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Abstract—Motivated by distributed storage applications, we
investigate the degree to which capacity achieving encodings can
be efficiently updated when a single information bit changes, and
the degree to which such encodings can be efficiently (i.e., locally)
repaired when single encoded bit is lost.

Specifically, we first develop conditions under which optimum
error-correction and update-efficiency are possible, and establish
that the number of encoded bits that must change in response to
a change in a single information bit must scale logarithmically in
the block-length of the code if we are to achieve any nontrivial
rate with vanishing probability of error over the binary era sure
or binary symmetric channels. Moreover, we show there exist
capacity-achieving codes with this scaling.

With respect to local repairability, we develop tight upper and
lower bounds on the number of remaining encoded bits that are
needed to recover a single lost bit of the encoding. In particular,
we show that if the code-rate isǫ less than the capacity, then
for optimal codes, the maximum number of codeword symbols
required to recover one lost symbol must scale aslog 1/ǫ.

Several variations on—and extensions of—these results are
also developed.

Index Terms—error-control coding, linear codes, locally up-
datable codes, locally recoverable codes, low-density generator
matrix codes, low-density parity check codes

I. I NTRODUCTION

There is a growing need to provide reliable distributed
data storage infrastructure in highly dynamic and unreliable
environments. Storage nodes (servers) can switch between on-
and off-line frequently, due to equipment failures, breaksin
connectivity, and maintenance activity. Corruptions of the data
can also arise. Furthermore, the data itself is often changing
frequently, requiring the constant updating of storage nodes.

These characteristics place additional demands on the error-
control coding typically considered for such systems, and
there are important questions about the degree to which those
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demands can be accommodated, which the community has
begun to investigate in recent years.

In this paper, we focus on two specific such demands. The
first is that the coding beupdate-efficientor locally-updatable,
i.e., that small changes in the data require only small changes
in its coded representation. The second is that the coding be
locally-repairableor recovery-efficient, i.e., that small portions
of the coded representation that are lost can be recovered from
correspondingly small portions of the rest of the encoding.The
degree to which these demands can be accommodated affects
the bandwidth and energy consumption requirements of such
infrastructure.

A. Update-Efficiency

While the notion of update-efficiency is implicit in work on
array codes—see, for example, [17], [34]—the first substantial
analysis of update-efficiency appears in [2].

When changes in the data are significant, then updating a
linear fraction of the encoding is unavoidable for capacity-
approaching codes. However, when the changes are incre-
mental, updating a sublinear fraction of the encoding can be
sufficient. For example, [2] considers codes over a binary
alphabet and shows the existence of a code that achieves
the capacity of the binary erasure channel (BEC) with the
property that any single-bit change in the message requires
only a logarithmic (in the blocklength) number of bits to be
updated in the codeword.

Among related work, [19] examines the update-efficiency of
codes with structure—specifically, random linear codes—and
[30], in the context of distributed storage, shows that using
the randomized codes proposed in [2] it is possible to have
capacity-achieving update-efficient codes for the BEC thatalso
minimize a particular measure of the bandwidth required to
replace coded data lost as the result of a node failure.1

In this paper, we begin with a brief discussion of update-
efficient codes that can correct arbitrary sets of (adversarial)
errors/erasures, since such adversarial models are common
in current storage applications. In this case, update-efficiency
and error-correctability are directly conflicting properties. In
particular, it is impossible to correct more than∼ t/2 errors
(or∼ t erasures) with a code that needs at mostt bits of update
for any single-bit change in the message. This is because the
minimum pairwise distance between the codewords (i.e., the
minimum distanceof the code) is upper bounded byt. We
discuss several properties of linear codes that are useful for

1This notion of repair bandwidth turns out to be somewhat different than
the notion of local repairability we describe in Section I-B.
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constructing good update-efficient adversarial-error-correcting
codes, i.e., codes that achieve the best possible tradeoff.
Perhaps the most interesting observation for this scenario
is that if there exists a linear code with a given rate and
minimum distance, then there exists another linear code with
same parameters that is as update-efficient as possible.

For the remainder of our development on update-efficiency,
we then turn our attention to the random failure model, where
much betteraverageperformance is possible. We begin with
a simple derivation of one of the main propositions of [2], i.e.,
that there exist linear codes that achieve the capacity of the
BEC such that for any single-bit change in the message, only
O(log n) bits have to be updated in a codeword of lengthn.
However, our main result is the converse statement: we show
that if a linear code of positive rate achieves arbitrarily small
probability of error over a BEC, then a single-bit change in
the message must incur an updating ofΩ(log n) bits in the
codeword. In addition, we estimateγ > 0 such that there
cannot exist a linear code with positive rate and arbitrarily
small probability of error that requires fewer thanγ logn bit
updates in the codeword per single bit change in the message.

B. Local Repairability

The potential for a code to be locally-repairable—which is,
in some sense, a notion dual to that of update-efficiency—was
first analyzed in [12].

For significant losses of codeword symbols, the minimum
distance properties of the code naturally characterize the
worst-case requirements to repair the encoding. However, the
ability to repair smaller losses depends on other properties of
the code. For example, [12] shows that it is possible to recover
any single symbol of any codeword from at most a constant
number of other symbols of the codeword, i.e., a number of
symbols that does not grow with the length of the code.

From this perspective, in practice one might hope to have
codes with both a large minimum distance and that require
the fewest number of other symbols to recover single symbol
losses.

To this end, [12], [28] consider locally repairable codes that
also correct a prescribed number of adversarial errors (or era-
sures), and develop a trade-off between the local repairability
and error-correctability. In particular, it is shown that for a
q-ary linear code (q ≥ 2) of blocklengthn, the minimum
distanced satisfies

d ≤ n− k −
⌈

k

r

⌉

+ 2,

where k is the code dimension andr symbols required to
reconstruct a single symbol of the code (referred to as the
local repairability)..

Such results can be generalized to nonlinear codes of any
desired alphabet size. Indeed, [6] shows that for anyq-ary code
with sizeM , local repairabilityr, and minimum distanced,
we have

logM ≤ min
1≤t≤⌈ n

r+1⌉

[

tr + logAq(n− t(r + 1), d)
]

, (1)

whereAq(n, d) is the maximum size of aq-ary code of length
n and distanced.

It should be noted that, in contrast to the case of update-
efficiency, which requires a number of codewords to be close
to each other, there is no immediate reason that a code
cannot have both good local repairability and good error-
correctability. Perhaps not surprisingly, there has, in turn, been
a growing literature exploring locally repairable codes with
other additional properties; see, e.g., [21], [29], [33].

In this paper, we focus on probabilistic channel models
that take into account the statistics of node failure, and
optimize average performance. To the best of our knowledge
the associated capacity results for locally repairable codes have
yet to be developed. Indeed, the analysis of local repairability
in the existing literature is almost invariably restrictedto
an adversarial model for node failure. While combinatorially
convenient, there is no guarantee the resulting codes are good
in an average sense.

In our development, we first show that it is possible to
construct codes operating at a rate withinǫ of the capacity
of the BEC that have both local repairabilityO(log 1/ǫ) and
an update-efficiency scaling logarithmically with the block-
length. However, our main result in this part of the paper is
a converse result establishing that the scalingO(log 1/ǫ) is
optimal for a BEC—specifically, we establish that if the rate
of a code that achieves arbitrarily small probability of error
over a BEC isǫ below capacity, then the local repairability is
Ω(log 1/ǫ).

C. Channels with Errors

Most of our development focuses on the case of “hard”
node failures that result data loss. However, in some scenarios
node failures are “softer”, resulting in data corruption. While
the BEC is a natural model for the former, it is the binary
symmetric channel (BSC) that is the corresponding model for
the latter. Much, but not all, of our development carries over
to the case of the BSC.

In particular, our results on the existence of capacity-
achieving codes that are both update-efficient and locally
repairable also hold for the BSC. Likewise, our converse result
for update-efficient linear codes also holds the BSC. However,
we have an additional converse result for general codes that
applies only to the BSC, and our converse result for local
repairability applies only to the BEC.

D. Organization

The organization of the paper is as follows. Section II
establishes notation that will be used throughout the paper.
In Section III, we discuss the worst-case error-correction
capability of an update-efficient code. In Section IV we
show that there exist linear codes of lengthn and rate
ǫ less than capacity, with update-efficiency logarithmic in
blocklength and local repairabilityO(log 1/ǫ). In Section V,
our main impossibility results for capacity-achieving update-
efficient codes are presented. Subsequently, in Section VI we
address the local repairability of capacity-achieving codes and
deduce a converse result that matches the achievability part.
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In Section VII, we give a generalized definition of update
efficient codes. In Section VIII we note that the notions of
update-efficiency and local repairability are also applicable to
source coding, i.e., data compression, and we briefly discuss
the associated dual problem of lossy source coding in the
context of update-efficiency and local recoverability. Finally,
Section IX contains some concluding remarks.

II. D EFINITIONS AND NOTATION

First, we use BEC(p) to denote a binary erasure channel
with loss probabilityp, which has capacity1−p. Analogously,
we use BSC(p) to denote a binary symmetric channel with
crossover probabilityp, which has capacity1− hB(p) where
hB(p) = −p log2(p)−(1−p) log2(1−p) is the binary entropy
function.

Next, for our purposes acode C ∈ F
n
2 is a collection

of binary n-vectors. Thesupport of a vectorx (written as
supp(x)) is the set of coordinates wherex has nonzero values.
By the weightof a vector we mean the size of support of the
vector. It is denoted aswt(·). All logarithms are base-2 unless
otherwise indicated.

Let M be the set of all possible messages. Usually ac-
companied with the definition of the code, is an injective
encoding mapφ : M → C, which defines how the messages
are mapped to codewords. In the following discussion, let us
assumeM = F

k
2 . In an update-efficient code, for allx ∈ F

k
2 ,

and for alle ∈ F
k
2 : wt(e) ≤ u, we haveφ(x+e) = φ(x)+e

′,
for somee′ ∈ F

n
2 : wt(e′) ≤ t. A special case of this is

captured in the following definition.
Definition 1: The update-efficiencyof a codeC and the

encodingφ, is the maximum number of bits that needs to
be changed in a codeword when a single bit in the message
is changed. A code(C, φ) has update-efficiencyt if for all
x ∈ F

k
2 , and for all e ∈ F

k
2 : wt(e) = 1, we have

φ(x+ e) = φ(x) + e
′, for somee′ ∈ F

n
2 : wt(e′) ≤ t.

A linear codeC ∈ F
n
2 of dimensionk is a k-dimensional

subspace of the vector spaceFn
2 . For linear codes the mapping

φ : F
k
2 → C is naturally given by agenerator matrix:

φ(x) = x
TG, for any x ∈ F

k
2 . There can be a number

of generator matrices for a codeC, which correspond to
different labelings of the codewords. By an[n, k, d] code we
mean a linear code with lengthn, dimensionk and minimum
(pairwise) distance between the codewordsd. Linear codes
form the most studied classes of error-correcting codes, and
have a number of benefits in terms of representation and
encoding and decoding complexity.

For a linear code, when changing one bit in the message,
the maximum number of bits that need to be changed in the
codeword is the maximum over the weights of the rows of
the generator matrix. Hence, for an update-efficient code, we
need a representation of the linear code where the maximum
weight of the rows of the generator matrix is low.

Proposition 1: A linear codeC will have update-efficiencyt
if and only if there is a generator matrixG of C with maximum
row weight t.

Proof: It is easy to see that if the maximum number of
ones in any row is bounded above byt, then at mostt bits
need to be changed to update one bit change in the message.

On the other hand if the code has update-efficiency
t then there must exist a labelingφ that gives a
sparse generator matrix. Specifically, each of the vectors
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0 . . . , 1) ∈ F

k
2 must produce

codeword of weight at mostt underφ. Therefore, the generator
matrix given byφ will have row weight at mostt.
This implies, given a linear code, to see whether it is update-
efficient or not, we need to find the sparsest basis for the code.
A linear code with a sparse basis is informally called alow
density generator matrix (LDGM)code.

There are a number of different ways that local recovery
could be defined. The simplest is perhaps the one given below,
which insists that for each codeword symbol, there is a set ofat
mostr codeword positions that need to be queried to recover
the given symbol with certainty. A weaker definition could
allow adaptive queries, i.e., the choice of whichr positions
to query could depend on the values of previously queried
symbols. Finally, one could ask that instead of obtaining the
value of the codeword symbol with certainty, one obtains
the value with some probability significantly higher than.5
(probabilistic recovery). We sketch all the arguments in this
paper for the simplest definition, i.e., Defn. 2. The resultscan
be extended to probabilistic recovery without much change in
the argument.

Definition 2: A codeC ⊂ F
n
2 has local recoverabilityr, if

for any x = (x1, . . . , xn) ∈ C and for any1 ≤ i ≤ n, there
exists a functionfi : Fr

2 → F2 and indices1 ≤ i1, . . . , ir ≤
n, ij 6= i, 1 ≤ j ≤ r, such thatxi = fi(xi1 , . . . , xir ).

A generator matrixH of the null-space of a linear codeC
is called a parity-check matrix forC. It is to be noted that for
anyx ∈ C, Hx = 0. A low density parity-check(LDPC) code
is a linear code with a parity check matrix such that each row
of the parity check matrix has a small (constant) number of
nonzero values. The following proposition is immediate.

Proposition 2: If the maximum row-weight of a parity-
check matrix of a code isr, then the code has local recover-
ability at mostr.

Hence, LDPC codes are locally recoverable. We note that
this is almost a necessary condition for local recoverability.
To make this a necessary condition, one needs to consider not
just rows of the parity check matrix, but the entire dual code.
A necessary condition for local recoverability is that the dual
code contains low weight codewords whose supports cover
any of then coordinates.

III. A DVERSARIAL CHANNELS

The adversarial error model is ubiquitously studied in the
storage literature. In an adversarial error model, the channel
is allowed to introduce up tos errors (or2s erasures), and
the location of these errors can be chosen by an adversary. It
is known that to corrects errors (2s erasures), the minimum
distance of the code needs to be at least2s+1. However, if a
code has update-efficiencyt, then there must exist two (in fact,
many more) codewords that are within distancet of each other.
Hence, small update-efficiency implies poor adversarial error
correction capability, and we cannot hope to find good codes
if we adopt an adversarial error model. Nevertheless, before
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moving on to the main results of the paper, we briefly digress
to make some observations of theoretical interest regarding
adversarial error models.

In a code with minimum pairwise distance between code-
words d, the update-efficiency has to be at leastd, because
the nearest codeword is at least distanced away. That is, if
the update-efficiency of the codeC is denoted byt(C), then

t(C) ≥ d(C),

whered(C) is the minimum distance of the code. The main
observation we would like to make in this section is that
the above bound is in fact achievable with the best possible
parameters of a linear code. We have seen in Section II that for
a linear codeC, the update-efficiency is simply the weight of
the maximum weight row of a generator matrix. The following
theorem is from [10].

Theorem 3:Any binary linear code of lengthn, dimension
k and distanced has a generator matrix consisting of rows of
weight≤ d+ s, where

s =
(

n−
k−1
∑

j=0

⌈ d

2j

⌉)

is a nonnegative integer.
The fact thats is a non-negative integer also follows from
the well-known Griesmer bound [24], which states that for
any linear code with dimensionk, distanced, and lengthn ≥
∑k−1

j=0⌈d/2j⌉.
Corollary 4: For any linear[n, k, d] codeC with update-

efficiencyt,

d ≤ t ≤ d+
(

n−
k−1
∑

j=0

⌈ d

2j

⌉)

.

It is clear that for codes achieving the Griesmer bound with
equality, the update-efficiency is exactly equal to the minimum
distance, i.e., the best possible. There are a number of families
of codes that achieve the Griesmer bound. For examples of
such families and their characterizations, we refer the reader
to [5], [14].

Example:SupposeC is a [n = 2m − 1, k = 2m − 1−m, 3]
Hamming code. For this code

t(C) ≤ 3+ (n− 3− 2− (k− 2)) = n− k = m = log(n+1).

One can easily achieve update-complexity1 + log(n + 1)
for Hamming codes. Simply bring anyk × n generator
matrix of Hamming code into systematic form, resulting in
the maximum weight of a row being bounded above by
1+(n−k) = 1+log(n+1). This special case was mentioned
in [2]. This can also be argued from the point of view that
as the generator polynomial of a Hamming code (cyclic code)
has degreem, the maximum row-weight of a generator of a
Hamming code will be at mostm+ 1 = log(n+ 1) + 1.

However, we can do even better by explicitly constructing
a generator matrix for the Hamming code in the following
way. Let us index the columns of the generator matrix by
1, 2, . . . , 2m − 1, and use the notation(i, j, k) to denote the
vector with exactly three1’s, located at positionsi, j, andk.

Then, the Hamming code has a generator matrix given by
the row vectors(i, 2j, i + 2j) for 1 ≤ j ≤ m − 1, 1 ≤ i <
2j. This shows that for alln, Hamming codes have update-
efficiency only3. To prove this without explicitly constructing
a generator matrix, and to derive some other consequences, we
need the following theorem by Simonis [32].

Theorem 5:Any [n, k, d] binary linear code can be trans-
formed into a code with the same parameters that has a
generator matrix consisting of only weightd rows.
The implication of this theorem is the following: if there exists
an[n, k, d] linear code, then there exists an[n, k, d] linear code
with update-efficiencyd. The proof of [32] can be presented
as an algorithm that transforms any linear code, given its
parameters[n, k, d] and a generator matrix, into an update-
efficient linear code (a code with update-efficiency equal
to the minimum distance). The algorithm, in time possibly
exponential inn, produces a new generator matrix with all
rows having weightd. It is of interest to find a polynomial
time (approximation) algorithm for the procedure, that is,a
generator matrix with all rows having weight withind(1 + ǫ)
for some smallǫ.

On the other hand, the above theorem says that there exists
a linear [n = 2m − 1, k + 2m − 1 − m, 3] code that has
update-efficiency only3. All codes with these parameters are
equivalent to the Hamming code with the same parameters up
to a permutation of coordinates [16], providing an alternate
proof that Hamming codes have update-efficiency3.

Analysis of update-efficiency for BCH codes and other
linear codes is of independent interest. In general, findinga
sparse basis for a linear code given its generator matrix seems
to be a hard problem, although the actual complexity class
of the problem merits further investigation. Recently, a sparse
basis is presented for2-error-correcting BCH codes in [13].

We emphasize that the previous remarks, although of the-
oretical interest, are fairly strong negative results suggesting
that update efficiency and error correction are fundamentally
incompatible requirements. Although this is the case for ad-
versarial models, if we allow randomization so that the code
can be chosen in a manner unknown to the adversary, then it
is possible to fool the adversary. In fact, with a randomized
code it is possible to correctpn adversarial errors with a code
rate close to the capacity of BSC(p) using ideas put forward in
[23]. The randomized code can be chosen to simultaneously
have good update efficiency, as shown in the case of erasure
channels by [2]. In the rest of the paper, instead of choosing
a code at random to fool an adversary, we consider the
classical information theoretic scenario of a random, rather
than an adversarial, channel, although we note that our results
easily extend to the case of using randomization to defeat an
adversary.

IV. EXISTENCE OF GOOD CODES

In this section, our aim is to show, in a rather simple way,
that there exist linear codes of lengthn that

1) have rateǫ less than capacity,ǫ > 0,
2) achieve arbitrarily small probability of error,
3) have update-efficiencyO(log n) and
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4) have local recoverabilityO(log 1/ǫ).
It is relatively easy to construct a code with local recov-

erability O(log 1/ǫ) that achieves capacity over the BSC or
BEC with anǫ gap. One can in principle choose the rows of
the parity-check matrix randomly from all low weight vectors,
and argue that this random ensemble contains many codes that
achieve the capacity of the binary symmetric channel (BSC)
up to an additive termǫ. Indeed, LDPC codes achieve the
capacity of the binary symmetric channel [11].

Similarly, one may try to construct a low row-weight
generator matrix randomly to show that the ensemble average
performance achieves capacity. In this direction, some steps
have been taken in [20]. However, these constructions fail to
achieve local recoverability and update-efficiency simultane-
ously. Also, in [3], parallel to a part of our work [25], a
rateless code construction was proposed that achieves both
O(log k) update-efficiency and local repairability,k being the
dimension of the code. Below, we describe one simple and
intuitive construction that simultaneously achievesO(log k)
update efficiency andO(log 1/ǫ) local repairability, whereǫ
is the gap to capacity.

It is known that for for everyǫ > 0 and any sufficiently large
m, there exists a linear code of lengthm and rate1−hB(p)−ǫ
that has probability of incorrect decoding at most2−E(p,ǫ)m.
There are numerous evaluations of this result and estimatesof
E(p, ǫ) > 0. We refer the reader to [4] as an example. Below,
m,n,mR, nR, n/m are assumed to be integers. Floor and
ceiling functions should be used where appropriate. However,
we avoid using them to maintain clarity in the argument, unless
the meaning is not obvious from the context.

Let m = (1+α) logn
E(p,ǫ) , ǫ, α > 0. We know that for sufficiently

largen, there exists a linear codêC given by themR × m
generator matrixĜ with rate R = 1 − hB(p) − ǫ that has
probability of incorrect decoding at most2−E(p,ǫ)m.

Let G be thenR× n matrix that is the Kronecker product
of Ĝ and then/m× n/m identity matrixIn/m, i.e.,

G = In/m ⊗ Ĝ.

Clearly a codeword of the codeC given by G is given by
n/m codewords of the codêC concatenated side-by-side. The
probability of error ofC is therefore, by the union bound, at
most

n

m
2−E(p,ǫ)m =

nE(p, ǫ)

(1 + α)n1+α logn
=

E(p, ǫ)

(1 + α)nα logn
.

However, notice that the generator matrix has row weight
bounded above bym = (1 + α)/E(p, ǫ) logn. Hence,
we have constructed a code with update-efficiency(1 +
α)/E(p, ǫ) logn, and rate1 − hB(p) − ǫ that achieves a
probability of error less thanE(p, ǫ)/[(1+α)nα logn] over a
BSC(p).

We modify the above construction slightly to produce codes
that also possess good local recoverability. It is known that
LDPC codes achieve a positive error-exponent. That is, for
everyǫ > 0 and any sufficiently largem, there exist an LDPC
code of lengthm and rate1 − hB(p) − ǫ that has check
degree (number of1s in a row of the parity-check matrix)
at mostO(log 1/ǫ), and probability of incorrect decoding at

most 2−EL(p,ǫ)m, for someEL(p, ǫ) > 0 2. This code will
be chosen aŝC in the above construction, and̂G can be any
generator matrix for̂C.

The construction now follows without any more changes.
We have,m = (1 + α)/EL(p, ǫ) logn, an integer,ǫ, α > 0,
andG = In/m ⊗ Ĝ.

Now, the generator matrix has row weight bounded above by
m = (1+α)/EL(p, ǫ) logn. So, the code has update-efficiency
(1 + α)/EL(p, ǫ) logn, rate 1 − hB(p) − ǫ, and achieves
probability of error less thanEL(p, ǫ)/[(1 + α)nα logn] over
a BSC(p).

Moreover, the parity-check matrix of the resulting code will
be block-diagonal, with each block being the parity-check
matrix of the codêC. The parity-check matrix of the overall
code has row-weightO(log 1/ǫ). Hence, any codeword symbol
can be recovered from at mostO(log 1/ǫ) other symbols by
solving one linear equation. Therefore, we have the following
result.

Theorem 6:There exists a family of linear codesCn of
length n and rate1 − hB(p) − ǫ, that have probability of
error over BSC(p) going to 0 as n → ∞. These codes
simultaneously achieve update-efficiencyO(log n/EL(p, ǫ))
and local recoverabilityO(log 1/ǫ).

Hence, it is possible to simultaneously achieve local recov-
ery and update-efficiency with a capacity-achieving code on
BSC(p). But note that, this came with a price: namely, the
decay of probability of error has become only polynomial as
opposed to being exponential. A similar result is immediate
for BEC(p).

V. I MPOSSIBILITY RESULTS FOR UPDATE-EFFICIENCY

In this section, we show that for suitably smallγ, no
code can simultaneously achieve capacity and have update-
efficiency better thanγ logn, n blocklength. More precisely,
we give the following converse results.

1) Linear codes.Linear codes of positive rate cannot
have arbitrarily small probability of error and update-
efficiency better thanγ1(p) logn, γ1(p) > 0 when used
over the BEC (Thm. 7). Since a BSC is degraded
with respect to a BEC, this result implies same claim
for BSC as well. To see that BSC(p) is a degraded
version of a BEC with erasure probability2p, one can
just concatenate BEC(2p) with a channel with ternary
input {0, 1, ?} and binary output{0, 1}, such that with
probability1 the inputs{0, 1} remain the same, and with
uniform probability? goes to{0, 1}.

2) General codes.Any (possibly non-linear) code with
positive rate cannot have update-efficiency better than
γ2(p) logn, γ2(p) > 0, and vanishing probability of
error when transmitted over BSC. The value ofγ2(p)
that we obtain in this case is larger thanγ1(p) of linear
codes; moreover this result applies to more general codes
than the previous (Thm. 8). But we have not been able to
extend it to the BEC. It could be interesting to explore

2 There are several works, such as [11], [26], that discuss this result. For
example, we refer the reader to see Thm. 7 and Eqn. (17) of [26]for a
derivation of the fact.
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Fig. 1. The plot of constant factors oflnn from Theorems 7, 8 and 10.
The fact that the bound for linear codes appears below the bound for general
codes is a artifact of the bounding technique: the bound for general codes is
not extendable to BEC, but the bound for linear codes is.

whether nonlinear codes of positive rate must have at
least logarithmic update efficiency for the BEC.

3) LDGM ensemble.We also show that for the en-
semble of LDGM codes with fixed row-weight
γ3(p) logn, γ3(p) > 0, almost all codes have probability
of error ∼ 1 when transmitted over a BSC (Thm. 10).
The value ofγ3(p) in this case is much larger than the
previous two cases.

A plot providing the lower bound on update-efficiency
of “good” codes is presented in Fig. 1. In this figure, the
values ofα, the constant multiplier oflnn, as a function of
BSC flip probability p is plotted. The plot contains results
of Theorems 7, 8 and 10. Note thatγ1(p), γ3(p) → ∞ as
p → 1/2 for general codes (Theorem 8) and the LDGM
ensemble (Theorem 10).

A. Impossibility result for linear codes

The converse result for linear codes used over a binary
erasure channel is based on the observation that when the
update-efficiency is low, the generator matrixG is very sparse,
i.e., every row ofG has very few non-zero entries. Let the
random subsetI ∈ {1, . . . , n} denote the coordinates not
erased by the binary erasure channel. LetGI denote the
submatrix ofG induced by the unerased received symbols,
i.e., the columns ofG corresponding toI. Then, becauseG is
sparse, it is quite likely thatGI has several all zero rows, and
the presence of such rows implies a large error probability.
We formalize the argument below.

Theorem 7:Consider using some linear code of lengthn,
dimensionk and update-efficiencyt, specified by generator
matrix G over BEC(p). Hence, all rows ofG have weight at
most t. Assume that for someǫ > 0,

t <
ln k2

2n ln(1/ǫ)

2 ln 1
p

.

Then, the average probability of error is at least1/2− ǫ.
Proof: For linear codes over the binary erasure channel,

analyzing the probability of error essentially reduces to analyz-
ing the probability that the matrixGI induced by the unerased
columns ofG has rankk (note that the rank is computed over
F2). To show that the rank is likely to be less thank for
sufficiently smallt, let us first compute the expected number
of all zero rows ofGI . Since every row ofG has weight at
mostt, the expected number of all zero rows ofGI is at least
kpt. The rank ofGI , rank(GI), is at mostk minus the number
of all zero rows, so the expected rank ofGI is at mostk−kpt.

Now, observe that the rank is a1-Lipschitz functional
of the independent random variables denoting the erasures
introduced by the channel. Therefore, by Azuma’s inequality
[1, Theorem 7.4.2], the rank ofGI satisfies

Pr(rank(GI) ≥ E rank(GI) + λ) < e−
λ2

2n .

Therefore,

Pr(rank(GI) ≥ k − kpt + λ) < e−
λ2

2n .

In particular, substitutingλ = kpt,

Pr(rank(GI) = k) < e−
k2p2t

2n .

Assuming the value given fort, we see that

Pr(rank(GI) = k) < ǫ.

Since even the maximum likelihood decoder makes an error
with probability at least0.5 when rank(GI) < k, this shows
that when

t <
ln k2

2n ln(1/ǫ)

2 ln 1
p

,

the probability of error is at least1/2− ǫ. (In fact, the average
error probability converges to 1. The above argument can
easily be extended to show that the probability of decoding
successfully is at moste−Ω(kδ/ log k) for someδ > 0, but we
omit the details.)

B. Impossibility for general codes

Now, we prove that even nonlinear codes cannot have
low update-efficiency for the binary symmetric channel. The
argument is based on a simple observation. If a code has
dimensionk and update-efficiencyt, then any given codeword
hask neighboring codewords within distancet, corresponding
to thek possible single-bit changes to the information bits. Ift
is sufficiently small, it is not possible to packk+1 codewords
into a Hamming ball of radiust and maintain a low probability
of error.

Theorem 8:Consider using some (possibly non-linear)
code of lengthn, size 2k, k ∈ R+, and update-efficiencyt
over BSC(p). Assume thatt ≤ (1 − α) log k/ log((1− p)/p),
for someα > 0. Then, the average probability of error is at
least1−o(1), whereo(1) denotes a quantity that goes to zero
ask → ∞.

Proof: First, we show that a code consisting ofk + 1
codewords contained in a Hamming ball of radiust has large
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probability of error. Instead of analyzing BSC(p), consider the
closely related channel where exactlyw uniformly random
errors are introduced, wherew + t ≤ n/2. For this channel,
subject to the constraint that thek+1 codewords are contained
in a Hamming ball of radiust, the average probability of error
is at least

1−
(2t+ 1)

(

n
w+t

)

(k + 1)
(

n
w

) ≥ 1− 2t(n− w)t

kwt
.

To see this, takex1, . . . ,xk+1 to be the codewords, and
Bi, i = 1, . . . , k+1, to be the corresponding decoding regions.
Without loss of generality, we can assume that 1) the ML
decoder is detetrministic, so theBi’s are all disjoint, and 2)
the codewords are all contained in a Hamming ball centered
at the zero vector. Now, letDi be the set of possible outputs
of the channel for inputxi, i = 1, . . . , k + 1. The average
probability of correct decoding is

1

k + 1

k+1
∑

i=1

|Bi ∩Di|
(

n
w

) =
1

k + 1

| ∪i (Bi ∩Di)|
(

n
w

) ≤ | ∪i Di|
(k + 1)

(

n
w

) .

But

| ∪i Di| ≤
t

∑

j=−t

(

n

w + j

)

≤ (2t+ 1)

(

n

w + t

)

.

The first inequality follows because an erroneous vector can
have weight at leastw − t and at mostw + t. The second
inequality follows because

(

n
i

)

increases withi ≤ n/2.

Now, with probability at least1−o(1), the number of errors
introduced by the the binary symmetric channel is at least
pn − n2/3 and at mostpn + n2/3, and the error vectors are
uniformly distributed3.

If t ≤ (1− α) log k/ log((1 − p)/p), then forp < 1
2 , pn+

n2/3+ t < n/2, for every sufficiently largen. And, therefore,
the probability of error on the binary symmetric channel is at
least

1− 2t(1− p)t

kpt
+ o(1) = 1− 2t/kα + o(1).

Now, for each messagex of the given(n, k) code with
update-efficiencyt, consider the subcodeCx consisting of the
k+1 codewordsφ(x), φ(x+e1), . . . , φ(x+ek), corresponding
to the encodings ofx and thek messages obtained by changing
a single bit ofx. These codewords lie within a Hamming ball
of radiust centered aroundφ(x). The above argument shows
that even a maximum likelihood decoder has a large average
probability of error for decoding the subcodeCx. Let us call
this probabilityPCx

. We claim that the average probability of
error of the codeC with maximum likelihood decoding,PC,
is at least the average, over allx, of the probability of error
for the codeCx, up to some factor. In particular,

PC ≥ k

n

1

|C|
∑

x∈C

PCx
.

3This, of course, follows from standard large deviation inequalities such as
Chernoff bound. For example, see textbook [9, Thm. 3.1.2].

We will now prove this claim and thus the theorem. Note that
PC = 1/|C|∑

x∈C
Px, wherePx is the probability of error if

codewordx is transmitted. Therefore,

PCx
=

1

|Cx|
∑

y∈Cx

Py.

We have,

1

|C|
∑

x∈C

PCx
≤ 1

|C|
∑

x∈C

1

|Cx|
∑

y∈Cx

Py

=
1

(k + 1)|C|
∑

x∈C

∑

y∈Cx

Py

=
1

|C|
∑

x∈C

dx
k + 1

Px,

wheredx = |{y : x ∈ Cy}| ≤ n. Hence,

1

|C|
∑

x∈C

PCx
≤ 1

|C|
∑

x∈C

n

k + 1
Px =

n

k + 1
PC.

We conclude that the original codeC has probability of error
at least1− o(1) when

t ≤ (1− α) log k

log(1−p
p )

.

Remark 1:This argument does not work for the binary
erasure channel. In fact, there exist zero rate codes for the
binary erasure channel with vanishing error probability and
sub-logarithmic update-efficiency. Specifically, consider an
encoding fromk bits to 2k bits that maps a messagex to the
string consisting of all0’s except for a single1 in the position
with binary expansionx. Repeat every symbol of this stringc
times to obtain the final encodingφ(x). The update-efficiency
is 2c, since every codeword has exactlyc 1’s, and different
codewords never have a nonzero entry in the same position.
Since the location of a nonzero symbol uniquely identifies the
message, the error probability is at most the probability that
all c 1’s in the transmitted codeword are erased, i.e., at most
pc. Therefore, we achieve vanishing error probability as long
asc → ∞, andc can grow arbitrarily slowly.

We conjecture that for positive rates, even nonlinear codes
must have logarithmic update complexity for the binary era-
sure channel.

C. Ensemble of LDGM codes

Let us motivate the study of one particular ensemble of
LDGM codes here. Suppose we want to construct a code with
update-efficiencyt. From proposition 1, we know that a linear
code with update-efficiencyt always has a generator matrix
with maximum row weightt. For simplicity we consider
generator matrices with all rows having weight exactlyt. We
look at the ensemble of linear codes with such generator
matrices, and show that almost all codes in this ensemble
are bad fort less than certain value. Note that anyk × n
generator matrix with row weight at mostt can be extended
to a generator matrix with block-lengthn + t − 1 and row
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weight exactlyt (by simply padding necessary bits in the last
t− 1 columns).

Let Γn,k,t be the set of allk×n matrices overF2 such that
each row has exactlyt ones. First of all, we claim that almost
all the matrices inΓn,k,t generate codes with dimensionk (i.e.,
the rank of the matrix isk). Indeed, we quote the following
lemma from [7].

Lemma 9:Randomly and uniformly choose a matrixG
from Γn,k,t. If k ≤

(

1 − e−t/ ln 2 − o(e−t)
)

n, then with

probability1− o(1) the rank ofG is k.
This lemma, along with the next theorem, which is the main
result of this section, will show the fact claimed at the start
of this section.

Theorem 10:Fix an 0 < α < 1/2. For at least a
1−t2n2α/(n−t) proportion of the matrices inΓn,k,t, k ≥ nα,
the corresponding linear code has probability of error at
least nα2−λpt/

√
t over a BSC(p), for p < 1/2 and λp =

−1− 1/2 logp− 1/2 log(1− p) > 0.
The proof of this theorem is deferred until later in this section.
This theorem implies that for anyα < 1/2, most codes in the
random ensemble of codes with fixed row-weight (and hence
update-efficiency)t < α/λp logn have probability of error
bounded away from0 for any positive rate. Indeed, we have
the following corollary.

Corollary 11: For at least1 − o(1) proportion of all lin-
ear codes with fixedt-row-weight generator matrix,t <
(α/λp) logn, α < 1

2 , and dimensionk > nα, the probability
of error is1− o(1) over a BSC(p), for 0 < p ≤ 1/2.
In particular, this shows that almost all linear codes with fixed
row weightt < 1/(2λp) log n and rate greater than1/

√
n are

bad (result in high probability of error).
Proof of Corollary 11: From Lemma 9, it is clear that a

1−o(1) proportion of all codes inΓn,k,t have rankk. Hence, if
a 1− o(1) proportion of codes inΓn,k,t have some property,
a 1 − o(1) proportion of codes witht-row-weight generator
matrix and dimensionk also have that property.

Now, plugging in the value oft in the expression for
probability of error in Theorem 10, we obtain the corollary.

To prove Theorem 10, we will need the following series of
lemmas.

Lemma 12:Let x ∈ {0, 1}n be a vector of weightt. Let
the all-zero vector of lengthn be transmitted over a BSC with
flip probability p < 1/2. If the received vector isy, then

Pr(wt(y) > dH(x,y)) ≥
1√
t
2−λpt,

whereλp = −1− 1/2 logp− 1/2 log(1− p) > 0.
Proof: Let I ⊂ [n] be the support ofx. We have|I| =

t. Now, wt(y) > dH(x,y) whenever the number of errors
introduced by the BSC in the coordinatesI is > t/2. Hence,

Pr(wt(y) > dH(x,y)) =
∑

i>t/2

(

t

i

)

pi(1− p)t−i

>

(

t

t/2

)

pt/2(1− p)t−t/2 ≥ 1√
t
2−λpt.

Lemma 13:Suppose two random vectorsx,y ∈ {0, 1}n
are chosen independently and uniformly from the set of all
length-n binary vectors of weightt. Then,

Pr(supp(x) ∩ supp(y) = ∅) > 1− t2

n− t+ 1
.

Proof: The probability in question equals
(

n−t
t

)

(

n
t

) =
((n− t)!)2

(n− 2t)!n!

=
(n− t)(n− t− 1)(n− t− 2) . . . (n− 2t+ 1)

n(n− 1)(n− 2) . . . (n− t+ 1)

=
(

1− t

n

)(

1− t

n− 1

)

. . .
(

1− t

n− t+ 1

)

>
(

1− t

n− t+ 1

)t

≥ 1− t2

n− t+ 1
.

In the last step we have truncated the series expansion of
(

1− t
n−t+1

)t

after the first two terms. The inequality will be
justified if the terms of the series are decreasing in absolute
value. Let us verify that to conclude the proof. In the following
Xi denote theith term in the series,0 ≤ i ≤ t.

Xi+1

Xi
=

(

t
i+1

)

(

t
i

) · t

n− t+ 1
=

t− i

i+ 1
· t

n− t+ 1
≤ 1,

for all i ≤ t− 1.

Lemma 14:Let us choose anynα, 0 < α < 1/2, random
vectors of weightt independently and uniformly from the set
of weight-t vectors. Denote the vectors byxi, 1 ≤ i ≤ nα.
Then,

Pr(∀i 6= j, supp(xj) ∩ supp(xi) = ∅) ≥ 1− t2n2α

n− t
.

This implies all of the vectors have disjoint supports with
probability at least1− t2n2α/(n− t).

Proof: Form Lemma 13, for any pair of randomly and
uniformly chosen vectors, the probability that they have over-
lapping support is at mostt2/(n − t). The claim follows by
taking a union bound over all

(

nα

2

)

pairs of the randomly
chosen vectors.

Now, we are ready to prove Theorem 10.
Proof of Theorem 10: We begin by choosing a matrix

G uniformly at random fromΓn,k,t. This is equivalent of
choosing each row ofG uniformly and independently from
the set of alln-lengtht-weight binary vectors. Now,k > nα,
hence there existsnα vectors among the rows ofG such that
any two of them have disjoint support with probability at least
1 − t2n2α/(n − t) (from Lemma 14). Hence, for at least a
proportion1− t2n2α/(n− t) of matrices ofΓn,k,t, there are
nα rows with disjoint supports. SupposeG is one such matrix.
It remains to show that the codeC defined byG has probability
of error at leastnα2−λpt/

√
t over BSC(p).

Suppose, without loss of generality, that the all zero vector
is transmitted over a BSC(p), andy is the vector received. We
know that there exists at leastnα codewords of weightt such
that all of them have disjoint support. Letxi, 1 ≤ i ≤ nα,



9

be those codewords. Then, the probability that the maximum
likelihood decoder incorrectly decodesy to xi is

Pr(wt(y) > dH(xi,y)) ≥
1√
t
2−λpt

from Lemma 12. As the codewordsx1, . . .xnα have disjoint
supports, the probability that the maximum likelihood decoder
incorrectly decodes to any one of them is at least

1−
(

1− 1√
t
2−λpt

)nα

= (1− o(1)) · n
α

√
t
2−λpt.

Remark 2:Theorem 10 is also true for the random en-
semble of matrices where the entries are independently chosen
from F2 with Pr(1) = t/n.

VI. I MPOSSIBILITY RESULT FOR LOCAL RECOVERY

Now that we have our main impossibility result on update-
efficiency we turn to the local recovery property. In this sec-
tion, we deduce the converse result concerning local recovery
for the binary erasure channel. We show that any code with
a given local recoverability has to have rate bounded away
from capacity to provide arbitrarily small probability of error,
when used over the binary erasure channel. In particular, for
any code, including non-linear codes, recovery complexityat
a gap ofǫ to capacity on the BEC must be at leastΩ(log 1/ǫ),
proving that the above LDPC construction is simultaneously
optimal to within constant factors for both update-efficiency
and local recovery.

The intuition for the converse is that if a code has low local
recovery complexity, then codeword positions can be predicted
by looking at a few codeword symbols. As we will see, this
implies that the code rate must be bounded away from capac-
ity, or the probability of error approaches1. In a little more
detail, for an erasure channel, the average error probability
is related to how the codewords behave under projection onto
the unerased received symbols. Generally, different codewords
may result in the same string under projection, and without
loss of generality, the ML decoder can be assumed to choose
a codeword from the set of codewords matching the received
channel output in the projected coordinates uniformly at
random. Thus, given a particular erasure pattern induced by
the channel, the average probability of decoding success for
the ML decoder is simply the number of different codeword
projections, divided by2Rn, the size of the codebook. We now
show that the number of different projections is likely to be
far less than2Rn.

Theorem 15:Let C be a code of lengthn and rate1−p−ǫ,
ǫ > 0, that achieves probability of error strictly less than1,
when used over BEC(p). Then, the local recoverability ofC is
at leastc log 1/ǫ, for some constantc > 0 andn sufficiently
large.

Proof: Let C be a code of lengthn and size2nR that has
local recoverabilityr. Let T be the set of coordinates with
the property that the query positions required to recover these
coordinates appear before them. To show that such an ordering
exists with|T | ≥ n/(r + 1), we can randomly and uniformly
permute the coordinates ofC. The expected number of such

coordinates is thenn/(r+1), hence some ordering exists with
|T | ≥ n/(r + 1).

AssumeI ⊆ {1, . . . , n} is the set of coordinates erased
by the BEC, and let̄I = {1, . . . , n} \ I. Let x ∈ C be a
randomly and uniformly chosen codeword.xI andxĪ denote
the projection ofx on the respective coordinates. We are
interested in the logarithm of the number of different codeword
projections ontōI, which we denote bylogS(xĪ). Note that
this is a random-variable with respect to the random choice of
I by the BEC.

Suppose that the number of elements ofT that have allr
of their recovery positions un-erased isu. Then, the number
of different codeword projections is unchanged if we remove
theseu elements fromT . Hence,

logS(xĪ) ≤ |Ī| − u.

But Eu ≥ (1 − p)r|T |. Therefore,

E logS(xĪ) ≤ n(1− p)− (1 − p)r
n

r + 1
.

Observe thatlogS(xĪ) is a 1-Lipschitz functional of in-
dependent random variables (erasures introduced by the chan-
nel). This is because projecting onto one more position cannot
decrease the number of different codeword projections, andat
most doubles the number of projections. Therefore, we can
use Azuma’s inequality to conclude that

Pr
(

logS(xĪ) > n(1− p)− (1− p)r
n

r + 1
+ ǫn

)

≤ e−
ǫ2n
2 .

If we have,

r ≤ log 1
3ǫ

log 2
1−p

,

then,
(1− p)r

1 + r
≥

(1− p

2

)r

≥ 3ǫ.

But this implies,

Pr
(

log S(xĪ) > n(1− p− 2ǫ)
)

≤ e−
ǫ2n
2 .

This means that for a suitable constantc, if r ≤ c log 1/ǫ, then
with very high probabilitylogS(xĪ) ≤ n(1−p−2ǫ). However,
there are2Rn = 2n(1−p−ǫ) codewords, so we conclude that
the probability of successful decoding is at most

2−ǫn + e−
ǫ2n
2 .

Thus, we have proved that ifr ≤ c log 1/ǫ, the probability
of error converges to1, and in particular, is larger than any
α < 1, for sufficiently largen.

Remark 3:Rather than considering the number of dif-
ferent codeword projections, we could have considered the
entropy of the distribution of codeword projections ontoI,
which is also a1-Lipschitz functional. This is a more general
approach that can be extended to the case where local recovery
can be adaptive and randomized, and only has to succeed
with a certain probability (larger than.5), as opposed to
providing guaranteed recovery. However, one obtains a bound
of n(1− p− 2ǫ) on the the entropy, so Fano’s inequality only
shows that the probability of error must beΩ(ǫ), while the
above analysis shows that the probability of error must be
close to1.
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VII. G ENERAL UPDATE-EFFICIENT CODES

In this section we discuss some further observations regard-
ing the update-efficiency of codes. Let us now give a more
general definition of update-efficiency that we started within
the introduction.

Definition 3: A code is called(u, t)-update-efficient if, for
anyu bit changes in the message, the codeword changes by at
most t bits. In other words, the code(C, φ) is (u, t)-update-
efficientif for all x ∈ F

k
2 , and for alle ∈ F

k
2 : wt(e) ≤ u, we

haveφ(x+ e) = φ(x) + e
′, for somee′ ∈ F

n
2 : wt(e′) ≤ t.

It is easy to see that an(1, t)-update-efficient code is a
code with update-efficiencyt. As discussed earlier, any(u, t)-
update-efficient code must satisfyt > d, the minimum distance
of the code. In fact, we can make a stronger statement.

Proposition 16: Suppose a(u, t)-update-efficient code of
lengthn, dimensionk, and minimum distanced exists. Then,

u
∑

i=0

(

k

i

)

≤ B(n, d, t),

whereB(n, d, w) is the size of the largest code with distance
d such that each codeword has weight at mostw.

Proof: SupposeC is an update-efficient code, where
x ∈ F

k
2 is mapped toy ∈ F

n
2 . The

∑u
i=0

(

k
i

)

different
message vectors within distanceu from x should map to
codewords within distancet from y. Suppose these codewords
arey1,y2, . . . . Consider the vectorsy−y,y1−y,y2−y, . . . .
These must be at least distanced apart from one another and
all of their weights are at mostt. This proves the claim.

There are a number of useful upper bounds on the maximum
size of constant weight codes (i.e., when the codewords havea
constant weightt) that can be used to upper boundB(n, d, t).
Perhaps the most well-known bound is the Johnson bound
[18]. An easy extension of this bound saysB(n, d, t) ≤
dn/(dn− 2tn+ 2t2), as long as the denominator is positive.
However, this bound is not very interesting in our case, where
we haven ≫ t ≥ d. The implications of some other bounds
on B(n, d, t) on the parameters of update-efficiency is a topic
of independent interest.

Note that any code with update-efficiencyt is a (u, ut)-
update-efficient code. Hence, from Section IV, we can con-
struct an(u,O(u logn)) update-efficient code that achieves
the capacity of a BSC(p). On the other hand one expects a
converse result of the form

u
∑

i=0

(

k

i

)

≤ K(n, t, p),

whereK(n, t, p) is the maximum size of a code with code-
words having weight bounded byt that achieves arbitrarily
small probability of error. Indeed, just by emulating the proof
of Theorem 8, we obtain the following result.

Theorem 17:Consider using some (possibly non-linear)
(u, t)-update-efficient code of lengthn, and dimension (pos-
sibly fractional)k over BSC(p). Assume that

t ≤ (1− α) log
∑u

i=0

(

k
i

)

log(1− p)/p
,

for any α > 0. Then, the average probability of error is at
least1−o(1), whereo(1) denotes a quantity that goes to zero
ask → ∞.

This shows that the(u,O(u logn)) update-efficient code
constructed by the method of Section IV, is almost optimal
for u ≪ n.

Remark 4 (Bit error rate and error reduction codes):
Suppose we change the model of update-efficient code in the
following way (limited to only this remark). The encoding
φ : Fk

2 → F
n
2 and decodingθ : Fn

2 → F
k
2 , is such that for

a random error vectore induced by the BSC(p) and any
x ∈ F

n
2 , dH(θ(φ(x) + e),x) ∼ o(k) with high probability.

This can be thought of as an error-reducing code or a code
with low message bit error rate [22]. Under this notion,
error-reducing codes are update-efficient. When the message
changes≤ u bits from the previous statex ∈ F

k
2 , we do

not change the codeword. Then, the decoder output will be
within o(k) + u bits from the original message.

VIII. R ATE-DISTORTION COUNTERPARTS

In this paper, we have focused on error correcting codes
possessing good update efficiency and local recovery prop-
erties. In principle, these properties are also applicableto
the problem of lossy source coding. Informally, lossy source
coding is concerned with optimally compressing a source so
that the source can be reconstructed up to a specified distortion
from its compressed representation. We refer the reader to
any standard textbook on information theory (e.g., [9]) fora
formal definition of the lossy source coding problem in terms
of a source and distortion model. The associated rate-distortion
functionR(D) expresses the optimal (smallest) rate achievable
given a tolerable reconstruction distortionD.

Update-efficiency and local recoverability have natural
analogs for lossy source codes. In more detail, update-
efficiency can be measured by asking how much the encoding
(compression) of the source changes when the source is
changed slightly, e.g., how many bits of the compression
change when a single bit of the original source is changed. In
the context of lossless source coding, update-efficient codes
have been considered before in several papers, e.g., [27].
Local recoverability for a lossy source code can be measured
by the number of bits of the compression that must be
queried in order to recover any particular symbol of the source
reconstruction. That is, a lossy source code has good local
recoverability if, for all indicesi, few bits of the compression
must be read in order to compute theith symbol of the lossy
reconstruction.

The main questions to be asked, in the spirit of this paper,
are 1) if we allow a compression rate slightly above the optimal
rate specified by rate-distortion function, i.e., rateR(D) + ǫ,
what is the best possible local recoverability, and 2) what is
the best possible update-efficiency (in terms ofǫ)? As a simple
example, we consider these questions in the context of com-
pressing a uniform binary source under Hamming distortion
(again, the reader is referred to standard information theory
textbooks such as [9] for a formal definition of this model).
In this case, we briefly describe known results that allow us
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to make some progress on questions 1 and 2. First, it can
be shown that local recoverability must grow asΩ(log(1/ǫ)),
that is, at leastΩ(log(1/ǫ)) bits of the compression must be
queried to recover theith symbol of the reconstruction. This is
a corollary of known results for LDGM codes (Theorem 5.4.1
from [8]), and the proof given there already applies to arbitrary
(even non-linear) codes. It is known that LDGM codes can
achieveO(log(1/ǫ)) local recovery complexity, so in this
simple case, the local recoverability can be characterizedup
to a constant factor.

Update-efficiency, on the other hand, remains an open
question, even for this simple model. We note that update-
efficiency of O(1/ǫ log(1/ǫ)) can be achieved via random
codes. This can be seen by the following argument. First, it is
easily verified that a random code of lengthO(1/ǫ log(1/ǫ))
can achieve rates at mostǫ above the rate-distortion func-
tion. Copying the strategy from Section IV, we construct a
lengthn lossy source code by splitting then-bit source into
blocks of lengthO(1/ǫ log(1/ǫ)), and apply the random code
constructed above to each block. Changing one bit of the
source only affects the corresponding block, so changing one
bit of the source requires updating at mostO(1/ǫ log(1/ǫ))
bits of the compression. The lengthn code clearly has the
same compression rate as the base random code, and achieves
exactly the the same expected distortion because of the lin-
earity of expectation and the memoryless nature of the source
and distortion models considered. Therefore,O(1/ǫ log(1/ǫ))
update-efficiency is achievable. However, it is unclear that this
is optimal. In particular, we are unaware of any lower bound
showing that the update-efficiency has to scale withǫ at all.
A thorough study of local recoverability and update-efficiency
for lossy source coding is left for future work.

IX. CONCLUDING REMARKS

Although our results are derived for binary-input channels,
as opposed to the large alphabet channel models usually
considered for distributed storage, our proofs extend to large
alphabet case. Theq-ary generalizations for BSC and BEC are
respectively theq-ary symmetric channeland q-ary erasure
channel. The definitions and capacities of these channels are
standard and can be found in textbooks, for example, in [31,
§1.2 & §1.5.3].

The existential result of Section IV extends to the case of
q-ary channels. See, [4,§IIIB, remark 6] for more detail on
how the error-exponent result for BSC extends toq-ary case.
There are also results concerning the error-exponent ofq-ary
low densitycodes that can be used to extend Theorem 6. The
result one can most directly use is perhaps [15].

The converse results for Section V and VI, in particular
Theorem 7, Theorem 8 and Theorem 15 can easily be
stated for the case ofq-ary channel. The observations regarding
adversarial error case of Section III is also extendable toq-ary
case in a straight-forward manner.
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