrium. The key idea of the algorithm is to prioritize
channel allocation according to users’ thresholds (i.e., the more
severe congestion a user can tolerate, the higher priority it will
get in channel allocation).

Algorithm 1 is a centralized algorithm that demonstrates
the existence of a pure Nash equilibrium which is a social
optimum. The distributed algorithm that globally converges to
a Nash equilibrium (not necessarily socially optimal) willbe

Algorithm 1: Finds a pure Nash equilibrium that is a social
optimum for a game with homogenous channels.
Input : A QoS satisfaction game withC homogenous

channels andN players, who have thresholds
T1 ≥ T2 ≥ . . . . ≥ TN .

Output : A social optimum which is a pure Nash
equilibrium.

1 Let x0 = (x01, x
0
2, . . . , x

0
N ) = (0, 0, . . . , 0)

2 for n = 1 to N do
3 if ∃c ∈ C : Ic(xn−1) < Tn then
4 Let c∗ = min{c ∈ C : Ic(xn−1) < Tn}
5 Let xn = (xn−1

1 , . . . , xn−1
n−1, c

∗, xn−1
n+1, . . . , x

n−1
N )

6 else
7 Let xn = x

n−1

8 return x
N

Fig. 1. An illustration of Algorithm 1 in action. The ten users have thresholds
(T1, T2, T3, T4, T5, T6, T7, T8, T9, T10) = (5, 5, 3, 3, 3, 3, 2, 2, 1, 1). Each
row represents a strategy profile. Each number represents a user with that
number equal to its threshold. The top (first) row representsthe initial strategy
profile x

0 of our algorithm (where all players are dormant). The second,
third and fourth rows represent the strategy profilesx

3, x
6 and x

8. The
boxes within a given row represent channel allocations, in the sense that the
users contained within the leftmost (red) box are using channel 1, the users
contained within the central (blue) box are using channel2 and the users
contained within the rightmost (green) box are using channel 3. The bottom
row represents strategy profilex8 = x

10 = (1, 1, 1, 2, 2, 2, 3, 3, 0, 0), which
is the output of the algorithm (within which8 players are satisfied).

discussed in Subsection V-A. Algorithm 1 begins by making
all players dormant. The players are then updated one by
one in the order of descending thresholds. When a player
is updated, it changes to the lowest indexed channel which
will satisfy it. If there are no channels that can satisfy this
player, then the algorithm will not further change players’
channel choices, since all higher indexed players will not
be able to find channels to satisfy them as they have even
lower interference thresholds.). Figure 1 illustrates a particular
example of Algorithm 1 running. We show in Theorem 5 that
Algorithm 1 is guaranteed to generate a pure Nash equilibrium
that is also a social optimum.

Theorem 5. Algorithm 1 has a complexity ofO(CN2) and
generates a strategy profile that is both a social optimum and
a pure Nash equilibrium of a QoS satisfaction game withC
homogeneous channels andN users.

We provide the proof of Theorem 5 in Appendix D. Next
Theorem 6 gives a sufficient condition for the existence of



a strategy profile where all players are satisfied, in a QoS
satisfaction game with homogeneous channels (please referto
Appendix E for the proof).

Theorem 6. If Tn ≥ ⌈N
C
⌉ holds for every usern in the QoS

satisfaction game withC homogeneous channels andN users,
then there is a strategy profilex within which every user is
satisfied (which is a pure Nash equilibrium).

IV. SPATIAL QOS SATISFACTION GAME

In all the games considered so far, we have assumed that
every pair of users are close enough to cause congestion
to each other, when they use the same channel. However,
in reality only nearby users of the same channel will cause
congestion to one another, and distantly spaced users may
access the same channel without degrading each other’s QoS.
This is known asspatial reuse– where the same piece
of spectrum can be used by many distantly separated users
without detrimental effects.

The protocol interference model [24] is a commonly used
model to approximate how the positions of users affect their
communication performance. The idea behind the protocol
interference model is to construct aninterference graph,where
vertices represent players (wireless users), and an undirected
edge connecting two players represents that these two players
are within interference range of one another (hence they can
generate interference to each other if transmitting on the same
channel). By using an interference graphG to represent which
vertices are close enough to interfere with each other, one may
view the spectrum sharing problem as a game on a graph.

In this game, one may determine whether the QoS demand
of a user is satisfied by counting the number of neighbors
it has, which are using the same channel as itself. This
corresponds to a generalization of the QoS satisfaction game
where we account for the spatial positioning of the users.

Let us define aspatial QoS satisfaction gameto be a
quadruple(N , C, (T c

n)n∈N ,c∈C , G) where:
• N , C, and T c

n are the set of players/users, channels,
and thresholds, respectively, which are the same as those
introduced in Section II-C.

• G = (N , E) is an undirected and unweighted graph, with
a vertex set equal to the set of playersN , and an edge
set E . We refer toG as the interference graph. The
interpretation ofG is that there is an edge{n,m} ∈ E
if and only if usersn and m are close enough to
cause congestion to each other when transmitting on the
same channel. We can apply the interference estimation
methods in [25], [26] to obtain the interference graph.

As before, a strategy profilex = (x1, x2, . . . , xN ) is where
each playern chooses a strategyxn ∈ C̃. Let us define the
neighborhood of player n, to beNe(n) = {m : {n,m} ∈
E} ∪ {n}. In other wordsNe(n) is the set of all players
which are linked to, or identical ton. We let the neighborhood
of a player contain the player itself just for the notational
convenience.

Let use define thelocal congestion levelof channelc for
playern in strategy profilex to be

Icn(x) = |{m ∈ Ne(n) : xm = c}|.

Fig. 2. A strategy profile in a spatial QoS satisfaction game.Each player
(vertex) has chosen some channel (color). Player2 is linked to one other user
of the black channelb, so that the congestion levelI2

b
(x) of the black channel

for player2 is two. If T 2

b
≥ 2 then player2 will be satisfied in this strategy

profile.

In other words,Icn(x) denotes the number of players within
a graph-distance1 of n that are using the same channel as
n. The utility playern gets in strategy profilex is defined
in a similar way to Equation (4), from Subsection II-C. We
illustrate a spatial QoS satisfaction game in Figure 2.

Theorem 7. EveryN -players spatial QoS satisfaction game
has the finite improvement property. Moreover, any asyn-
chronous better response update process will reach a pure
Nash equilibrium within4N + 3N2 asynchronous better re-
sponse updates (irrespective of the initial strategy profile, or
the order in which the players update).

The proof is given in Appendix F. Theorem 7 is the
most powerful result in this paper, for it implies that every
spatial QoS satisfaction game, with heterogenous players and
heterogenous channels has the finite improvement property.
The type of QoS satisfaction games we defined in Section II
can be considered as special cases of spatial QoS satisfaction
games within which the interference graph is a complete graph.
For this reason Theorem 1 can be considered to be a corollary
of Theorem 7. Theorem 7 shows that spatial QoS satisfaction
games are a remarkable class of congestion games on graphs,
because they may have heterogenous channels and users, and
yet they always have the finite improvement property. If one
considers the slightly more general class of congestion games
on graphs [8] with arbitrary non-increasing utility functions,
then one can easily find example games which do not even
have pure Nash equilibria -never mind the finite improvement
property. For example, a congestion game on a graph with5
players and3 resources, without any pure Nash equilibria is
exhibited in [8].

V. D ISTRIBUTED ALGORITHM AND SIMULATIONS

A. Distributed QoS satisfaction algorithm

In this section we propose a distributed QoS satisfaction al-
gorithm for achieving pure Nash equilibria of general (spatial)
QoS satisfaction games. The key idea is to utilize the finite
improvement property and let one user improve its channel
selection at a time. In order to describe the QoS satisfaction
game purely in terms of channel selection, we may regard the
dominant state0 as an additionvirtual channel, which always
gives users a utility of0.

We consider a time-slotted system. Each time slott consists
of the following two parts:



Algorithm 2: Distributed QoS satisfaction algorithm

1 initialization: each usern chooses channelxn = 0.
2 for each usern and each time slott do
3 access the chosen channelxn.
4 compute the set of best response channel selections

Bn(x).
5 if Bn(x) 6= ∅ then
6 contend for the channel update opportunity.
7 if win the channel update contentionthen
8 choose a channelc∗ ∈ Bn(x) randomly for

next time slot.
9 broadcast the updated channel selectionc∗ to

other users.
10 else
11 choose the original channelxn for next time

slot.
12 else
13 choose the original channelxn for next time slot.

14 update the channel selectionsx−n of other users
once an updating message is received.

1) Spectrum Access: each usern contends to access the
chosen channelxn according to some medium access control
(MAC) mechanism. For the initialization, we assume that all
users are dormant, and use strategy0.
2) Channel Update Contention: We exploit the finite im-
provement property by having one user carry out a channel
update at each time slot. In this part, we let users who
can improve their channel selections compete for the channel
update opportunity in a distributed manner. More specifically,
each usern first computes its set of best responses (which is
the set of strategies which maximize (and increase)n’s utility).

Bn(x) = {c∗ : c∗ = argmax
c∈C̃

Un(c,x−n) and

Un(c
∗,x−n) > Un(x)}.

If Bn(x) 6= ∅ (i.e., usern can improve), then usern will
contend for the channel update opportunity. Otherwise, user
n will not contend and will adhere to the original channel
selectionxn at next time slot.

For the channel update contention, for example, we can
adopt the backoff-based mechanism by setting the time length
of channel update contention asτ∗. Each contending user
n first generates a backoff time valueτn according to the
uniform distribution over[0, τ∗] and waits until the backoff
timer expires. When the timer expires, if the user has not
received any updating messages from other users yet, the user
will randomly select a channelc∗ ∈ Bn(x) and broadcast an
updating message over the common control channel to indicate
that it will update its channel selection toc∗ at the beginning
of the next time slot.

According to the finite improvement property in Theorem
7, the algorithm will converge to a pure Nash equilibrium of
a general spatial QoS satisfaction game in polynomial time.

B. Numerical Results

We now evaluate the proposed distributed QoS satisfaction
algorithm by simulations. We consider a spectrum sharing
network of C = 4 vacant channels, with the mean data
ratesBc

n of 6, 9, 12, 18 Mbps, respectively, which are standard
operating data rates in IEEE 802.11g systems [23]. Multiple
users are randomly scattered over a100m×100m region (see
Figure 3 for an illustration). In the interference graph, a pair
of users are linked by an edge when they are within50m (the
interference range) of each other (i.e., when they can generate
interference to each other). We adopt the TDMA mechanism
for the medium access control (MAC) and the data rate of
usern choosing a channelc is given asQc

n(I
c
n(x)) =

Bc

Ic
n
(x) ,

whereIcn(x) is the number of users of channelc that are linked
to n upon the interference graph. We consider the scenario
where users are running two different multimedia applications
corresponding to two types of QoS demands: low demand
typeDn = 0.125Mbps (i.e., listening to an online MP3 song
[27]) and high demand typeDn = 3.5Mbps (i.e., watching
an online video with a resolution of 1080p [27]).

We first implement a simulation withN = 50 users, and
let the fraction of users with a high QoS demand vary from
0% to 100%. We implement the distributed QoS satisfaction
game solution in Algorithm 2. Figure 4 shows the dynamics
of users’ throughputs, which demonstrates that the proposed
distributed QoS satisfaction algorithm can converge to a pure
Nash equilibrium. As a benchmark, we also compute the social
optimum by the centralized optimization using Cross Entropy
method, which is an advanced randomized searching technique
and has been shown to be efficient in solving complex combi-
natorial optimization problems [28]. The results are shownin
Figure 5. The x-axis is the fraction of users having a high QoS
demand, and y-axis describes how many users are satisfied
at the solutions of pure Nash equilibria and social optima.
Note that a QoS satisfaction game may have multiple pure
Nash equilibria, and Algorithm 2 will randomly select one
pure Nash equilibrium (since a random user will be chosen
for channel selection update). We run the algorithm20 times
for each game instance and plot the number of satisfied users
at the obtained pure Nash equilibria. Figure 5 shows that both
the performances of social optima and (the best and the worst)
pure Nash equilibria decrease as the fraction of users of a high
QoS demand increases. This is because that given the constant
spectrum resources less users can be satisfied when more users
have higher demands. Compared with the social optima, the
performance loss by the best pure Nash equilibria and the
worst pure Nash equilibria by Algorithm 2 are at most7% and
20%, respectively (not shown in the figure). This demonstrates
the efficiency of the pure Nash equilibria of QoS satisfaction
games.

We implement another simulation with the number of
usersN = 50, 55, and 60 with half of the users having a
high QoS demand. Upon comparison, we also implement the
social optimum solution by centralized optimization and the
decentralized spectrum access solution by Q-learning mecha-
nism proposed in [29]. We observe that the distributed QoS
satisfaction algorithm can achieve up-to32% performance



Fig. 3. Interference graph generated byN = 50
random scattered users over a100m×100m re-
gion. Each user (represented by a dot) has an
interference range of50m. Two users are linked by
an edge if and only if they are within each other’s
interference range.

Fig. 4. Dynamics of users’ throughputs by dis-
tributed QoS satisfaction algorithm. When the
throughput of a user is zero, then the user is in the
dormant state.

Fig. 5. Number of satisfied users at pure Nash
equilibria and social optima when the number of
users isN = 50, and the fraction of users with
a high QoS demand ranges from0% to 100%,
respectively.

Fig. 6. Performance comparison of the centralized optimization, distributed
QoS satisfaction algorithm, and Q-learning mechanism.

Fig. 7. The convergence time of Algorithm 2 withN = 5, 10, 20, . . . , 80
users, and half of the users have a high QoS demand.

gain over the Q learning mechanism. Compared with the
centralized optimization, the performance loss of the dis-
tributed QoS satisfaction algorithm is at most10%. This
demonstrates the efficiency of the proposed distributed QoS
satisfaction algorithm. We next evaluate the convergence time
of the distributed QoS satisfaction algorithm. Figure 7 shows
that the average convergence time increases linearly with the
number of usersN . This shows that the distributed QoS
satisfaction algorithm scales well with the network size. This
is critical since computing the social optimum of general QoS
satisfaction games is NP-hard.

VI. CONCLUSION

In this paper, we proposed a framework of QoS satisfaction
games to model the distributed QoS satisfaction problem
among wireless users. The game based solution is motivated
by the observation that the centralized optimization problem of
maximizing the number of satisfied users is NP hard. We have
explored many aspects of QoS satisfaction games including
the pure Nash equilibria and the price of anarchy. Our results
reveal that selfish spectrum sharing can be a very effective way
to allow users to meet their QoS demands. In particular, we
have shown that our systems can always reach a pure Nash

equilibrium in polynomial time, simply by having the users
perform better response updates.

There are many other issues we wish to explore in the
future. In particular, we wish to extend many of our results
(such as those regarding the price of anarchy) to spatial QoS
satisfaction games. We also wish to explore the generalized
QoS satisfaction games where different players receive differ-
ent utilities for being satisfied.

APPENDIX

A. Proof of Theorem 2

In the following, we call the problem of finding a social
optimum of the QoS satisfaction game as the QoS satisfaction
problem for short. Before discussing the computational com-
plexity of the QoS satisfaction problem, we first introduce the
definition of 3-dimensional matchings.

Definition 6. Let X ,Y, and Z be three finite disjoint sets,
and letT be a subset ofX ×Y ×Z. That is,T ⊆ {(x, y, z) :
x ∈ X , y ∈ Y, z ∈ Z}. Now M ⊆ T is a 3-dimensional
matching if the following holds: for any two distinct triples
(x1, y1, z1) ∈ M and (x2, y2, z2) ∈ M, we havex1 6= x2,
y1 6= y2, and z1 6= z2.



We shall refer to an element(x, y, z) ∈ T as anedge.
The 3-dimensional matching decision problem is as follows.
Suppose that the set sizes satisfy|X | = |Y| = |Z| = I.
Given an inputT with |T | ≥ I, decide whether there exists
a 3-dimensional matchingM ⊆ T with the maximum size
|M| = I. The 3-dimensional matching decision problem is a
well-known NP-complete problem [21]. We then prove that
the QoS satisfaction problem is NP-hard, by showing that
given an oracle for solving the QoS satisfaction problem, the
3-dimensional matching decision problem can be solved in
polynomial time.

From an instance of 3-dimensional matching((X ,Y,Z), T )
with |X | = |Y| = |Z| = I and |T | = J ≥ I, we can create
an instance of QoS satisfaction problem as follows. The set of
channels isT (i.e., each edge(x, y, z) ∈ T is a channel) with
the total number of channels is|T | = J . Let setψ = X∪Y∪Z.
We regard each elementn ∈ ψ as a usern. We also introduce
a new user setφ that consists ofJ − I additional users. The
total number of users in bothψ andφ is 3I+J− I = 2I+J .
Then we define the threshold valueTm

n as follows. For a user
n in setψ on a channelm = (x, y, z), we setTm

n = 3 if n
is an element of an edgem in T (i.e., one of the following
cases is true:n = x, or n = y, or n = z), and we setTm

n = 1
otherwise. For a usern in setφ on a channelm = (x, y, z), we
setTm

n = 1. Clearly,3 users can stay in a channel and satisfy
their QoS demands simultaneously if and only if they forms
an edge inT . Since each user can only select one channel,
according to Definition 6, given a channel allocation solution,
the set of channels, each of which has3 satisfied users, hence
correspond to a 3-dimensional matching inT . In this case,
the QoS satisfaction problem has the optimal solution that all
the users are satisfied (i.e., the number of satisfied users onJ
channels is3I + J − I = 2I + J including I channels with
each channel having3 satisfied users andJ − I remaining
channels with each channel having1 satisfied user), if and
only if there exists a 3-dimensional matchingM ⊆ T that
has the maximum size|M| = I.

Therefore, if we have an oracle to find the optimal solution
for QoS satisfaction problem, we can then check whether the
number of satisfied users is2I + J . In this case, we can
decide in a polynomial timeO(1) whether there exists a 3-
dimensional matchingM ⊆ T such that|M| = I. That
is, 3-dimensional matching decision problem is polynomially
reducible to the QoS satisfaction problem, and hence the QoS
satisfaction problem is NP-hard. �

B. Proof of Theorem 3

Before proving the main result about price of anarchy, let
us establish a useful lemma. LetB(x) denote the number of
satisfied users in a strategy profilex.

Lemma 1. Suppose thatx∗ is a social optimum, andy∗

is a pure Nash equilibrium of a QoS satisfaction game. The
following statements are true:

1) There are no suffering users inx∗ (i.e., x∗ is natural).
2) We have

∑N

n=1 Un(x
∗) = B(x∗) =

∑C

c=1 I
c(x∗).

3) There are no suffering users iny∗ (i.e., y∗ is natural).
4) We have

∑N

n=1 Un(y
∗) = B(y∗) =

∑C

c=1 I
c(y∗).

Proof of Lemma 1:Statement 1) holds because the social
welfare of any strategy profile with a suffering user can be
increased by making the suffering user dormant.

Statement 1) implies that for anyn we haveUn(x
∗) ∈

{0, 1}. Also we haveUn(x
∗) = 1 if and only if usern is

satisfied inx∗. It follows that
∑N

n=1 Un(x
∗) equalsB(x∗)

which is the number of satisfied players inx∗. Moreover,
since every non-dormant user is satisfied underx

∗, and
∑C

c=1 I
c(x∗) equals the number of non-dormant users under

x
∗, we must have

∑C

c=1 I
c(x∗) = B(x∗). This finishes the

proof of Statement 2).
To see that Statement 3) holds, note that any suffering

user can do a better response update by becoming dormant.
Sincey∗ is a pure Nash equilibrium, we must have that no
players can perform better response updates iny

∗, this proves
Statement 3).

The proof of Statement 4) is similar to the proof of
Statement 2), and is hence omitted. �

Next we prove the main Theorem 3 using Lemma 1.
Let x∗ be a social optimum of the game. Lety

∗ be a pure
Nash equilibrium of the game which minimizes the social
welfare among all pure Nash equilibria (note that Theorem
1 implies that such a pure Nash equilibriumy∗ exists for our
game). Clearly the four statements in Lemma 1 hold in this
scenario. Also Equation (5) gives

PoA =

∑N

n=1 Un(x
∗)

∑N

n=1 Un(y∗)
. (7)

Now we shall prove statements (8)-(11) on by one:

B(x∗) ∈ {1, 2, . . . , N}. (8)

B(x∗) ≤ Cmax{T c
n : n ∈ N , c ∈ C} (9)

B(y∗) ∈ {1, 2, . . . , N}. (10)

If B(y∗) < N, thenB(y∗) ≥ Cmin{T c
n : n ∈ N , c ∈ C}

(11)
Consider the strategy profilez∗ where usern = 1 uses

channelc = 1, and all the other users are dormant. Usern =
1 must be satisfied inz∗ since I1(z∗) = 1 ≤ T 1

1 , and so
the social welfare ofz∗ is

∑N

n=1 Un(z
∗) = 1. Sincex∗ is

a social optimum, its social welfare
∑N

n=1 Un(x
∗) must be

greater than or equal to that ofz∗, and so

N
∑

n=1

Un(x
∗) ≥

N
∑

n=1

Un(z
∗) = 1. (12)

Now combining Statement 2) of Lemma 1 with Inequality (12)
givesB(x∗) ≥ 1. Also clearlyB(x∗) is an integer less than
or equal toN , hence we have proved Statement (8).

Let c′ ∈ {1, 2, . . . , C} be one of the channels with the most
users underx∗ (i.e., Ic

′

(x∗) = max{Ic(x∗) : c ∈ C}). Now
Statement 2) from Lemma 1 implies

B(x∗) =

C
∑

c=1

Ic(x∗) ≤
C
∑

c=1

(

Ic
′

(x∗)
)

= CIc
′

(x∗). (13)

Now Statement (8) gives1 ≤ B(x∗), and combining this with
Inequality (13) gives us that1 ≤ CIc

′

(x∗). SinceIc
′

(x∗) is an



integer we must also have1 ≤ Ic
′

(x∗). It follows that there
must be some usern′ of channelc′ underx∗ (i.e., x∗

n′ =
c′). Now from Statement 1) of Lemma 1, we have thatn′ is
satisfied with usingc′ underx∗, and so it follows that

Ic
′

(x∗) ≤ T c′

n′ ≤ max{T c
n : n ∈ N , c ∈ C}, (14)

Combining Inequality (13) and Inequality (14) yieldsB(x∗) ≤
CIc

′

(x∗) ≤ Cmax{T c
n : n ∈ N , c ∈ C}, and so we have

proved Statement (9).

We can proveB(y∗) ≥ 1 by contradiction. IfB(y∗) ≥ 1
were false, then we would haveB(y∗) = 0, and no channel
would have any active users. However, in this case usern = 1
could do a better response update by changing to channelc =
1, becauseT c

n ≥ 1. This contradicts our assumption thaty
∗ is

a pure Nash equilibrium, hence we must have thatB(y∗) ≥
1. Also it is clear thatB(y∗) ≤ N , hence we have proved
Statement (10).

To prove Statement (11), suppose thatB(y∗) < N . This
implies that there are users which are not satisfied undery

∗.
Also Statement 3) from Lemma 1 implies that every user
which is not satisfied undery∗ is dormant, and so it follows
that there must be some usern∗ that is dormant iny∗. Since
y
∗ is a pure Nash equilibrium, we have that playern∗ cannot

do a better response by switching to use a channelc. It follows
that, for each channelc ∈ {1, 2, . . . , C}, we must have that

Ic(y∗) ≥ T c
n∗ ≥ min{T c

n : n ∈ N , c ∈ C}, (15)

Now combining Statement 4) from Lemma 1 with Inequality
(15), we haveB(y∗) =

∑C

c=1 I
c(y∗) ≥

∑C

c=1min{T c
n : n ∈

N , c ∈ C} = Cmin{T c
n : n ∈ N , c ∈ C}, which proves

Statement (11).

Now we can prove Theorem 3. By taking Equation (7) and
using Statements 2) and 4) from Lemma 1, one obtainsPoA =
B(x∗)
B(y∗) . Statement (8) givesB(x∗) ≤ N , Statement (10) gives
B(y∗) ≥ 1, and so we must havePoA ≤ N .

Next consider two cases. In the first we haveB(x∗) =
B(y∗), and so we havePoA = 1. Now since 1 ≤
max{T c

n
:n∈N ,c∈C}

min{T c
n
:n∈N ,c∈C} , Theorem 3 clearly holds in this case. Con-

sider the second case whereB(x∗) 6= B(y∗). In this case
we must haveB(x∗) > B(y∗), becausex∗ is a social
optimum. Moreover, Statement (8) implies thatN ≥ B(x∗)
soN > B(y∗). It follows from Statement (11) that we must
have

B(y∗) ≥ Cmin{T c
n : n ∈ N , c ∈ C}. (16)

SincePoA = B(x∗)
B(y∗) , we have that Inequality (16) implies

B(x∗)

PoA
≥ Cmin{T c

n : n ∈ N , c ∈ C}. (17)

Now rearranging Inequality (17), and combining with Inequal-
ity (9) gives

PoA ≤
Cmax{T c

n : n ∈ N , c ∈ C}

Cmin{T c
n : n ∈ N , c ∈ C}

.

Cancelling theCs from this inequality, and combining it with
the inequalityPoA ≤ N (which we have already established),
we have Inequality (6) in Theorem 3.�

C. Proof of Theorem 4

Let B(x) = |{n ∈ N : Un(x) = 1}| denote the number
of satisfied users in a strategy profilex. We will show that
Statement1) implies Statement2), which in turn implies
Statement3), which in turn implies Statement1).

1) Statement 1)⇒ Statement 2):Suppose Statement1)
holds, andx is a pure Nash equilibrium. Now Lemma 1
implies that there are no suffering users inx, and Lemma
1 also implies that

B(x) =
C
∑

c=1

Ic(x) =
N
∑

n=1

Un(x). (18)

Since there are no suffering users underx, we must have
that Ic(x) ≤ T c, for each c ∈ {1, 2, . . . , C}. It follows
that B(x) =

∑C

c=1 I
c(x) ≤

∑C

c=1 T
c. Since we also have

B(x) ≤ N , it follows that

B(x) ≤ min

{

N,

C
∑

c=1

T c

}

. (19)

Next consider two cases. In the first case withB(x) = N,
clearly Inequality (19) implies thatB(x) = N ≤

∑C

c=1 T
c

and sox satisfies Statement2) of Theorem 4.
Now let us consider the second case whereB(x) < N .

In this case there exists at least one usern∗ that is not
satisfied. We know thatn∗ must be dormant, sincex contains
no suffering users. Sincex is a pure Nash equilibrium, we
know that usern∗ cannot perform any best response updates.
This implies thatIc(x) ≥ T c, for eachc ∈ {1, 2, . . . , C}. It
follows that we must have

C
∑

c=1

Ic(x) ≥
C
∑

c=1

T c. (20)

Combining Equation (18) and Inequality (19) gives us that

B(x) =

C
∑

c=1

Ic(x) ≤
C
∑

c=1

T c, (21)

and combining Inequality (21) with Inequality (20) yields

B(x) =

C
∑

c=1

Ic(x) =

C
∑

c=1

T c. (22)

Since we have assumedB(x) < N in this second case, we
haveB(x) =

∑C

c=1 T
c = min{N,

∑C

c=1 T
c}. This shows

that Statement 1) implies Statement 2).

2) Statement 2)⇒ Statement 3):Now we assume Statement
2) holds. IfB(x) = N , thenx is clearly a social optimal and
so Statement 3) follows in this case. Suppose instead that

B(x) =

C
∑

c=1

T c < N. (23)

Sincex has no suffering users, we must have

B(x) = |{n ∈ N : xn 6= 0}| =
N
∑

n=1

Un(x) =

C
∑

c=1

Ic(x) =

C
∑

c=1

T c.

(24)



Let z be a social optimum of our game. From Lemma 1 we
have

B(z) =

N
∑

n=1

Un(z) =

C
∑

c=1

Ic(z). (25)

Since Lemma 1 implies thatz holds no suffering users, we
must haveIc(z) ≤ T c for each c ∈ {1, 2, . . . , C}, and it
follows that

C
∑

c=1

Ic(z) ≤
C
∑

c=1

T c. (26)

Combining Equation (25), Inequality (26), and Equation (24)
yields

N
∑

n=1

Un(z) =
C
∑

c=1

Ic(z) ≤
C
∑

c=1

T c =
N
∑

n=1

Un(x). (27)

Inequality (27) implies that the social welfare ofx is no less
than the social welfare of the social optimumz. This implies
thatx is a social optimum, which proves Statement 3).

3) Statement 3)⇒ Statement 1): Now we assume that
Statement 3) holds, andx is a social optimum. In this case,
Lemma 1 implies that there are no suffering users underx.
Next we will show thatx is a pure Nash equilibrium by
contradiction.

Supposex is not a pure Nash equilibrium. There must exist
a playern∗ ∈ N that can perform a better response update.
This means thatn∗ must be dormant, becausex contains no
suffering users. It follows thatUn∗(x) = 0, and there must
exist some channelc∗ 6= 0 such thatIc

∗

(x) < T c∗ (which n∗

can do a better response update by switching to). Let

y = (x1, . . . , xn∗−1, c
∗, xn∗+1, . . . , xN )

be the strategy profile obtained by allowing playern∗ to switch
to channelc∗. We shall haveIc

∗

(y) = Ic
∗

(x) + 1 ≤ T c∗,
so the users of channelc∗ will still all be satisfied in y.
This implies that

∑N

n=1 Un(y) = 1 +
∑N

n=1 Un(x), which
contradicts our assumption thatx is a social optimum. This
shows that Statement 3) implies Statement 1).�

D. Brief sketch of the proof to Theorem 5

We order the users so thatT1 ≥ T2 ≥ . . . . ≥ TN . We use
x
n to denote the strategy profile produced by thenth iteration

of Algorithm 1. Also B(x) is the number of satisfied users
in x. We say a strategy profiley is reachable from strategy
profile x, if for any xp 6= 0 (for a playerp ∈ N ) we have
yp = xp. In other words,y is reachable fromx if each player
who is not dormant inx uses the same channel iny as it
does inx. Let β(x) denote the maximum value ofB(y) such
thaty is a natural strategy profile reachable fromx. Let D(x)
denote the set of dormant users in the strategy profilex.

The key idea of the proof is to show that a social optimal
is reachable from the strategy profilexn, ∀n ∈ {1, 2, . . . , N}
(herexn is the strategy profile outputted by thenth iteration
of Algorithm 1). This can be achieved by showingβ(x0) =
β(x1) = . . . = β(xN ). The reason is thatβ(x0) is the
number of satisfied users at a social optimum (since all strategy
profiles can be reached fromx0).

Since a (natural) social optimum is reachable fromxN and
since we can show5 that the only natural strategy profile that
is reachable fromxN is xN itself, we have thatxN is a social
optimum. By checking that users have no incentive to change,
we can then show that the social optimum is also a pure Nash
equilibrium.

In order to prove that a social optimal is always reachable
fromx

n, we use induction to prove thatxn−1 satisfies various
conditions for eachn ∈ {1, 2, . . . , N}. In particular, we show
that if a valuen ∈ {1, 2, . . . , N} is such that there exist a
channelc with the property thatIc(xn−1) < Tn, thenxn−1

satisfies the following conditions:

1) x
n−1 is natural.

2) β(xn−1) = β(x0).
3) D(xn−1) = {n, n+ 1, . . . , N}.
4) {c ∈ C : Ic(xn−1) < Tn} 6= ∅.
5) Let c∗ = min{c ∈ C : Ic(xn−1) < Tn}. Then for each

channelc, we have (i) ifc < c∗, thenIc(xn−1) ≥ Tn,
(ii) if c = c∗, thenIc(xn−1) < Tn, and (iii) if c > c∗,
thenIc(xn−1) = 0.

We now provide the more details of the proof as follows.
Let B(x) = |{n ∈ N : xn 6= 0}| denote the number of

satisfied players in strategy profilex. We say a strategy profile
y is reachable from strategy profilex whenxn 6= 0 implies
yn = xn, for eachn ∈ N . In other wordsy is reachable from
x whenx can be converted toy by allocating real channels
to dormant users. Letβ(x) denote the maximum number of
satisfied users in a strategy profile reachable fromx.

Algorithm 1 works by initializing all users with the off
channel, and then having each player switch onto the most
congested (and lowest indexed) channel they can benefit from
using. Our proof of the validity of Algorithm 1 works by
showing that, at any stage, a social optimal is reachable from
the current profile considered. In particular, our algorithm
initiates from the strategy profilex0 were all users are ‘off’.
Every strategy profile is reachable from this initial condition,
and soβ(x0) is equal to the maximum number of satisfied
users in any strategy profile of the game. For brevity, se shall
refer to social optima simply as ‘optima’ or ‘optimal strategy
profiles’.

The following lemma is the critical part of our proof of
the validity of Algorithm 1, for it essentially asserts that
β(xn−1) = β(xn) for eachn ∈ {1, 2, .., N}. In other words,
as one iterates the algorithm, thenth profile generated,xn,
has just as beneficial strategy profiles that can be reached
from it, as the (n − 1)th profile xn−1 had. This result
can be used with induction to show thatβ(x0) = β(xN ).
Moreoverβ(xN ) = B(x) is the number of satisfied users
in the outputted strategy profile because oncexN has been
generated, we either have that all players have been allocated
a real channel (in which casexN is the only strategy profile
reachable fromxN ), or all dormant users cannot benefit from
using a real channel because their thresholds are less than
or equal to the congestion level of each active channel (in

5Our algorithm only stops altering the strategy profile when all users are
satisfied, or when no more dormant users can be satisfied. It follows that no
natural strategy profiles can be reached fromxN exceptxN .



which case every strategy profile reachable fromxN , other
than xN has suffering users). We shall state and prove this
critical lemma before we continue with our proof.

Lemma 5.5
Let g be a QoS satisfaction game withC > 1 channels

(which are homogenous) andN players, with thresholdsT1 ≥
T2 ≥ ... ≥ TN . Supposex satisfies the following conditions:

1) We have thatk(x) := {n ∈ N : xn 6= 0} is non-empty,
andn∗ ∈ N : Tn∗ = max{Tn : n ∈ k(x)} is a player
with maximal threshold ink(x).

2) We have that∃F ∈ {0, 1, .., C − 1} such that for each
c ∈ {1, 2, .., C} we havec ≤ F ⇒ Ic(x) ≥ Tn∗ and
c > F ⇒ Ic(x) < Tn∗ andc > F + 1 ⇒ Ic(x) = 0.

3) We have∀n,m ∈ N that if n /∈ k(x) andm ∈ k(x)
thenTn ≥ Tm.

4) We have thatx has no suffering users (i.e.,x is natural).
Let y denote the strategy profile obtained by takingx and
having playern∗ change their channel toF +1. Now β(y) =
β(x).

Proof of Lemma 5.5
We shall construct a strategy profileΩ that is reachable from

x and such thatΩn∗ = F + 1 andB(Ω) = β(x). SinceΩ is
reachable fromy we shall then haveβ(x) = B(Ω) = β(y).
We constructΩ by starting with a natural strategy profilez
that maximizes the number of benefitting users amongst those
profiles reachable fromx. Then we modifyz to make another
strategy profilew. Then we modifyw to makeΩ.

Let z : B(z) = β(x) be a strategy profile that is reachable
from x. Suppose this profilez has the maximum number of
satisfied users amongst all strategy profiles reachable fromx.
Also, suppose thatz has no suffering users.

Now note thatB(z) > B(x), to see this note that points
(1) and (2) above imply that, fromx, usern∗ can beneficially
start using channelF + 1 without causing any other player
to cease satisfied. It follows thatx there are strategy profiles
(such asz) with more satisfied users, that are reachable from
x.

Next we claim that there must exist some playerm ∈ k(x)
such thatzm ∈ {F + 1, F + 2, .., C}. To see this note that
B(z) > B(x) implies that there is somem ∈ k(x) : zm 6= 0
and sincem must be satisfied inz, andm ∈ k(x) implies
Tm ≤ Tn∗ ≤ Ic(x)∀c ∈ {1, 2, .., F} we must havezm ∈
{F + 1, F + 2, .., C}.

If zn∗ 6= 0 then similarly we havezn∗ ∈ {F + 1, F +
2, .., C}, and in this case we letw = z. Now, alternatively
suppose thatzn∗ = 0. In this case, letw be the strategy profile
obtained by takingz and interchanging the strategies ofn∗ and
m. In other words,∀n ∈ N we havewn = zn if n /∈ {n∗,m},
andwn = zm if n = n∗ andwn = zn∗ if n = m.

Clearly w is reachable fromx. Also, note thatw (like z)
has no suffering users. To see this, we just have to note that
w is just like z except that we have replaced the real channel
userm, with the usern∗, on the same channel. Now since
m ∈ k(x) and n∗ has the maximum threshold of any user
in k(x) we must have thatTn∗ ≥ Tm. Now, sincem was
satisfied inz it follows that, when we replacem with player
n∗ (using the same channel), we shall have thatn∗ is satisfied
in the resulting strategy profilew. The reason is thatn∗ incurs

exactly the same congestion level inw asm incurred in z,
andTn∗ ≥ Tm. Also B(w) = B(z), since the operation we
use to obtainw from z preserves the number of users of real
channels.

So now we have thatw is reachable fromx andB(w) =
B(z) = β(x). If wn∗ = F + 1 then letΩ = w, and we are
done. Now instead supposewn∗ 6= F + 1. We shall describe
how to constructΩ in this case.

If IF+1(w) ≥ Iwn∗ (w) then we constructΩ by takingw
and swapping around the channels ofn∗ and the memberm′

of
R := {n ∈ N : wn = F + 1 6= xn} ⊆ k(x)

with the highest threshold. In other words, for eachn ∈ N
we haven /∈ {n∗,m′} impliesΩn = wn andn = n∗ implies
Ωn = wm′ andn = m′ impliesΩn = wn∗ .

The playerm′ ∈ R which changes their channel fromF +
1 to wn∗ under this operation will not stop being satisfied,
since they end up (inΩ) using a channelwn∗ that is no more
congested than the channelF +1 they were using inw. Also,
playern∗, who changes their channel fromw∗ to F + 1, will
not stop being satisfied since they end up (inΩ) with the same
congestion level asm′ had inw, but they have a threshold that
is greater than or equal to that ofm′. It follows thatn∗ and
m′ (and each other user of a real channel) will be satisfied in
w. This showsΩ is natural, andB(Ω) = B(w). Also, Ω is
clearly reachable fromx since it can be obtained by takingz
and altering the actions of some users fromk(x) who were
“off” in x.

Now let us consider how to defineΩ in the final case, where
wn∗ 6= F + 1 and IF+1(w) < Iwn∗ (w). In this case we
get Ω by having theIwn∗ (w) − IF+1(x) players with the
highest thresholds that are usingwn∗ underw, change their
channels toF + 1, whilst (simultaneously) each player from
R changes their channel fromF + 1 to wn∗ . Let us be more
precise. Let us name the users ofwn∗ underw by writing
{n ∈ N : wn = wn∗} = {e1, e2, .., eM}. Here we have
given the players namesei in such a way thate1 = n∗ and
Te1 ≥ Te2 ≥ .. ≥ TeM . Now in this case,Ω is defined such
that ∀n ∈ N we haven /∈ R ∪ {e1, e2, .., eIw

n∗ (w)−IF+1(x)}
implies Ωn = wn, andn ∈ R implies Ωn = wn∗ , andn ∈
{e1, e2, .., eIw

n∗ (w)−IF+1(x)} impliesΩn = F + 1.
Now clearlyΩ is reachable fromx since it is obtained but

takingw and only altering the channels of users fromR, {n ∈
N : wn = wn∗} ⊆ k(x). Now we will show thatΩ has no
suffering users.

Firstly, the players in the setR that change their channels
from F + 1 to wn∗ will still be satisfied inΩ. The reason is
that the congestion level these players experience inΩ will be
IF+1(x)+ |R|, which is the same as the congestion level that
they incurred inw.

Players sticking onwn∗ in w andΩ experience a congestion
level Iwn∗ (Ω) = IF+1(x)+ |R| = IF+1(w) < Iwn∗ (w) in Ω
that is less than the congestion level that they incurred inw,
so these players will still be satisfied inΩ.

Players in the set{e1, e2, .., eIw
n∗ (w)−IF+1(x)} that change

their channels fromwn∗ to F + 1 will still be satisfied inΩ,
since the congestion levelIF+1(Ω) = IT+1(x) + Iwn∗ (w)−



IT+1(x) = Iwn∗ (w) that these users experience inΩ will be
the same as the congestion levels they experienced inw.

Also, the players{n ∈ N : xn = F+1} ⊆ N−k(x) which
stick upon channelF + 1 in w andΩ each have thresholds
greater than or equal to each player ink(x) (according to point
3) and so, since the players{e1, e2, .., eIw

n∗ (w)−IF+1(x)} ⊆
k(x) are satisfied upon channelF +1 in Ω, it follows that the
players{n ∈ N : xn = F + 1} are also satisfied inΩ.

So we have shown that each user ofwn∗ orF+1 is satisfied
in Ω. Now sincewn∗ or F + 1 are the only channels that
have different user sets inΩ andw, we have thatB(Ω) =
B(w) = B(z) = β(x) and Ω has no suffering users. Also
note thatΩ is reachable fromx. Also, sinceΩn∗ = T + 1,
we have thatΩ is reachable fromy. From this it follows that
β(y) = B(Ω) = β(x).
�

Now we have proved Lemma 5.5, we shall continue our
proof of Theorem 5.

Algorithm 1 runs so that we begin with all players using
the zero-channel and then we update the players in order
of descending threshold.∀n ∈ {1, 2, .., N}, we obtain the
strategy profilexn during thenth iteration of our algorithm.
Here xn is obtained fromxn−1 by updating playern (who
has thenth highest threshold). To update playern we check
if there are any channels available, that have low enough
congestion levels to satisfy usern. If such channels exist then
playern starts using the onec∗ with the lowest index, and this
action produces the strategy profilexn. Otherwise, if there is
no channel with a low enough congestion level for playern
to benefit from using, then we say thatxn is “full”. In this
case we will have thatxn = xn+1 = ..xN because every
subsequent update will involve getting a usern′ > n, with a
thresholdTn′ ≤ Tn and checking if there is a channel with a
congestion level below the thresholdTn′ (i.e., stage 3 of the
algorithm), and there will be no channel with congestion level
belowTn′ , because there was no channel with congestion level
belowTn. So it follows that once our algorithm hits a fullxn,
it will output xN = xn eventually.

We say a statex has property(F, n∗) when the following
conditions hold:

1) We have thatk(x) := {n ∈ N : xn 6= 0} is non-empty,
andn∗ ∈ N : Tn∗ = max{Tn : n ∈ k(x)} is a player
with maximal threshold ink(x).

2) We have that∃F ∈ {0, 1, .., C − 1} such that for each
c ∈ {1, 2, .., C} we havec ≤ F ⇒ Ic(x) ≥ Tn∗ and
c > F ⇒ Ic(x) < Tn∗ andc > F + 1 ⇒ Ic(x) = 0.

3) We have∀n,m ∈ N that if n /∈ k(x) andm ∈ k(x)
thenTn ≥ Tm.

4) We have thatx has no suffering users.

Clearlyx0 has property(0, 1) sincec > 0 ⇒ Ic(x0) = 0 <
T1 andk(x) = {1, 2, .., N}.

Now we claim (**) that∀n ∈ {1, 2, .., N − 1} that if xn−1

has property(F, n) and xn−1 is not full then the strategy
profile xn present upon the next iteration of our algorithm
will have property(F ′, n+ 1), for someF ′.

To see this note that ifxn−1 has property(F, n) andxn−1 is
not full then c∗ = min{c ∈ {1, 2, .., C} : Ic(xn−1) < Tn} =

F +1 andxn is the strategy profile obtained by having player
n start using channelF + 1.

This move will not cause any of the previous users of
channelF + 1 to cease satisfied (since all their thresholds
are at least as large asn’s threshold). Also,n will clearly be
satisfied inxn. It follows thatxn has no suffering users. Also,
it follows thatk(xn) = k(xn−1)−{n} = {n+1, n+2, .., N},
wheren+ 1 is the player with the maximum threshold inxn

that is not satisfied.
Now eitherIc

∗

(xn−1) + 1 < Tn+1 in which casexn has
property(F, n+1), sinceF = c∗ is still the channel thatn+1
is destined to switch to, orIc

∗

(xn−1) + 1 ≥ Tn+1, in which
casexn has property(F + 1, n+ 1), sinceF + 1 = c∗ + 1 is
the channel that then+ 1 is destined to switch to.

Now since the initial conditionx0 = (0, 0, .., 0) has property
(F, n∗) for someF andn∗, we can use induction to show that
every timexn 6= xn−1 (i.e., every time the system is not full)
we have thatxn has property(A,B) for some(A,B).

If xi has the property with respect to(Ai, Bi) then Lemma
5.5 implies thatxi+1 has the property thatβ(xi) = β(xi+1).

Now if the system never gets full then we have that
x0, x1, .., xN−1 each xi has the property, for some pair
(Ai, Bi). It follows that β(x0) = β(x1) = ..β(xN−1) =
β(xN ) = B(xN ), where xN is the output. The reason
β(xN ) = B(xN ) is because every user is satisfied inxN

in this case, soxN is the only strategy profile reachable from
xN .

Similarly, if the system gets full up on time stepj then we
have, for eachi ∈ {1, 2, .., j} that xi has the property, for
some pair(Ai, Bi). It follows thatβ(xj) = β(x0). Moreover
since xj is full, we havexj = xj+1 = .. = xN , and so
β(x0) = β(xN ). Also, sincexN is full, no more users can be
made to benefit fromxN and soβ(xN ) = B(xN ).

And so we have shown that the maximum number of
satisfied users that can be obtained in any strategy profile,
which is β(x0), is equal to the number of satisfied users in
the strategy profilexN outputted by our algorithm. This shows
that the outputxN is an optimum strategy profile of the game.

Now we just have to show thatxN is a pure Nash equilib-
rium. To see this note that if a user inxN did want to switch
channels, then they would want to benefit. This would only
be possible if the system has reached a full state previously
(since if the algorithm never hits a full state then its output is
optimal, and unsatisfied users do not exist). So there must have
come some earlier time when the system became full. From
this point on, we have that each channel has an congestion
level too high for any user of an off channel to benefit from
switching to them, and so in fact it is impossible for the final
statexN to have any users which are not satisfied that can
increase their utilities by increasing channels.

Individual executions of stages 1, 2, 3, 4, 5, 6, 7
and 8 of the algorithm can be performed in
O(N), O(1), O(C), O(C), O(N), O(1), O(1) and O(1)
time respectively. Only stages3, 4, 5, 6 and 7 are repeated.
Each of these stages can be performed once inO(CN) time.
These procedure where each of these stages are performed
once is repeatedN time. The complete procedure/loop (that is
initiated on stage 2) this takesO(CN2) time. ThisO(CN2)



term dominates the execution times of all other stages outside
this loop, and so the total run time of the system isO(CN2).

E. Proof of Theorem 6

Let x be the strategy profile wherexn = 1+ (n mod C),
∀n ∈ N , ∀c ∈ C = {1, 2, . . . , C} (i.e., where the users are
spaced as evenly across the channels as possible). For such a
strategy profile, we haveIc(x) ≤

⌈

N
C

⌉

≤ Tn, ∀c ∈ C, and so
every player is satisfied.�

F. Proof of Theorem 7

Let us define the functionΦ (which maps strategy
profiles to real numbers) such that for each strategy
profile x we have Φ(x) =

(

∑

n∈N :xn 6=0 T
xn

n

)

−
∑C

c=1

(

|{{n,m} ∈ E : xn = xm = c}|+ |{n∈N :xn=c}|
2

)

.

Here |{{n,m} ∈ E : xn = xm = c}| is the number of edges
linking players using channelc, and |{n ∈ N : xn = c}| is
the number of players using channelc. In other words,Φ(x)
is equal to [the sum of the thresholds which the non-dormant
users associate with their channels] minus [the number of
edges linking users of the same channel] minus [half the
number of non-dormant users].

Suppose playern′ does a better response update by
changing their strategy fromc′ ∈ {0, 1, . . . , C} to d′ ∈
{0, 1, . . . , C}, and this has the effect of changing the strategy
profile fromx to y = (x1, . . . , xn′−1, d

′, xn′+1, . . . , xN ).
Next we will showΦ(y) ≥ Φ(x) + 1

2 in each of the three
possible cases:

1) c′ = 0, d′ 6= 0 (i.e., whenn′ stops being dormant).
2) c′ 6= 0, d′ = 0 (i.e., whenn′ becomes dormant).
3) c′ 6= 0, d′ 6= 0 (i.e., whenn′ switches from one channel

to another).
In case 1), wherec′ = 0, d′ 6= 0, we haveΦ(y) = Φ(x) +

T d′

n′ −Id
′

n′ (x)− 1
2 , because the action where playern′ switches

to channeld′ increases the number of edges linking users ofd′

by Id
′

n′(x) and increases the number of players using resource
d′ by 1. Also, since our move is a better response update, we
haveUn′(x) = 0 andUn′(y) = 1, and soT d′

n′ ≥ Id
′

n′(y) =
Id

′

n′(x)+1. It follows thatΦ(y)−Φ(x) = T d′

n′−Id
′

n′(x)− 1
2 ≥ 1

2 .
In case 2), wherec′ 6= 0, d′ = 0 we haveΦ(y) = Φ(x) −

T c′

n′ + Ic
′

n′(x) − 1 + 1
2 , because the action where playern′

leaves channelc′ decreases the number of edges linking users
of c′ by Ic

′

n′ (x) − 1 and decreases the number of users of
resourcec′ by 1. Also, since our move is a better response
update, we haveUn′(x) = −1 andUn′(y) = 0. It follows
thatT c′

n′ < Ic
′

n′ (x), and sinceT c′

n′ andIc
′

n′(x) are both integers,
this impliesT c′

n′ ≤ Ic
′

n′ (x)− 1. It follows thatΦ(y)−Φ(x) =
Ic

′

n′(x)− 1− T n′

n′ + 1
2 ≥ 1

2 .
In case 3), wherec′ 6= 0, d′ 6= 0, we haveΦ(y) = Φ(x) +

T d′

n′ − Id
′

n′(x) − T c′

n′ + Ic
′

n′(x) − 1, because the action where
playern′ switches from channelc′ to channeld′ increases the
number of edges linking users ofd′ by Id

′

n′(x) and decreases
the number of edges linking users ofc′ by Ic

′

n′(x)− 1. Also,
since our move is a better response update, we haveUn′(x) =
−1 andUn′(y) = 1, and soT d′

n′ ≥ Id
′

n′(y) = Id
′

n′(x) + 1 and
T c′

n′ ≤ Ic
′

n′(x)− 1. It follows thatΦ(y)− Φ(x) ≥ 1.

Without loss of generality, we can suppose that−1 ≤ T c
n ≤

N + 1, ∀n ∈ N , ∀c ∈ {1, 2, . . .C}, since thresholds less than
−1 induce the same kind of behavior as thresholds equal to−1
(i.e., they can never be satisfied) and thresholds greater than
N+1 induce the same kind of behavior as thresholds equal to
N +1 (i.e., they are always satisfied). For any strategy profile
x we have(−1)N ≤

(

∑

n∈N :xn 6=0 T
xn

n

)

≤ N(N + 1). It

is also true that0 ≤
∑C

c=1 |{{n,m} ∈ E : xn = xm =

c}| ≤ N(N−1)
2 and 0 ≤

∑C

c=1
|{n∈N :xn=c}|

2 ≤ N
2 . From

these inequalities, it follows that−N ≤ Φ(x) ≤ N(N +

1) + CN(N−1)
2 + CN

2 = N + 3N2

2 .

When we start to evolve our system, the value ofΦ for the
initial strategy profile cannot be less than−N . Also, the value
of Φ will increase by at least12 with every better response
update. Now suppose we have performedt better response
updates (i.e., we have run the system fort time slots) and
arrived at strategy profiley. We must have−N+ t

2 ≤ Φ(x)+
t
2 ≤ Φ(y) ≤ N + 3N2

2 , because the value ofΦ increases by
at least12 on each time step. This impliest ≤ 4N + 3(N)2.

So far we have shown that it isimpossibleto run the system
(with asynchronous better response updates) for more thant =
4N +3(N)2 time slots. This implies that when we evolve the
system under asynchronous better response updates, wemust
reach a strategy profilez from which no further better response
updates can be performed, within4N + 3(N)2 time slots.
Such a strategy profilez must be a pure Nash equilibrium by
definition.�
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