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Abstract—Today’s wireless networks are increasingly crowded can become unsuitable for two reasons. Firstly, the QoS
with an explosion of wireless users, who have greater and mer demands of wireless users are highly heterogeneous, which
diverse quality of service (QoS) demands than ever before. ;i hjiag that the operator needs to gather massive amounts of

However, the amount of spectrum that can be used to satisfy . f tion f . der t f th tralized
these demands remains finite. This leads to a great challengeIn ormation from users in order to periorm the centralize

for wireless users to effectively share the spectrum to ackve OPptimization. Secondly, finding the system-wide optimalSQo
their QoS requirements. This paper presents a game theorati demand satisfaction solution is computationally chaliegg-
model for spectrum sharing, where users seek to satisfy thei in fact we show that it is NP hard. It is hence difficult for the
QoS demands in a distributed fashion. Our spectrum sharing herat0r to compute the optimal solution to meet users- real
model is quite general, because we allow different wireless fi Sd ds. The alt fi hd tralized
channels to provide different QoS, depending upon their chanel ime QoS demands. e_a ernative approachas@entralize
conditions and how many users are trying to access them. approach, where each wireless user makes the spectrunsacces
Also, users can be highly heterogeneous, with different QoS decision locally to meet its own QoS demand, while taking the
demands, depending upon their activities, hardware capalities, network dynamics and other users’ actions into considamati

and technology choices. Under such a general setting, we sho 15 js feasible since new technologies like cognitive oadi

that it is NP hard to find a spectrum allocation which satisfiesthe . . . .
maximum number of users’ QoS requirements in a centralized [1] give users the ability to scan and switch channels easily

fashion. We also show that allowing users to self-organizéatough The_decentralized approach enables more erxit_:)Ie Spectrum
distributed channel selections is a viable alternative to tte sharing, scales well with the network size, and is particula

centralized optimization, because better response updat§ is suitable when users belong to multiple network entities.
guaranteed to reach a pure Nash equilibria in polynomial tirre. In this paper, we focus on the decentralized approach, and

By bounding the price of anarchy, we demonstrate that the wost f K S isfacti del
case pure Nash equilibrium can be close to optimal, when user PrOPOS€ & new framework @oS satisfaction games mode

and channels are not very heterogenous. We also extend ourthe distributed QoS demand satisfaction problem among the
model by considering the frequency spatial reuse, and cord#r users. Game theory is a useful tool for designing distrihute

the user interactions as a game upon a graph where players g|gorithms that allow users to self-organize, optimizeirthe
only contend with their neighbors. We prove that better respnse - oponne| selections, and satisfy their QoS demands. Our QoS
updating is still guaranteed to reach a pure Nash equilibrium in . . .
this more general spatial QoS satisfaction game. satlsfactlon_ game framework is developed, base_d on theythee
of congestion games$][2]. The central idea behind congestion
games is that there are maplayers each of which selects a
resourceto use. A player’s utility is a non-increasing function
of the total number of players using the same resource. The
distributed QoS satisfaction problem can be modeled using
The number of wireless devices such as smart-phones cesngestion games by thinking of the players as wireless
tinues to increase rapidly in today’s market, while the amouusers, while the resources represent different charirel§ta
of spectrum available for these devices remains limitedrevlo satisfaction of a user's QoS demand depends on its congestio
over, many new wireless applications such as high definitiggvel, i.e., how many users are competing for its channel. In
video streaming and online interactive gaming are emergingur QoS satisfaction game, a player achieves a unit utility
making the quality of service (QoS) demands of wirelessausethen its channel’s data rate is sufficiently high to satigéy i
higher and more varied. Thus there is an urgent need to stu@yS demand. Otherwise, the player’s utility is negative énd
the issue of how to efficiently share the limited spectrum tg better off by switching channels (to improve the payoff) o
satisfy the QoS demands of as many users as possible. turning off its transmitter (to receive a zero payoff).
There are two different approaches to address this issue.
The first approach is a@entralizedapproach, where a net-
work operator optimizes the spectrum resources to meet the Related Work
users’ QoS requirements. This approach puts most of theRosenthal proposed the original congestion game mbilel [2]
implementation complexity at the operator side, and walefor the scenario where different resources can have differe
devices do not need to be very sophisticated. However, as thiity functions associated with them (i.e., heterogesnoe-
networks grow larger and more heterogeneous, this approaciuirces) but all players have the same utility function foy a
. . . . _ particular resource (i.e., homogenous players). This kihd
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finite number of steps. Aure Nash equilibriumis a system reuse. This makes the modeling more practical for wireless
state where no player has any incentive to deviate uniliteracommunication systems. The generalizations consideredrin
However, the original congestion game is not generalodel result in more challenges and significant differerices
enough to model spectrum sharing, because it assumes #ratlysis.
players are homogenous, whereas wireless network users aM/hen discussing the achievability of the equilibrium, we
often highly heterogenous. The congestion games with playfocus on dynamics where one player can perform a better
specific utility functions considered inl[4] are more appiage response update each time. There are many alternativedypes
for this modeling purpose. Authors inl[3].][5]2[7] have ategh dynamics we could consider, such as smoothed best response
such a game model for studying spectrum sharing problendynamics and imitation dynamids [15]. We could also cornside
However, unlike classical congestion games, these gameesthe replicator dynamics from evolutionary game theory.-Ref
not necessarily guaranteed to possess the finite improwemanence [[16] showed that replicator dynamics can be used for
property. spectrum sharing using appropriate message passing ptatoc
Spatial reuseis another feature of wireless networks thaReplicator dynamics is most useful when the user population
the original congestion game model does not account for. iflarge, and in which case the system will follow continuous
reality only nearbyusers on the same channel will interfer¢essentially deterministic) dynamics which normally cerge
with each other. Users which are distantly separated will nto evolutionarily stable strategies. However, many teghes
cause congestion to each other. A congestion game orfr@m evolutionary game theory rely upon the assumption the
graph can be used to realistically capture the spatial aspplayers are homogenous, while our wireless users are typi-
of spectrum sharing. The idea behind such a system is thatally heterogenous. Another issue is that translatingcaialr
user’s utility only depends upon the number of users of tlynamics into the spatial setting (i.e., a game on a graph) is
same channelho are linked to them in the graphn [8], quite difficult.
we introduced a general class of congestion games on graphs
that are appropriate for modeling spectrum sharing. Algou B. Contributions
there are many subclasses of these games which always adm@ur main results and contributions can be summarized as
the finite improvement property, we demonstrated that thefi@lows:
exist congestion games on graphs that do not teawepure o A general QoS satisfaction game framewokike for-
Nash equilibria. We have also further developed severabmor  mulate the distributed QoS demand satisfaction problem
elaborate graphical congestion game models [9]-[12] with among wireless users as a QoS satisfaction game, which
applications to spectrum sharing. is general enough to capture the details of spectrum
A common assumption within most previous congestion sharing over a wide range of scenarios, with heterogenous
game based spectrum sharing literature (€.9., [3], [5]{81] channels and users. Despite allowing for heterogenous
[12]) is that a user’s utility strictly increases with itscesved channels, heterogenous users, and spatial interactiens, w
data rate (and hence strictly decreases with the congestion still obtain several significant analytic results.
level). This is true, for example, when users are running. Remarkable convergence properti&¥e prove that every
elastic applications such as file downloading. Howevenehe QoS satisfaction game has the finite improvement prop-
are many other types of applications with more specific erty. This is remarkable because many congestion games
QoS requirements, such as VolP and video streaming. These with heterogenous resources and players do not have
inelastic applications cannot work properly when their QoS this feature. More importantly, it enables us to design
requirements (e.g., data rates) are unmet, and do notemjoy a  a distributed QoS satisfaction algorithm which allows
additional benefits when given more resources than needed. wireless users to easily self-organize into a pure Nash

This kind of traffic is becoming increasingly popular ovee th
wireless networks (e.g., mobile video traffic exceeded:
percent of all wireless traffic in 2011 according to the rejpgr

equilibrium.
Spatial generalizationWe generalize the model by think-
ing of users as vertices, which are linked in a graph and

Cicso [13]). This motivates the QoS satisfaction game model can only interfere with their neighbors. We show that the
in this paper. resulting QoS games on graphs also possess the finite
Rather than assuming that users wish to increase their data improvement property.

rates whenever possible, we assume that each user has a fixquhe rest of the paper is organized as follows. We introduce
QoS demand. If the demand is satisfied, then the user hastii® QoS satisfaction game model and study its properties in
inclination to change his choice of resource. Our game modgctiongll andTll, respectively. We then generalize themga
was inspired by thgames in satisfaction forroonsidered in model with spatial reuse in Sectidn]lV. We then propose
[14]. In [14] the authors considered other games where pfayéhe distributed QoS satisfaction algorithm and evaluase it
wish to satisfy demands, and the authors design algoritomsplerformance by simulations in Sectioh V. Finally, we couelu

find satisfaction equilibria which are strategy profiles wherethe paper in Sectiofl VIMost proofs are provided in the
all users are satisfied. In our paper, we consider the moxgpendix.

general case where some users’ QoS requirements may not be

satisfied (given the limited spectrum resource). The casgavh Il. QOS SATISFACTION GAME

a satisfaction equilibrium exists becomes a special casaiof In this section we formally define the QoS satisfaction
model. Moreover, we also take into account the issue ofa@patjame model for spectrum sharing. Spectrum sharing is a



promising approach to address the spectrum under-uitilizat
problem. Field measurements by Shared Spectrum Coopera-
tion in Chicago area shows that the overall average utitinat

of a wide range of different types of spectrum bands is lower
than 20% [18]. In order to improve the overall spectrum
utilization, several countries have recently reformedirthe
policy (such as the FCC'’s ruling for the TV white space
[19]) and allow spectrum sharing, such that unlicensedsuser
equipped with cognitive radios can access the channelswhic
are tentatively not used by the licensed spectrum users. In
this paper, we consider the spectrum sharing problem among
multiple unlicensed users who run different applicationd a
hence have heterogeneous QoS demands.

A. Game model

A QoS satisfaction game is defined by a tuple
(N’C’ (Q%)né/\/,cGCa (Dn)nej\/) where:

o N'={1,...,N}is the set ofwireless unlicensed users
also referred as thplayers.
e C=1{1,...,C} is the set ofchannels Each unlicensed

user may select one channel to access. Furthermore, we
introduce the elemerii to represent thelormant state.
Choosing the dormant state will be beneficial when an
unlicensed user’s QoS demand cannot be satisfied due to
limited resources. In such a case the user can choose
the dormant staté), which corresponds to ceasing its
transmission to save power consumption. Now we use the
term ‘dormant state’ instead of ‘virtual channel’ since it
involves introducing less new concepts, and we no longer
have to speak of “real” channels. In summary, each un-
licensed user/player has a strategy Get {0,1,...,C}
which consists of all channels, together with the dormant
state. Thestrategy profile of the game is given as
T =(x1,29,...,ZN) € CN . where each unlicensed user
n chooses a strategy, < C.

o Q%(+) is a non-increasing function that characterizes the
data rate received by an unlicensed ugemho has
selected channel. Specifically, we haveQ< (I¢(x))
05 BEgs(I¢(x)), with I¢(x) = |{n € N : z, = ¢}
being thecongestion levelof channele, i.e., the number
of users who choose channelWe detail the parameters
in Q¢ as follows.

FCC, unlicensed users can reasonably and accurately
determine the spectrum availability within a short
amount of time by consulting a databalse| [19]. When
channelc is available for the spectrum access by
an unlicensed user. (i.e., 65 1), we have
Q5 (I°(z)) > 0.
B¢ is the mean channel throughput of useron
channelc. We allow user specific throughput func-
tions, i.e., different users may have differeBf
even on the same channel This enables us to
model users with different transmission technolo-
gies, different coding/modulation schemes, different
channel conditions, and different reactions to the
same licensed user on the channel. For example, we
can compute the maximum channel throughput
according to the Shannon capacity as

nZe
+ id—n) ;

c

1)

where W, is the bandwidth of channet, (, is

the fixed transmission power adopted by user
according to the requirements such as the primary
user protectionw?” denotes the background noise
power, andz" is the user-specific channel gain.

95 (I¢(x)) is the channel contention function that
describes the probability that usercan successfully
grab the channek for data transmissions given
the congestion level“(x). In general,gS(I°(x))
decreases as the number of contending usgfs)
increases. For example, if we adopt the TDMA
mechanism for the medium access control (MAC)
to schedule users in the round-robin manner, then
we haveg; (I°(z)) = 775

D,, > 0 is the data rate demand of unlicensed user
For example, listening to an MP3 online will require a
small D,,, whereas watching a high definition streaming
video requires a larg®,,.

B! = W.log, (1

The utility of an unlicensed uset in strategy profilex is

1, if z, Z0and Qi (I*~(x)) > Dy,
-1, if 2, #0and Qi (I*"(x)) < D,.

can converge in a fast manner (e.g., less than one seconddticai 802.11

- 0, € {0,1} is the channel availability indicator. o satisfied useris an unlicensed userwho chooses a channel
When ghannel: is Qccup|ed by licensed users and, # 0 and receives a data ratg? (I~ (z)) not smaller
not available for unlicensed user we haved;, =0, than its QoS demand,,. A satisfied users receives a utility
in which case@;,(I°(x)) = 0 for any value of of 1 A dormant user is an unlicensed user choosing the
(). For a limited period of time, the usage ofyormant stater, = 0. Such a dormant user does not receive
spectrum by licensed users is assumed to be stafiqy penefit (as it achieves a zero data rate) or any penalty (as
(but can change in different perioflsYhis is appro- goes not waste any energy), and gets a utilit¢/gfx) = 0. A
priate for modeling the TV spectrum, for examplegyfering user is an unlicensed userwho chooses a channel
where the activities of licensed users change very # 0 but receives a data ratg® (I*~ (z)) below its QoS
slowly. According to the most recent ruling by théjemandp,,. Such a suffering user expends power without

1We show in Theorerfl 7 that the proposed QoS satisfaction ghynsthm gaining an_y benefit, and so it gets a Uti”ty _Ufl (:c) =—1
A suffering user can always increase their utility by becom-

systems). In this case, as long as the activities of licenseds change in a ing dormant without harming any other user. This suggests th

larger timescale in terms of seconds/miniutes/hours ,(&\g/daytime radio
broadcasting), we can still implement the QoS satisfactjame solution for
the system.

rational (i.e., utility maximizing) players will eventuglend
up at strategy profiles which contain no suffering users. We



say that a strategy profile isatural if it holds no suffering valueT¢, such thatQ¢ (I¢) > D, if and only if the congestion
users. level I¢ < T'¢. Formally, given a pair ofQ¢,, D,,), we shall

It is worth noting that we can easily generalize our modelefine the threshold; of channele with respect to usen to
by allowing an unlicensed user to receive a utility ofu,, be an integer such that
if it is satisfied,v,, if it is dormant, andt,, if it is suffering, o If Q¢(I°) < D, for eachI® € N, thenT¢ = 0 (hence
whereu,, > v, > t,. Making this generalization does not  uysern’s QoS demand can never be satisfied on channel
affect the better response dynamics or the set of pure Nash ¢ even if it is the only user on this channel),
equilibria discussed later on, because the preferenceiogde o |f Q:s(I¢) > D, for eachl¢ € N, thenT¢ = N +
of the strategies in the generalized game are the same as in 1 (hence usem’s QoS demand is always satisfied on
our current modBl Our results about convergence (Theorem  channelc even if all users use this channE])
[I) and computational complexity (Theor&in 2) also remaie tru « OtherwiseT is equal to the maximum integdf € A/
for games with generalized utility functions. However,cgn such thatQ¢ (1°) > D,,.
the generalized games allow different players to receifferdi These conditions guarantee that
ent utilities when satisfied, our results about social oplity
(Theorem$ ¥ anfl5) may not hold for the generalized games. Qu°) = Dp = I°<Ty. 3)

In this paper, we will restrict our attention to the utiliti@ces We can then express a QoS satisfaction game—

of 1,0, and—1. The case of generalized utility functions will - (QS ) nenr.cec, (Dn)nenr) in the interference threshold
be further explored in a future work. Since our study focus 3rr’n 5’1' :”(]\L/—e C’C(ETQ) Zl\/nec) And the utility of usem can
on the perspective of unlicensed users, we will use the terjns computed’ aé:co?d?rfgli/czs '

“user” and “unlicensed user” interchangeably in the foliogy

analysis. 1, if x, #0andI*(x) < T,
Un(x) =40, ifaz,=0, 4)
B. Key game concepts -1, if z, #0andI*(x) > T:i".

Definiton 1 (Social Welfare). The social welfare The interference threshold transformation reduces the siz
SN Un(z) of a strategy profilex is the sum of all of parameters by replacin@¢, D,,) with T¢. Moreover, the
players’ utilities. result in [3) ensures that the original gamés equivalent to
the gamey’, since the utilitylU,, (x) received by player in g is
the same as that received by playemn ¢’ for every strategy
profile  and playern. For the rest of the paper, we will
Definition 3 (Better Response Update The event where a analyze the QoS satisfaction game in the interferencelthtes
playern changes its choice of strategy fram to c is a better form. Note that Equation§}2) andl (4) are equivalent. It & ju
response update if and only &, (c,x_,) > U,(x,,z_,), thatwe write the latter expression in terms of thresholds.
where we write the argument of the functiornas- (x,,, x_,,)

with ¢_,, = (z1,...,Zn—1,Zp41,...,2N) representing the [1l. PROPERTIES OFTHE QOS SATISFACTION GAME

strategy profile of all players except player Now we explore the properties of QoS satisfaction games,

Definition 4 (Pure Nash Equilibrium). A strategy profilez ~ including the existence of pure Nash equilibria and thedinit

is a pure Nash equilibrium if no players at can perform a improvement property. We shall also describe the condition
better response update, i.€/,, (z,, z_,) > U,(c,z_,) for underwhich a social optimumis also a pure Nash equilibrium.
anyceCandn e N.

Definition 2 (Social Optimum). A strategy profilex is a
social optimum when it maximizes social welfare.

Definition 5 (Finite Improvement Property). A game has A. Characterization of pure Nash equilibria

sponse update proc&serminates at a pure Nash equilibriumPure Nash equilibrium. To see this, consider a strategy |profi
within a finite number of updates. x where a playen is suffering. Now the action where player

changes its strategy to the dormant state a better response
] ] ] update for this user. Since suffering users can always derbet
C. Transformation to an equivalent interference threshol,nfsponse updates, such a strategy prafileannot be a pure
form Nash equilibrium.

For the discussion convenience, we will introduce an equiv-Next we show in Theoreri 1 that every QoS satisfaction
alent interference-threshold form of the QoS satisfaggiame. game has the finite improvement property (which is a sufficien
The key idea is to relate a user’s received congestion leitel wcondition for the existence of a pure Nash equilibrium).
its QoS demand satisfaction.

Since the data rate functia¢ (I¢) is non-increasing with
the congestion level¢, there must exist a critical threshold

Theorem 1. Every N-player QoS satisfaction game has
the finite improvement property. Moreover, any asynchrenou

4t is possible to setl’S to be any number greater thaN while still
2Technically speaking, our game is weakly isomorphic| [20}His gener-  satisfy condition[(B). The reason of choosifif = N + 1 is to bound the
alized version. differences between thresholds, which helps the proof sif danvergence of
3Where no more than one player updates his strategy at any tjive. the distributed algorithm in Theorefm 7.



better response update process is guaranteed to reach a pgeeme. Note that Theorelmh 1 implies tiats non-empty. Now

Nash equilibrium with no more thattV + 3N? asynchronous the price of anarchy

better response updates (irrespective of the initial st N _ 5N

profile, or the order in which the players update). PoA — maX{ZnJil Un(x) : 2 €C }7
. . min{>__, Uy(x) : ¢ € Z}

Theorem[dl is a direct consequence of the more general i )

result Theorerfll7 in Sectidi]V. Theoré 1 is very important® défined to be the maximum social welfare of a strategy

because it implies that the general QoS satisfaction ganfigfile, divided by the minimum welfare of a pure Nash

(with heterogenous channels and users) can self orgariize fRauilibrium. The social welfare of a system at a pure Nash

a stable state effectively. This fact allows us to design tffQuilibrium can be increased by at moBbA times by

distributed QoS satisfaction algorithm in SectlomV-A, wini SWitching to a centralized solution.

pure Nash equilibria can be found relatively easily, it does (¢, (T)nenrccc), Where T¢ > 1 for each playern

n

offer any insight into how to select the most beneficial purgnd each channel. The PoA of this game satisfies
Nash equilibria. Equilibrium selection seems to be a difficu

®)

problem in the general case. However, we show how to find PoA < min {N, m“}X{Tﬁ neN,ce C}} G
pure Nash equilibria which are social optimum for special min{T}:n € N,c € C}
cases in Subsectiofs 1D afdTIl-E. The proof is given in AppendikIB. The constraifif > 1

insures that some player will be satisfied in every pure Nash
equilibrium of the game, and avoid the possibility of the
PoA involving “division by zero”. Theoreni]3 implies that
Although Theoreni]1 implies that pure Nash equilibria ardae performance of every pure Nash equilibrium will be close
easy to construct, it turns out that finding a social optimute optimal when the minimum threshold of a user-channel pair
can be extremely challenging. is close to the maximum threshold of a user-channel pais Thi
o ) ) is a very significant result, when one considers that purdaNas
Theore”.‘ 2. The problem of finding a social optimum of aequilibria can be easily reached by better response updates
QoS satisfaction game is NP hard. (Theorentid) while finding social optima is NP hard (Theorem

The problem of finding a social optimum of a QoS sati&d). Motivated by Theorerl3, we next study two special cases
faction game has some resemblance to the Knapsack probRnf20S satisfaction games with homogenous settings, i.e.,
(where items have different weights and values, and th@mogeneous users and homogenous channels. In both cases,
objective is to maximize the value of items chosen withodife social optimum can be actually achieved at a pure Nash
exceeding a given total weight threshold). The key differen €quilibrium.
is that the thresholds in our problem are associated with
the players/items we are choosing, and there are multigle QoS satisfaction games with homogenous users
channels/knapsacks to allocate our players to. Our prageiig )
in AppendixA) is based upon showing that the 3-dimensional W& first study the case of homogeneous users. We say
matching decision problem (which is well known to be NRNat & QoS satisfaction game hhsmogenous usersvhen
complete [[21]) can be reduced to the problem of finding & — 13 = --- = T, for eachc € C (i.e., each player
social optimum of a QoS satisfaction game where threshofd@S the same threshold for any chanejelThis corresponds
T¢ € {1,3) for eachn andc. Theoreni® provides the majorto the case that all users have the same dat_a rate function
motivation for our game theoretic study, because it suggeStn» O the same channel(but they may have different data
that the centralized spectrum sharing problem is fundaafignt Fates on different channels) and the same dem@pd For

difficult. It therefor makes sense to explore decentraliz&¥@MPle, spectrum sharing in a network of RFID tags in a
alternatives such as a game based spectrum sharing. warehouse may correspond to such a QoS satisfaction game,
because every device experiences the same environment and

requires a similar data rate to operate.
C. Price of anarchy When discussing QoS satisfaction games with homogenous

Although Theoreni]2 suggests that finding an optimal straf>c's: We drop the subscripts and e t(.) denote the

. e common threshold of all players on channeSince users are
egy profile can be very difficult, we do know from Theoremhomo enous, we only need to keep track of how many users
[0 that pure Nash equilibria can be found with relative eas 9 ' y P y

This naturally raises the question of how the social welfsre Choose ea(_:h channel in order to describe t_h_e game dynamics.
P . . N?xt we will show that any pure Nash equilibrium in a QoS
pure Nash equilibria compare to the maximum possible social’. . . . .

. satisfaction games with homogenous users is also a social
welfare. In other wordshow much social welfare can be Iost0 mum
by allowing the players to organize themselves, rather thal? '
being directed to a social optimum? Theorem 4. Let x be a strategy profile of a QoS satisfac-

To gain insight into this issue, we study the price of anarcliion game with' homogenous users and channels, with
[22]. Recall thaC" is the set of strategy profiles of our gamethresholdsr™, 72, ..., T°. The following three statements are

Let = C CVN denote the set of pure Nash equilibria of ouequivalent:

B. Finding a social optimum is NP hard



1) «x is a pure Nash equilibrium; Algorithm 1: Finds a pure Nash equilibrium that is a social
2) There are no suffering users i and the number of optimum for a game with homogenous channels.

satisfied users isin{N, 20021 T} Input: A QoS satisfaction game with’ homogenous
3) x is a social optimum. channels andV players, who have thresholds
The proof is given in AppendixJC. Theoreri$ 1 and 4 h>T>....>2Tn.
together imply that any sufficiently long asynchronousdsett OUtput: A social optimum which is a pure Nash
response updating sequence will converge to a social optima equilibrium.
in polynomial time when the game has homogenous usefstet z° = (7,25, ....2%) = (0,0,...,0)

Moreover, Theorerfil4 implies that whdR_, T¢ > N, there 2 for n =110 N do

exists a satisfaction equilibriurii [14] where all the playean 3 | T 3c€C: Ic(ﬂf"_l) < T, then
be satisfied. L Let¢* = min{c € C: I¢(z"~ 1) < T}}

n __ n—1 n—1 _x n—1 n—1
Letz™ = (o, ... zn 1, ¢ o, a )

[S2 I

o

E. QoS satisfaction games with homogenous channels else .

n n—
We next consider the case that tbleannelsare homoge- L Leta” =

nous. We say a QoS satisfaction game H@snogenous g return 2V

channelswhenT}! = T2 = ... = T¢, for each usem

(i.e., all channels have the same threshold from any player’

perspective). This corresponds to the case that eachmusas

the same data rate functiagp’, on all the channels, but dif- 5 5 3 3 3 3 2 2 1 1

ferent users may have different demargls QoS satisfaction

games with homogenous channels are highly relevant, becaus 5 5 3'3 3 3 2 2 1 1

technologies such as frequency interleaving can been edopt

in many wireless systems such as IEEE 802.11g networks 553|B33|22 1 1

[23] to make channels homogeneous (i.e., having the same
bandwidth and experiencing frequency flat fading). 5 5 3“3 3 3]2 2 1 1
When discussing QoS satisfaction games with homogenous

channels, we drop the superscripts and (%eto denote

the common threshold of playet for all channels. The Fig. 1. Anillustration of AlgorithnlL in action. The ten usenave thresholds
P (1 T2, T3, T4, 15, T, T7, T, Th, Tro) = (5,5,3,3,3,3,2,2,1,1). Each

uPdate process can reach a pure Nash equ'“b”um accordﬁ represents a strategy profile. Each number representerawith that

to Theoreni1L. number equal to its threshold. The top (first) row represthsnitial strategy

We next discuss the optimality of pure Nash equilibriaJ.fOf”e 0 of our algorithm (where all players are dormant). The second
. A third and fourth rows represent the strategy profies 6 and 8. The
Firstly note that, a pure Nash equilibrium may not be a soci xes within a given row represent channel allocationshéngense that the

optimal. For example, let us consider a game of SiX uSetSers contained within the leftmost (red) box are using bk, the users
with thresholdsTy = Ty, = 2, Ty = Ty = Ty = Ts = 4, contained within the central (blue) box are using chartheind the users

and two channels. The game has a pure Nash eq_uilibrilﬁ tiﬁfgsgéﬁg'gtﬁgfeggmfﬁ (Erz%):b(g’alr’el’“;g?z‘fg?gf‘g %E)”lmtighm
T = (0, 0,1,1,2, 2) with four satisfied users, which is notis the output of the algorithm (within whick players are satisfied).

a social optimum. The strategy profite = (1,1,2,2,2,2),

where all six users are satisfied, is a social optimum.

Second, a social optimum may not be a pure Nash eqdiscussed in Subsectign W-A. Algorithimh 1 begins by making
librium. We take the game with six users and thresholddl players dormant. The players are then updated one by
T, =T, =2, Ty =Ty =715 = 3, Ts = 4, and two one in the order of descending thresholds. When a player
channels as an example. The game has a social optimignupdated, it changes to the lowest indexed channel which
x = (1,1,2,2,2,0) (with five satisfied users), which is not awill satisfy it. If there are no channels that can satisfysthi
pure Nash equilibrium because us$eran do a better responseplayer, then the algorithm will not further change players’
update by switching to channg! channel choices, since all higher indexed players will not

Surprisingly, there always exists a pure Nash equilibriue able to find channels to satisfy them as they have even
that is a social optimum for a game with homogenous chalewer interference thresholds.). Figlie 1 illustrates dipaar
nels. Moreover, we present an algorithm (Algorithin 1) tha&xample of Algorithnill running. We show in Theoréi 5 that
always generates a social optimum which is a pure Nadfgorithm[I is guaranteed to generate a pure Nash equiibriu
equilibrium. The key idea of the algorithm is to prioritizethat is also a social optimum.

channel aIIocattl_on according t(: ulserts tf:rr]esg_olr(]js (mg;fr.e Theorem 5. Algorithm[ has a complexity ad(CN?) and
severe congestion a user can tolerate, the higher priosti generates a strategy profile that is both a social optimum and

get in channel allocation). 97 . .
. ) . . a pure Nash equilibrium of a QoS satisfaction game with
Algorithm [T is a centralized algorithm that demonstrat Pmogeneous channels and users.

the existence of a pure Nash equilibrium which is a socia
optimum. The distributed algorithm that globally convesge We provide the proof of Theorefd 5 in AppendiX D. Next
a Nash equilibrium (not necessarily socially optimal) vii# Theorem[ b gives a sufficient condition for the existence of

~




a strategy profile where all players are satisfied, in a QoS
satisfaction game with homogeneous channels (pleasetcefer @

Appendix(E for the proof). @_0/ ‘

Theorem 6. If T, > (%] holds for every usen in the QoS \
satisfaction game with' homogeneous channels antusers, e
then there is a strategy profile within which every user is

satisfied (which is a pure Nash equilibrium). ) o ) o
Fig. 2. A strategy profile in a spatial QoS satisfaction gaach player

(vertex) has chosen some channel (color). Pl&yisrlinked to one other user
IV. SPATIAL QOS SATISFACTION GAME of the black channel, so that the congestion levéf () of the black channel

In all the games considered so far, we have assumed thaplayer2 is two. If 77 > 2 then player2 will be satisfied in this strategy
every pair of users are close enough to cause congest’i’()‘ﬁ"e-
to each other, when they use the same channel. However,

in reality only nearby users of the same channel will Cau$e Jiher words I¢(x) denotes the number of players within
“n

congestion fo one another,_ and distantly spaced users e raph-distancé of n that are using the same channel as
access the same channel without degrading each other’s q?_ he utility playern gets in strategy profiler is defined

This is known asspatial reuse— where the same piece. I . : )
of spectrum can be used by many distantly separated u in @ similar way to Equatior({4), from SubsectibnII-C. We

SRR 4 . 4 o
. . iflUstrate a spatial QoS satisfaction game in Fidure 2.
without detrimental effects. P Q 9 du

The protocol interference modeél [24] is a commonly usetheorem 7. Every N-players spatial QoS satisfaction game
model to approximate how the positions of users affect thdins the finite improvement property. Moreover, any asyn-
communication performance. The idea behind the protoatiironous better response update process will reach a pure
interference model is to construct anterference graphwhere Nash equilibrium withind N + 3N? asynchronous better re-
vertices represent players (wireless users), and an wtelire sponse updates (irrespective of the initial strategy peofir
edge connecting two players represents that these tworplaytee order in which the players update).
are within interference range of one another (hence they cal
generate interference to each other if transmitting on dmees . ; L

most powerful result in this paper, for it implies that every

channel). By using an interference gra@tio represent which . ) . ;
. )- By 9 . 9 a@. P spatial QoS satisfaction game, with heterogenous playeis a
vertices are close enough to interfere with each other, ane rrh o
eterogenous channels has the finite improvement property.

view the spectrum sharing problem as a game on a graph . . ) .
In this game, one may determine whether the QoS demaﬂ&e type of QoS satisfaction games we defined in Sefion Il

of a user is satisfied by counting the number of neighbo?gm be cpn_slder(_ad as s_peC|aI cases of spgtlal QoS sabsfact
it has, which are using the same channel as itself. T me_5W|th|n which the interference graph is a completefgrap
corresponds to a generalization of the QoS satisfactionega Ofr:]hls re:acz)n_l:l'hheoregl7l ct?n betr<l:otr13|det_reld o lS)e at_c(;roil_ary
where we account for the spatial positioning of the users. ot Theorenty. theore SNOWs that spatia QoS satisfaction
Let us define aspatial QoS satisfaction gameto be a games are a remarkable class of congestion games on graphs,
quadruple(\V', C, (T%) e cec, G) where: because they may have heterogenous channels and users, and
IR ) n)neN,ceC, .

« N, C, and T¢ are the set of playersfusers channelget they always have the finite improvement property. If one

and thresholds, respectively, which are the same as thggg&ders the slightly more general class of congestioregam

) . . on graphs[[B] with arbitrary non-increasing utility furantis,
introduced in SectiopILL, then one can easily find example games which do not even

o« G = (N,¢&)is an undirected and unweighted graph, wit B . L
ave pure Nash equilibria -never mind the finite improvement
a vertex set equal to the set of playevs and an edge . .
property. For example, a congestion game on a graph with

seté. We refer toG as theinterference graph. The layers and3 resources, without any pure Nash equilibria is
interpretation ofG is that there is an edgén,m} € £ th)?bited in [8] ' yp q

if and only if usersn and m are close enough to
cause congestion to each other when transmitting on the
same channel. We can apply the interference estimation V. DISTRIBUTED ALGORITHM AND SIMULATIONS

methods in[[25],[[26] to obtain the interference graph. A, Distributed QoS satisfaction algorithm
As before, a strategy profite = (z1,x2,...,7y) isS where

Trhe proof is given in AppendiXdF. Theorefd 7 is the

each plavem chooses a strate c C. Let us define the In this section we propose a distributed QoS satisfactien al
play 9yn ' gorithm for achieving pure Nash equilibria of general (sdat

neighborhood of playern, to beNe(n) = {m : {n,m} € . . ) ; -, -
£1 U {n}. In other wordsNe(n) is the set of all players QoS satisfaction games. The key idea is to utilize the finite

which are linked to, or identical ta. We let the neighborhood Improvement property and let one user improve its channel

. X . . ﬁelection at a time. In order to describe the QoS satisfactio
of a player contain the player itself just for the notationa . .
convenience. game purely in terms of channel selection, we may regard the

Let use define théocal congestion levelof channelc for dominant stat® as an additiorvirtual channel, which always
. ) i tility of).
layern in strate rofilez to be gives users a utill . .
payern ayp We consider a time-slotted system. Each time sloinsists
It (x) = |[{m € Ne(n) : &, = c}|. of the following two parts:



Algorithm 2: Distributed QoS satisfaction algorithm B. Numerical Results

initialization: each usemn chooses channal,, = 0.
for each usem and each time slot do

. We now evaluate the proposed distributed QoS satisfaction
2

3 access the chosen channgl.

4

algorithm by simulations. We consider a spectrum sharing

network of C' = 4 vacant channels, with the mean data
compute the set of best response channel selections aeqge of 6,9, 12, 18 Mbps, respectively, which are standard
_B"(m)' operating data rates in IEEE 802.11g systems$ [23]. Multiple
s | if Bu(z) # @ then , users are randomly scattered oveli0 m x 100 m region (see
6 contend for the channel update opportunity. Figure[3 for an illustration). In the interference graph,airp
7 if win the channel update contentidinen of users are linked by an edge when they are witlim (the
8 choose a channel € B, () randomly for interference range) of each other (i.e., when they can gémer
next time slot. _ interference to each other). We adopt the TDMA mechanism
o broadcast the updated channel selectiono ¢, the medium access control (MAC) and the data rate of
0 elseother USErs. usern choosing a channel is given asQ¢ (I¢(z)) = %
1 choose the original channel, for next time wherel¢(x) is the number of users of channﬂhat are linked _
L slot. to n upon the interference graph. We consider the scenario
1 else where users are running two different multimedia applaati
13 | choose the original channel, for next time slot. corresponding to two types of QoS demands: low demand
) type D,, = 0.125 Mbps (i.e., listening to an online MP3 song
14 update the cha_mnel selectloqrsn of _other users [27]) and high demand typ®,, = 3.5 Mbps (i.e., watching
L once an updating message is received. an online video with a resolution of 1080p [27]).

We first implement a simulation withv. = 50 users, and
let the fraction of users with a high QoS demand vary from
0% to 100%. We implement the distributed QoS satisfaction

1) Spectrum Access each user contends to access thedame solution in Algorithni]2. Figuriel 4 shows the dynamics
chosen channet,, according to some medium access contr§) Users’ throughputs, which demonstrates that the prapose
(MAC) mechanism. For the initialization, we assume that affiStributed QoS satisfaction algorithm can converge to & pu

users are dormant, and use stratégy Na§h equilibrium. As a penchmgrk, we also _compute the social
2) Channel Update Contention We exploit the finite im- ©Ptimum by the centralized optimization using Cross Entrop

provement property by having one user carry out a chanriggthod, which is an advanced_ r(_’:\ndqmlzedlsearchmgteodamq_u
update at each time slot. In this part, we let users wind has been shown to be efficient in solving complex combi-

can improve their channel selections compete for the chanR@terial optimization problems [28]. The results are shamwn
update opportunity in a distributed manner. More specifical F19urel3. The x-axis is the fraction of users having a high QoS
each usen first computes its set of best responses (which f¢mand, and y-axis describes how many users are satisfied

the set of strategies which maximize (and increaseptility). &t the solutions of pure Nash equilibria and social optima.
Note that a QoS satisfaction game may have multiple pure

B, (x) = {c" : ¢* = argmax U,(c,x_,) and Nash equilibria, and Algorithri]2 will randomly select one
. ecc pure Nash equilibrium (since a random user will be chosen
Un(c™,@—n) > Un(2)}- for channel selection update). We run the algorittintimes
If B,(xz) # @ (i.e., usern can improve), then user will for each game instance and plot the number of satisfied users

contend for the channel update opportunity. Otherwise; ugd the obtained pure Nash equilibria. Figlite 5 shows that bot
n will not contend and will adhere to the original channehe performances of social optima and (the best and the Jvorst
selectionz,, at next time slot. pure Nash equilibria decrease as the fraction of users ajta hi
) QoS demand increases. This is because that given the cbnstan

For the channel update contention, for example, we C@Rectrum resources less users can be satisfied when mose user
adopt the backoff-based mechanism by setting the timefiengl, e higher demands. Compared with the social optima, the
of channel update contention as. Each contending USer o tormance loss by the best pure Nash equilibria and the
n first generates a backoff time valug according to the 45t pure Nash equilibria by Algorithid 2 are at maét and
uniform distribution overl0, 7] and waits until the backoff 9y0; respectively (not shown in the figure). This demonstrates

timer expires. When the timer expires, if the user has ngfe efficiency of the pure Nash equilibria of QoS satisfactio
received any updating messages from other users yet, the es

will rapdomly select a channef € B,,(x) and broadcas.t an - we implement another simulation with the number of
updating message over the common control channel to iredical

LS . . S ugersN = 50,55, and 60 with half of the users having a
that it will update its channel selection &6 at the beginning high QoS demand. Upon comparison, we also implement the
of the next time slot.

social optimum solution by centralized optimization ané th
According to the finite improvement property in Theorendecentralized spectrum access solution by Q-learning aaech
[7, the algorithm will converge to a pure Nash equilibrium ofism proposed in[[29]. We observe that the distributed QoS
a general spatial QoS satisfaction game in polynomial timesatisfaction algorithm can achieve up-82% performance
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Fig. 3. Interference graph generated By= 50 Fig. 4. Dynamics of users’ throughputs by disFig. 5. Number of satisfied users at pure Nash
random scattered users overl@ m x100m re- tributed QoS satisfaction algorithm. When thequilibria and social optima when the number of
gion. Each user (represented by a dot) has tmoughput of a user is zero, then the user is in thisers iSN = 50, and the fraction of users with
interference range &0 m. Two users are linked by dormant state. a high QoS demand ranges fro@% to 100%,

an edge if and only if they are within each other's respectively.

interference range.
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Fig. 6. Performance comparison of the centralized optitiima distributed Fig. 7. The convergence time of Algorithm 2 with = 5, 10, 20, ..., 80
QoS satisfaction algorithm, and Q-learning mechanism. users, and half of the users have a high QoS demand.

gain over the Q learning mechanism. Compared with theguilibrium in polynomial time, simply by having the users
centralized optimization, the performance loss of the diperform better response updates.
tributed QoS satisfaction algorithm is at mosi%. This There are many other issues we wish to explore in the
demonstrates the efficiency of the proposed distributed Qfafure. In particular, we wish to extend many of our results
satisfaction algorithm. We next evaluate the convergeinee t (such as those regarding the price of anarchy) to spatial QoS
of the distributed QoS satisfaction algorithm. Figlie 7vehio satisfaction games. We also wish to explore the generalized
that the average convergence time increases linearly Wwéh QoS satisfaction games where different players receiferdif
number of usersN. This shows that the distributed QoSent utilities for being satisfied.
satisfaction algorithm scales well with the network sizlisT
is critical since computing the social optimum of generaBQo APPENDIX
satisfaction games is NP-hard.

A. Proof of Theoreril2

VI. CONCLUSION In the following, we call the problem of finding a social
optimum of the QoS satisfaction game as the QoS satisfaction

In this paper, we proposed a framework of QoS Sat'SfaCt'orﬁ)oblem for short. Before discussing the computational-com

games tq model the distributed QoS Sat'Sfa.‘Ct'O.n problepme ity of the QoS satisfaction problem, we first introdule t
among wireless users. The game based solution is motwaﬁe

by the observation that the centralized optimization peobbf €finition of 3-dimensional matchings.

maximizing the number of satisfied users is NP hard. We habefinition 6. Let X’,), and Z be three finite disjoint sets,
explored many aspects of QoS satisfaction games includiagd let7 be a subset ot x Y x Z. Thatis, T C {(z,y, 2) :
the pure Nash equilibria and the price of anarchy. Ourresult € X,y € Y,z € Z}. Now M C T is a 3-dimensional
reveal that selfish spectrum sharing can be a very effectaye wmatching if the following holds: for any two distinct trigle
to allow users to meet their QoS demands. In particular, We1,y1,21) € M and (z2,y2,22) € M, we haver; # xo,
have shown that our systems can always reach a pure Nash% yo, and z; # 2.



We shall refer to an elemertr,y,z) € T as anedge Proof of Lemmd]1l:Statement 1) holds because the social
The 3-dimensional matching decision problem is as followaielfare of any strategy profile with a suffering user can be
Suppose that the set sizes satisly| = |V| = |Z] = I. increased by making the suffering user dormant.

Given an input7 with |7| > I, decide whether there exists Statement 1) implies that for any we haveU, (z*) €

a 3-dimensional matchingt C 7 with the maximum size {0,1}. Also we haveU,(z*) = 1 if and only if usern is
|M| = I. The 3-dimensional matching decision problem is gatisfied inz*. It follows that 27]:[:1 U, (x*) equalsB(z*)
well-known NP-complete problem [21]. We then prove thawhich is the number of satisfied players it. Moreover,
the QoS satisfaction problem is NP-hard, by showing thgince every non-dormant user is satisfied undé¢; and
given an oracle for solving the QoS satisfaction problere, th"<  1°(z*) equals the number of non-dormant users under
3-dimensional matching decision problem can be solved ¥, we must ha\,ezccz1 I¢(x*) = B(x*). This finishes the
polynomial time. proof of Statement 2).

From an instance of 3-dimensional matchitg’, Y, Z), 7) To see that Statement 3) holds, note that any suffering
with [X| = |Y| = [2] = [ and|T| = J > I, we can create yser can do a better response update by becoming dormant.
an instance of QoS satisfaction problem as follows. The SetSince y* is a pure Nash equilibrium, we must have that no
channels isT” (i.e., each edger, y, z) € T is a channel) with players can perform better response updatag irthis proves
the total number of channels|§| = J. Let sety = XUYUZ.  statement 3).

We regard each elementec +) as a usen. We also introduce  Tpe proof of Statement 4) is similar to the proof of
a new user sep that consists of/ — I additional users. The giatement 2), and is hence omitted. 0

total number of users in both and¢ is31+J—1 =21+ J. Next we prove the main Theore 3 using Lenima 1.
Then we define the threshold valiiy* as follows. For a user | ot ..« pe a social optimum of the game. Lgt be a pure
nin sety on a channetn = (z,y, 2), we setl;” = 3if n  \aqh equilibrium of the game which minimizes the social
is an element of an edge in 7 (i.e., one of the following \aitare among all pure Nash equilibria (note that Theorem
cases Is truen =, orn =y, orn = z), and we sef’;" =1 mimplies that such a pure Nash equilibrium exists for our
otherwise. For a userin set¢ on a channein = (z,y, 2), we fgame). Clearly the four statements in Lemida 1 hold in this
setT;" = 1. Clearly,3 users can stay in a channel and satisfy.anario. Also Equatiofik5) gives
their QoS demands simultaneously if and only if they forms N )

U,(x*

an edge in7. Since each user can only select one channel, PoA — Yon_1Un

according to Definitiofill6, given a channel allocation salnifi Zivﬂ Un(y*)' @
the set of channels, each of which tiasatisfied users, hence R

correspond to a 3-dimensional matching7n In this case, oW We shall prove statemenfs (8)(11) on by one:

the QoS satisfaction problem has the optimal solution that a B(z*) e {1,2,...,N}. (8)
the users are satisfied (i.e., the number of satisfied useys on

channels i3] + J — I = 21 + J including I channels with B(z") < Cmax{T};:n€N,ceC} 9)
each channel having satisfied users and — I remaining B(y*) € {1,2,...,N}. (10)

channels with each channel havingsatisfied user), if and

only if there exists a 3-dimensional matchidg C 7 that If B(y") < N, thenB(y*) > Cmin{T; : n € N,c € C}

has the maximum sizeM| = 1. (11)
Therefore, if we have an oracle to find the optimal solution Consider the strategy profile* where usern = 1 uses

for QoS satisfaction problem, we can then check whether theannelc = 1, and all the other users are dormant. User

number of satisfied users &/ + J. In this case, we can 1 must be satisfied ir* since I'(2*) = 1 < T}, and so

decide in a polynomial tim& (1) whether there exists a 3-the social welfare ok* is SN U,(z*) = 1. Sincex* is

dimensional matching\{ C T such that|M| = I. That a social optimum, its social welfarE:iV:1 Uy (x*) must be

is, 3-dimensional matching decision problem is polynolyial greater than or equal to that ef, and so

reducible to the QoS satisfaction problem, and hence the QoS

N N

satisfaction problem is NP-hard. U Z Un(x*) > Z Un(z*) = 1. (12)
n=1 n=1

B. Proof of Theorerh]3 Now combining Statement 2) of Lemrih 1 with Inequalifyl(12)

Before proving the main result about price of anarchy, lgfives B(x*) > 1. Also clearly B(x*) is an integer less than
us establish a useful lemma. LBY{x) denote the number of or equal toN, hence we have proved Statemdnt (8).
satisfied users in a strategy profie Letc € {1,2,...,C} be one of the channels with the most
users under* (i.e., I° (*) = max{I°(x*) : ¢ € C}). Now

Lemma 1. Suppose thatc* is a social optimum, andy* . .
PP P G patement 2) from Lemndd 1 implies

is a pure Nash equilibrium of a QoS satisfaction game. T
following statements are true: ¢ ¢ ) )
1) There are no suffering users ia* (i.e., * is natural). B(a*) =) I(x") <) (IC (CC*)) =CI° (z"). (13)
2) We havey)"_ U, (a*) = B(z*) = Y, I°(x*). e=1 e=1
3) There are no suffering users " (i.e., y* is natural). Now Statemen{{8) gives < B(z*), and combining this with
4) We havey-™ | U, (y*) = B(y*) = X, I*(y*). Inequality [IB) gives us that< CI¢ (x*). Sincel* (x*) is an



integer we must also have < I¢ (x*). It follows that there C. Proof of Theorerfil4
must be some uset’ of channel¢’ underz* (i.e., x, =

). Now from Statement 1) of Lemnid 1, we have thétis Let B(x) = [{n € N : Un(x) = 1}| denote the number
satisfied with using” underz*, and so it follows that of satisfied users in a strategy profile We will show that
Statementl) implies Statement), which in turn implies

I(x*) < TS <max{TS:n€N,ceC},  (14) Statemens), which in turn implies Statemert).

Combining Inequality[{T13) and Inequaliy(14) yiel#§z*) < 1) Statement L) Statement 2):Suppose Statement)
CI¢(xz*) < Cmax{T¢ : n € N,c € C}, and so we have holds, andz is a pure Nash equilibrium. Now Lemnid 1
proved St;temenEl(Q). implies that there are no suffering usersan and Lemma

We can proveB(y*) > 1 by contradiction. IfB(y*) > 1 [0 also implies that

were false, then we would havg(y*) = 0, and no channel c . N
would have any active users. However, in this case userl B(x) =Y I°@®) =Y Ud(x). (18)
could do a better response update by changing to chanael e=1 n=1

1, becausd’s > 1. This contradicts our assumption thgtis Since there are no suffering users underwe must have
a pure Nash equilibrium, hence we must have tBéy*) > that I°(x) < T°¢, for eachc € {1,2,...,C}. It follows
1. Also it is clear thatB(y*) < N, hence we have provedthat B(z) = chzllc(:c) < ZCCZITC. Since we also have

Statement[(T0). B(x) < N, it follows that

To prove Statemenf(11), suppose tiaty*) < N. This c
implies that there are users which are not satisfied ugder B(x) < min {N, ZTC} . (29)
Also Statement 3) from Lemm@ 1 implies that every user c=1

which is not satisfied undey* is dormant, and so it follows  Next consider two cases. In the first case witte) = N

thaF there must be some gse’? that is dormant iny*. Since clearly Inequality [ZP) implies thaB(z) = N < chﬂ TC

y™ is a pure Nash equilibrium, we have that play€rcannot _ . sos satisfies Statement) of Theorent%. -

do a better response by switching to use a channgfollows Now let us consider the second case whées) < N

that, for each channele {1,2,...,C}, we must have that . . . )
In this case there exists at least one usérthat is not

I(y*) > TS >min{TS :neN,ceC}, (15) satisfied. We know thai* must be dormant, since contains
. ) _no suffering users. Since is a pure Nash equilibrium, we
Now combining Siatemerét 4) frozn LeerEh 1 with Inequality o\, that user* cannot perform any best response updates.
(I3), we haveB(y*) = >, I°(y") = X, min{T: 0 €  Thig implies that’*(z) > T¢, for eache € {1,2,...,C}. It
N,c € C} = Cmin{Ty; : n € N,c € C}, which proves siiiows that we must have

Statement[(111). c .

Now we can prove Theorel 3. By taking Equatibh (7) and ZIC(‘B) > ZTC' (20)
using Statements 2) and 4) from Lemipda 1, one obtBins = — —
B Statement(8) gives(x*) < N, Statement(10) gives compining Equation{18) and Inequalify{19) gives us that
B(y*) > 1, and so we must havoA < N. . .

Next consider two cases. In the first we habg¢xz*) = B(z) = ZIC(w) < ZTC’ (1)
B(y*), and so we havePoA = 1. Now sincel < = =

max{7}:neN,ceC} : ; _ o . . . .
mn{Timeneccy » 1heoreniB clearly holds in this case. Conzg compining Inequality(21) with Inequalitiy [20) yields
sider the second case wheB{x*) # B(y*). In this case

: . c c
we must haveB(z*) > B(y*), becausex* is a social B e/ .
optimum. Moreover, Statemerit] (8) implies tht > B(z*) B(x) = ZI (x) = ZT : (22)
so N > B(y*). It follows from Statement{11) that we must o=t o=t
have Since we have assumeg(x) < N in this second case, we
C e . C e :
B(y*) > Cmin{T} :n € N,ce€C}. (16) haveB(x) = >, T° = min{N,} ., T*}. This shows

that Statement 1) implies Statement 2).

: _ B(=z") : P
SincePoA = g7, we have that Inequality (16) implies 2) Statement 2 Statement 3)Now we assume Statement
B(z*) . 2) holds. If B(z) = N, thenx is clearly a social optimal and
PoA = Cmin{Ty; :n € N,c€C}. (17) so Statement 3) follows in this case. Suppose instead that
Now rearranging Inequality (17), and combining with Inelgua c .
ity @) gives B(z) =Y T°<N. (23)
c=1
C T¢:neN,ceC . .
PoA < max{Ty :n €N, e ) Sincex has no suffering users, we must have

~ Cmin{T¢:neN,ceC}’
c

N c
Cancelling theC's from this inequality, and combining it with ..y _ e N 0] — U —N"Ir¢(e) = S
the inequalityPoA < N (which we have already established), (@) =l{n @ 7 0} ; n(®@) ; (@) ; '

we have Inequality[{6) in Theoref B8] - B (24)



Let z be a social optimum of our game. From Lemila 1 we Since a (natural) social optimum is reachable fref and

have N . since we can shaithat the only natural strategy profile that
. is reachable fromx? is 2% itself, we have that" is a social
B(z) = Z:l Un(2) = le (2). (25) optimum. By checking that users have no incentive to change,

] o . we can then show that the social optimum is also a pure Nash
Since Lemmad]l implies that holds no suffering users, We equilibrium.

must havel(z) < T* for eachc € {1,2,...,C}, and it |, order to prove that a social optimal is always reachable

follows that o o from 2™, we use induction to prove that*—! satisfies various
Zlc(z) < ZTC' (26) conditions for eactn € {1,2,..., N}. In particular, we show
o o that if a valuen € {1,2,..., N} is such that there exist a

e . . ; hannele with the property thaf ¢(z™~1) < T,,, thenz™~?!
Combining Equation((25), | litf (P6), and Equatipn)(24" 2" broperty 1
yiglrgslnlng quation(25), Inequali ) and Equation)( satisfies the following conditions:

n—1 ;
o o 1) x is natural.

N N
_ c c_ 2) plan~t) = pa°).
w(z)=>) T < T¢ = (). 27
2= IE 2 1= 2 ek @D piant) b1, N,
" " N o 4) {ceC:I¢(x" 1) < T,} #0.
Inequality [2T) implies that the social welfare ofis no less 5; {Lcet ot — m(i:ri{c G)C ) chmﬂl) < T.,}. Then for each
than the social welfare of the social optimwnThis implies channek. we have '(i) ife < the;lll‘.:(m"—l) ST

thatx is a social optimum, which proves Statement 3). (i) if ¢ = c*, thenI(z™~1) < T, and (iii) if ¢ > ¢*,
3) Statement 3) Statement 1):Now we assume that then I¢(z™~1) = 0.

Statement 3) holds, and is a social optimum. In this case,

Lemmall implies that there are no suffering users under

Next we will show thatx is a pure Nash equilibrium by

contradiction.

We now provide the more details of the proof as follows.
Let B(x) = |[{n € N : z, # 0}| denote the number of
satisfied players in strategy profile We say a strategy profile

Supposer is not a pure Nash equilibrium. There must exist is reachablefrom strategy profiles Whep on # 0 implies
a playern* € N that can perform a better response updaté? ~ *n for eachn € V. In other wordsy IS reachable from
This means that* must be dormant, becausecontains no * whenz can be converted tg by aIIocathg real channels
suffering users. It follows thal/,,- () = 0, and there must to (_jo_rmant USETS. Lef(x) de”‘“? the maximum number of
exist some channel £ 0 such thatf® (z) < T° (which n* satisfied users in a strategy profile reachable fram

can do a better response update by switching to). Let Algorithm 1 works by initializing all users with the off
channel, and then having each player switch onto the most

y= (21, .., Tpr—1,C  Tprt1,...,TN) congested (and lowest indexed) channel they can benefit from
using. Our proof of the validity of Algorithm 1 works by
showing that, at any stage, a social optimal is reachabta fro
the current profile considered. In particular, our alganth
initiates from the strategy profile® were all users are ‘off’.
Every strategy profile is reachable from this initial corutit
and soj3(x”) is equal to the maximum number of satisfied
users in any strategy profile of the game. For brevity, sd shal
refer to social optima simply as ‘optima’ or ‘optimal strgye
D. Brief sketch of the proof to Theordh 5 profiles’.

We order the users so th#@ > T, > .... > Ty. We use The following lemma is the critical part of our proof of

2™ to denote the strategy profile produced by e iteration the vallidity of Algorithm 1, for it essentially asserts that

of Algorithm . Also B(zx) is the number of satisfied users? ( ),: B(a") for each.n €{1,2, “’N}' In other WOI‘gS,

in 2. We say a strategy profilg is reachablefrom strategy S One iterates the algorithm, théh profile generateds™,

profile , if for any z, # 0 (for a playerp € A) we have has just as beneficial strategy profiles that can be reached
, D

: 1 n—1 i
yp = z,. In other wordsy is reachable frone if each player TOM it. as the (n — 1)th profile ha(g. This re]zvsult
who is not dormant inz uses the same channel jnas it can be used with induction to show thafz") = f(z™).

does inz. Let 3(z) denote the maximum value d(y) such Moreover 3(z") = B(a) is the number of satisfied users
thaty is a natural strategy profile reachable framLet D(z) N the outputted strategy profile because once has been
denote the set of dormant users in the strategy prafile generated, we either have that all players have been albcat

The key idea of the proof is to show that a social optimé\ real channel (in which case" is the only strategy profile
is reachable from the strategy profii&, vn € {1,2,..., N} reachable fromx"V), or all dormant users cannot benefit from

(herex™ is the strategy profile outputted by theh iteration using a real channel because their thresholds are less than
of Algorithm [T). This can be achieved by showifgaz®) = or equal to the congestion level of each active channel (in

xz') = ... = p(x”). The reason is x?) is the _ _ _
1 N). Th thaB(z?) is th .
Our algorithm only stops altering the strategy profile whérugers are

num_ber of satisfied users at a social optimum (S'nce a”egyat satisfied, or when no more dormant users can be satisfiedldivfthat no
profiles can be reached fronf). natural strategy profiles can be reached froff exceptz?Y.

be the strategy profile obtained by allowing playérto switch
to channelc*. We shall havel (y) = I¢ (z) + 1 < T¢,
so the users of channel* will still all be satisfied iny.
This implies thaty""_, U, (y) = 1+ Y.\, Uy (a), which
contradicts our assumption thatis a social optimum. This
shows that Statement 3) implies Statement1).



which case every strategy profile reachable frof, other

exactly the same congestion level in asm incurred inz,

than 2V has suffering users). We shall state and prove thasd 7,,- > T;,. Also B(w) = B(z), since the operation we

critical lemma before we continue with our proof.

Lemma 5.5

Let ¢ be a QoS satisfaction game withh > 1 channels
(which are homogenous) and players, with thresholdg; >
Ty, > ... > Ty. Supposer satisfies the following conditions:

1) We have thak(x) := {n € N : z,, # 0} is non-empty,
andn* € N : T,,» = max{T,, : n € k(x)} is a player
with maximal threshold irk(x).

2) We have thaBF’ € {0,1,..,C — 1} such that for each
ce{l,2,.,C} we havec < F = I°(x) > T,- and
¢c>F=1I%)<T, andc> F +1=I¢(x) =0.

3) We havevn,m € N that if n ¢ k(x) andm € k(zx)
thenT;,, > T,,.

4) We have that: has no suffering users (i.ex,is natural).
Let y denote the strategy profile obtained by takingand
having playem* change their channel t&' + 1. Now 5(y) =
B().

Proof of Lemma 5.5

We shall construct a strategy profilethat is reachable from
x and such thaf),- = F' + 1 and B(Q2) = (). Since is
reachable fromy we shall then havg(x) = B(Q) = SB(y).
We construct) by starting with a natural strategy profite

!/
that maximizes the number of benefitting users amongst thd8e

profiles reachable from. Then we modifyz to make another
strategy profilew. Then we modifyw to makefQ.

Let z : B(z) = B(x) be a strategy profile that is reachabl
from x. Suppose this profile has the maximum number of
satisfied users amongst all strategy profiles reachable from

Also, suppose that has no suffering users.

use to obtainv from z preserves the number of users of real
channels.

So now we have that is reachable fromx and B(w) =
B(z) = p(x). If wy,« = F +1 then letQ = w, and we are
done. Now instead suppose,- # F + 1. We shall describe
how to construct in this case.

If 77+ (w) > I~ (w) then we construcf) by takingw
and swapping around the channelsngfand the membem/’
of

R:={neN:w,=F+1#uz,} Ck(x)

with the highest threshold. In other words, for eacke N
we haven ¢ {n*,m’} impliesQ,, = w, andn = n* implies
Qn = wpy andn = m’ implies Q,, = wy,».

The playerm’ € R which changes their channel frof+
1 to w,- under this operation will not stop being satisfied,
since they end up (if?) using a channeb,,- that is no more
congested than the channéh- 1 they were using inv. Also,
playern*, who changes their channel froat to F + 1, will
not stop being satisfied since they end up(gjnwith the same
congestion level as’ had inw, but they have a threshold that
is greater than or equal to that ef’. It follows thatn* and
(and each other user of a real channel) will be satisfied in
w. This shows() is natural, andB(2) = B(w). Also, © is
clearly reachable from: since it can be obtained by taking

&nd altering the actions of some users fré) who were

“off” in .
Now let us consider how to defirfe in the final case, where
Wy« # F + 1 and I" 1 (w) < I (w). In this case we

Now note thatB(z) > B(x), to see this note that pointsd€t ¢ by having thel*~*(w) — I"*!(z) players with the

(1) and (2) above imply that, from, usern* can beneficially highest thresholds that are using,- underw, change their
start using channeF + 1 without causing any other p|ayerchannels toF + 1, whilst (simultaneously) each player from
to cease satisfied. It follows thatthere are strategy profiles? Changes their channel froii 41 to w,-. Let us be more
(such asz) with more satisfied users, that are reachable froR{€cise. Let us name the usersof- underw by writing
- {n € D Wy wp+} = {e1,ea,..,en}. Here we have
Next we claim that there must exist some playee k(z) 9iven the players names in such a way that, = »* and
such thatz,, € {F + 1,F +2,..,C}. To see this note that Lex = Te, = .. = Te,,. Now in this case{? is defined such

B(z) > B(x) implies that there is soma € k(x) : 2z, # 0
and sincem must be satisfied i, andm € k(x) implies
T < Ty < I¢(x)Ve € {1,2,..,F} we must havez,, €
{F+1,F+2,.C}

If z,« # 0 then similarly we haver,,- € {F + 1,F +
2,..,C%}, and in this case we lety = z. Now, alternatively
suppose that,,~ = 0. In this case, letv be the strategy profile
obtained by taking and interchanging the strategiesrofand
m. In other wordsyn € N we havew,, = z, if n ¢ {n*,m},
andw,, = z,, If n =n* andw,, = z,~ if n =m.

Clearly w is reachable fromx. Also, note thatw (like z)

thatVn € ANV we haven ¢ RU{e1,ea,..,e1w,~ (w),lbwrl(m)}
implies Q,, = w,, andn € R implies Q,, = w,+, andn €
{61, €2,y .0y E Wy, x (w),llwrl(m)} impliesQ,, = F + 1.

Now clearly Q2 is reachable fromx since it is obtained but

takingw and only altering the channels of users frén{n €
D wy = wer b C k(x). Now we will show that2 has no
suffering users.

Firstly, the players in the sk that change their channels
from F' 4 1 to w,,~ will still be satisfied inQ2. The reason is
that the congestion level these players experienée will be
IT+1(x) + |R|, which is the same as the congestion level that

has no suffering users. To see this, we just have to note tkagy incurred inw.

w is just like z except that we have replaced the real channelPlayers sticking om,,« in w and(2 experience a congestion
userm, with the usern*, on the same channel. Now sincdevel I*»* () = I*"T1(z) +|R| = [" T (w) < IV (w) in Q
m € k(x) andn* has the maximum threshold of any usethat is less than the congestion level that they incurred,in

in k(x) we must have thaf,- > T,,. Now, sincem was
satisfied inz it follows that, when we replace: with player
n* (using the same channel), we shall have tfiats satisfied
in the resulting strategy profile. The reason is that* incurs

so these players will still be satisfied fh

Players in the sefey, ez, .., ejw,.- (w)—17+1(2)} that change
their channels fromw,,~ to F' 4+ 1 will still be satisfied in{2,
since the congestion levéf +1(Q) = 17+ (x) + ["n (w) —



I () = I~ (w) that these users experienceliwill be  F +1 andz™ is the strategy profile obtained by having player
the same as the congestion levels they experienced in n start using channel’ + 1.

Also, the playerdn € N : z, = F+1} C N —k(x) which This move will not cause any of the previous users of
stick upon channeF + 1 in w andQ each have thresholdschannel ' + 1 to cease satisfied (since all their thresholds
greater than or equal to each playekiix) (according to point are at least as large ass threshold). Also,. will clearly be
3) and so, since the playefs:, es, .., erw,« (w)_1r+1(z)} © satisfied inz". It follows thatz™ has no suffering users. Also,
k(x) are satisfied upon channBl+1 in €, it follows that the it follows thatk(z") = k(z" ') —{n} = {n+1,n+2,.., N},
players{n € N : z,, = F + 1} are also satisfied if. wheren + 1 is the player with the maximum threshold :irt

So we have shown that each usergf or F+1 is satisfied that is not satisfied.
in Q. Now sincew,- or F + 1 are the only channels that Now either/¢ (z"~!) +1 < T, in which casexz" has
have different user sets it and w, we have thatB(Q) = property(F,n+1), sincer’ :*c* is still the channel that 41
B(w) = B(z) = B(x) andQ has no suffering users. Alsois destined to switch to, of* (z"~') +1 > T,,,1, in which
note that() is reachable frome. Also, sinceQ),- = T'+ 1, casez™ has propertfF' +1,n+1), sinceFF +1=c*"+1is
we have thaf? is reachable frony. From this it follows that the channel that the + 1 is destined to switch to.

B(y) = B(Q) = B(x). Now since the initial condition® = (0,0, .., 0) has property
O (F,n*) for someF andn*, we can use induction to show that
Now we have proved Lemma 5.5, we shall continue o@very timez" s 2"~ (i.e., every time the system is not full)

proof of Theorem 5. we have that:™ has property A, B) for some(A, B).

Algorithm 1 runs so that we begin with all players using !f #* has the proPerty with respect tal;, B;) then Lerr}ma
the zero-channel and then we update the players in or%e? implies thatz"*! has the property that(x*) = S(2""1).

of descending threshold/n € {1,2,.., N}, we obtain the Now if the system never gets full then we have that
strategy profilez” during thenth iteration of our algorithm. % % ,,a¥ "' eachz' has the property, for some pair
Here 2 is obtained fromz"~! by updating playem (who (i Bi). It follows that 3(a°) = B(a!) = .B@""1) =

has thenth highest threshold). To update playewe check B(z") = B(z"), where 2™ is the output. The reason

if there are any channels available, that have low enoufht”) = B(z") is because every user is satisfied iff
congestion levels to satisfy user If such channels exist then!n this case, s is the only strategy profile reachable from
playern starts using the on€ with the lowest index, and this * - ) )

action produces the strategy profité. Otherwise, if there is  Similarly, if the system gets full up on time stgpthen we

no channel with a low enough congestion level for player have, for eachi € {1,2,..,;j} thatz* has the property, for

to benefit from using, then we say that is “full”. In this SOMe pair(4;, B;). It follows that 3(z7) = B(«”). Moreover
case we will have thar” = 2"+ = _zN because every Sincea’ is full, we haves’ = 27*! — .. = 2%, and so
subsequent update will involve getting a usér> n, with a  5(z”) = B(z™). Also, sincez™ is full, no more users can be
thresholdT},, < T,, and checking if there is a channel with gnade to benefit from" and sof(z") = B(z™).

congestion level below the threshdld, (i.e., stage 3 of the And so we have shown that the maximum number of
algorithm), and there will be no channel with congestioreleySatisfied users that can be obtained in any strategy profile,
below},:, because there was no channel with congestion leyich is 5(z%), is equal to the number of satisfied users in
belowT,,. So it follows that once our algorithm hits a full’, the strategy profile’¥ outputted by our algorithm. This shows

it will output 2V = 2" eventually. that the output:”Y is an optimum strategy profile of the game.
We say a state: has property(F, n*) when the following  NOW We just have to show that" is a pure Nash equilib-
conditions hold: rium. To see this note that if a userir’ did want to switch

channels, then they would want to benefit. This would only
be possible if the system has reached a full state previously
(since if the algorithm never hits a full state then its outisu
optimal, and unsatisfied users do not exist). So there must ha
come some earlier time when the system became full. From
this point on, we have that each channel has an congestion
level too high for any user of an off channel to benefit from
switching to them, and so in fact it is impossible for the final
statezY to have any users which are not satisfied that can
increase their utilities by increasing channels.
Clearlyz® has property0, 1) sincec > 0 = I°(z°) =0 < Individual  executions of stages 1,2,3,4,5,6,7
Ty andk(x) = {1,2,.., N}. and 8 of the algorithm can be performed in
Now we claim (**) thatvn € {1,2,..,N —1} that if z"~!  O(N),0(1),0(C),0(C),O(N),0(1),0(1) and O(1)
has property(F,n) and z"~! is not full then the strategy time respectively. Only stage’ 4,5,6 and 7 are repeated.
profile 2™ present upon the next iteration of our algorithnEach of these stages can be performed ona@(ii V) time.
will have property(F’,n + 1), for someF”. These procedure where each of these stages are performed
To see this note that if* ! has property F,n) andz"~'is once is repeated’ time. The complete procedure/loop (that is
not full thenc* = min{c € {1,2,..,C} : I°(z""') < T,,} = initiated on stage 2) this take3(C'N?) time. ThisO(CN?)

1) We have thak(x) := {n € N : z,, # 0} is non-empty,
andn* € N : T« = max{T,, : n € k(x)} is a player
with maximal threshold irk(x).

2) We have thaBF € {0,1,..,C — 1} such that for each
ce{l1,2,..,C} we havec < F = I°(x) > T,- and
¢c>F=1I%)<Ty,andc>F+1= I°x) =0.

3) We haveVn,m € N thatif n ¢ k(x) andm € k(x)
thenT,, > T,,.

4) We have that: has no suffering users.



term dominates the execution times of all other stagesdaeitsi Without loss of generality, we can suppose thdt< 7)¢ <

this loop, and so the total run time of the systenDis”N?). N +1,Vn € N,Ve € {1,2,...C}, since thresholds less than
—1 induce the same kind of behavior as thresholds equalito

E. Proof of Theorerfil6 (i.e., they can never be satisfied) and thresholds greater th

N +1 induce the same kind of behavior as thresholds equal to

Let x be the strat file wh =1 d C), . o !
eta be e siratedy protie Wnets, +(n mod C) N +1 (i.e., they are always satisfied). For any strategy profile

Yn € N, Ve e C={1,2,...,C} (i.e., where the users are ;
spaced as evenly across the channels as possible). For sugh% have(=1)N < (3 cnvm, 20 Tn" ) < NNV +1). 1t
strategy profile, we havé(z) < [X] < T,,Vc € C, and so is also true that) < S, [{{n,m} € € : z, = 2, =

every player is satisfied.] c}] < XD ando < 3O, HneMeazell < N From
these inequalities, it follows that N < &(x) < N(N +
F. Proof of Theorerfi]7 1)+ YD 4 ON g 3NT

Let us define the function® (which maps strategy .\{Vhen we start to evolve our system, the valuebofor the
profiles to real numbers) such that for each stratedfjitial strategy profile cannot be less thanV. Also, the value

profile = we have ®(z) = (X, cpuenz0lo") — of ® will increase by at leas§ with every better response
o Hnej'\/f; —o)| update. Now suppose we have perforntelletter response
De—1 (|{{nam} €& :xp=am =cl|+ fn) : updates (i.e., we have run the system fotime slots) and

Here [{{n,m} € € : ¥, = 2., = c}| is the number of edges arrived at strategy profilg. We must have-N + £ < &(x)+
linking players using channel and[{n € NV : z, = c}|is L < &(y) < N + 33 because the value @ increases by
the number of players using chanrelin other words.®(x) gt least. on each time step. This impligs< 4N + 3(N)2.
is equal to [the sum of the thresholds which the non-dormantg, far we have shown that it ispossibleto run the system

users associate with their channels] minus [the number @fith asynchronous better response updates) for morertian
edges linking users of the same channel] minus [half they | 3(\)2 time slots. This implies that when we evolve the
number of non-dormant users]. system under asynchronous better response updatesusie
Suppose playem’ does a better response update biach g strategy profile from which no further better response
changing their strategy from’ < {0,1,...,C} t0 d'" € ypdates can be performed, withilV + 3(N)? time slots.

{0,1,...,C}, and this has the effect of changing the strategy,,ch 5 strategy profile must be a pure Nash equilibrium by
profile fromz toy = (z1,..., 2w —1,d Ty 41,- -, TN). definition.d

Next we will show®(y) > ®(z) + 3 in each of the three
possible cases:

1) ¢ =0,d #0 (i.e., whenn' stops being dormant). REFERENCES

2) ¢ #0,d =0 (i.e., whenn’ becomes dormant).

3) ¢ #0,d #0 (i.e., whenn’ switches from one channel [1] A.Hoang, Y. Liang, and M. Islam, “Power control and chehallocation
to another) in cognitive radio networks with primary users’ cooperafiolEEE

Transactions on Mobile Computingol. 9, no. 3, pp. 348-360, 2010.
In case 1), where’ =0, d’ # 0, we have®(y) = ®(x) + [2] R. Rosenthal, “A class of games possessing pure-syraiagh equilib-

Td’ _Id’ (m) _% because the action where playérswitches ria,” International Journal of Game Thearyol. 2, no. 1, pp. 65-67,
n'oTn/ AT 20 Y 1973.
U
to cr;gnneki increases the number of edges Imkmg userg of [3] M. Liu and Y. Wu, “Spectum sharing as congestion gamesir
by I% () and increases the number of players using resource Communication, Control, and Computing, 2008 46th Annudérsin
d' by 1. Also, since our move is a better response update, we Conference2008, pp. 1146-1153.

_ _ d’ d’ _ [4] 1. Milchtaich, “Congestion games with player-specifiaypff functions,”
hl?/ve Uw(x) = 0 andUu(y) = 1, and (S;)Tn(’i, = IN’l(y) 1_ Games and Economic Behavjoml. 13, no. 1, pp. 111-124, 1996.
If, (x)+1. Itfollows that®(y) —®(x) = 7,5 =I5, (x)—5 > 3. [5] L. Law, J. Huang, and M. Liu, “Price of anarchy for congest
In case 2), where’ # 0, d =0 we have(I)(y) = (1)(33) — games in cognitive radio networks|EEE Transactions on Wireless

! c _ 1 ; Communnicationsvol. 11, no. 10, pp. 3778 — 3787, October 2012.
To + I (=) — 1 + 3, because the action where playef X. Chen, J. Huang, and H. Li, “Adaptive channel recommegiwh for

| hanne! d the number of edges linki 8 % : -
eaves chann ecreases the number of edges lINKINg USErs” gpportunistic spectrum accestZEE Transactions on Mobile Comput-
of ¢ by It (x) — 1 and decreases the number of users of ing, 2012.

resourcec’ by 1. Also, since our move is a better responsd?l R. Southwell, J. Huang, and X. Liu, “Spectrum mobility rges” in
IEEE INFOCOM 2012, pp. 37-45.

updatg, we ,haVé]n/(x)_: _1, and Uzl’ (y) = 0.1t TOIIOWS [8] C. Tekin, M. Liu, R. Southwell, J. Huang, and S. Ahmad, GAtic
thatT, < IS, (x), and sincelS, andI:, (x) are both integers, congestion games on graphs and their applications in nkitwgpi
this impliesTgﬁ < I’;:l/’ (m) — 1. It follows that@(y) _ @(w) _ IZI%EEIACM Transactions on Networkingol. 20, no. 1, pp. 1541-1552,
<4 n' 1 1 .
In’ (:c) -1 _Tn/ + 5/2 2" , [9] R. Southwell and J. Huang, “Convergence dynamics of uesn
In case 3), where’ # 0, d’ # 0, we have®(y) = ®(x) + homogeneous congestion games, GameNets2011, pp. 281-293.

Tg,’ — Ig:(m) — Tﬁf + [ﬁl, (m) — 1, because the action wherel10] R. Southwell, Y. Chen, J. Huang, and Q. Zhang, “Convecgedynamics

/ ; 7 of graphical congestion games,” BameNets2012, pp. 31-46.
playern’ switches from channef to channell’ increases the [11] R. Southwell, J. Huang, and B. Shou, “Modeling frequeatiocation

. . d/
number of edges |Ink|ng users daf by I, (CC2 and decreases with generalized spatial congestion games,|BEE ICCS 2012.
the number of edges linking users &fby I¢,(x) — 1. Also, [12] X. Chen and J. Huang, “Spatial spectrum access gameh Bigsilibria

since our move is a better response update, we U@v(&,) _ and distributed learning,” iMobihog 2012, pp. 205-214.
B d d rd [13] “Cisco visual networking index: Global mo-
—landU,(y) = 1, and soTy;, > Iy, (y) = Ij, () + 1 and bile data traffic forecast update 2011-2016,"

TS < I (x) — 1. It follows that ®(y) — (x) > 1. http://www.cisco.com/en/US/solutions/collateral/$s525/ns537/ns705/ns827/wi


http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html

[14] S. Medina Perlaza, H. Tembine, S. Lasaulce, and M. Debliauality-
of-service provisioning in decentralized networks: Asfaiition equilib-
rium approach, lEEE Journal of Selected Topics in Signal Processing
vol. 6, no. 2, pp. 104-116, 2012.

[15] X.Chen and J. Huang, “Imitative spectrum access10th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt) IEEE, 2012, pp. 145-152.

[16] ——, “Evolutionarily stable spectrum accessEEE Transactions on
Mobile Computingvol. 12, no. 7, pp. 1281 — 1293, July 2013.

[17] R. Southwell, X. Chen, and J. Huang, “Quality of service
games for spectrum sharing: Online appendix,” iThe
Chinese University of Hong Kong?2013. [Online]. Available:
http://richardsouthwell.files.wordpress.com/20104@8appendix. pdf

[18] M. A. McHenry, D. McCloskey, D. Roberson, and J. T. Maciad,
“Spectrum occupancy measurements,” 2005.

[19] FCC, “Second memorandum opinion and or-
der,” September 23, 2010. [Online]. Available:
http://transition.fcc.gov/DailyReleases/DailyBusiness/2010/db0923/FCC-10-174A1 jpdf

[20] J. Gabarro, A. Garcia, and M. Serna, “On the compjexit game
isomorphism,”Mathematical Foundations of Computer Science 2007
pp. 559-571, 2007.

[21] U. Vaziran and V. Vaziran, “The two-processor scheuylproblem is in
r-nc,” in Seventeenth annual ACM symposium on Theory of computing
1985, pp. 11-21.

[22] E. Koutsoupias and C. Papadimitriou, “Worst-case léjia,” in STACS
1999.

[23] “IEEE 802.11," http://en.wikipedia.org/wiki/[EEEB02.11.

[24] O. Goussevskaia, T. Moscibroda, and R. Wattenhofencdl broad-
casting in the physical interference model,” Foundations of Mobile
Computing 2008, pp. 35—44.

[25] D. Niculescu, “Interference map for 802.11 networks,Proceedings of
the 7th ACM SIGCOMM conference on Internet measuremehtM,
2007, pp. 339-350.

[26] X. Zhou, Z. Zhang, G. Wang, X. Yu, B. Y. Zhao, and H. Zheng,
“Practical conflict graphs for dynamic spectrum distribatf in ACM
SIGMETRICS2013.

[27] “Dynamic streaming on demand with flash media server,”3.5
http://www.adobe.com/devnet/flashmediaserver/agidigstreamon _demand.html.

[28] R. Y. Rubinstein and D. P. Kroes&he cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo siation and
machine learning Springer Verlag, 2004.

[29] H. Li, “Multi-agent g-learning for competitive speaim access in cogni-
tive radio systems,” ifrifth IEEE Workshop on Networking Technologies
for Software Defined Radio (SDR) NetwarksEEE, 2010, pp. 1-6.


http://richardsouthwell.files.wordpress.com/2010/08/qosappendix.pdf
http://transition.fcc.gov/Daily_Releases/Daily_Business/2010/db0923/FCC-10-174A1.pdf
http://en.wikipedia.org/wiki/IEEE_802.11
http://www.adobe.com/devnet/flashmediaserver/articles/dynstream_on_demand.html

	I Introduction
	I-A Related Work
	I-B Contributions

	II QoS Satisfaction Game
	II-A Game model
	II-B Key game concepts
	II-C Transformation to an equivalent interference threshold form

	III Properties of The QoS Satisfaction Game
	III-A Characterization of pure Nash equilibria
	III-B Finding a social optimum is NP hard
	III-C Price of anarchy
	III-D QoS satisfaction games with homogenous users
	III-E QoS satisfaction games with homogenous channels

	IV Spatial QoS satisfaction Game
	V Distributed algorithm and simulations
	V-A Distributed QoS satisfaction algorithm
	V-B Numerical Results

	VI Conclusion
	Appendix
	A Proof of Theorem ??
	B Proof of Theorem ??
	C Proof of Theorem ??
	C1 Statement 1) Statement 2)
	C2 Statement 2) Statement 3)
	C3 Statement 3) Statement 1)

	D Brief sketch of the proof to Theorem ??
	E Proof of Theorem ??
	F Proof of Theorem ??

	References

