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Abstract

In this paper we study how coding in distributed storage reduces expected download time, in addition

to providing reliability against disk failures. The expected download time is reduced because when a

content file is encoded to add redundancy and distributed across multiple disks, reading only a subset

of the disks is sufficient to reconstruct the content. For the same total storage used, coding exploits the

diversity in storage better than simple replication, and hence gives faster download. We use a novel

fork-join queuing framework to model multiple users requesting the content simultaneously, and derive

bounds on the expected download time. Our system model and results are a novel generalization of the

fork-join system that is studied in queueing theory literature. Our results demonstrate the fundamental

trade-off between the expected download time and the amount of storage space. This trade-off can be

used for design of the amount of redundancy required to meet the delay constraints on content delivery.
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I. INTRODUCTION

Large-scale cloud storage and distributed file systems such as Amazon Elastic Block Store

(EBS) [1] and Google File System (GoogleFS) [2] have become the backbone of many appli-

cations such as web searching, e-commerce, and cluster computing. In these distributed storage

systems, the content files stored on a set of disks may be simultaneously requested by multiple

users. The users have two major demands: reliable storage and fast content download. Content

download time includes the time taken for a user to compete with the other users for access to

the disks, and the time to acquire the data from the disks. Fast content download is important

for delay-sensitive applications such as video streaming, VoIP, as well as collaborative tools like

Dropbox [3] and Google Docs [4].

The authors in [2] point out that in large-scale distributed storage systems, disk failures are

the norm and not the exception. To protect the data from disk failures, cloud storage providers

today simply replicate content throughout the storage network over multiple disks. In addition to

fault tolerance, replication makes the content quickly accessible since multiple users requesting

a content can be directed to different replicas. However, replication consumes a large amount of

storage space. In data centers that process massive data today, using more storage space implies

higher expenditure on electricity, maintenance and repair, as well as the cost of leasing physical

space.

Coding, which was originally developed for reliable communication in presence of noise,

offers a more efficient way to store data in distributed systems. The main idea behind coding is

to add redundancy so that a content, stored on a set of disks, can be reconstructed by reading a

subset of these disks. Previous work shows that coding can achieve the same reliability against

failures with lower storage space used. It also allows efficient replacement of disks that have

to be removed due to failure or maintenance. We show that in addition to reliability and easy

repair, coding also gives faster content download because we only have to wait for content

download from a subset of the disks. Some preliminary results on the analysis of download time

via queueing-theoretic modeling are presented in [5].
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A. Previous Work

Research in coding for distributed storage was galvanized by the results reported in [6]. Prior

to that work, literature on distributed storage recognized that, when compared with replication,

coding can offer huge storage savings for the same reliability levels. But it was also argued

that the benefits of coding are limited, and are outweighed by certain disadvantages and extra

complexity. Namely, to provide reliability in multi-disk storage systems, when some disks fail,

it must be possible to restore either the exact lost data or an equivalent reliability with minimal

download from the remaining storage. This problem of efficient recovery from disk failures

was addressed in some early work [7]. But in general, the cost of repair regeneration was

considered much higher in coded than in replication systems [8], until [6] established existence

and advantages of new regenerating codes. This work was then quickly followed, and the area

is very active today (see e.g., [9]–[11] and references therein).

Only recently [12]–[14] was it realized that in addition to reliability, coding can guarantee the

same level of content accessibility, but with lower storage than replication. In [12], the scenario

that when there are multiple requests, all except one of them are blocked and the accessibility

is measured in terms of blocking probability is considered. In [13], multiple requests are placed

in a queue instead of blocking and the authors propose a scheduling scheme to map requests to

servers (or disks) to minimize the waiting time. In [14], the authors give a combinatorial proof

that flooding requests to all disks, instead of a subset of them gives the fastest download time.

This result corroborates the system model we consider in this paper to model the distributed

storage system and analyze its download time.

Using redundancy in coding for delay reduction has also been studied in the context of packet

transmission in [15]–[17], and for some content retrieval scenarios in [18], [19]. Although they

share some common spirit, they do not consider the effect of queueing of requests in coded

distributed storage systems.

B. Our Contributions

In this paper we show that coding allows fast content download in addition to reliable storage.

Since multiple users can simultaneously request the content, the download time includes the time

to wait for access to the disks plus the time to read the data. When the content is coded and
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distributed on multiple disks, it is sufficient to read it only from a subset of these disks in order

to retrieve the content. We take a queuing-theoretic approach to study how coding the content

in this way provides diversity in storage, and achieve a significant reduction in the download

time. The analysis of download time leads us to an interesting trade-off between download time

and storage space, which can be used to design the optimal level of redundancy in a distributed

storage system. To the best of our knowledge, we are the first to propose the (n, k) fork-join

system and find bounds on its mean response time, a novel generalization of the (n, n) fork-join

system studied in queueing theory literature.

We consider that requests entering the system are assigned to multiple disks, where they

enter local queues waiting for disks access. Note that this is in contrast to some existing works

(e.g. [13], [14]) where requests wait in a centralized queue when all disks are busy. Our approach

of immediate dispatching of requests to local queues is used by most server farms to facilitate

fast acknowledgement response to customers [20]. Under this queueing model, we propose the

(n, k) fork-join system, where each request is forked to n disks that store the coded content, and

it exits the system when any k (k ≤ n) disks are read. The (n, n) fork-join system in which all

n disks have to be read has been extensively studied in queueing theory and operations research

related literature [21]–[23]. Our analysis of download time can be seen as a generalization to

the analysis of the (n, n) fork-join system.

The rest of the paper is organized as follows. In Section II, we present some preliminary

concepts that are central to the results presented in the paper. In Section III, we analyze the

expected download time of the (n, k) fork-join system and present the fundamental trade-off

between expected download time and storage. These results were presented in part in [5]. In

Section IV, we relax some simplifying assumptions, and present the delay-storage trade-off

by considering some practical issues such as heavy-tailed and correlated service times of the

disks. In Section V, we extend the analysis to distributed storage systems with a large number

of disks. Such systems can be divided into groups of n disks each, where each group is an

independent (n, k) fork-join system. Finally, Section VI concludes the paper and gives future

research directions.
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Fig. 1: Storage is 50% higher, but response time (per disk & overall) is reduced.

II. PRELIMINARY CONCEPTS

A. Reducing Delay using Coding

One natural way to reduce the download time is to replicate the content across n disks. Then

if the user issues n download requests, one to each disk, it only needs to wait for the one of the

requests to be served. This strategy gives a sharp reduction in download time, but at the cost of

n times more storage space and the cost of processing multiple requests.

It is more efficient to use coding instead of replication. Consider that a content F of unit size

is divided into k blocks of equal size. It is encoded to n ≥ k blocks using an (n, k) maximum

distance separable (MDS) code, and the coded blocks are stored on an array of n disks. MDS

codes have the property that any k out of the n blocks are sufficient to reconstruct the entire

file. MDS codes have been suggested to provide reliability against disk failures. In this paper

we show that, in addition to error-correction, we can exploit these codes to reduce the download

time of the content.

The encoded blocks are stored on n different disks (one block per disk). Each incoming

request is sent to all n disks, and the content can be recovered when any k out of n blocks

are successfully downloaded. An illustrative example with n = 3 disks and k = 2 is shown in

Fig. 1. The content F is split into equal blocks a and b, and stored on 3 disks as a, b, and

a⊕ b, the exclusive-or of blocks a and b. Thus each disk stores content of half the size of file

F . Downloads from any 2 disks jointly enable reconstruction of F .
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B. Role of Order Statistics

The time taken to download a block of content is a random variable. If the block download

times are independent and identically distributed (i.i.d.), the time to download any k out of n

blocks is the kth order statistic of the block download times. We now provide some background

on order statistics of i.i.d. random variables. For a more complete treatment, please refer to

[24]. Although in our system model the block download times are not i.i.d., this background on

i.i.d. order statistics is a powerful tool for our analysis on the dependent case as shown in later

sections.

Let X1, X2, · · · , Xn be i.i.d. random variables. Then, Xk,n, the kth order statistic of Xi ,

1 ≤ i ≤ n , or the kth smallest variable has the distribution,

fXk,n
(x) = n

(
n− 1

k − 1

)
FX(x)

k−1(1−FX(x))n−kfX(x),

where fX is the probability density function (PDF) and FX is the cumulative distribution function

(CDF) of Xi for all i. In particular, if Xi’s are exponential with mean 1/µ, then the expectation

and variance of order statistic Xk,n are given by,

E[Xk,n] =
1

µ

k∑
i=1

1

n− k + i
=

1

µ
(Hn −Hn−k), (1)

V[Xk,n] =
1

µ2

k∑
i=1

1

(n−k+i)2
=

1

µ2
(Hn2−H(n−k)2), (2)

where Hn and Hn2 are generalized harmonic numbers defined by

Hn =
n∑
j=1

1

j
and Hn2 =

n∑
j=1

1

j2
. (3)

We observe from (1) that for fixed n, E[Xk,n] decreases when k becomes smaller. This fact

will help us understand the analysis of download time in Section III and Section V respectively.

C. Assignment Policies

In our distributed storage model, we divide the content into k blocks, we use 1/k units of

space of each disk, and hence total storage space used is n/k units. This is unlike conventional

replication-based storage solutions where n entire copies of content are stored on the n disks. In

such systems, each incoming request can be assigned to any of the n disks. One such assignment
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policies is the power-of-d assignment [20], [25]. For each incoming request, the power-of-d job

assignment uniformly selects d nodes (d ≤ n) and sends the request to the node with least work

left among the d nodes. The amount of work left of a node can be the expected time taken for

that node to become empty when there are no new arrivals or simply the number of jobs queued.

When d = n, power-of-d reduces to the least-work-left (LWL) policy (or joint-the-shortest-queue

(JSQ) if work is measured by the number of jobs). Power-of-d assignment has received much

attention recently due to the prevailing popularity in large-scale parallel computing. In Section III

and Section V, we compare these policies with our proposed distributed storage model.

III. THE (n, k) FORK-JOIN SYSTEM

We consider the scenario that users attempt to download the content from the distributed

storage system where their requests are placed in a queue at each disk. In Section III-A we

propose the (n, k) fork-join system to model the queueing of download requests, and derive

theoretical bounds on the expected download time in Section III-B. This analysis leads us to

the fundamental trade-off between download time and storage, which provides insights into

the practical system design. Numerical and simulation results demonstrating this trade-off are

presented in Section III-C.

A. System Model

We model the queueing of download requests at the disks using the (n, k) fork-join system

which is defined as follows.

Definition 1 ((n, k) fork-join system). An (n, k) fork-join system consists of n nodes. Every

arriving job is divided into n tasks which enter first-come first-serve queues at each of the n

nodes. The job departs the system when any k out of n tasks are served by their respective

nodes. The remaining n− k tasks abandon their queues and exit the system before completion

of service.

The (n, n) fork-join system, known in literature as fork-join queue, has been extensively

studied in, e.g., [21]–[23]. However, the (n, k) generalization in Definition 1 above has not

been previously studied to our best knowledge. Fig. 2 illustrates the (3, 2) fork-join system
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Fig. 2: Illustration of the (3, 2) fork-join system. Since 2 out of 3 tasks of Job 1 are served, the

third task abandons its queue and the job exits the system. Job 2 has to wait for one more task

to be served.

corresponding to the coded distributed storage example shown in Fig. 1. Each download request,

or a job is forked to the 3 nodes. When 2 out of 3 tasks are served, the third task abandons

its queue and the job exits the system. For example, Job 1 is about to exit the system, while

Job 2 is waiting for one more task to be served. The letters F and J denote the fork and join

operations respectively.

We consider that arrival of download requests is Poisson with rate λ. Every request is forked

to the n disks. The time taken to download one unit of data is exponential with mean 1/µ. Since,

each disk stores 1/k units of data, consider that the service time for each node is exponentially

distributed with mean 1/µ′ where µ′ = kµ. Define the load factor ρ′ , λ/µ′. This model with an

M/M/1 queue at every disk is sometimes referred to as a Flatto-Hahn-Wright (or FHW) model

[26], [27] in fork-join queue literature. While most of our analytical results in Section III and

Section V are for the FHW model, and we use simulations to study systems with M/G/1 queues

at the disks in Section IV.

For the (n, n) fork-join system to be stable, [28] shows that the arrival rate λ must be less

than µ′, the service rate of a node, which in our (n, n) system equals to nµ. In Lemma 1 below,

we show that λ < nµ is also a necessary condition for the stability of the (n, k) fork-join system

for any 1 ≤ k ≤ n.

Lemma 1 (Stability of (n, k) fork-join system). For the (n, k) fork-join system to be stable, the
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rate of Poisson arrivals λ and the service rate µ′ = kµ per node must satisfy

λ <
nµ′

k
= nµ. (4)

Proof: Tasks arrive at each queue at rate λ and are served at rate µ′ = kµ. But when k

out of the n tasks finish service, the remaining n− k tasks abandon their queues. A task can be

one of the abandoning tasks with probability (n− k)/n. Hence the effective arrival rate to each

queue is λ minus the rate of abandonment λ(n− k)/n. Then the condition for stability of each

queue is

λ− λ(n− k)
n

< µ′, (5)

which reduces to (4).

B. Bounds on the Mean Response Time

Our objective is to determine the expected download time, which we refer to as the mean

response time T(n,k) of the (n, k) fork-join system. It is the expected time that a job spends in

the system, from its arrival until k out of n of its tasks are served by their respective nodes.

Previous works [21]–[23] have studied T(n,n), but it has not been found in closed form – only

bounds are known. An exact expression for the mean response time is found only for the (2, 2)

fork-join system [22].

Since the n tasks are served by independent M/M/1 queues, intuition suggests that T(n,k) is

the kth order statistic of n exponential service times. However this is not true, which makes the

analysis of T(n,k) challenging. The reason why the order statistics approach does not work is

that when j nodes (j < n) finish serving their tasks they can start serving the tasks of the next

job (cf. Fig. 2). As a result, the service time of a job depends on the departure time of previous

jobs.

We now present upper and lower bounds on the mean response time T(n,k). The numerical

results in Section III-C show that these bounds are fairly tight.

Theorem 1 (Upper Bound on Mean Response Time). The mean response time T(n,k) of an (n, k)
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fork-join system satisfies

T(n,k) ≤
Hn −Hn−k

µ′
+ (6)

λ
[
(Hn2 −H(n−k)2) + (Hn −H(n−k))

2
]

2µ′2
[
1− ρ′(Hn −Hn−k)

] ,

where λ is the request arrival rate, µ′ is the service rate at each queue, ρ′ = λ/µ′ is the load

factor, and the generalized harmonic numbers Hn and Hn2 are as given in (3). The bound is

valid only when ρ′(Hn −Hn−k) < 1.

Proof: To find this upper bound, we use a model called the split-merge system, which is

similar but easier to analyze than the fork-join system. In the (n, k) fork-join queueing model,

after a node serves a task, it can start serving the next task in its queue. On the contrary, in

the split-merge model, the n nodes are blocked until k of them finish service. Thus, the job

departs all the queues at the same time. Due to this blocking of nodes, the mean response time

of the (n, k) split-merge model is an upper bound on (and a pessimistic estimate of) T(n,k) for

the (n, k) fork-join system.

The (n, k) split-merge system is equivalent to an M/G/1 queue where arrivals are Poisson with

rate λ and service time is a random variable S distributed according to the kth order statistic of

the exponential distribution. The mean and variance of S are (cf. (1) and (2))

E[S] =
Hn −Hn−k

µ′
and V[S] =

Hn2 −H(n−k)2

µ′2
. (7)

The Pollaczek-Khinchin formula [29] gives the mean response time T of an M/G/1 queue in

terms of the mean and variance of S as,

T = E[S] +
λ(E[S]2 + V[S]

2(1− λE[S])
. (8)

Substituting the values of E[S] and V[S] given by (7), we get the upper bound (6). Note that the

Pollaczek-Khinchin formula is valid only when 1
λ
> E[S], the stability condition of the M/G/1

queue. Since E[S] increases with k, there exists a k0 such that the M/G/1 queue is unstable for

all k ≥ k0. The inequality 1
λ
> E[S] can be simplified to ρ′(Hn − Hn−k) < 1 which is the

condition for validity of the upper bound given in Theorem 1.
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Remark 1. For the (n, n) fork-join system, the authors in [22] find an upper bound on mean

response time different from (6) derived above. To find the bound, they first prove that the

response times of the n queues form a set of associated random variables [30]. Then they use

the property of associated random variables that their expected maximum is less than that for

independent variables with the same marginal distributions. However this approach used in [22]

cannot be extended to the (n, k) fork-join system with k < n because this property of associated

variables does not hold for the kth order statistic for k < n.

As a corollary to Theorem 1 above, we can get an exact expression for T(n,1), the mean

response time of the (n, 1) fork-join system. Recall that in the (n, 1) fork-join system, the entire

content is replicated on n disks, and we just have to wait for any one disk to serve the incoming

request.

Corollary 1. The mean response time T(n,1) of the (n, 1) fork-join system is given by

T(n,1) =
1

nµ− λ
, (9)

where λ is the rate of Poisson arrivals and µ is the service rate.

Proof: In Theorem 1 we constructed the (n, k) split-merge system which always has worse

response time than the corresponding (n, k) fork-join system. For the special case when k = 1,

the split-merge system is equivalent to the fork-join system and gives the same response time.

Substituting k = 1 and µ′ = kµ = µ in (7) and (8) we get the result (9).

Theorem 2 (Lower Bound on Mean Response Time). The mean response time T(n,k) of an (n, k)

fork-join queueing system satisfies

T(n,k)≥
1

µ′
[
Hn −Hn−k + ρ′(Hn(n−ρ′) −H(n−k)(n−k−ρ′))

]
, (10)

where λ is the request arrival rate, µ′ is the service rate at each queue, ρ′ = λ/µ′ is the load

factor, and the generalized harmonic number Hn(n−ρ′) is given by

Hn(n−ρ′) =
n∑
j=1

1

j(j − ρ′)
.

Proof: The lower bound in (10) is a generalization of the bound for the (n, n) fork-join

system derived in [23]. The bound for the (n, n) system is derived by considering that a job
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goes through n stages of processing. A job is said to be in the jth stage if j out of n tasks have

been served by their respective nodes for 0 ≤ j ≤ n− 1. The job waits for the remaining n− j

tasks to be served, after which it departs the system. For the (n, k) fork-join system, since we

only need k tasks to finish service, each job now goes through k stages of processing. In the

jth stage, where 0 ≤ j ≤ k − 1, j tasks have been served and the job will depart when k − j

more tasks to finish service.

We now show that the service rate of a job in the jth stage of processing is at most (n− j)µ′.

Consider two jobs B1 and B2 in the ith and jth stages of processing respectively. Let i > j, that

is, B1 has completed more tasks than B2. Job B2 moves to the (j + 1)th stage when one of its

n− j remaining tasks complete. If all these tasks are at the heads of their respective queues, the

service rate for job B2 is exactly (n− j)µ′. However since i > j, B1’s task could be ahead of

B2’s in one of the n− j pending queues, due to which that task of B2 cannot be immediately

served. Hence, we have shown that the service rate of in the jth stage of processing is at most

(n− j)µ′.

Thus, the time for a job to move from the jth to (j+1)th stage is lower bounded by 1/((n−

j)µ′ − λ), the mean response time of an M/M/1 queue with arrival rate λ and service rate

(n− j)µ′. The total mean response time is the sum of the mean response times of each of the

k stages of processing and is bounded below as

T(n,k) ≥
k−1∑
j=0

1

(n− j)µ′ − λ
,=

1

µ′

k−1∑
j=0

1

(n− j)− ρ′
,

=
1

µ′

k−1∑
j=0

[ 1

n− j
+

ρ′

(n− j)(n− j − ρ′)

]
,

=
1

µ′
[
Hn−Hn−k+ρ

′(Hn(n−ρ′)−H(n−k)(n−k−ρ′))
]
.

Hence, we have found lower and upper bounds on the mean response time T(n,k). In Fig. 3

we demonstrate how the tightness of the bounds changes with service rate µ. The figure shows

the mean response time of a (10, k) fork-join system versus k for service rates µ = 3, 1 and

1/8. Note that the upper bound for k = n shown in the plot is T(n,n) ≤ Hn/(nµ−λ) as given in
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Fig. 3: Behavior of the mean response time T(10,k) as k increases (and total storage n/k

decreases). The plot shows that the bounds on mean response time given by (6) and (10) are

tight when the system is lightly loaded and become loose as µ decreases and/or k increases.
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[22], instead of the bound in (6). The reason behind this substitution is explained in Remark 1.

We observe in Fig. 3 that the bounds become loose as k increases and/or µ decreases. In

particular, the upper bound becomes loose because the blocking of queues in split-merge system

becomes significant when k increases and/or µ decreases. For µ = 1/8, the upper bound in (6)

becomes invalid for k ≥ 5 because the condition ρ′(Hn −Hn−k) < 1 is violated. Similarly, the

lower bound becomes loose with increasing k and decreasing µ because the difference between

the actual service rate in the jth stage of processing, and its bound (n − j)µ′ increases. When

k = 1, the bounds coincide and give T(n,1) = 1/(nµ− λ).

C. Download Time vs. Storage Space Trade-off
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Fig. 4: CDFs of the response time of (10, k) fork-join systems, and the required storage

In this section we present numerical results demonstrating the fundamental trade-off between

storage and response time of the (n, k) fork-join system. We also compare the response time

14



of the (n, k) fork-join system to the power-of-d and LWL assignment policies introduced in

Section II-C.

The expected download time of the file can be reduced in two ways 1) by increasing the total

storage, or the storage expansion n/k per file, and 2) by increasing the number n of disks used

for file storage. Both the total storage and the number of disks could be a limiting factor in

practice. We first address the scenario where the number of disks n is kept constant, but the

storage expansion changes from 1 to n as we choose k from 1 to n. We then study the scenario

where the storage expansion factor n/k is kept constant, but the number of disks varies.

1) Flexible Storage Expansion & Fixed Number of Disks: Fig. 3 is a plot of mean response

versus k for a fixed number of disks n. Note that as we increase k, the total storage n/k used

decreases as shown in Fig. 3b. When we increase k, two factors affect the mean response time

T(n,k) in opposite ways: 1) As k increases the storage per disk reduces which reduces mean

response time. 2) With higher k we have to wait for more nodes to finish service for the job to

exit the system. Hence we lose the diversity benefit of coding, which results in an increase in

the mean response time.

In Fig. 3 we observe that when µ = 1 or 3, the second factor dominates causing the mean

response time T(n,k) to strictly increase with k. At lower service rate µ = 1
8

shown in Fig. 3c,

the mean response time first decreases, and then increases with k. At small k (e.g. k = 1), the

per-node service time 1/kµ becomes large, outweighing the benefit of waiting for just k nodes

to finish service. At large k, waiting for many nodes to response outweighs the fast 1/kµ service

time. Due to this phenomenon, there is an optimal k that minimizes the mean response time.

In addition to small mean response time, ensuring quality-of-service to the user may also

require that the probability of exceeding some maximum tolerable response time to be small.

Thus, we study the cumulative distribution function (CDF) of the response time for different

values of k for a fixed n. In Fig. 4 we plot the CDF of the response time with k = 1, 2, 5, 10

for fixed n = 10. The arrival rate and service rate are λ = 1 and µ = 3 as defined earlier. For

k = 1, the CDF is represents the minimum of n exponential random variables, which is also

exponentially distributed.

The CDF plot can be used to design a storage system that gives probabilistic bounds on

the response time. For example, if we wish to keep the response time below 0.1 seconds with
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probability at least 0.75, then the CDF plot shows that k = 5, 10 satisfy this requirement but

k = 1 does not. The plot also shows that at 0.4 seconds, 100% of requests are complete in all

fork-join systems, but only 50% are complete in the single-disk case.

2) Flexible Number of Disks & Fixed Storage Expansion : Next, we take a different viewpoint

and analyze the benefit of spreading the content across more disks while using the same total

storage space. Fig. 5 plots the bounds (6) and (10) on the mean response time T(n,k) versus k

while keeping constant code rate k/n = 1/2, for the (n, k) fork-join system with λ = 1 and

three different values of µ. For these parameter values the bounds are tight, and can be used for
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Fig. 5: Mean response time upper and lower bounds on the mean response time T(n,n/2) for

λ = 1 and three different service rates µ. Due to the diversity advantage of more disks, T(n,n/2)

reduces with n.

analysis in place of simulations.

We observe that the mean response time T(n,k) reduces as k increases because we get the

diversity advantage of having more disks. The reduction in T(n,k) happens at the higher rate for

small values of k and µ. For heavy-tailed distributions (e.g. Pareto, cf. Sec. IV), the benefit that

comes from diversity is even larger.

T(n,k) approaches zero as n → ∞ for a fixed storage expansion n/k. This is because we

assumed that service rate of a single disk is kµ since the 1/k units of the content F is stored

on one disk. However, in practice the mean service time 1/kµ will not go zero as reading each

disk will need some non-zero setup time in completing each task, irrespective of the amount of
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data read from the disk. In Section IV we will see how this setup time affects the delay-storage

trade-off.

In order to understand the response time better, we plot in Fig. 6 the CDF for different values

of k for a fixed ratio k/n = 1/2. Again we observe that the diversity of increasing number of

disks n helps to reduce the response time.
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Fig. 6: CDFs of the response time of (n, k = n/2) fork-join systems, and the required storage
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lower mean response time than the corresponding power-of-d and LWL assignment policies.
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3) Comparison with Power-of-d Assignment: We now compare the mean response time of the

(n, k) fork-join system with power-of-d and least-work-left (LWL) job assignment introduced

in Section II. Recall that for each incoming request, the power-of-d policy assigns a request to

the node with the least-work-left from among d uniformly selected nodes. Fig. 7 is a plot of

the mean response time versus 1/µ, the average time taken to download one unit of content. It

compares the (n, k) fork-join system which uses n/k units of total storage with the power-of-d

and LWL assignment policies with the entire content (one unit) replicated on the n/k disks.

Thus, all the systems shown in Fig. 7 use the same total storage space n/k = 10 units.

We observe in Fig. 7 that the fork-join system outperforms the power-of-d and LWL assign-

ment policies. This is because as we saw in Fig. 5, when we increase n and k while keeping

the ratio n/k (the total storage) fixed, the mean response time of the (n, k) fork-join system

decreases. That is, the diversity advantage dominates over the slowdown due to waiting for more

nodes to finish service. Thus, for large enough n, the (n, k) fork-join system outperforms the

corresponding power-of-d scheme that uses the same storage space n/k units.

There are other practical issues that are not considered in Fig. 7. For instance, in the (n, k)

fork-join system there are communication costs associated with forking jobs to n nodes and

costs of decoding the MDS coded blocks. On the other hand, the power-of-d assignment system

requires constant feedback from the nodes to determine the work left at each node.

IV. GENERALIZING THE SERVICE DISTRIBUTION

The theoretical analysis and numerical results so far assumed a specific service time distri-

bution at each node – we considered the exponential distributions. In this section we present

some results by generalizing the service time distribution. In Section IV-A we extend the upper

bound to general service time distributions. We present numerical results for heavy-tailed and

correlated service times in Section IV-B and Section IV-C respectively.

A. General Service Time Distribution

In several practical scenarios the service distribution is unknown. We present an upper bound

on the mean response time for such cases, only using the mean and the variance of the service
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distribution. Let X1, X2, . . . , Xn be the i.i.d random variables representing the service times of

the n nodes, with expectation E[Xi] =
1
µ′

and variance V[Xi] = σ2 for all i.

Theorem 3 (Upper Bound with General Service Time). The mean response time T(n,k) of an

(n, k) fork-join system with general service time X such that E[X] = 1
µ′

and V[X] = σ2 satisfies

T(n,k) ≤
1

µ′
+ σ

√
k − 1

n− k + 1

+

λ

[(
1
µ′
+ σ
√

k−1
n−k+1

)2
+ σ2C(n, k)

]
2
[
1− λ

(
1
µ′
+ σ
√

k−1
n−k+1

)] . (11)

Proof: The proof follows from Theorem 1 where the upper bound can be calculated

using (n, k) split-merge system and Pollaczek-Khinchin formula (8). Unlike the exponential

distribution, we do not have an exact expression for S, i.e., the kth order statistic of the service

times X1, X2, · · ·Xn. Instead, we use the following upper bounds on the expectation and

variance of S derived in [31] and [32].

E[S] ≤ 1

µ′
+ σ

√
k − 1

n− k + 1
, (12)

V[S] ≤ C(n, k)σ2. (13)

The proof of (12) involves Jensen’s inequality and Cauchy-Schwarz inequality. For details

please refer to [31]. The constant C(n, k) depends only on n and k, and can be found in the

table in [32]. Holding n constant, C(n, k) decreases as k increases. The proof of (13) can be

found in [32].

Note that (8) strictly increases as either E[S] or V[S] increases. Thus, we can substitute the

upper bounds in it to obtain the upper bound on mean response time (11).

Regarding the lower bound, we note that our proof in Theorem 2 cannot be extended to this

general service time setting. The proof requires memoryless property of the service time, which

does not necessary hold in the general service time case.

B. Heavy-tailed Service Time

In many practical systems the service time has a heavy-tail distribution, which means that

there is a larger probability of getting very large values. More formally, a random variable
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Fig. 8: Mean response time T(10,k) of different service time distributions. λ = 1 and µ = 3. For

more heavy-tailed (smaller α) distributions, the increase in mean response time with k becomes

dominant since we have to wait for more nodes to finish service.

X is said to be heavy-tail distribution if its tail probability is not exponentially bounded and

limx→∞ e
βx Pr(X > x) =∞ for all β > 0. We consider the Pareto distribution which has been

widely used to model heavy-tailed jobs in existing literature (see for example [33], [34]). The

Pareto distribution is parametrized is parametrized by scale parameter xm and shape parameter

α and its cumulative distribution function is given by,

FX(x) =

1−
(
xm
x

)α for x ≥ xm

0 for x < xm

(14)

A smaller value of α implies a heavier tail. In particular, when α =∞ the service time becomes

deterministic and when α ≤ 1 the service time becomes infinite. In [33] Pareto distribution with

α = 1.1 was reported for the sizes of files requested from websites.

In Fig. 8 we plot the mean response time T(n,k) versus k for n = 10 disks, for arrival rate

λ = 1 and service rate µ = 3 for the exponential and Pareto service distributions. Each disk

stores 1/k units of data and thus the service rate of each individual queue is µ′ = kµ. For a given

k, all distributions have the same mean service time 1/kµ. We observe that as the distribution

becomes more heavy-tailed (smaller α), waiting for more nodes (larger k) to finish results in an

increase in mean response time which outweighs the decrease caused by smaller service time

1/kµ. For smaller α, the optimal k decreases because the increase in mean response time for

20



larger k is more dominant.

C. Correlated Service Times

Thus far we have considered that the n tasks of a job have independent service times. We now

analyze how the correlation between service times affects the mean response time of the fork-join

system. In practice the correlation between service times could be because the service time is

proportional to the size of the file being downloaded. We model the correlation by considering

that the service time of each task is δXd + (1 − δ)Xr,i, a weighted sum of two independent

exponential random variables Xd and Xr,i both with mean 1/kµ. The variable Xd is fixed across

the n queues, and Xr,i is the independent for the queues 1 ≤ i ≤ n. The weight δ represents

the degree of correlation between the service times of the n queues. When δ = 0, the system is

identical to the original (n, k) fork-join system analyzed in Section III. The mean response time

T ′(n,k) of the (n, k) fork-join system with service time distribution as described above is,

T ′(n,k) = δE[Xd] + (1− δ)T(n,k), (15)

=
δ

kµ
+ (1− δ)T(n,k),

where in T(n,k) is the response time with independent exponential service times analyzed in

Section III. Fig. 9 shows the trade-off between mean response time and k for weight δ = 0, 0.5,

and 1. When δ is 0, coding provides diversity in this regime and gives faster response time for

smaller k as we already observed in Fig. 3. As the correlation between service times increases

we lose the diversity advantage provided by coding and do not get fast response for small k.

Note that for δ = 1, there is no diversity advantage and the decrease in response time with k is

only because of the fact that each disk stores 1/k units of data.

V. THE (m,n, k) FORK-JOIN SYSTEM

In a distributed storage with a large number of disks m, having an (m, k) fork-join system

would involve large signaling overhead of forking the request to all the m disks, and high

decoding complexity. The decoding complexity is high even with small k because it depends

on the field size, which is a function of m in standard codes such as Reed-Solomon codes.

Hence, we propose a system where we divide the m disks into g = m/n groups of n disks
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Fig. 9: Mean response time of T ′(n,k) of (10, k) fork-join systems with job dependent service

time distribution for λ = 1, µ = 3, and δ = 0, 0.5, 1. As δ increases, the service times are more

correlated and we lose the diversity advantage of coding.

each, which act as independent (n, k) fork-join systems. In Section V-A we give the system

model and analyze the mean response time of the (m,n, k) fork-join system. In Section V-B we

present numerical results comparing the mean response time with different policies of assigning

an incoming request to one of the groups.

A. Analysis of Response Time

Consider a distributed storage system with m disks. We divide then into g = m/n groups

of n disks each as shown in Fig. 10. We refer to this system as the (m,n, k) fork-join system,

formally defined as follows.

Definition 2 (The (m,n, k) fork-join system). An (m,n, k) fork-join system consists of m ≥ n

disks partitioned into g = m/n groups with n disks each. An incoming download request is

assigned to one of the g groups according to some policy (e.g., uniformly at random). Each

group behaves as an independent (n, k) fork-join system described in Definition 1.

We can extend Lemma 1 to find a necessary condition for the stability of the (m,n, k) fork-join

system, in terms of the arrival rate λi to each group i, for 1 ≤ i ≤ g.

Lemma 2 (Stability of (m,n, k) fork-join system). For the (m,n, k) fork-join system to be
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Fig. 10: The (m,n, k) fork-join system with incoming service requests split among g = m/n

fork-join systems.

stable, the rate of arrival of requests λi to group i and the service rate µ′ = kµ per node must

satisfy

λi < nµ, ∀ 1 ≤ i ≤ g. (16)

Proof: Since each group behaves as an independent (n, k) fork-join system we can apply

the condition of stability in Lemma 1 with λ replaced by λi. The result follows from this.

The response time of the (m,n, k) fork-join system depends on the policy used to assign an

incoming request to one of the groups. Under the uniform job assignment policy, each incoming

request is assigned to a group chosen uniformly at random from the g groups. The Poisson arrival

rate to each group is then reduced to λ/g, and each group is an independent (n, k) fork-join

system. Therefore, we can extend the bounds in Theorem 1 and Theorem 2 to the mean response

time of the (m,n, k) fork-join system as follows.

Corollary 2. The response time T(m,n,k) of an (m,n, k) fork-join system with uniform group

assignment is bounded by (6) and (10) with λ replaced by λ/g.

B. Numerical Results

To reduce the decoding complexity and signaling overhead, an (m,n, k) fork-join system

with smaller n, and thus more groups g = m/n, is preferred. However, reducing n reduces the
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Fig. 11: Mean response time T(12,n,k) with the exponential and Pareto service distributions, and

parameters λ = 1 and µ = 3. Given m and we would like to find the smallest n and largest k

that can achieve a given target response time.

diversity advantage which could give higher expected download time (cf. Fig. 6). Thus, there is

a delay-complexity trade-off when we vary the number of groups g. Moreover, the content has

to be replicated at all groups to which its request can be directed. Thus, having a large number

of groups, also means increased storage space.

In Fig. 11 we plot the mean response time for (12, n, k) system and uniform group assignment

with exponential and Pareto service times. Given the number of disks m, we would like to find

the smallest n, and largest k that can achieve a given target response time. Smaller n means

there are less disks per group, and hence less signaling overhead of forking a request to the

disks in a group. Larger k is desirable because the total storage space used is m/k units. For

exponential service distribution, Fig. 11 shows that diversity of having a large n, or smaller k

always gives lower response time. But this monotonicity does not hold for the Pareto service

time distribution. For example, the (12, 6, 3) fork-join system with n = 6 disks per group and

12/3 = 4 units of storage used, gives lower response time than the (12, 12, 2) fork-join system

with n = 12 disks per group and total storage 12/2 = 6 units of storage used.

We now study the response time of the (m,n, k) fork-join system under three different group

assignment policies – the uniform job assignment policy, where each incoming request is assigned

to a group chosen uniformly at random from the g groups, and the power-of-d and least-work-left
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Fig. 12: Mean response time of (20, n, k) systems, with λ = 1 and µ = 1/8 for different

group assignment policies. The power-of-2 and LWL assignment give faster response time than

uniform assignment.

(LWL) policies introduced in Section II-C.

In Fig. 12 we show a comparison of the response time of the (20, n, k) fork-join system with

the uniform, power-of-d and LWL group assignment policies. Request arrival are Poisson with

rate λ = 1 and service times are exponential with rate µ = 1/8. As expected, the power-of-d

assignments give lower response time than the uniform assignment but it is at the cost of receiving

feedback about the amount of work left at each node. We again note that power-of-2 policy is

only slightly worse than the LWL policy (cf. Fig. 7). The simulation suggests power-of-d group

assignment is a strategy worth considering in actual implementations.

VI. CONCLUDING REMARKS

A. Major Implications

In this paper we show how coding in distributed storage systems, which has been used to

provide reliability against disk failures, also reduces the content download time. We consider

that content is divided into k blocks, and stored on n > k disks or nodes in a network. The

redundancy is added using an (n, k) maximum distance separable (MDS) code, which allows

content reconstruction by reading any k of the n disks. Since the download time from each disk

is random, waiting for only k out of n disks reduces overall download time significantly.
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We take a queueing-theoretic approach to model multiple users requesting the content simul-

taneously. We propose the (n, k) fork-join system model where each request is forked to queues

at the n disks. This is a novel generalization of the (n, n) fork-join system studied in queueing

theory literature. We analytically derive upper and lower bounds on the expected download time

and show that they are fairly tight. To the best of our knowledge, we are the first to propose the

(n, k) fork-join system and find bounds on its mean response time. We also extend this analysis

to distributed systems with large number of disks, that can be divided into many (n, k) fork-join

systems.

Our results demonstrate the fundamental trade-off between the download time and the amount

of storage space. This trade-off can be used for design of the amount of redundancy required

to meet the delay constraints of content delivery. We observe that the optimal operating point

varies with the service distribution of the time to read each disk. We present theoretical results

for the exponential distribution, and simulation results for the heavy-tailed Pareto distribution.

B. Future Perspectives

Although, we focus on distributed storage here, the results in this paper can be extended to

computing systems such as MapReduce [35] as well as content access networks [16], [36].

There are some practical issues affecting the download time that are not considered in this

paper and could be addressed in future work. For instance, the signaling overhead of forking

the request to n disks, and the complexity of decoding the content increases with n. In practical

storage systems, adding redundancy in storage not only requires extra capital investment in

storage and networking but also consumes more energy [37]. It would be interesting to study

the fundamental trade-off between power consumption and quality-of-service. Finally, note that

in this paper we focus on the read operation in a storage system. However in practical systems

requests entering the system consist of both read and write operations – we leave the investigation

of the write operation for future work.
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