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Exact-Repair Regenerating Codes
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Abstract—Exact-repair regenerating codes are considered for
the case (n, k, d) = (4, 3, 3), for which a complete characteriza-
tion of the rate region is provided. This characterization answers
in the affirmative the open question whether there exists a non-
vanishing gap between the optimal bandwidth-storage tradeoff of
the functional-repair regenerating codes (i.e., the cut-set bound)
and that of the exact-repair regenerating codes. To obtain an
explicit information theoretic converse, a computer-aided proof
(CAP) approach based on primal and dual relation is developed.
This CAP approach extends Yeung’s linear programming (LP)
method, which was previously only used on information theoretic
problems with a few random variables due to the exponential
growth of the number of variables in the corresponding LP
problem. The symmetry in the exact-repair regenerating code
problem allows an effective reduction of the number of variables,
and together with several other problem-specific reductions,
the LP problem is reduced to a manageable scale. For the
achievability, only one non-trivial corner point of the rate region
needs to be addressed in this case, for which an explicit binary
code construction is given.

I. INTRODUCTION

Erasure codes can be used in data storage systems that
encode and disperse information to multiple storage nodes in
the network (or multiple disks inside a large data center), such
that a user can retrieve it by accessing only a subset of them.
This kind of systems is able to provide superior availability
and durability in the event of disk corruption or network
congestion, at a fraction of the cost of the current state of art
storage systems based on simple data replication. When data is
coded by an erasure code, data repair becomes more involved,
because the information stored at a given node may not be
directly available from any one of the remaining storage nodes.
One key issue that affects the overall system performance is
the total amount of information that the remaining nodes needs
to transmit to the new node.

Dimakis et al. [1] proposed the framework of regenerating
codes to address the tradeoff between the storage and repair
bandwidth in erasure-coded distributed storage systems. In this
framework, the overall system consists of n storage nodes
situated in different network locations, each with α units of
data, and the content is coded in such a way that by accessing
any k of these n storage nodes, the full data content of B
units can be completely recovered. When a node fails, a new
node may access any d remaining nodes for β units of data
each, in order to regenerate a new data node.

The main result in [1] is for the so-called functional-repair
case, where the regenerating process does not need to exactly
replicate the original data stored on the failed node, but only
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needs to guarantee that the regenerated node can serve the
same purpose as the lost node, i.e., data reconstruction using
any k nodes, and being able to help regenerate new data
nodes to replace subsequently failed nodes. It was shown that
this problem can be cleverly converted to a network multicast
problem, and the celebrated result on network coding [2] can
be applied directly to provide a complete characterization of
the optimal bandwidth-storage tradeoff. Furthermore, linear
network codes [3] are sufficient to achieve this optimal per-
formance.

The decoding and repair rules for functional-repair re-
generating codes may evolve as nodes are repaired, which
increases the overhead of the system. Moreover, functional-
repair does not guarantee systematic format storage, which is
an important requirement in practice. For these reasons, exact-
repair regenerating codes have received considerable attention
recently [4]–[7], where the regenerated data need to be exactly
the same as that stored in the failed node.

The optimal bandwith-storage tradeoff for the functional-
repair case can clearly serve as an outer bound for the exact-
repair case. There also exist code constructions for the two
extreme cases, i.e., the minimum storage regenerating (MSR)
point [5]–[7], or the minimum bandwidth regenerating (MBR)
point [4], [6], and the aforementioned outer bound is in fact
achievable at these two extreme points. The achievability of
these two extreme points immediately implies that for the
cases k ≤ 2, the functional-repair outer bound is tight for
the exact repair case. Also relevant is the fact that symbol
extensions are necessary for linear codes to achieve the MSR
point for some parameter range [5], however the MSR point
can indeed be asymptotically (in B) achieved by linear codes
for all the parameter range [7]. It was also shown in [4] that
when k > 2, other than the two extreme points and a segment
close to the MSR point, the majority the functional repair
outer bound is in fact not strictly achievable by exact-repair
regenerating codes.

The non-achievability result reported in [4] was proved by
contradiction, i.e., a contradiction will occur if one supposes
that an exact-repair code operates strictly on the optimal
functional-repair tradeoff curve. However, it is not clear
whether this contradiction is caused by the functional-repair
outer bound being only asymptotically achievable, or caused
by the existence of a non-vanishing gap between the optimal
tradeoff of exact-repair codes and the functional-repair outer
bound. In fact, the necessity of symbol extension proved in
[5] and the asymptotically optimal construction given in [7]
may be interpreted as suggesting that the former is true.

In this work, we focus on the simplest case of exact-
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repair regenerating codes, i.e., when (n, k, d) = (4, 3, 3), for
which the rate region has not been completely characterized
previously. A complete characterization of the rate region is
provided for this case, which shows that indeed there exists a
non-vanishing gap between the optimal tradeoff of the exact-
repair codes and that of the functional-repair codes. The
achievability part of this result shows that there exist exact-
repair regenerating codes that are better than simply time-
sharing between the MSR point and the MBR point.

As in many open information theoretical problems, the
difficulty lies in finding good outer bounds, particularly in
this problem with a large number of regenerating and recon-
struction requirements. We rely on a computer-aided proof
(CAP) approach and take advantage of the symmetry and other
problem-specific structure to reduce the number of variables in
the optimization problem. This approach builds upon Yeung’s
linear programming (LP) framework [8]. As of our knowledge,
this is the first time that the LP framework is meaningfully
applied to a non-trivial engineering problem, which leads to a
complete solution. More importantly, instead of only machine-
proving whether an information theoretic bound is true or
not as in [8], we further develop a secondary optimization
procedure to find an explicit information theoretic proof. By
solving the primary LP optimization problem, the tradeoff
curve between the storage and repair bandwidth can be traced
out numerically, which leads to the hypotheses of the bounding
planes for the rate region. A secondary optimization procedure,
which essentially solves the dual problem for these candidate
bounding planes, directly yields an explicit information theo-
retic proof. Due to the duality structure in the LP problem, the
optimization criterion in the secondary optimization problem
can be selected arbitrarily, thus we can choose one that leads to
the solution that we most desire. For this purpose, the `1 norm
is chosen that approximates the solution under the `0 norm,
the latter of which gives the sparsest solution and translates
roughly to a converse proof with the least number of steps.

The rest of the paper is organized as follows. In Section
II, we provide a formal definition of the problem and review
briefly the functional-repair outer bound. The characterization
of the rater region is given in Section III, together with the
forward and converse proof. Section IV provides details on
the computed-aid proof approach, and Section V concludes
the paper.

II. PROBLEM DEFINITION

In this section we first give a formal definition of the
regenerating code problem for the case (n, k, d) = (4, 3, 3),
and then introduce some notation useful for the converse
proof. Somewhat surprisingly, we were not able to find such a
formal definition in the existing literature, and thus believe it
is beneficial to include one here (which can be generalized to
other parameters). The functional-repair outer bound is briefly
reviewed and specialized to the case under consideration.

A. Exact-Repair Regenerating Codes

A (4, 3, 3) exact-repair regenerating code is formally defined
as follows, where the notation In is used to denote the set

{1, 2, . . . , n}, and |A| is used to denote the cardinality of a
set A.

Definition 1: An (N,Kd,K) exact-repair regenerating
code for the (4, 3, 3) case consists of 4 encoding functions
fEi (·), 4 decoding functions fDA (·, ·, ·), 12 repair encoding
functions FEi,j(·), and 4 repair decoding functions FDi (·, ·, ·),
where

fEi : IN → IKd
, i ∈ I4,

each of which maps the message m ∈ IN to one piece of
coded information,

fDA : IKd
× IKd

× IKd
→ IN , A ⊂ I4 and |A|= 3,

each of which maps 3 pieces of coded information stored on
a set A of nodes to the original message,

FEi,j : IKd
→ IK , j ∈ I4, and i ∈ I4 \ {j},

each of which maps a piece of coded information at node i to
an index that will be made available to reconstruct the data at
node j, and

FDj : IK × IK × IK → IKd
, j ∈ I4,

each of which maps 3 such indices from the helper nodes
to reconstruct the information stored at the failed node. The
functions must satisfy the data reconstruction conditions

fDA

(∏
i∈A

fEi (m)

)
= m, m ∈ IN , A ⊂ I4 and |A|= 3,

(1)

and the repair conditions

FDj

 ∏
i∈In\{j}

FEi,j
(
fEi (m)

) = fEj (m), m ∈ IN , j ∈ I4.

(2)

In the above definition, N is the cardinality of the message
set, and logN is essentially B. Similarly logKd is essentially
α and logK is β. To include the case when the storage-
bandwidth tradeoff may be approached asymptotically, e.g.,
the codes considered in [7], the following definition which
utilized a normalized version of α and β is further introduced.

Definition 2: A normalized bandwidth-storage pair (ᾱ, β̄)
is said to be (4, 3, 3) exact-repair achievable if for any ε > 0
there exists an (N,Kd,K) exact-repair regenerating code such
that

ᾱ+ ε ≥ logKd

logN
, β̄ + ε ≥ logK

logN
. (3)

The collection of all the achievable (ᾱ, β̄) pairs is the achiev-
able region R of the (4, 3, 3) exact-repair regenerating codes.

The reconstruction condition (1) requires that there is no
decoding error, i.e., the zero-error requirement is adopted. An
alternative definition is to require instead the probability of
decoding error to be asymptotically zero as N → ∞. It will
become clear from the rate region characterization given in
the sequel that this does not cause any essential difference,
and thus we do not give this alternative definition to avoid
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repetition.

B. Some Further Notation

In order to derive the outer bound, it is convenient to write
the reconstruction and regenerating conditions in the form of
entropy constraints. For this purpose, some further notation is
introduced here, which is largely borrowed from [4].

Let us denote the message random variable as M , which is
uniformly distributed in the set IN . Define

Wi = fEi (M), Si,j = FEi,j
(
fEi (M)

)
. (4)

Thus we have the following random variables in the setW∪S

W ={W1,W2,W3,W4}, (5)
S ={S1,2, S1,3, S1,4, S2,1, S2,3, S2,4,

S3,1, S3,2, S3,4, S4,1, S4,2, S4,3}. (6)

The reconstruction requirement thus implies that

H(W ∪ S|A) = 0, any A ⊆ W : |A|= 3. (7)

The regenerating requirement implies that

H(Si,j |Wi) = 0, j ∈ I4, i ∈ I4 \ {j}, (8)

and

H(Wj |{Si,j ∈ S : i ∈ In \ {j}}) = 0, any j ∈ I4. (9)

Because the message M has a uniform distribution, we also
have that

H(W ∪ S) = H(M) = logN , B, (10)

which is strictly larger than zero. Note that together with (7),
this implies that

H(A) = B, any A such that |A ∩W|≥ 3. (11)

The symmetric storage requirement can be written as

H(Wi) ≤ logKd , α, Wi ∈ W, (12)

and the regenerating bandwidth constraint can be written as

H(Si,j) ≤ logK , β, Si,j ∈ S. (13)

The above constraints (7)-(13) are the constraints that need
to be satisfied by any exact-repair regenerating codes. These
constraints will be used later in the converse proof.

C. Review of Functional-Repair Outer Bound

The optimal tradeoff for functional-repair regenerating
codes was given by Dimakis et al. [1], which provides an outer
bound for the exact-repair case. The bound has the following
form in our notation for the (4, 3, 3) case (see Fig. 1)

2∑
i=0

min(ᾱ, (3− i)β̄) ≥ 1. (14)

It is not difficult to show that it can be rewritten as the
following four simultaneous linear bounds

3ᾱ ≥ 1, 2ᾱ+ β̄ ≥ 1, ᾱ+ 3β̄ ≥ 1, 6β̄ ≥ 1. (15)

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.15

0.2

0.25

0.3

0.35

0.4

(1/3, 1/3)

(2/5, 1/5) (1/2, 1/6)

(3/8, 1/4)

ᾱ

β̄

 

 

functional repair outer bound

the rate region

Fig. 1. The functional-repair outer bound and the rate-region R.

The MSR point for this case is (ᾱ, β̄) = ( 1
3 ,

1
3 ), and the MBR

point is (ᾱ, β̄) = (1
2 ,

1
6 ).

III. THE RATE REGION OF (4, 3, 3) REGENERATING CODES

The following theorem provides a complete characterization
of the rate region of the (4, 3, 3) exact-repair regenerating
codes.

Theorem 1: The rate region R of the (n, k, d) = (4, 3, 3)
exact-repair regenerating codes is given by the collection of
(α, β) pairs that satisfy the following constraints

3ᾱ ≥ 1, 2ᾱ+ β̄ ≥ 1, 4ᾱ+ 6β̄ ≥ 3, 6β̄ ≥ 1.

This rate region is also depicted in Fig. 1, together with
the functional-repair outer bound. It is clear that there is a
gap between them, and thus the functional-repair outer bound
cannot be asymptotically achievable under the exact-repair
requirement. Note that the only difference between the region
given in Theorem 1 and that in (15) is the third bounding
plane.

A. The Achievability Proof

The rate region R has three corner points, and thus we only
need to show that these three points are all achievable. The
MSR point (ᾱ, β̄) = ( 1

3 ,
1
3 ) is simply achieved by any (4, 3)

MDS code, such as the binary systematic code with a single
parity check bit. The MBR point (ᾱ, β̄) = (1

2 ,
1
6 ) is also easily

obtained by using the repair-by-transfer code construction in
[4], which in this case reduces to a simple replication coding.
It thus only remains to show that the point (ᾱ, β̄) = (3

8 ,
1
4 ) is

also achievable.
Next we shall give a construction for a binary (4, 3, 3) code

with α = 3, β = 2 and B = 8, which indeed achieves this
operating point. The code is illustrated in Table I, where (and
in the remainder of this section) the addition + is in the binary
field. Here xi, yi, zi, ti are the systematic bits, i = 1, 2, and
the remaining bits are the parity bits.

First note that the construction is circularly symmetric, and
thus without loss of generality, we only need to consider the
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TABLE I
A (4, 3, 3) CODE FOR (ᾱ, β̄) = ( 3

8
, 1
4

).

first bit second bit third bit
node 1 x1 x2 y1 + z2 + t1 + t2
node 2 y1 y2 z1 + t2 + x1 + x2
node 3 z1 z2 t1 + x2 + y1 + y2
node 4 t1 t2 x1 + y2 + z1 + z2

TABLE II
REPAIR CONTRIBUTIONS WHEN NODE 1 FAILS.

first bit second bit
node 2 y1 z1 + t2 + x1 + x2 + y1 + y2
node 3 z2 t1 + x2 + y1 + y2 + z1 + z2
node 4 t1 + t2 x1 + y2 + z1 + z2 + t2

case when node 1 fails. If it can be shown that when node
2, 3, 4 each contribute two bits, node 1 can be reconstructed,
which also implies that the complete data can be recovered
using only node 2, 3 and 4, then the proof is complete. This
can indeed be done using the combination shown in Table II.

Upon receiving these six bits in Table II, the new node can
form the following combinations

x1 + x2 + y1 + y2 + z1 + z2 + t2

x2 + y1 + y2 + z1 + z2 + t1 + t1 + t2

x1 + y1 + y2 + z1 + z2 + t2,

where the first combination is formed by using the second bit
from node 2 and the first bit from node 3 (shown in bold), and
the other combinations can be formed similarly. In the binary
field, this is equivalent to having

x1 + x2 + y1 + y2 + z1 + z2 + t2 (16)
x2 + y1 + y2 + z1 + z2 + t2 (17)
x1 + y1 + y2 + z1 + z2 + t2, (18)

and it is seen that x1 can be recovered by simply taking
the difference between (16) and (17), and similarly x2 can
be recovered by taking the difference between (16) and (18).
Note further that the third bit stored in node 1 is simply the
summation of the first bits contributed from node 2, 3, and 4
in Table II. The proof is thus complete.

The hand-crafted code presented above is specific for the
(4, 3, 3) case. However, in a recent work, Sasidharan and
Kumar [9] discovered a class of codes that is optimal for the
(n, n− 1, n− 1) case at operating points other than MSR or
MBR, and specializing it to the (4, 3, 3) case achieves the same
performance as the code above; see also [10] for a closely
related code construction.

B. The Converse Proof
It is clear that we only need to prove the following bound

4ᾱ+ 6β̄ ≥ 3, (19)

because the other bounds in the main theorem can be obtained
from the outer bound (15). We first give an instrumental result
regarding the symmetry of the optimal solution.

Definition 3: A permutation π on the set I4 is a one-to-one
mapping π : I4 → I4. The collections of all permutations is
denoted as Π.

Any given permutation π correspondingly maps a random
variable Wi to Wπ(i). Any subset of W , e.g., A ⊆ W , is
thus mapped to another set of random variables, denoted as
π(A). For example, the permutation π(1) = 2, π(2) = 3,
π(3) = 1 and π(4) = 4 will map the set of random variables
A = {W1,W4} to π(A) = {W2,W4}. Similarly a random
variable Si,j will be mapped to Sπ(i),π(j), and for any subset
of S, we use a similar notation as for the case of W .

Definition 4: An (N,Kd,K) exact-repair regenerating
code is said to induce a symmetric entropic vector if for any
sets A ⊆ S and B ⊆ W and any permutation π ∈ Π,

H(A,B) = H(π(A), π(B)). (20)

Definition 5: A normalized bandwidth-storage pair (ᾱ, β̄)
is said to be symmetrically (4, 3, 3) exact-repair achievable
if for any ε > 0 there exists an (N,Kd,K) exact-repair
regenerating code which induces a symmetric entropic vector
such that

ᾱ+ ε ≥ logKd

logN
, β̄ + ε ≥ logK

logN
. (21)

The collection of all such (ᾱ, β̄) pairs is the entropy-
symmetrical achievable region R∗ of the (4, 3, 3) exact-repair
regenerating codes.

With the above definition, it is not difficult to see that the
following proposition is true.

Proposition 1: For (n, k, d) = (4, 3, 3) exact-repair regen-
erating codes R = R∗.

Clearly the inclusion R∗ ⊆ R is true. For the other direc-
tion, we can invoke a time-sharing (or more precisely here,
space-sharing) argument among all possible permutations; the
proof is given in the appendix for completeness. We are now
ready to prove the converse of Theorem 1.

Converse Proof of Theorem 1: Because of the equiv-
alence in Proposition 1, without loss of generality we only
need to prove that the given outer bound holds for the region
R∗, i.e., consider only codes that induce symmetrical entropy
vectors.

We first write1

4α+ 6β ≥4H(W1) + 6H(S2,4)

=4H(W1) + 3H(S2,4) + 3H(S3,4)

≥H(W1) + 3H(W1S2,4S3,4) (22)

where the first inequality is by (12) and (13), the equality is
by the symmetry of the solution

H(S2,4) = H(S3,4), (23)

and the second inequality is because summation of individual
entropy is greater than or equal to the joint entropy.

1The proof presented here is different from the one given in the preliminary
conference version for the same result [11]. The proof here is more concise
because further reduction has been applied in the secondary LP problem
discussed in the next section.
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For notational simplicity, from here on we shall write (s),
(7), (8), (9) and (11) on top of the equalities in the derivation
to signal the reasons for the equalities, i.e., by the symmetry
of the entropy vectors, or by equations (7), (8), (9) and (11),
respectively. We next write the following chain of inequalities

2H(W1S2,4S3,4)

(8)
= 2H(W1S1,4S2,4S3,4)

(9)
= 2H(W1W4S1,4S2,4S3,4)

(8)
= 2H(W1W4S2,4S3,4)

≥ H(W1W4S2,4) +H(W1W4S2,4S3,4)

(s)
= H(W2W4S1,2) +H(W1W4S2,4S3,4)

(8)
= H(W2W4S1,2S2,4) +H(W1W4S1,2S2,4S3,4)

= H(W2|W4S1,2S2,4) +H(W1S3,4|W4S1,2S2,4)

+ 2H(W4S1,2S2,4)

≥ H(W1W2S3,4|W4S1,2S2,4) + 2H(W4S1,2S2,4)

= H(W1W2W4S1,2S2,4S3,4) +H(W4S1,2S2,4)

(11)
= B +H(W4S1,2S2,4). (24)

It follows that

4α+ 6β

≥ B +H(W1) +H(W1S2,4S3,4) +H(W4S1,2S2,4).
(25)

However, notice that

H(W1S2,4S3,4) +H(W4S1,2S2,4)

(8)
= H(W1S1,4S2,4S3,4) +H(W4S1,2S2,4)

(9)
= H(W1W4S1,4S2,4S3,4) +H(W4S1,2S2,4)

(s)
= H(W1W4S1,4S2,4S3,4) +H(W4S3,2S2,4)

= H(W1S1,4S3,4|W4S2,4) +H(S3,2|W4S2,4)

+ 2H(W4S2,4)

≥ H(W1S1,4S3,2S3,4|W4S2,4) + 2H(W4S2,4)

= H(W1W4S1,4S2,4S3,2S3,4) +H(W4S2,4)

(8)
= H(W1W4S1,2S3,2S4,2S1,4S2,4S3,4) +H(W4S2,4)

(9)
= H(W1W2W4S1,2S3,2S4,2S1,4S2,4S3,4) +H(W4S2,4)

(11)
= B +H(W4S2,4). (26)

This implies that

4α+ 6β

≥ 2B +H(W1) +H(W4S2,4)

(s)
= 2B +H(W2) +H(W4S2,4)

= 2B +H(W2) +H(S3,1) +H(W4S2,4)−H(S3,1)

≥ 2B +H(W2S3,1) +H(W4S2,4)−H(S3,1)

(8)
= 2B +H(W2S2,4S3,1) +H(W4S2,4)−H(S3,1)

(s)
= 2B +H(W2S2,4S3,1) +H(W4S2,4)−H(S2,4)

= 2B +H(W2S3,1|S2,4) +H(W4|S2,4) +H(S2,4)

≥ 2B +H(W2W4S3,1|S2,4) +H(S2,4)

= 2B +H(W2W4S3,1S2,4)

(8)
= 2B +H(W2W4S2,1S3,1S4,1S2,4)

(9)
= 2B +H(W1W2W4S2,1S3,1S4,1S2,4)

(11)
= 3B, (27)

and the proof is thus complete.
It can be seen that the rate region given here remains the

same if the codes are required only to have asymptotic zero
error probability as B approaches infinity, instead of the more
stringent zero-error requirement. We only need to replace the
steps where (11) was applied in the above proof to a slightly
different version based on Fano’s inequality [12], and the
details are thus omitted.

IV. THE COMPUTER-AIDED PROOF APPROACH

It should be clear at this point that the converse proof given
above is difficult to find manually, in which several rather
unconventional steps, such as the adding and subtracting of the
same term in the third step of (27), are used. These steps arise
from the complex symmetry and dependence structure in the
random variables. In fact, the author’s own extensive attempt
to find such a converse proof manually was utterly unsuccess-
ful, which motivated the investigation of the computer-aided
proof (CAP) approach, via which the proof was obtained. In
this section, we provide details on our approach used to obtain
this converse, which may prove useful for future research.

A. The Basic Primal Linear Program

Yeung provided a linear programing framework to prove
Shannon-type information inequalities [8]. The basic frame-
work can be roughly described as follows in the context of
the problem being considered.

There are a total number of 216 − 1 = 65535 joint entropy
terms, each of which corresponds to a non-empty subset
of the set of 16 random variables in the problem being
considered [see (5) and (6)]. Note that every information
measure (entropy, conditional entropy, mutual information and
conditional mutual information) can be represented as a linear
combination of these joint entropies. These joint entropy terms
can be viewed as the variables in an optimization problem, and
they must satisfy the constraints imposed by the problem, as
well as the more general non-problem-specific constraints.

One particular set of general constraints on joint entropies
are those imposed by the non-negativity of Shannon’s infor-
mation measures, which are collectively called Shannon-type
inequalities [8]. It was shown that without loss of generality,
this set of constraints can be represented by the following
minimal set of constraints for a collection of random variables
X = {X1, X2, . . . , Xn}:

H(Xi|{Xk, k 6= i}) ≥ 0, i ∈ In (28)
I(Xi;Xj |{Xk, k ∈ K}) ≥ 0, where k ∈ In − {i, j}, i 6= j.

(29)
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Note that in our problem X = S ∪ W . It can be seen that
there are a total of 16 +

(
16
2

)
214 = 1966096 constraints in the

problem being considered.
Since all the constraints are linear, without loss of generality,

we can set B = 1. When sweeping through α, for each
instance we shall fix α = α0 ∈ [ 38 ,

1
2 ], and seek to find

the minimum value of β without violating these constraints,
i.e., a lower bound for β when α = α0 and B = 1. In
addition to the 65535 variables representing the joint entropy
terms, an auxiliary variable β is also introduced in the linear
program, which will be the objective function subject to
minimization. More precisely, we shall consider the following
basic optimization problem:

minimize: β
subject to: B = 1

α = α0

constrains (28)-(29)
constraints (7)-(9), (10)-(13). (30)

Note that (11) are redundant constraints given (7) and (10) and
the Shannon-type inequalities, and thus it is not included in
the minimization problem. In this optimization problem, there
are a total 1966096+4+12 = 1966112 inequality constraints
from the Shannon-type inequalities and the constraints (12)-
(13), as well as 4 + 12 + 4 + 1 = 21 equality constraints
from (7)-(9) and (10), after substituting the values of B and
α into the constraints. It is worth noting that the solution for
the above optimization problem is potentially only an outer
bound for the rate region, since it does not take into account
of non-Shannon type inequalities; nevertheless, it turns out for
this problem Shannon-type inequalities are in fact sufficient.

This optimization problem in its basic form is too large for
the existing software packages using Yeung’s LP framework,
i.e., Information Theoretic Inequality Prover (ITIP or XITIP)
[13] [14]. In fact, LP problems at this scale in general, with the
large total number of constraints in this problem in particular,
are on the border of the problems that modern commercial
optimization solvers are able to handle. Depending on the
software library being used, it may take a few hundred hours
without converging. For example, when the popular Cplex
optimization library [15] is used, running the solver for 48
hours (2-thread mode on a multi-core Linux server of CPU
frequency at 2.66GHz) does not yield a solution for the
problem in the basic form, and for any practical purpose it
is safe to deem the problem in this form too complex for the
solver.

B. Dimension Reduction in the Primal Linear Program

To reduce the dimension of the LP problem, we take ad-
vantage of the symmetry and other problem specific structure,
as detailed in the sequel.

Firstly, by the existence of the optimal symmetric solution
(i.e., with a symmetric entropic vector), the number of vari-
ables in the LP problem can be reduced. For example, the
variable representing the entropy term H(W1, S2,3) has the
same value as any variables representing the entropy terms of

the form H(Wi, Sj,k), where i, j, k are distinct elements of
I4. Thus these variables in the LP problem can be eliminated
except one arbitrary member of them. In the above example, if
a variable representing a joint entropy of the form H(Wi, Sj,k)
appears in any equality or inequality constraints, it can be
replaced by the variable representing H(W1, S2,3).

Secondly, recall the equality (11), which is implied by
(7) and (10) through the application of the Shannon-type
inequalities in (29) and (28). This implies that the variables
in the LP problem representing any joint entropy H(A) such
that |A ∩W|≥ 3 is of value B. More generally, consider the
following set growth procedure for a set of random variables
A ⊆ S ∪W:

1) Initialize gr(A) = A;
2) For i = 1, 2, 3, 4: if Wi ∈ gr(A), let gr(A) = gr(A) ∪
{Si,j , Si,j , Si,t} where j, k, t are distinct elements of I4
and not equal to i;

3) For i = 1, 2, 3, 4: if {Sj,i, Sk,i, St,i} ⊆ gr(A), let
gr(A) = gr(A) ∪ {Wi}, where j, k, t are distinct ele-
ments of I4 and not equal to i;

4) If the set gr(A) did not grow in the previous two steps,
exit; otherwise, return to step (2).

It is clear that if the resultant set gr(A) satisfies |gr(A)∩W|≥
3, then H(A) is also of value B. Thus the corresponding
variables in the LP problem can be eliminated.

Moreover, it is clear that the if any two subsets of S ∪W ,
denoted as A and B, satisfy gr(A) = gr(B), then H(A) =
H(B). In other words, these subsets form an equivalent class,
and the variables representing them in the LP problem can
be eliminated except a single arbitrary member of them.
Furthermore, after utilizing the equivalent class relation, the
equality constraints (7)-(9) and (10) can now be completely
eliminated.

Without loss of optimality, the inequality (12) can be taken
to be equality, and thus the variables corresponding to H(Wi)
can be eliminated; similarly the inequality (13) can also be
taken to be equality, and thus the variable corresponds to
H(Si,j) can also be eliminated and replaced by β.

Lastly, with the above reductions of variables in the LP
problem, many inequality constraints become degenerate (i.e.,
in the form of 0 ≥ 0) or repetition of others, and they can be
removed from the set of constraints.

After the above steps, there remain in the LP problem
only a total of 176 variables, and a total of 6152 inequality
constraints, which (i.e., each instance with a fixed α0 value)
can be solved in less than 0.1 second using the Cplex solver
under the same setup as previously mentioned.

C. The Secondary LP

The reduced primal LP problem allows us to trace out
a lower bound for the exact-repair regenerating code rate
region numerically. There are two concerns for this numeric
approach: it is not clear how many values of α we should
choose to accurately trace out the rate region, and the solution
is numerical which implies that the bound such obtained is
only accurate within numerical precision.



7

There are various methods to address these concerns, how-
ever, we wish to find an explicit information theoretic proof
(algebraic proof) for its obvious conceptual advantage. Let us
consider a hypothetical bound that

γαα+ γββ ≥ γBB, (31)

and moreover, the coefficients (γα, γβ , γB) are chosen such
that there exists (α, β,B) triples that satisfy it with equality
under the constraints in the primal problem given in the
previous sub-section. This assumption is equivalent to saying
that this bound is the tightest outer bound that can be obtained
under these constraints.

Recall that the reduced primal LP problem has 176 vari-
ables, and 6152 constraints. Let us consider an expanded
version of the optimization problem where:
• α and B are also variables;
• The objective function subject to minimization is γαα+
γββ − γBB;

• The constraint B = 1 is rewritten as follows (as the first
two constraints when the optimization problem is written
in a matrix form)

B ≤ 1, −B ≤ −1; (32)

• The constraint α = α0 is removed.
Under the assumption aforementioned, this minimization

problem specified above has a solution of zero. The reason
to let B = 1 is to avoid the optimal but less meaningful
all-zero solution, and we wrote it as two inequalities such
that the minimization problem has the following standard LP
form, where (B,α, β) correspond to variables (x1, x2, x3) and
the 175 entropies terms (in the reduced primal LP problem)
correspond to the variables x4, x5, . . . , x178:

minimize: ctx
subject to: Ax ≤ b, (33)

where b and c are both column vectors given as

b = [1,−1, 0, 0, . . . , 0]t

c = [−γB , γα, γβ , 0, 0, . . . , 0]t. (34)

The standard dual problem is thus given by (see [16])

maximize: − btλ
subject to: Atλ+ c = 0 (35)

λ ≥ 0. (36)

Note here λ is a vector of length 6152. Clearly the primal
LP problem has a trivial solution that all joint entropy terms
are equal to B0, and thus it is feasible. This fact further implies
that the stronger duality holds in this case, and there is no
duality gap between the primal and dual problem [16]. The
solution for the dual problem is not unique, but because the
primal LP problem has solution zero, any such solution must
satisfy

−btλ = 0, (37)

which implies that λ1 = λ2. From (35), it is seen then that
(λ3, λ4, . . . , λ6152) in any optimal solution for the dual prob-

TABLE III
THE NON-ZERO TERMS IN THE SECONDARY LP SOLUTION.

y1 H(WiSj,i)
y2 H(WiSj,k)
y3 H(WiSj,iSk,i)
y4 H(WiSj,iSk,j)
y5 H(WiSj,kSt,k)
y6 H(WiSj,iSj,kSk,i)
y7 H(WiWj)
y8 H(WiWjSk,i)

lem leads to an explicit proof of the inequality γαα+ γββ ≥
γBB. This is because each column of the matrix At is a known
information inequality, i.e., either a Shannon-type inequality,
or an inequality implied by the combination of Shannon-type
inequalities and certain problem-specific constraints; therefore,
any non-negative linear combination is a valid information
inequality, where the linear coefficients gives an explicit proof
of the resultant inequality.

Let Ao be the submatrix of A which does not include the
first two rows, i.e., removing the constraints corresponding to
B = 1. The above discussion essentially states that there exists
a vector λo such that Atoλo+ c = 0 for any bound that satisfy
the tightness assumption, and it gives an explicit information
theoretic proof; in other words, using λo as the weights in the
linear combination of the known information inequalities, we
obtain the desired inequality.

Clearly from the procedure discussed in the previous sec-
tion, we wish to prove 4α + 6β ≥ 3B, and for this purpose,
we only need to solve the equality Atoλo + c = 0, where

c = [−3, 4, 6, 0, 0, . . . , 0]t, (38)

and the solution must exists if 4α + 6β ≥ 3B is the tightest
bound under the primal LP constraints.

The solution for this set of equations is not unique, and here
we wish to find one that has the fewest non-zero elements (i.e.,
sparsest solution of λo), which roughly translates to a converse
proof with the fewest derivation steps. This `0 optimization
problem is however NP-hard, but it is well known that the `1
norm can be used to approximate the `0 norm, and thus we
can solve the alternative optimization problem:

maximize:
∑

λi

subject to: Atoλo + c = 0

λ ≥ 0.

This problem is an LP problem, and by solving this secondary
LP problem, we directly obtain an explicit information theo-
retic solution. It should be emphasized that the approximation
is in the sense that the solution thus obtained is not the
sparsest solution that we desired, but not that the proof
is of an approximate nature: any solution of the equalities
Atoλo+c = 0 is a valid explicit information theoretic converse
proof, even if it is not the sparsest.

Only a small subset of the joint entropy terms are in the
solution of this secondary LP problem, as listed in Table III
where we also given them labels y1, y2, . . . , y8 to facilitate
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TABLE IV
THE SOLUTION FOR THE DUAL PROBLEM

B α β y1 y2 y3 y4 y5 y6 y7 y8

7 7 −7
−3 6 −3
1 −1 1 −1

−1 −1 1 1
−1 −1 1 1
−1 −1 1 1

−1 1 1 −1
1 −1

−3 4 6

TABLE V
REWRITING THE SOLUTION FOR THE DUAL PROBLEM

Coefficients Inequalities
7 I(Si,j ;Wk) ≥ 0
3 I(Sk,j ;St,j |Wi) ≥ 0
1 I(Wi;Wj |Si,j) ≥ 0
1 I(Wi;St,k|Wj) ≥ 0
1 I(Wi;WjSk,t|Si,tSj,iWt) ≥ 0
1 I(Wi;Sk,t|Sk,jSt,jWj) ≥ 0
1 I(Sk,i;Sk,j |Sj,iWi) ≥ 0
1 H(St,i|Sk,iWiWj) ≥ 0

subsequent discussion. Here the letters i, j, k, t are used to
denote four distinct indices in the set I4, because by the
symmetry, they may assume any order.

We can now tabulate the solution of the secondary LP
problem, as given in Table. IV, one row corresponding to one
row in Ao, i.e., one basic information inequality as shown in
Table V. The last line in Table. IV is the row summation which
is indeed 4α+6β ≥ 3B. Note that the last inequality of Table
V is also a basic information inequality, but it is not in the form
of (29) because some problem specific reduction discussed in
the previous sub-section has been incorporated. Though this
is already a valid proof, we can manually combine several
inequalities to simplify the proof, and the converse proof given
in the previous section is the result after such further manual
simplifications.

In [8], Yeung showed that all unconstrained Shannon-type
inequalities are linear combinations of elemental Shannon-
type inequalities, i.e., (28) and (29). The approach we have
discussed above can be viewed as a generalization of this
result under additional problem-specific constraints. However,
the introduction of the `1 norm objective function to approxi-
mately find the sparsest linear combination has not been used
previously to investigate information inequalities, and thus it
is a novel ingredient. Moreover, the proof given in [8] relies
on the fact that all joint entropies can be represented by a
linear combinations of the elementary forms of Shannon’s
information measures, which are the left hand sides of (28) and
(29). Since our result is regarding the tightest bounds that can
be obtained using the LP approach, the proof directly follows
from the strong duality without relying on the completeness
of the elementary forms of Shannon’s information measures.

V. CONCLUSION

A complete characterization is provided for the rate region
of the (4, 3, 3) exact-repair regenerating codes, which shows
that the cut-set outer bound [1] is in general not (even
asymptotically) tight for exact-repair. An explicit binary code
construction is provided to show that the given rate region is
achievable. One main novelty of the work is that a computer-
aided proof approach is developed by extending Yeung’s
linear programming framework, and an explicit information
theoretic proof is directly obtained using this approach. We
believe customizing the LP approach to other communication
problems based on similar reduction techniques can be a rather
fruitful path, which appears particularly suitable for research
on storage systems, and thus have presented some related
details in this work.

Although sparsity is used approximately as an objective in
the secondary LP problem, this sparsity is only with respect
to the elementary Shannon-type inequalities (28)-(29), and
thus including more redundant basic Shannon-type inequalities
may lead to even sparser solution. This is already evident in
the algebraic proof given where manual simplification was
taken and some basic inequalities not in (28)-(29) were used.
Including these basic inequalities in the secondary LP will
clearly yield a more sparser solution. It should also be noted
that sparsity only translates roughly to a small number of proof
steps, but does not necessarily lead to a structured proof that
can be extended to general parameter settings.

The result presented in this work revealed that the cut-set
outer bound is in general not tight for exact-repair. Though a
complete solution for the special case of (4, 3, 3) is given, the
rate region characterization problem under general parameters
is still open. Readers may wonder if the procedure given in
Section IV can be used on the general problem, if it funda-
mentally alters the complexity order of the primal optimization
problem. Unfortunately, although a few more cases with small
(n, k, d) values can be tackled this way, the complexity is still
too high for larger parameter values, and the list of information
inequalities involved in the proof is quite large. In fact, running
only the set growth and symmetry determination procedures
alone for each variable is of exponential order in the total
number of random variables. As an on-going work, we are
investigating whether low complexity procedures exist that can
further take into account the symmetry. Through such a general
study, we hope to discover more structure in the converse proof
which may lead to the complete solution of general (n, k, d)
exact-repair regenerating codes.

APPENDIX

Proof of Proposition 1: For any (ᾱ, β̄) that is (4, 3, 3)
exact-repair achievable, there exists for any ε > 0, an
(N,Kd,K) exact-repair regenerating code such that

ᾱ+ ε ≥ logKd

logN
, β̄ + ε ≥ logK

logN
. (39)

Let us for now fix a value ε > 0, and consider an (N,Kd,K)
exact-repair regenerating code satisfy the above conditions,
which may or may not induce a symmetric entropy vector.
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Let the encoding and decoding functions be denoted as: fEi (·),
fDA (·, ·, ·), FEi,j(·), FDi (·, ·, ·), as given in Definition 1. We shall
show that it can be used to construct an (N ′,K ′d,K

′) =
(N24,K24

d ,K
24) code that induces a symmetric distortion

vector, which clearly satisfies (39), and the proof will be
completed by making ε arbitrarily small.

Let the 24 distinct permutations of I4 be π1, π2, . . . , π24,
and let their inverse function be π−11 , π−12 , . . . , π−124 . The new
encoding and decoding functions can be written as

f̂Ei

(
x(1), x(2), . . . , x(24)

)
=

24∏
k=1

fE
π−1
k (i)

(
x(k)

)
,

f̂DA

(
(x

(1)
1 , x

(1)
2 , x

(1)
3 ), . . . , (x

(24)
1 , x

(24)
2 , x

(24)
3 )

)
=

24∏
k=1

fD
π−1
k A

(
x
(k)
1 , x

(k)
2 , x

(k)
3

)
,

F̂Ei,j

(
x(1), x(2), . . . , x(24)

)
=

24∏
k=1

FE
π−1
k (i),π−1(j)

(
x(k)

)
,

F̂Di

(
(x

(1)
1 , x

(1)
2 , x

(1)
3 ), . . . , (x

(24)
1 , x

(24)
2 , x

(24)
3 )

)
=

24∏
k=1

FD
π−1
k (i)

(
x
(k)
1 , x

(k)
2 , x

(k)
3

)
. (40)

Because of the symmetry of the new encoding and decoding
functions, it is clear by utilizing (4) that they indeed induce a
symmetric entropy vector, according to Definition 4. The zero-
error decoding and repair requirements are satisfied because
the original code is able to accomplish them. The proof is thus
complete.
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