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Optimal Locally Repairable Linear Codes
Wentu Song, Son Hoang Dau, Chau Yuen and Tiffany Jing Li

Abstract—Linear erasure codes with local repairability are
desirable for distributed data storage systems. An[n, k, d] code
having all-symbol (r, δ)-locality, denoted as(r, δ)a, is considered
optimal if it also meets the minimum Hamming distance bound.
The existing results on the existence and the construction of
optimal (r, δ)a codes are limited to only the special case ofδ = 2,
and to only two small regions within this special case, namely,
m = 0 or m ≥ (v+δ−1) > (δ−1), wherem = n mod (r+δ−1)
and v = k mod r. This paper investigates the existence conditions
and presents deterministic constructive algorithms for optimal
(r, δ)a codes with generalr and δ. First, a structure theorem is
derived for general optimal (r, δ)a codes which helps illuminate
some of their structure properties. Next, the entire problem space
with arbitrary n, k, r and δ is divided into eight different cases
(regions) with regard to the specific relations of these parameters.
For two cases, it is rigorously proved that no optimal(r, δ)a could
exist. For four other cases the optimal(r, δ)a codes are shown
to exist, deterministic constructions are proposed and thelower
bound on the required field size for these algorithms to work is
provided. Our new constructive algorithms not only cover more
cases, but for the same cases where previous algorithms exist, the
new constructions require a considerably smaller field, which
translates to potentially lower computational complexity. Our
findings substantially enriches the knowledge on(r, δ)a codes,
leaving only two cases in which the existence of optimal codes
are yet to be determined.

I. I NTRODUCTION

The sheer volume of today’s digital data has madedis-
tributed storage systems(DSS) not only massive in scale but
also critical in importance. Every day, people knowingly or
unknowingly connect to various private and public distributed
storage systems, include large data centers (such as the Google
data centers and Amazon Clouds) and peer-to-peer storage sys-
tems (such as OceanStore [1], Total Recall [2], and DHash++
[3]). In a distributed storage system, a data file is stored ata
distributed collection of storage devices/nodes in a network.
Since any storage device is individually unreliable and subject
to failure (i.e. erasure), redundancy must be introduced to
provide the much-needed system-level protection against data
loss due to device/node failure.

The simplest form of redundancy isreplication. By storing
c identical copies of a file atc distributed nodes, one copy per
node, ac-replication system can guarantee the data availability
as long as no more than(c−1) nodes fail. Such systems are
very easy to implement, but extremely inefficient in storage
space utilization, incurring tremendous waste in devices and
equipment, building space, and cost for powering and cooling.
More sophisticated systems employingerasure coding[4]
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can expect to considerably improve the storage efficiency.
Consider a file that is divided intok equal-size fragments. A
judiciously-designed[n, k] erasure (systematic) code can be
employed to encode thek data fragments (termssystematic
symbolsin the coding jargon) inton fragments (termedcoded
symbols) stored in n different nodes. If the[n, k, d] code
reaches the Singleton bound such that the minimum Hamming
distance satisfiesd = n − k + 1, then the code ismaximum
distance separable(MDS) and offers redundancy-reliability
optimality. With an [n, k] MDS erasure code, the original
file can be recovered from any set ofk encoded fragments,
regardless of whether they are systematic or parity. In other
words, the system can tolerate up to(n − k) concurrent
device/node failure without jeopardizing the data availability.

Despite the huge potentials of MDS erasure codes, how-
ever, practical application of these codes in massive storage
networks have been difficult. Not only are simple (i.e. requires
very little computational complexity) MDS codes very difficult
to construct, but data repair would in general require the
access ofk other encoded fragments [5], causing considerable
input/output (I/O) bandwidth that would pose huge challenges
to a typical storage network.
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Fig. 1. An example of how a locally repairable linear code is used to
construct a distributed storage system: a fileF is first split into five equal
packets{x1, · · · , x5} and then is encoded into12 packets, using a(2, 3)a
linear code. These12 encoded packets are stored at12 nodes{v1, · · · , v12},
which are divided into three groups{v1, v2, v3, v4}, {v5, v6, v7, v8} and
{v9, v10, v11, v12}. Each group can perform local repair of up to two node-
failures. For example, if Node v9 fails, it can be repaired by any two packets
among v10, v11 and v12. Moreover, the entire fileF can be recovered by five
packets from any five nodes vi1 , · · · , vi5 which intersect each group with at
most two packets. For example,F can be recovered from five packets stored
at v1, v3, v7, v8 and v10.

Motivated by the desire to reduce repair cost in the design
of erasure codes for distributed storage systems, Gopalanet
al. [8] introduced the interesting notion ofsymbol localityin
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linear codes. Theith coded symbol of an[n, k] linear codeC
is said to have localityr (1 ≤ r ≤ k) if it can be recovered
by accessing at mostr other symbols inC. The concept was
further generalized to(r, δ) locality by Prakashet al. [10], to
address the situation of multiple device failures.

According to [10], theith code symbolci, 1 ≤ i ≤ n, in an
[n, k] linear codeC is said to have locality(r, δ) if there exists
an index setSi ⊆ [n] containingi such that|Si|−δ+1 ≤ r and
each symbolcj , j ∈ Si, can be reconstructed by any|Si|−δ+1
symbols in{cℓ; ℓ ∈ Si andℓ 6= j}, whereδ ≥ 2 is an integer.
Thus, whenδ = 2, the notion of locality in [10] reduces to
the notion of locality in [8]. Two cases of(r, δ) codes are
introduced in the literature: An(r, δ)i code is a systematic
linear code whoseinformation symbolsall have locality(r, δ);
and an(r, δ)a code is a linear code all of whosesymbolshave
locality (r, δ). Hence, an(r, δ)a code is also referred to as
having all-symbol locality(r, δ), and an(r, δ)i code is also
referred to as havinginformation locality (r, δ). A symbol
with (r, δ) locality – given that at the most(δ−1) symbols are
erased – can be deduced by reading at mostr other unerased
symbols.

Clearly, codes with a low symbol locality, such asr < k,
impose a low I/O bandwidth and repair cost in a distributed
storage system. In a DSS system, one can use “group” to
describe storage nodes situated in the same physical location
which enjoy a higher communication bandwidth and a shorter
communication distance than storage nodes belonging to dif-
ferent groups. In the case of node failure, alocally repairable
codemakes it possible to efficiently recover data stored in the
failed node by downloading information from nodes in the
same group (or in a minimal number of other groups). Fig. 1
provides a simple example of how an(r, δ)a code is used to
construct a distributed storage system. In this example,C is a
(2, 3)a linear code of length12 and dimension5. Note that a
failed node can be reconstructed by accessing only two other
existing nodes, while it takes five existing nodes to repair a
failed node if a[12, 5] MDS code is used.

A. Related Work

Locality was identified as a repair cost metric for distributed
storage systems independently by Oggieret al. [7], Gopalan
et al. [8] and PaPailiopouloset al. [9] using different terms. In
[8], Gopalanet al. introduced the concept of symbol locality of
linear codes and established a tight bound for the redundancy
in terms of the message length, the distance, and the locality
of information coordinates. A generalized concept, i.e.,(r, δ)
locality, was addressed by Prakashet al. [10]. It was proved
in [10] that the minimum distanced of an (r, δ)i linear code
C is upper bounded by

d ≤ n− k + 1−

(⌈

k

r

⌉

− 1

)

(δ − 1) (I.1)

wheren andk are the length and dimension ofC respectively.
It was also proved that a class of codes known as pyramid
codes [6] achieve this bound. Since an(r, δ)a code is also
an (r, δ)i code, (I.1) also presents an upper bound for the
minimum distance of(r, δ)a codes.

Locality of general codes (linear or nonlinear) and bounds
on the minimum distance for a given locality were presented
in parallel and subsequent works [11], [14]. An(r, δ)a code
(systematic or not) is also termed alocally repairable code
(LRC), and (r, δ)a codes that achieve the minimum distance
bound are calledoptimal.

It was proved in [10] that there exists optimal locally
repairable linear codes when(r + δ − 1)|n and q > knk.
Under the condition that(r+ δ− 1)|n, a construction method
of optimal locally repairable vector codes was proposed in
[14], where maximal rank distance (MRD) codes were used
along with MDS array codes. For the special case ofδ = 2,
Tamoet al. [15] proposed an explicit construction of optimal
LRCs when

(r + 1)|n

or
n mod (r + 1)− 1 ≥ k mod r > 0.1

Except for the special case thatn mod(r+1)−1 ≥ k modr >
0, no results are known about whether there exists optimal
(r, δ)a code when(r + δ − 1) ∤ n.

Up to now, designing LRCs with optimal distance remains
an intriguing open problem for most coding parametersn, k, r
and δ. Since large fields involve rather complicated and
expensive computation, a related interesting open problemasks
how to limit the design (of optimal LRCs) over relatively
smaller fields.

B. Main Results

In this paper, we investigate the structure properties and the
construction of optimal(r, δ)a linear codes of lengthn and
dimensionk. A simple property of optimal(r, δ)a linear codes
is proved in Lemma 5, which shows thatn

r+k−1 ≥ k
r

for any
optimal (r, δ)a linear code. Hence we impose this condition
of n

r+k−1 ≥ k
r

throughout our discussion of optimal(r, δ)a
codes.

The main results of this paper include:
(i) We prove a structure theorem for the optimal(r, δ)a

linear codes forr|k. This structure theorem indicates that it is
possible for optimal(r, δ)a linear codes, a sub-class of optimal
(r, δ)i linear code, to have a simpler structure than otherwise.

(ii) We prove that there exist no optimal(r, δ)a linear codes
for

(r + δ − 1) ∤ n andr|k (I.2)

or

m < v + δ − 1 andu ≥ 2(r − v) + 1 (I.3)

wheren = w(r + δ − 1) + m and k = ur + v such that
0 < v < r and0 < m < r + δ − 1 (Theorems 10 and 11).

(iii) We propose a deterministic algorithm for constructing
optimal (r, δ)a linear codes over any field of sizeq ≥

(

n
k−1

)

when

(r + δ − 1)|n (I.4)

1Note that this condition is equivalent to the condition thatm ≥ v + 1,
wheren = w(r+1)+m andk = u(r+1)+ v satisfying0 < m < r+1
and0 < v < r.
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Fig 2. Summary of existence of optimal(r, δ)a linear codes.

or

m ≥ v + δ − 1 (I.5)

wheren = w(r + δ − 1) + m and k = ur + v such that
0 < v < r and0 < m < r + δ − 1 (Theorem 15 and 16).

(iv) We propose another deterministic algorithm for con-
structing optimal(r, δ)a linear codes over any field of size
q ≥

(

n
k−1

)

when

w ≥ r + δ − 1−m and min{r − v, w} ≥ u (I.6)

or

w + 1 ≥ 2(r + δ − 1−m) and min{2(r − v), w} ≥ u (I.7)

wheren = w(r + δ − 1) + m and k = ur + v such that
0 < v < r and0 < m < r + δ − 1 (Theorem 26 and 27).

A summary of our results is given in Fig 2. Note that if
none of the conditions in (I.2)-(I.5) holds, it then followsthat

m < v + δ − 1 andu ≤ 2(r − v).

In that case, if condition (I.6) does not hold, we havew <
r + δ − 1 − m or r − v < u; and if condition (I.7) does
not hold, we havew + 1 < 2(r + δ − 1 − m), i.e., w <
2(r + δ − 1 − m) − 1. Hence, if, neither condition (I.6) nor
condition (I.7) holds (in addition to (I.2)-(I.5)), then one of
the following two conditions must be satisfied:

w < r + δ − 1−m, (I.8)

or

r + δ − 1−m ≤ w < 2(r + δ − 1−m)− 1 andr − v < u.
(I.9)

In other words, if none of the conditions (I.2)-(I.7) holds,then
either (I.8) or (I.9) will hold. From our existence proof and/or
constructive results, the existence of optimal(r, δ)a linear
code is not known only for a limited scope with parameters
described by (I.8) and (I.9).

The remainder of the paper is organized as follows. In
Section II, we present the notions used in the paper as well as
some preliminary results about(r, δ)a linear codes. In Section
III, we investigate the structure of optimal(r, δ)a linear codes

when r|k (should they exist). In Section IV, we consider the
non-existence conditions for optimal(r, δ)a linear codes under
conditions (I.2) and (I.3). A construction of optimal(r, δ)a
linear codes for conditions (I.4) and (I.5) is presented in
Section V, and a construction of optimal(r, δ)a linear codes
for conditions (I.6) and (I.7) is presented in Section VI. Finally,
we conclude the paper in Section VII.

II. L OCALITY OF L INEAR CODES

For two positive integerst1 and t2 (t1 ≤ t2), we denote
[t1, t2] = {t1, t1 + 1, · · · , t2} and [t2] = {1, 2, · · · , t2}. For
any setS, the size(cardinality) of S is denoted by|S|. If I
is a subset ofS and|I| = r, then we say thatI is anr-subset
of S. Let Fk

q be thek-dimensional vector space over theq-ary
field Fq. For any subsetX ⊆ Fk

q , we use〈X〉 to denote the
subspace ofFk

q spanned byX .
In the sequel, whenever we speak of an(r, δ)a or (r, δ)i

code, we will by default assume it is an[n, k, d] linear code
(i.e., its length, dimension and minimum distance aren, k and
d respectively).

SupposeC is an [n, k, d] linear code overFq, and G =
(G1, · · · , Gn) is a generating matrix ofC, whereGi, i ∈ [n],
is theith column ofG. We denote byG = {G1, · · · , Gn} the
collection of columns ofG. It is well known that the distance
property is captured by the following condition (e.g. [18]).

Lemma 1:An [n, k] codeC has a minimum distanced, if
and only if |S| ≤ n− d for everyS ⊆ G having Rank(S) ≤
k − 1. Equivalently, Rank(T ) = k for every T ⊆ G of size
n− d+ 1.

For any subsetS ⊆ [n], letC|S denote the punctured code of
C associated with the coordinate setS. That is,C|S is obtained
from C by deleting all symbolsci, i ∈ [n]\S, in each codeword
(c1, · · · , cn) ∈ C.

Definition 2 ([10]): Suppose1 ≤ r ≤ k and δ ≥ 2. The
ith code symbolci, 1 ≤ i ≤ n, in an [n, k, d] linear codeC
is said to have locality(r, δ) if there exists a subsetSi ⊆ [n]
such that
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(1) |Si| ≤ r + δ − 1;
(2) The minimum distance of the punctured codeC|Si

is at
leastδ.

Remark 3:Let G = (G1, · · · , Gn) be a generating matrix
of C. By Lemma 1, it is easy to see that the second condition
in Definition 2 is equivalent to the following condition
(2′) Rank({Gℓ; ℓ ∈ I}) = Rank(Gi) for any subsetI ⊆ Si of

size |I| = |Si| − δ + 1, whereGi = {Gℓ; ℓ ∈ Si};

Moreover, by conditions (1) and (2′), we have

Rank(Gi) = Rank({Gℓ; ℓ ∈ Si}) ≤ |Si| − δ + 1 ≤ r.

That is,∀i′ ∈ Si and∀I ⊆ Si\{i′} of size |I| = |Si| − δ+ 1,
Gi′ is anFq-linear combination of{Gℓ; ℓ ∈ I}. This means
that the symbolci′ can be reconstructed by the|Si| − δ + 1
symbols in{cℓ; ℓ ∈ I}.

An (r, δ)a code C is said to beoptimal if the minimum
distanced of C achieves the bound in (I.1).

The following remark follows naturally from Definition 2
and Remark 3.

Remark 4: If C is an(r, δ)a code andG = (G1, · · · , Gn) is
a generating matrix ofC, then we can always find a collection
S = {S1, · · · , St}, whereSi ⊆ [n], i = 1, · · · , t, such that
(1) |Si| ≤ r + δ − 1, i = 1, · · · , t;
(2) Rank({Gℓ; ℓ ∈ I}) = Rank(Gi) ≤ r, ∀i ∈ [t] andI ⊆ Si

of size |I| = |Si| − δ + 1, whereGi = {Gℓ; ℓ ∈ Si};
(3) ∪i∈[t]Si = [n] and∪i∈[t]\{j}Si 6= [n], ∀j ∈ [t].
We call the setS = {S1, · · · , St} an (r, δ)-cover setof C.

The following lemma presents a simple property of(r, δ)a
codes.

Lemma 5:An (r, δ)a codeC satisfies
1) The minimum distanced ≥ δ.
2) If C is an optimal(r, δ)a code, then n

r+δ−1 ≥ k
r
.

Proof: 1) Let S = {S1, · · · , St} be an(r, δ)-cover set of
C. For any0 6= (c1, · · · , cn) ∈ C, since∪i∈[t]Si = [n], there
is an i ∈ [t] such that the punctured codeword(cj)j∈Si

is
nonzero inC|Si

. By the second condition of Definition 2, the
Hamming weight of(cj)j∈Si

is at leastδ. Thus, the Hamming
weight of (c1, · · · , cn) is at leastδ. Since0 6= (c1, · · · , cn) ∈
C is arbitrary, the minimum distanced ≥ δ.

2) SinceC is an optimal(r, δ)a code, from the minimum
distance bound in (I.1),

n = d+ k − 1 +

(⌈

k

r

⌉

− 1

)

(δ − 1).

From claim 1),d ≥ δ; which leads to

n ≥ δ + k − 1 +

(⌈

k

r

⌉

− 1

)

(δ − 1).

Hence,

nr ≥ r(δ + k − 1) + r(⌈
k

r
⌉ − 1)(δ − 1)

≥ r(δ + k − 1) + r(
k

r
− 1)(δ − 1)

= k(r + δ − 1)

which implies that n
r+δ−1 ≥ k

r
.

III. STRUCTURE OFOPTIMAL (r, δ)a CODE WHENr|k

In this section, we prove a structure theorem for optimal
(r, δ)a codes under the condition ofr|k.

Throughout this section, we assume thatC is an(r, δ)a code
over the fieldFq, S = {S1, · · · , St} is an (r, δ)-cover set of
C, whereSi ⊆ [n], i = 1, · · · t, andG = (G1, · · · , Gn) is a
generating matrix ofC. We denoteG = {G1, · · · , Gn} and
Gi = {Gℓ; ℓ ∈ Si}2. Then for anyI ⊆ [t], we have

| ∪i∈I Gi| = |{Gi; i ∈ ∪ℓ∈ISℓ}| = | ∪i∈I Si| (III.1)

and by Remark 4, we get

∪i∈[t]Gi = G and ∪i∈[t]\{j} Gi 6= G, ∀j ∈ [t]. (III.2)

We first give some lemmas to help prove our main results.

Lemma 6:Consider three setsA,B,X ⊆ Fk
q . If C is a

subset ofX satisfies: Rank(B∪C) = Rank(A∪B ∪C), then

Rank(X ∪ A ∪B)− |B| ≤ Rank(X).

Proof: SinceC ⊆ X and Rank(B ∪C) = Rank(A∪B ∪
C), we have

Rank(X ∪ A ∪B) = Rank(X ∪C ∪ A ∪B)

= Rank(X ∪B ∪ C)

= Rank(X ∪B)

≤ Rank(X) + Rank(B)

≤ Rank(X) + |B|.

Therefore, Rank(X ∪ A ∪B)− |B| ≤ Rank(X).

Lemma 7:Suppose{i1, · · · , iℓ} ⊆ [t] such thatGij *
〈∪j−1

λ=1Giλ〉, j = 2, · · · , ℓ. Then

| ∪ℓ
j=1 Sij | ≥ Rank(∪ℓ

j=1Gij ) + ℓ(δ − 1).

Proof: We prove this lemma by induction.
From Remark 3,|Si1 | ≥ Rank(Gi1) + (δ − 1). Hence the

claim holds forℓ = 1.
Now considerℓ ≥ 2. We assume that the claim holds for

ℓ− 1, i.e.,

| ∪ℓ−1
j=1 Sij | ≥ Rank(∪ℓ−1

j=1Gij ) + (ℓ− 1)(δ − 1). (III.3)

We shall prove that the claim is true forℓ.
First, we point out that|Giℓ\(∪

ℓ−1
j=1Gij )| > δ− 1. In fact, if

|Giℓ\(∪
ℓ−1
j=1Gij )| ≤ δ−1, then|Giℓ∩(∪

ℓ−1
j=1Gij | ≥ |Giℓ |−(δ−1).

From condition (2) of Remark 4,Giℓ ⊆ 〈Giℓ ∩ (∪ℓ−1
j=1Gij )〉 ⊆

〈∪ℓ−1
j=1Gij 〉, which presents a contradiction to the assumption

thatGiℓ * 〈∪ℓ−1
j=1Gij 〉. Thus,

|Giℓ\(∪
ℓ−1
j=1Gij )| > δ − 1.

2WhenGi andGj are viewed as vectors ofFk
q , it is possible forGi = Gj

where i 6= j. However, when treating them as two different columns ofG,
we shall viewGi andGj as two separate elements inG (even though they
may be identical).



5

Let X = ∪ℓ−1
j=1Gij andC = Giℓ ∩ (∪ℓ−1

j=1Gij ) = Giℓ ∩ X .
Let A be a fixed(δ − 1)-subset ofGiℓ\(∪

ℓ−1
j=1Gij ) andB =

(Giℓ\ ∪
ℓ−1
j=1 Gij )\A.

From condition (2) of Remark 4, Rank(B∪C) = Rank(A∪
B ∪C). Then, from Lemma 6, we get

Rank(X ∪A ∪B)− |B| ≤ Rank(X)

i.e.,

Rank(∪ℓ
j=1Gij )− |B| ≤ Rank(∪ℓ−1

j=1Gij ). (III.4)

Clearly, ∪ℓ
j=1Gij is a disjoint union ofA,B and ∪ℓ−1

j=1Gij .
Hence,

| ∪ℓ
j=1 Gij | = | ∪ℓ−1

j=1 Gij |+ |A|+ |B|

= | ∪ℓ−1
j=1 Gij |+ (δ − 1) + |B|

and from (III.1), we get

| ∪ℓ
j=1 Sij | = | ∪ℓ

j=1 Gij | = | ∪ℓ−1
j=1 Sij |+ (δ − 1) + |B|.

(III.5)

Combining (III.3)-(III.5), we have

| ∪ℓ
j=1 Sij | = | ∪ℓ−1

j=1 Sij |+ (δ − 1) + |B|

≥ Rank(∪ℓ−1
j=1Gij ) + ℓ(δ − 1) + |B|

≥ Rank(∪ℓ
j=1Gij )− |B|+ ℓ(δ − 1) + |B|

= Rank(∪ℓ
j=1Gij ) + ℓ(δ − 1)

which completes the proof.

Lemma 8:SupposeC is an optimal(r, δ)a code. Then
1) t ≥ ⌈ n

r+δ−1⌉ ≥ ⌈k
r
⌉.

2) If J ⊆ [t] and|J | ≤ ⌈k
r
⌉−1, then Rank(∪i∈JGi) ≤ k−1

andGh * 〈∪i∈JGi〉, ∀h ∈ [t]\J .
3) If J ⊆ [t] and |J | = ⌈k

r
⌉, then Rank(∪i∈JGi) = k and

| ∪i∈J Si| ≥ k + ⌈k
r
⌉(δ − 1).

Proof: 1) (Proof by contradiction) Supposet ≤
⌈ n
r+δ−1⌉ − 1. Then from Remark 4,

|Si| ≤ r + δ − 1.

Hence,

n = | ∪i∈[t] Si|

≤ t(r + δ − 1)

≤ (⌈
n

r + δ − 1
⌉ − 1)(r + δ − 1)

< n

which presents a contradiction. Hence, it must hold thatt ≥
⌈ n
r+δ−1⌉.
Moreover, from Claim 2) of Lemma 5, n

r+δ−1 ≥ k
r
. Thus,

t ≥ ⌈
n

r + δ − 1
⌉ ≥ ⌈

k

r
⌉.

2) From Remark 3, Rank(Gi) ≤ r, ∀i ∈ [t]. Hence, if|J | ≤
⌈k
r
⌉ − 1, then

Rank(∪i∈JGi) ≤ r|J | ≤ r(⌈
k

r
⌉ − 1) < r

k

r
= k.

i.e., Rank(∪i∈JGi) ≤ k − 1.

Now, supposeGh ⊆ 〈∪i∈JGi〉, and we will see a contradic-
tion results. First, we can find a subsetJ0 = {i1, · · · , is} ⊆ J
such thatGh ⊆ 〈∪s

λ=1Gis〉 andGh * 〈∪i∈J′Gi〉 for any proper
subsetJ ′ of J0. In particular, we have

Gij * 〈∪j−1
λ=1Giλ 〉, j = 2, · · · , s.

Note that|J0| ≤ |J | ≤ ⌈k
r
⌉−1. By the proved result, we have

Rank(∪i∈J0
Gi) ≤ k − 1.

Next, we can find a sequenceGi1 , · · · ,Gis ,Gis+1
, · · · ,Giℓ such

that ℓ ≥ ⌈k
r
⌉,Rank(∪ℓ

j=1Gij ) = k andGij * 〈∪j−1
λ=1Giλ〉, j =

2, · · · , ℓ. In particular, Rank(∪ℓ−1
j=1Gij ) ≤ k − 1. Therefore,

there exists aG′
iℓ

⊆ Giℓ such that Rank((∪ℓ−1
j=1Gij ) ∪ G′

iℓ
) =

k − 1. Denote(∪ℓ−1
j=1Gij ) ∪ G′

iℓ
= S. Then Rank(S) = k − 1

and

|G′
iℓ
\ ∪ℓ−1

j=1 Gij | ≥ Rank(S)− Rank(∪ℓ−1
j=1Gij )

= (k − 1)− Rank(∪ℓ−1
j=1Gij ). (III.6)

From Lemma 7,

| ∪ℓ−1
j=1 Gij | ≥ Rank(∪ℓ−1

j=1Gij ) + (ℓ− 1)(δ − 1). (III.7)

Then by equations (III.6) and (III.7),

|S| = |G′
iℓ
\ ∪ℓ−1

j=1 Gij |+ | ∪ℓ−1
j=1 Gij |

≥ (k − 1) + (ℓ− 1)(δ − 1)

≥ k − 1 + (⌈
k

r
⌉ − 1)(δ − 1). (III.8)

Since h ∈ [t]\J , Gh 6= Gij , j = 1, · · · , s. Moreover, since
Gh ⊆ 〈∪s

λ=1Gis〉 andGij * 〈∪j−1
λ=1Giλ〉, j = 2, · · · , ℓ, soGh 6=

Gij , j = s + 1, · · · , ℓ. From equation (III.2), we haveGh *
∪ℓ
j=1Gij . Then, from equation (III.8), we get

|Gh ∪ S| > |S| ≥ k − 1 + (⌈
k

r
⌉ − 1)(δ − 1).

Since we assumedGh ⊆ 〈∪s
λ=1Gis〉 ⊆ 〈S〉, then Rank(Gh ∪

S) = Rank(S) = k − 1. By Lemma 1, we have

d ≤ n− |Gh ∪ S| < n− k + 1− (⌈
k

r
⌉ − 1)(δ − 1),

which contradicts the assumption thatC is an optimal(r, δ)a
code. Hence, it must be thatGh * 〈∪i∈JGi〉.3

3) SupposeJ = {i1, · · · , is}, wheres = ⌈k
r
⌉. By claim 2),

Gij * 〈∪j−1
λ=1Giλ 〉, j = 2, · · · , s.

First, we have Rank(∪i∈JGi) = k. Otherwise, as in the
proof of claim 2), we can find a sequenceGi1 , · · · ,Gis ,
Gis+1

, · · · ,Giℓ (ℓ > s = ⌈k
r
⌉) and a setS = (∪ℓ−1

j=1Gij ) ∪
G′
iℓ

(G′
iℓ
⊆ Giℓ) such that

|S| ≥ k − 1 + (ℓ− 1)(δ − 1) > k − 1 + (⌈
k

r
⌉ − 1)(δ − 1).

By Lemma 1,

d ≤ n− |S| < n− k + 1− (⌈
k

r
⌉ − 1)(δ − 1)

3In this proof, for any(r, δ)a codeC, we obtain a subsetS ⊆ G such that
|S| ≥ k − 1 + (⌈k

r
⌉ − 1)(δ − 1) and Rank(S) = k − 1. Then by Lemma

1, the minimum distance ofC is d ≤ n− k+ 1− (⌈k
r
⌉ − 1)(δ − 1), which

also provides a proof of the minimum distance bound in (I.1).
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which contradicts the assumption thatC is an optimal(r, δ)a
code. Therefore, we have Rank(∪i∈JGi) = k.

Now, by Lemma 7,

| ∪i∈J Si| ≥ Rank(∪i∈JGi) + ⌈
k

r
⌉(δ − 1)

= k + ⌈
k

r
⌉(δ − 1).

This completes the proof.

We now present our main theorem of this section.

Theorem 9:SupposeC is an optimal(r, δ)a linear code. If
r|k andr < k, then the following conditions hold:

1) S1, · · · , St are mutually disjoint;
2) |Si| = r+ δ− 1, ∀i ∈ [t], and the punctured codeC|Si

is
an [r + δ − 1, r, δ] MDS code.

In particular, we have(r + δ − 1) | n.
Proof: Since r|k and r < k, then k = ℓr for some

ℓ ≥ 2. By 1) of Lemma 8,t ≥ ⌈k
r
⌉ = ℓ. Let {i1, i2} ⊆ [t]

be arbitrarily chosen. LetJ be an ℓ-subset of[t] such that
{i1, i2} ⊆ J . Then by 3) of Lemma 8,

Rank(∪i∈JGi) = k = ℓr, (III.9)

and

|∪i∈JSi| ≥ k + ℓ(δ − 1) = ℓ(r + δ − 1). (III.10)

Since |Si| ≤ r + δ − 1 and by Remark 4, Rank(Gi) ≤ r,
then equations (III.9) and (III.10) imply that Rank(Gi) = r,
|Si| = r + δ − 1, and{Si}i∈J are mutually disjoint.

In particular, Rank(Gi1) = Rank(Gi2 ) = r, Gi1 ∩ Gi2 = ∅
and |Si1 | = |Si2 | = r + δ − 1. Sincei1 and i2 are arbitrarily
chosen, we have proved that Rank(Gi) = r, |Si| = r + δ − 1,
and {Si}i∈J are mutually disjoint. Hence,(r + δ − 1) | n.
Moreover, by Lemma 1 and Remark 3,C|Si

is an[r+δ−1, r, δ]
MDS code.

In [10], it was proved that ifC is an optimal(r, δ)i code,
then there exists a collection{S1, · · · , Sa} ⊆ {S1, · · · , St}
which has the same properties in Theorem 9, wherea is a
properly-defined value. Thus, Theorem 9 shows that as a sub-
class of optimal(r, δ)i codes, optimal(r, δ)a codes tend to
have a simpler structure than otherwise.

IV. N ON-EXISTENCECONDITIONS OFOPTIMAL (r, δ)a
L INEAR CODES

In this section, we derive two sets of conditions under which
there exists no optimal(r, δ)a linear codes. From the minimum
distance bound in (I.1), we know that whenr = k, optimal
(r, δ)a linear codes are exactly MDS codes. Hence, in this
section, we focus on the case ofr < k.

The first result is obtained directly from Theorem 9.

Theorem 10:If (r + δ − 1) ∤ n and r|k , then there exist
no optimal(r, δ)a linear codes.

Proof: If C is an optimal(r, δ)a linear code andr|k, then
by Theorem 9,(r+ δ− 1)|n, which contradicts the condition

that(r+δ−1) ∤ n. Hence, there exist no optimal(r, δ)a linear
codes when(r + δ − 1) ∤ n andr|k.

When (r + δ − 1) ∤ n andr ∤ k, we provide in the below a
set of conditions under which no optimal(r, δ)a code exists.

Theorem 11:Supposen = w(r+δ−1)+m andk = ur+v,
where0 < m < r+δ−1 and0 < v < r. If m < v+δ−1 and
u ≥ 2(r − v) + 1, then there exist no optimal(r, δ)a codes.

Proof: We prove this theorem by contradiction.
SupposeC is an optimal(r, δ)a code over the fieldFq and

S = {S1, · · · , St} is an (r, δ)-cover set ofC. Then by claim
1) of Lemma 8, we have

t ≥

⌈

n

r + δ − 1

⌉

= w + 1. (IV.1)

Moreover, by 3) of Lemma 8, for any⌈k
r
⌉-subsetJ of [t],

| ∪i∈J Si| ≥ k +

⌈

k

r

⌉

(δ − 1).

For eachi ∈ [t], if |Si| < r + δ − 1, let Ti ⊆ [n] be such
that Si ⊆ Ti and |Ti| = r + δ − 1; If |Si| = r + δ − 1, let
Ti = Si. Then clearly,

∪i∈[t]Ti = ∪i∈[t]Si = [n]

and for any⌈k
r
⌉-subsetJ of [t],

| ∪i∈J Ti| ≥ k +

⌈

k

r

⌉

(δ − 1). (IV.2)

Let M = (mi,j)t×n be at × n matrix such thatmi,j = 1
if j ∈ Ti, andmi,j = 0 otherwise. For eachj ∈ [n], let

Aj = {i ∈ [t];mi,j = 1}.

Then |Aj | is the number ofTi (i ∈ [t]) satisfying j ∈ Ti,
and this number equals the number of1s in thejth column
of M . Since∪i∈[t]Ti = [n], then |Aj | > 0, ∀j ∈ [n]. On
the other hand, by the construction ofM , for eachi ∈ [t],
Ti = {j ∈ [n];mi,j = 1}. Thus, the number of the1s in each
row of M is r + δ − 1. It then follows that the total number
of the 1s in M is

n
∑

j=1

|Aj | =
t

∑

i=1

|Ti| = t(r + δ − 1). (IV.3)

Combining (IV.1) and (IV.3), we have
n
∑

j=1

|Aj | ≥(w + 1)(r + δ − 1)

=n+ (r + δ − 1−m). (IV.4)

Sincem < v + δ − 1, then

r + δ − 1−m > r − v.

Hence from (IV.4), we have
n
∑

j=1

|Aj | ≥ n+ (r − v + 1). (IV.5)
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Let P = {j ∈ [n]; |Aj | > 1}. From (IV.5),P 6= ∅ and
∑

j∈P

|Aj | ≥ |P |+ (r − v + 1).

Without loss of generality, assumeP = {1, · · · , ℓ}. Since
|Aj | > 1, ∀j ∈ P , we can find a numberλ ∈ {1, · · · , ℓ} such
that

∑λ−1
j=1 |Aj | < λ+(r−v) and

∑λ
j=1 |Aj | ≥ λ+(r−v+1).

This means that we can find a subsetBλ ⊆ Aλ such that
|Bλ| > 1 and

λ−1
∑

j=1

|Aj |+ |Bλ| = λ+ r − v + 1. (IV.6)

Also note that

λ ≤ r − v + 1, (IV.7)

because otherwise,
∑λ−1

j=1 |Aj |+ |Bλ| ≥ 2λ > λ+ r − v + 1,
which contradicts (IV.6).

Let B = (∪λ−1
j=1Aj) ∪Bλ. Then from (IV.6),

|B| = |(∪λ−1
j=1Aj) ∪Bλ| ≤

λ−1
∑

j=1

|Ai|+ |Bλ| ≤ 2(r − v + 1).

Sinceu ≥ 2(r − v) + 1, then2(r − v + 1) ≤ u+ 1, we get

|B| ≤ u+ 1 =

⌈

k

r

⌉

.

Let J be a ⌈k
r
⌉-subset of [t] such thatB ⊆ J . By the

construction ofM andB, for eachj ∈ {1, · · · , λ− 1}, there
are at least|Aj | subsets in{Ti; i ∈ B} containingj, and there
are at least|Bλ| subsets in{Ti; i ∈ B} containingλ. Hence,

| ∪i∈J Ti| ≤ |J |(r + δ − 1)− (

λ−1
∑

j=1

|Aj |+ |Bλ| − λ). (IV.8)

Combining (IV.6) and (IV.8), we have

| ∪i∈J Ti| ≤ ⌈
k

r
⌉(r + δ − 1)− (r − v + 1)

= ur + v − 1 + ⌈
k

r
⌉(δ − 1)

= k − 1 + ⌈
k

r
⌉(δ − 1).

which contradicts (IV.2).
Thus, we can conclude that there exist no optimal(r, δ)a

linear codes whenm < v + δ − 1 andu ≥ 2(r − v) + 1.

Example:We now provide an example to help illustrate the
method used in the proof of Theorem 11. Letn = 13, r =
δ = 2 and k = 7. SupposeT1 = {1, 2, 3}, T2 = {4, 5, 6},
T3 = {7, 8, 9}, T4 = {10, 11, 12}, T5 = {1, 5, 13} andT6 =
{5, 8, 13}. Following the notations in the proof of Theorem
11, we have

1000010010000

1000000010001

0111000000000

0000111000000

0000000111000

0000000000111

M

1 2 3 4 5 6 7 8 9 10 11 12 13

Therefore,A1 = {1, 5}, A5 = {2, 5, 6}, A8 = {3, 6}, A13 =
{5, 6}, andP = {1, 5, 8, 13}. Note that|A1| + |A5| = 5 >
2 + (r − v + 1). Let B2 = {2, 5} ⊆ A5 andB = A1 ∪B2 =
{1, 2, 5}; then |B| < 4 = ⌈k

r
⌉. Let J = {1, 2, 3, 5} ⊇ B,

then∪i∈JTi = {1, 2, 3, 4, 5, 6, 7, 8, 9, 13}. Hence,|∪i∈J Ti| =
10 < 11 = k+ ⌈k

r
⌉(δ− 1). (See the illustration ofM below.)

1000010010000

1000000010001

0111000000000

0000111000000

0000000111000

0000000000111

M

1 2 3 4 5 6 7 8 9 10 11 12 13

More generally, in this example, for anyt ≥ 5 and
{T1, · · · , Tt} such that|Ti| = r + δ − 1 = 3 and∪t

i=1Ti =
[n] = {1, · · · , 13}, we can always find aJ ⊆ [t] such that
| ∪i∈J Ti| < 11 = k + ⌈k

r
⌉(δ − 1).

In general, since0 < v < r, then r − v ≤ r − 1. If k >
2r2 + r, then we haveu ≥ 2(r − 1) + 1 ≥ 2(r − v) + 1.
Hence, when0 < n mod (r + δ − 1) < (k mod r) + δ − 1
andk > 2r2 + r, then by Theorem 11, there exist no optimal
(r, δ)a codes.

V. CONSTRUCTION OFOPTIMAL (r, δ)a CODES:
ALGORITHM 1

In this section, we propose a deterministic algorithm for
constructing optimal(r, δ)a linear codes over the field of size
q ≥

(

n
k−1

)

, when (r + δ − 1)|n or m ≥ v + δ − 1, where
n = w(r + δ − 1) +m andk = ur + v satisfying0 < v < r
and0 < m < r+ δ−1. Recall that when(r+ δ−1)|n, it was
proved in [10] that optimal(r, δ)a linear codes exist over the
field of sizeq > knk. Note that our method requires a much
smaller field than what’s shown in [10], and hence it also has
a lower complexity for implementation.

To present our method, we will use the following definitions
and notations, most of which follow from [8].

Definition 12: Let S = {S1, · · · , St} be a partition of[n]
andδ ≤ |Si| ≤ r + δ − 1, ∀i ∈ [t]. A subsetS ⊆ [n] is called
an (S, r)-core if |S ∩ Si| ≤ |Si| − δ + 1, ∀i ∈ [t]. If S is an
(S, r)-core and|S| = k, thenS is called an(S, r, k)-core.

Clearly, if S ⊆ [n] is an(S, r)-core andS′ ⊆ S, thenS′ is
also an(S, r)-core. In particular, ifS ⊆ [n] is an (S, r)-core
andS′ is a k-subset ofS, thenS′ is an (S, r, k)-core.

Before presenting our construction method, we first give a
lemma, which will take an important role in our discussion.

Lemma 13:Let X1, · · · , Xℓ andX be ℓ + 1 subspaces of
Fk
q andX * Xi, ∀i ∈ [ℓ]. If q ≥ ℓ, thenX * ∪ℓ

i=1Xi.
Proof: We prove this lemma by induction.

Clearly, the claim is true whenℓ = 1.
Now, we suppose that the claim is true forℓ− 1, i.e.,

X * ∪ℓ−1
i=1Xi.

Then there exists anx ∈ X such thatx /∈ ∪ℓ−1
i=1Xi. If x /∈ Xℓ,

thenx /∈ ∪ℓ
i=1Xi andX * ∪ℓ

i=1Xi. So we assumex ∈ Xℓ.
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SinceX * Xℓ, there exists ay ∈ X such thaty /∈ Xℓ.
Then for any{a, a′} ⊆ Fq and i ∈ {1, · · · , ℓ− 1},

{ax+ y, a′x+ y} * Xi.

(Otherwise,(a − a′)x = (ax + y) − (a′x + y) ∈ Xi, which
contradicts to the assumption thatx /∈ ∪ℓ−1

i=1Xi.)
Sinceq ≥ ℓ, we can pick a subset{a1, · · · , aℓ} ⊆ Fq. Then

{a1x+y, · · · , aℓx+y} * ∪ℓ−1
i=1Xi. (Otherwise, by the Pigeon-

hole principle, there is a subset{ai1 , ai2} ⊆ {a1, · · · , aℓ} and
a j ∈ {1, · · · , ℓ − 1} such that{ai1x + y, ai2x + y} ⊆ Xj,
which contradicts to the proven result that for any{a, a′} ⊆ Fq

andi ∈ {1, · · · , ℓ−1}, {ax+y, a′x+y} * Xi.) Without loss
of generality, assumea1x + y /∈ ∪ℓ−1

i=1Xi. Note thatx ∈ Xℓ

andy /∈ Xℓ, thena1x + y /∈ Xℓ. Hence,a1x + y /∈ ∪ℓ
i=1Xi.

On the other hand, sincex, y ∈ X , then a1x + y ∈ X . So
X * ∪ℓ

i=1Xi, which completes the proof.

We present our construction method in the following theo-
rem.

Theorem 14:Let S = {S1, · · · , St} be a partition of[n]
and δ ≤ |Si| ≤ r + δ − 1, ∀i ∈ [t]. Supposet ≥ ⌈k

r
⌉ and

for any ⌈k
r
⌉-subsetJ of [t], | ∪i∈J Si| ≥ k + ⌈k

r
⌉(δ − 1). If

q ≥
(

n
k−1

)

, then there exists an optimal(r, δ)a linear code
overFq.

Proof: For eachi ∈ [t], let Ui be an(|Si|− δ+1)-subset
of Si. Let Ω0 = ∪i∈[t]Ui and L = |Ω0|. Let J be a ⌈k

r
⌉-

subset of[t]. Since∪i∈JUi ⊆ Ω0, from the assumptions of
this theorem,

L = |Ω0| ≥ | ∪i∈J Ui| = | ∪i∈J Si| − ⌈
k

r
⌉(δ − 1) ≥ k.

The construction of an optimal(r, δ)a code consists of the
following two steps:

Step 1: Construct an[L, k] MDS codeC0 over Fq. Since
q ≥

(

n
k−1

)

≥ n > L, such an MDS code exists overFq. Let
G′ be a generating matrix ofC0. We index the columns ofG′

by Ω0, i.e.,G′ = (Gℓ)ℓ∈Ω0
, whereGℓ is a column ofG′ for

eachℓ ∈ Ω0.
Step 2: Extend C0 to an optimal(r, δ)a codeC over Fq.

This can be achieved by the following algorithm.

Algorithm 1:
1. Let Ω = Ω0.
2. i runs from1 to t.
3. While Si\Ω 6= ∅:
4. Pick aλ ∈ Si\Ω and letGλ ∈ 〈{Gℓ; ℓ ∈ Si ∩Ω}〉

be such that for any(S, r, k)-coreS ⊆ Ω ∪ {λ},
{Gℓ; ℓ ∈ S} is linearly independent.

5. Ω = Ω ∪ {λ}.
6. Let C be the linear code generated by the matrixG =

(G1, · · · , Gn).

To complete the proof of Theorem 14, we need to prove
three claims: In Claim 1 and Claim 2 below we show that the
code C output by Algorithm 1 is indeed an optimal(r, δ)a
linear code overFq; In Claim 3, we prove that the vector
Gλ described in Line 4 of Algorithm 1 can always be found,

hence the algorithm does terminate successfully.

Claim 1: The codeC output by Algorithm 1 is an(r, δ)a linear
code overFq.

By Definition 2 and Remark 3, we aim to show that for
everyi ∈ [t] and for every subsetI ⊂ Si with |I| = |Si|−δ+1,
it holds that

Rank({Gℓ}ℓ∈I) = Rank({Gℓ}ℓ∈Si
). (V.1)

Since in Line 4 of Algorithm 1, we chooseGλ ∈ 〈{Gℓ; ℓ ∈
Si ∩ Ω}〉, we have

Rank({Gℓ}ℓ∈(Si∩Ω)∪{λ}) = Rank({Gℓ}ℓ∈Si∩Ω).

By induction,

Rank({Gℓ}ℓ∈Si
) = Rank({Gℓ}ℓ∈Si∩Ω0

)

= Rank({Gℓ}ℓ∈Ui
)

= |Si| − δ + 1.

(V.2)

Supposei ∈ [t] and I ⊆ Si such that|I| = |Si| − δ + 1.
Then |I| = |Si| − δ + 1 ≤ r ≤ k. Since t ≥ ⌈k

r
⌉, we can

find a ⌈k
r
⌉-subsetJ ′ of [t] such thati ∈ J ′. For eachj ∈ J ′,

let Wj be an(|Sj | − δ + 1)-subset ofSj such thatWi = I.
Clearly,∪j∈J′Wj is an (S, r)-core. From the assumption of
this lemma,

| ∪j∈J′ Sj | ≥ k + ⌈
k

r
⌉(δ − 1).

Hence

| ∪j∈J′ Wj | = | ∪j∈J′ Sj| − ⌈
k

r
⌉(δ − 1) ≥ k.

Let S be a k-subset of∪j∈J′Wj such thatI ⊆ S, then
S is an (S, r, k)-core. Therefore,{Gℓ; ℓ ∈ S} is linearly
independent, which in turn implies that{Gℓ; ℓ ∈ I} is also
linearly independent. Therefore,

Rank({Gℓ}ℓ∈I) = |I| = |Si| − δ + 1. (V.3)

Combining (V.2) and (V.3) we obtain (V.1).

Claim 2: The codeC output by Algorithm 1 has minimum
distance achieving the upper bound (I.1), and hence is an
optimal (r, δ)a linear code.

According to Lemma 1 and (I.1), it suffices to prove that
for any subsetT ⊆ [n] of size |T | = k + (⌈k

r
⌉ − 1)(δ − 1),

Rank({Gℓ}ℓ∈T ) = k.

Let
J = {j ∈ [t]; |T ∩ Sj | ≥ |Sj | − δ + 1}.

For eachj ∈ J , let Wj be an(|Sj | − δ+1)-subset ofT ∩Sj ;
For eachj ∈ [t]\J , let Wj = T ∩ Sj . Then∪j∈[t]Wj is an
(S, r)-core. We consider the following two cases:

Case 1:|J | ≥ ⌈k
r
⌉. Without loss of generality, assume that

|J | = ⌈k
r
⌉4. Since| ∪j∈J Sj | ≥ k + ⌈k

r
⌉(δ − 1), then

| ∪j∈[t] Wj | ≥ | ∪j∈J Wj | ≥ k.

4If |J | > ⌈k
r
⌉, then pick a⌈k

r
⌉-subsetJ0 of J , and replaceJ by J0 in

our discussion.
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Case 2:|J | ≤ ⌈k
r
⌉ − 1. In that case,

| ∪j∈[t] Wj | ≥ |T |− |J |(δ− 1) ≥ |T |− (⌈
k

r
⌉− 1)(δ− 1) ≥ k.

In both cases,| ∪j∈[t] Wj | ≥ k. Let S be a k-subset of
∪j∈JWj , thenS is an (S, r, k)-core. Therefore,{Gℓ; ℓ ∈ S}
are linearly independent and

Rank({Gℓ}ℓ∈T ) = Rank({Gℓ}ℓ∈S) = k.

From equation (I.1) and Lemma 1, we get

d = n− k + 1− (⌈
k

r
⌉ − 1)(δ − 1),

whered is the minimum distance ofC. Thus,C is an optimal
(r, δ)a code.

Claim 3: The vectorGλ in Line 4 of Algorithm 1 can always
be found.

The proof of this claim is based on a classical technique
in network coding(e.g., [16], [17]). SinceG′ = (Gℓ)ℓ∈Ω0

is a generating matrix of the MDS codeC0, then for any
(S, r, k)-coreS ⊆ Ω0, {Gℓ; ℓ ∈ S} is linearly independent. By
induction, we can assume that for any(S, r, k)-coreS ⊆ Ω,
{Gℓ; ℓ ∈ S} are linearly independent.

Let Λ be the set of allS0 ⊆ Ω such thatS0 ∪ {λ} is an
(S, r, k)-core. By Definition 12, for anyS0 ∈ Λ,

|S0| = k − 1,

|S0 ∩ Sj | ≤ |Sj | − δ + 1, ∀j ∈ [t]\{i},

and
|S0 ∩ Si| ≤ |Si| − δ.

Note that
Ui ⊆ Si ∩ Ω0 ⊆ Si ∩ Ω.

Hence
|Si ∩Ω| ≥ |Ui| = |Si| − δ + 1.

Thus, there is anη ∈ (Si ∩ Ω)\S0. Since S1, · · · , St are
mutually disjoint,η /∈ Sj , ∀j ∈ [t]\{i}. Therefore,

|(S0 ∪ {η}) ∩ Sj | ≤ |Sj | − δ + 1, j = 1, · · · , t.

Then S0 ∪ {η} ⊆ Ω is an (S, r, k)-core. By assumption,
{Gℓ}ℓ∈S0∪{η} is linearly independent. Hence

Gη /∈ 〈{Gℓ}ℓ∈S0
〉,

and
〈{Gℓ}ℓ∈Si∩Ω〉 * 〈{Gℓ}ℓ∈S0

〉.

Sinceq ≥
(

n
k−1

)

≥ |Λ|, by Lemma 13,

〈{Gℓ}ℓ∈Si∩Ω〉 * (∪S0∈Λ〈{Gℓ}ℓ∈S0
〉).

Let Gλ be a vector in〈{Gℓ}ℓ∈Si∩Ω〉\(∪S0∈Λ〈{Gℓ}ℓ∈S0
〉).

Then for anyS0 ∈ Λ, {Gℓ}ℓ∈S0∪{λ} are linearly independent.
SupposeS ⊆ Ω ∪ {λ} is an (S, r, k)-core. If λ /∈ S,

then S ⊆ Ω and by assumption,{Gℓ; ℓ ∈ S} is linearly
independent. Ifλ ∈ S, then S0 = S\{λ} ∈ Λ and by the
selection ofGλ, {Gℓ; ℓ ∈ S} is linearly independent. Hence

we always have that{Gℓ; ℓ ∈ S} is linearly independent. Thus,
the vectorGλ satisfies the requirement of Algorithm 1.

From the proof of Theorem 14, we can see thatS =
{S1, · · · , St} is in fact an (r, δ)-cover set of the codeC,
whereC is the output of Algorithm 1. The following example
demonstrates how does Algorithm 1 work.

Example:We now construct an optimal(r, δ)a linear code
with r = δ = 2, k = 3 andn = 6. Let S1 = {1, 2, 3}, S2 =
{4, 5, 6} and S = {S1, S2}. Let U1 = {1, 2}, U2 = {4, 5}
andΩ0 = U1 ∪ U2 = {1, 2, 4, 5}. Our construct involves the
following two steps.

Step 1: Construct a[4, 3] MDS code, where4 = |Ω0|. Let
G′ = (G1, G2, G4, G5) be a generating matrix of such code.

Step 2: ExtendG′ = (G1, G2, G4, G5) to a matrixG =
(G1, G2, G3, G4, G5, G6) such thatG is a generating matrix
of an optimal(2, 2)a linear code.

It remains to determineG3 andG6 via two iterations.
1) i = 1: Ω = {1, 2, 4, 5} andS1 \Ω = {3}. We can verify

that {1, 4, 3}, {1, 5, 3}, {2, 4, 3}, {2, 5, 3} and {4, 5, 3}
are all subsets of{1, 2, 3, 4, 5} which is an (S, r, k)-
core and contains the index3. Let Λ = {{1, 4}, {1, 5},
{2, 4}, {2, 5}, {4, 5}}. Since G′ = (G1, G2, G4, G5)
generates an MDS code, thenG1, G2 andG4 are lin-
early independent. So〈G1, G2〉 * 〈G1, G4〉. Similarly,
〈G1, G2〉 * 〈Gi, Gj〉, ∀{i, j} ∈ Λ. By Lemma 13, if
q ≥ |Λ| = 5, then 〈G1, G2〉 * ∪{i,j}∈Λ〈Gi, Gj〉. Note
thatS1 ∩ Ω = {1, 2}. Therefore, let

G3 ∈ 〈G1, G2〉\(∪{i,j}∈Λ〈Gi, Gj〉).

Then for any(S, r, k)-coreS ⊆ {1, 2, 3, 4, 5}, {Gℓ; ℓ ∈
S} is linearly independent.

2) i = 2: Ω = {1, 2, 3, 4, 5} and S2 \ Ω = {6}. Sim-
ilarly, we can verify that{1, 2, 6}, {1, 3, 6}, {2, 3, 6},
{1, 4, 6}, {1, 5, 6}, {2, 4, 6} and{2, 5, 6} are all subsets
which is an (S, r, k)-core and contains the index6.
Let Λ = {{1, 2}, {1, 3}, {2, 3}, {1, 4}, {1, 5}, {2, 4},
{2, 5}}. Clearly, 〈G4, G5〉 * 〈Gi, Gj〉, ∀{i, j} ∈ Λ.
By Lemma 13, if q ≥ |Λ| = 7, then 〈G4, G5〉 *
∪{i,j}∈Λ〈Gi, Gj〉. As S2 ∩ Ω = {4, 5}, let

G6 ∈ 〈G4, G5〉\(∪{i,j}∈Λ〈Gi, Gj〉).

Then for any (S, r, k)-core S, {Gℓ; ℓ ∈ S} is lin-
early independent. Thus, we can obtain a matrixG =
(G1, G2, G3, G4, G5, G6) such that for any(S, r, k)-
coreS, {Gℓ; ℓ ∈ S} is linearly independent. LetC be
the linear code generated byG. Then C is an optimal
(2, 2)a linear code.

We can in fact employ a smaller field thanF7. The following
is a generating matrix of an optimal(2, 2)a linear code:

G =





1 0 1 0 1 1
0 1 1 0 α α
0 0 0 1 1 α





over the fieldF4 = {0, 1, α, 1 + α}, whereα2 = 1 + α.

In the rest of this section, we shall use Theorem 14 to prove
that optimal(r, δ)a linear codes exist over a field of sizeq ≥
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(

n
k−1

)

when (r + δ − 1)|n or m ≥ v + δ − 1, wheren =
w(r + δ − 1) +m andk = ur + v satisfying0 < v < r and
0 < m < r + δ − 1. By Claim 2) of Lemma 5, n

r+δ−1 ≥ k
r

is a necessary condition for the existence of optimal(r, δ)a
linear codes. For this reason, we assumen

r+δ−1 ≥ k
r

holds in
both cases.

Theorem 15:Suppose(r + δ − 1)|n. If q ≥
(

n
k−1

)

, then
there exists an optimal(r, δ)a linear code overFq.

Proof: Let n = t(r+ δ− 1). Note that we have assumed
that n

r+δ−1 ≥ k
r
. Then

t = ⌈
n

r + δ − 1
⌉ ≥ ⌈

k

r
⌉.

Let {S1, · · · , St} be a partition of{1, · · · , n} such that|Si| =
r + δ − 1, i = 1, · · · , t.

For anyJ ⊆ [t] of size |J | = ⌈k
r
⌉,

| ∪i∈J Si| = ⌈
k

r
⌉(r + δ − 1) ≥ k + ⌈

k

r
⌉(δ − 1).

By Theorem 14, ifq ≥
(

n
k−1

)

, then there exists an optimal
(r, δ)a code overFq.

If (r+ δ− 1)|n andδ ≤ d, then following a similar line of
proof in [10], we can show thatt = ⌈ n

r+δ−1⌉ ≥ ⌈k
r
⌉. Under

these two conditions, it was proved in [10] that there existsan
optimal (r, δ)a code over the fieldFq of size q > knk. Our
method requires a field of size only

(

n
k−1

)

, which is at the
largest a fraction1

k! of knk.

Theorem 16:Supposen = w(r+δ−1)+m andk = ur+v,
where0 < m < r+δ−1 and0 < v < r. Supposem ≥ v+δ−1
andd ≥ δ. If q ≥

(

n
k−1

)

, then there exists an optimal(r, δ)a
linear code overFq.

Proof: Let t = w + 1. Since we have assumed that
n

r+δ−1 ≥ k
r
, we get

t = w + 1 = ⌈
n

r + δ − 1
⌉ ≥ ⌈

k

r
⌉ = u+ 1.

Note thatn − m = w(r + δ − 1). Let {S1, · · · , Sw} be a
partition of {1, · · · , n−m} andSt = [n−m+ 1, n].

For anyJ ⊆ [t] of size |J | = ⌈k
r
⌉, we have the following

two cases:
Case 1:t /∈ J . Then

| ∪i∈J Si| =

⌈

k

r

⌉

(r + δ − 1) ≥ k +

⌈

k

r

⌉

(δ − 1).

Case 2:t ∈ J . Sincem ≥ v + δ − 1, then

| ∪i∈J Si| = (

⌈

k

r

⌉

− 1)(r + δ − 1) +m,

≥ (

⌈

k

r

⌉

− 1)(r + δ − 1) + v + δ − 1,

= k +

⌈

k

r

⌉

(δ − 1).

Hence, for any⌈k
r
⌉-subsetJ of [t], |∪i∈J Si| ≥ k+⌈k

r
⌉(δ−

1). By Theorem 14, ifq ≥
(

n
k−1

)

, there exists an optimal
(r, δ)a code overFq.

When δ = 2, the conditions of Theorem 15 and Theorem
16 become(r+1)|n andn mod(r+1)−1 ≥ k modr > 0 re-
spectively. For this special case, Tamoet al. [15] introduced a
different construction method which is very easy to implement.
However, the method in [15] requires the field sizeq = O(nk),
which is larger than the field sizeq =

(

n
k−1

)

of our method.

VI. CONSTRUCTION OFOPTIMAL (r, δ)a CODES:
ALGORITHM 2

In this section, we present yet another method for construct-
ing optimal(r, δ)a codes. This constructive method also points
out two other sets of coding parameters where optimal(r, δ)a
codes exist. As the method in Section V, this method construct
an optimal(r, δ)a code which has a given setS as its(r, δ)-
cover set. The difference is that the setS used by this method
has a more complicated structure. We again borrow the notion
of core from [8].

Definition 17: Let S = {S1, · · · , St} be a collection of(r+
δ− 1)-subsets of[n], A = {A1, · · · , Aα, B} be a partition of
[t] andΨ = {ξ1, · · · , ξα} ⊆ [n]. We say thatS is an (A,Ψ)-
frame over the set[n], if the following two conditions are
satisfied:
(1) For eachj ∈ [α], {ξj} = ∩ℓ∈Aj

Sℓ and{Si\{ξj}; i ∈ Aj}
are mutually disjoint;

(2) {∪ℓ∈Aj
Sℓ; j ∈ [α]} ∪ {Sj; j ∈ B} is a partition of[n].

Example 18:LetS = {S1, · · · , S8} be what’s shown in Fig
3. ClearlyS is an (A,Ψ)-frame over[n], where the subsets
S1, S2, S3 have a common elementξ1 = 1, and the subsets
S4, S5 have a common elementξ2 = 14.

S1

S3

S2

S4

S5

S7

S6

S8

A1

A2

B

Fig 3. An (A,Ψ)-frame, wheren = 37, r = δ = 3, t = 8, A1 = {1, 2, 3},
A2 = {4, 5}, B = {6, 7, 8},A = {A1, A2, B} andΨ = {1, 14}.

Definition 19: A subsetS ⊆ [n] is said to be an(S, r)-core
if the following three conditions hold:
(1) If j ∈ [α] andξj ∈ S, then |S ∩ Si| ≤ r, ∀i ∈ Aj ;
(2) If j ∈ [α] andξj /∈ S, then there is anij ∈ Aj such that

|S ∩ Sij | ≤ r and |S ∩ Si| ≤ r − 1, ∀i ∈ Aj\{ij};
(3) If i ∈ B, then |S ∩ Si| ≤ r.
Additionally, if S ⊆ [n] is an(S, r)-core and|S| = k, thenS
is called an(S, r, k)-core.

Clearly, if S ⊆ [n] is an(S, r)-core andS′ ⊆ S, thenS′ is
also an(S, r)-core. In particular, ifS ⊆ [n] is an (S, r)-core
andS′ is a k-subset ofS, thenS′ is an (S, r, k)-core.
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Example 18 continued:In Example 18, let k = 7.
Then {1, 2, 3, 6, 7, 10, 11} and {2, 3, 4, 6, 7, 28, 33} are both
(S, r, k)-core. However,S = {2, 3, 4, 6, 7, 8, 28} and S′ =
{2, 6, 15, 23, 24, 25, 26} are not(S, r)-core, becauseS does
not satisfy Condition (2) andS′ does not satisfy Condition
(3) of Definition 19.

Lemma 20:Let S be an(A,Ψ)-frame as in Definition 17.
Supposet ≥ ⌈k

r
⌉ and for any⌈k

r
⌉-subsetJ of [t], |∪i∈J Si| ≥

k + ⌈k
r
⌉(δ − 1). Then the following hold:

1) If T ⊆ [n] has size|T | ≥ k + (⌈k
r
⌉ − 1)(δ − 1), then

there is anS ⊆ T such thatS is an (S, r, k)-core.
2) For anyi ∈ [t] and I ⊆ Si of size |I| = r, there is an

(S, r, k)-coreS such thatI ⊆ S.

Proof: 1) Let

J = {ℓ ∈ [t]; |T ∩ Sℓ| ≥ r}.

For eachj ∈ [α] andℓ ∈ Aj , we pick a subsetWℓ ⊆ T as
follows:

i) If J ∩Aj = ∅, then letWℓ = T ∩ Sℓ for eachℓ ∈ Aj .
ii) If J ∩Aj 6= ∅ andξj ∈ T , then for eachℓ ∈ J ∩Aj , let

Wℓ be anr-subset ofT ∩Sℓ satisfyingξj ∈ Wℓ, and for each
ℓ ∈ Aj\J , let Wℓ = T ∩ Sℓ.

iii) If J ∩Aj 6= ∅ andξj /∈ T , then fix anℓj ∈ J ∩Aj , and
let Wℓj be anr-subset ofT ∩Sℓj , let Wℓ be an(r−1)-subset
of T ∩Sℓ for eachℓ ∈ J ∩Aj\{ℓj}, and letWℓ = T ∩Sℓ for
eachℓ ∈ Aj\J .

Moreover, for eachℓ ∈ J ∩ B, let Wℓ be anr-subset of
T ∩ Sℓ, and for eachℓ ∈ B\J , let Wℓ = T ∩ Sℓ.

Let W = ∪ℓ∈[t]Wℓ, then by Definition 19,W is an (S, r)-
core. We now prove that|W | ≥ k. Let

Θ(J) = {j ∈ [α]; J ∩Aj 6= ∅}.

We need to consider the following two cases:
Case 1:|J | ≥ ⌈k

r
⌉. Without loss of generality, assume|J | =

⌈k
r
⌉5. Then from the assumption of this lemma,

| ∪ℓ∈J Sℓ| ≥ k + |J |(δ − 1). (VI.1)

By Definition 17,

| ∪ℓ∈J Sℓ| =
∑

j∈Θ(J)

|J ∩ Aj |(r + δ − 2)

+ |Θ(J)|+ |J ∩B|(r + δ − 1). (VI.2)

SinceA = {A1, · · · , Aα, B} is a partition of[t], {J ∩Aj ; j ∈
Θ(J)} ∪ {J ∩B} is a partition ofJ and

|J | =
∑

j∈Θ(J)

|J ∩ Aj |+ |J ∩B|. (VI.3)

Combining (VI.1)−(VI.3), we have
∑

j∈Θ(J)

|J ∩ Aj |(r − 1) + |Θ(J)|+ |J ∩B|r ≥ k. (VI.4)

5If |J | > ⌈k
r
⌉, then pick a⌈k

r
⌉-subsetJ0 of J , and replaceJ by J0 in

our discussion.

By the construction ofW , we have

| ∪ℓ∈J Wℓ| =
∑

j∈Θ(J)

|J ∩ Aj |(r − 1) + |Θ(J)|+ |J ∩B|r.

(VI.5)

Equations (VI.4) and (VI.5) imply that

|W | ≥ | ∪ℓ∈J Wℓ| ≥ k.

Case 2:|J | < ⌈k
r
⌉. By the construction ofW , for each

j ∈ [α] and ℓ ∈ J ∩ Aℓ, Wℓ is obtained by deleting at most
(δ − 1) elements fromT ∩ Sℓ. We thus have

| ∪ℓ∈Aj
Wℓ| ≥ |T ∩ (∪ℓ∈Aj

Sℓ)| − |J ∩ Aj |(δ − 1).

Moreover,

| ∪ℓ∈B Wℓ| ≥ | ∪ℓ∈B (T ∩ Sℓ)| − |J ∩B|(δ − 1).

Then
|W | = | ∪ℓ∈[t] Wℓ| ≥ |T | − |J |(δ − 1).

Note that|T | ≥ k+(⌈k
r
⌉−1)(δ−1) and|J | < ⌈k

r
⌉. Therefore

|W | ≥ |T | − (⌈
k

r
⌉ − 1)(δ − 1) = k.

Gathering both cases, we always have|W | ≥ k. Let S be a
k-subset ofW . Note thatW is an(S, r)-core. SoS ⊆ W ⊆ T
is an (S, r, k)-core.

2) To prove the second claim of Lemma 20, note thatt ≥
⌈k
r
⌉, and hence we can always find a⌈k

r
⌉-subsetJ of [t] such

that i ∈ J . Similar to the proof of 1), for eachℓ ∈ J , we can
pick a Wℓ such thatWi = I, ∪ℓ∈JWℓ is an (S, r)-core and
| ∪ℓ∈J Wℓ| ≥ k. Let S be ak-subset of∪ℓ∈JWℓ such that
I ⊆ S. ThenS is an (S, r, k)-core andI ⊆ S.

Example 18 further continued: Consider the(A,Ψ)-frame
S in Example 18. Letk = 7. ThenS satisfies the conditions
of Lemma 20. We consider the following two instances:

Instance 1:T = {2, 3, 4, 6, 7, 8, 14, 15, 16, 17, 19, 23, 24, 28}.
As in the proof of Lemma 20,J = {ℓ; |T ∩ Sℓ| ≥ r} =
{1, 2, 4} and |J | = 3 = ⌈k

r
⌉. Let W1 = {2, 3, 4},

W2 = {6, 7}, W4 = {14, 15, 16}, W5 = {19},
W6 = {23, 24}, W7 = {28} andWℓ = ∅ for ℓ ∈ {3, 8}. Then
|W | = | ∪8

ℓ=1 Wℓ| ≥ | ∪ℓ∈J Wℓ| ≥ k = 7.
Instance 2:T = {2, 3, 4, 6, 7, 8, 10, 11, 14, 15, 19, 23, 24, 28}.

Then J = {ℓ; |T ∩ Sℓ| ≥ r} = {1, 2} and |J | < ⌈k
r
⌉. Let

W1 = {2, 3, 4},W2 = {6, 7}, W3 = {10, 11},W4 =
{14, 15},W5 = {19},W6 = {23, 24},W7 = {28} and
W8 = ∅. Then|W | = | ∪8

ℓ=1 Wℓ| ≥ |T |− |J |(δ− 1) ≥ k = 7.

Remark 21:Let S be an(A,Ψ)-frame as in Definition 17.
For eachj ∈ [α] andi ∈ Aj , let Ui be anr-subset ofSi such
that ξj ∈ Ui. For eachi ∈ B, let Ui be anr-subset ofSi. Let

Ω0 = ∪i∈[t]Ui.

Then by Definition 19,Ω0 is an (S, r)-core. Clearly,

|Ω0| = n− t(δ − 1) = | ∪α
j=1 Aj |(r − 1) + α+ |B|r.
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Example 22:In Example 18, letk = 7, then Ω0 = {1,
2, 3, 6, 7, 10, 11, 14, 15, 16, 19, 20, 23, 24, 25, 28, 29, 30, 33, 34,
35} is an (S, r)-core obtained by the process of Remark 21.

Lemma 23:Let S be an(A,Ψ)-frame as defined in Defi-
nition 17 andΩ0 be what’s described in Remark 21. Suppose
Ω0 ⊆ Ω ⊆ [n], S0 ⊆ Ω andi ∈ [t]. If λ ∈ Si\Ω andS0 ∪ {λ}
is an (S, r, k)-core, then there exists anη ∈ Si ∩ Ω such that
S0 ∪ {η} is an (S, r, k)-core.

Proof: By the construction ofΩ0, |Si ∩ Ω0| = r. Since
Ω0 ⊆ Ω, so

|Si ∩ Ω| ≥ r.

SinceS0 ∪ {λ} is an (S, r, k)-core, by Definition 19,

|S0| = k − 1

and
|S0 ∩ Si| ≤ r − 1.

Thus, we can find anη ∈ (Si ∩Ω)\S0.
If i ∈ B, then by Definition 17,η /∈ Si′ , ∀i′ ∈ [t]\{i}. Then

S0 ∪ {η} is an (S, r, k)-core.
Now, supposei ∈ Aj for somej ∈ [α]. We need to consider

the following two cases.
Case 1:ξj ∈ S0. Sinceη ∈ (Si ∩ Ω)\S0, thenη 6= ξj and

η /∈ Si′ , ∀i′ ∈ [t]\{i}. ThenS0 ∪ {η} is an (S, r, k)-core.
Case 2:ξj /∈ S0. SinceS0 ∪ {λ} is an (S, r, k)-core, from

Definition 19, we differentiate the following two sub-cases:
Subcase 2.1:|S0 ∩ Si′ | ≤ r− 1, ∀i′ ∈ Aj . In that case, it is

clear thatS0 ∪ {η} is an (S, r, k)-core.
Subcase 2.2: There is anij ∈ Aj\{i} such that|S0∩Sij | =

r, |S0 ∩ Si| ≤ r − 2 and |S0 ∩ Si′ | ≤ r − 1, ∀i′ ∈ Aj\{ij, i}.
In that case, we have

|(Si ∩ Ω)\S0| ≥ 2.

Let η ∈ (Si ∩Ω)\(S0 ∪ {ξj}), thenη 6= ξj andη /∈ Si′ , ∀i′ ∈
[t]\{i}. It then follows thatS0 ∪ {η} is an (S, r, k)-core.

Example 18 and 22 continued:Consider again Example 18.
Let k = 7, Ω = Ω0 ∪ {4, 5, 8} andλ = 9 ∈ S2, whereΩ0 is
as in Example 22. We can easily verify the following:

Let S0 = {1, 2, 3, 6, 10, 14}; ThenS0 ∪ {9} is an(S, r, k)-
core. If we further letη = 7 ∈ S2, thenS0 ∪ {η} is also an
(S, r, k)-core.

Let S′
0 = {2, 3, 6, 7, 14, 15}; ThenS′

0 ∪ {9} is an (S, r, k)-
core. If we further letη′ = 8 ∈ S2, thenS′

0 ∪ {η} is also an
(S, r, k)-core.

Let S′′
0 = {2, 3, 4, 10, 11, 15, 23}; Then S′′

0 ∪ {9} is an
(S, r, k)-core. If we further letη′′ = 6 ∈ S2, thenS′′

0 ∪ {η′′}
is also an(S, r, k)-core.

Lemma 24:Let S be an(A,Ψ)-frame defined in Definition
17 andΩ0 be what’s defined in Remark 21. LetΩ0 ⊆ Ω ⊆ [n]
and G = {Gℓ ∈ Fk

q ; ℓ ∈ Ω} such that for any(S, r, k)-core
S ⊆ Ω, the vectors in{Gℓ; ℓ ∈ S} are linearly independent.
Supposei ∈ [t] and Si\Ω 6= ∅. If q ≥

(

n
k−1

)

, then for any
λ ∈ Si\Ω, there is aGλ ∈ 〈{Gℓ}ℓ∈Si∩Ω〉 such that for any
(S, r, k)-core S ⊆ Ω ∪ {λ}, the vectors in{Gℓ; ℓ ∈ S} are
linearly independent.

Proof: Let Λ be the set of allS0 ⊆ Ω such thatS0 ∪{λ}
is an (S, r, k)-core. For anyS0 ∈ Λ, by Lemma 23, there is
anη ∈ Si∩Ω such thatS0∪{η} is an(S, r, k)-core. From the
assumptions,{Gℓ}ℓ∈S0∪{η} is linearly independent. Hence

Gη /∈ 〈{Gℓ}ℓ∈S0
〉.

Thus,
〈{Gℓ}ℓ∈Si∩Ω〉 * 〈{Gℓ}ℓ∈S0

〉.

Sinceq ≥
(

n
k−1

)

≥ |Λ|, by Lemma 13,

〈{Gℓ}ℓ∈Si∩Ω〉 * (∪S0∈Λ〈{Gℓ}ℓ∈S0
〉).

Let Gλ ∈ 〈{Gℓ}ℓ∈Si∩Ω〉\(∪S0∈Λ〈{Gℓ}ℓ∈S0
〉). Then for any

(S, r, k)-core S ⊆ Ω ∪ {λ}, the vectors in{Gℓ; ℓ ∈ S} are
linearly independent.

The second construction method for optimal(r, δ)a codes
is illustrated in the proof of the following theorem.

Theorem 25:Let S be an(A,Ψ)-frame in Definition 17.
Supposet ≥ ⌈k

r
⌉ and for any⌈k

r
⌉-subsetJ of [t], |∪i∈J Si| ≥

k + ⌈k
r
⌉(δ − 1). If q ≥

(

n
k−1

)

, then there exists an optimal
(r, δ)a linear code overFq.

Proof: Let Ω0 be what’s described in Remark 21 and
L = |Ω0|. Clearly,

L = n− t(δ − 1).

Since t ≥ ⌈k
r
⌉, let J be a ⌈k

r
⌉-subset of[t]; then from the

assumptions,

| ∪i∈J Si| ≥ k + ⌈
k

r
⌉(δ − 1) = k + |J |(δ − 1).

By Remark 21,∪i∈JUi ⊆ Ω0. Hence

L = |Ω0| ≥ | ∪i∈J Ui| = ∪i∈JSi| − |J |(δ − 1) ≥ k.

The construction of an optimal(r, δ)a code consists of the
following two steps.

Step 1: Construct an[L, k] MDS codeC0 overFq. Such an
MDS code exists whenq ≥

(

n
k−1

)

≥ n > L. Let G′ be a
generating matrix ofC0. We index the columns ofG′ by Ω0,
i.e., G′ = (Gℓ)ℓ∈Ω0

, whereGℓ is a column ofG′, ∀ℓ ∈ Ω0.
Step 2: Extend the codeC0 to an optimal(r, δ)a codeC. This

can be achieved by the following algorithm, which appears
similar to Algorithm 1 (on the surface) but is actually different
(in details).

Algorithm 2:
1. Let Ω = Ω0.
2. i runs from1 to t.
3. While Si\Ω 6= ∅:
4. Pick aλ ∈ Si\Ω and letGλ ∈ 〈{Gℓ; ℓ ∈ Si ∩ Ω}〉

be such that for any(S, r, k)-coreS ⊆ Ω ∪ {λ},
{Gℓ; ℓ ∈ S} is linearly independent.

5. Ω = Ω ∪ {λ}.
6. Let C be the linear code generated by the matrixG =

(G1, · · · , Gn).

SinceG′ = (Gℓ)ℓ∈Ω0
is a generating matrix of the MDS

codeC0, so for any(S, r, k)-core S ⊆ Ω0, {Gℓ; ℓ ∈ S} is
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linearly independent. Then in Algorithm 2, by induction, we
can assume that for any(S, r, k)-coreS ⊆ Ω, {Gℓ; ℓ ∈ S} is
linearly independent. By Lemma 24, in line 4 of Algorithm 2,
we can always find aGλ satisfying the requirement. Hence, by
induction, the collection{Gℓ; ℓ ∈ [n]} satisfies the condition
that for any(S, r, k)-core S ⊆ [n], {Gℓ; ℓ ∈ S} is linearly
independent. Moreover, since in line 4 of Algorithm 2, we
can choose aGλ ∈ 〈{Gℓ; ℓ ∈ Si ∩ Ω}〉, which satisfies

Rank({Gℓ}ℓ∈(Si∩Ω)∪{λ}) = Rank({Gℓ}ℓ∈Si∩Ω).

By induction,

Rank({Gℓ}ℓ∈Si
) = Rank({Gℓ}ℓ∈Si∪Ω0

)

= Rank({Gℓ}ℓ∈Ui
)

= r.

For any i ∈ [t] and I ⊆ Si of size |I| = r, by Claim 2)
of Lemma 20, there is an(S, r, k)-coreS such thatI ⊆ S.
Hence{Gℓ; ℓ ∈ S} is linearly independent. Thus,

Rank({Gℓ}ℓ∈I) = r.

Therefore, by Definition 2 and Remark 3,C is an(r, δ)a code.
Finally, we prove that the minimum distance ofC is d =

n− k + 1− (⌈k
r
⌉ − 1)(δ − 1).

SupposeT ⊆ [n] and |T | = k + (⌈k
r
⌉ − 1)(δ − 1). By 1)

of Lemma 20, there is anS ⊆ T which is an(S, r, k)-core.
Therefore,

Rank({Gℓ; ℓ ∈ T }) = Rank({Gℓ; ℓ ∈ S}) = k.

By the minimum distance bound in (I.1) and Lemma 1, the
minimum distance ofC is

d = n− k + 1− (⌈
k

r
⌉ − 1)(δ − 1).

HenceC is an optimal(r, δ)a code.

Example 18 continued:Consider the(A,Ψ)-frame S in
Example 18. Letk = 7. Then it is obviousS satisfies the
conditions of Theorem 25. Thus, we can use Algorithm 2 to
construct an optimal(r, δ)a linear code over the field of size
q ≥

(

n
k−1

)

=
(

37
6

)

. Note thatr = δ = 3. Hence,(r+δ−1) ∤ n
and this is a new optimal(r, δ)a code.

As applications of Theorem 25, in the following, we show
that optimal(r, δ)a codes exist for two other sets of coding
parameters. From Claim 2) of Lemma 5, we know that

n
r+δ−1 ≥ k

r
is a necessary condition for the existence of

optimal(r, δ)a linear codes. Thus we will assumen
r+δ−1 ≥ k

r

in the following discussion.

Theorem 26:Supposen = w(r + δ − 1) + m and k =
ur + v, where0 < m < r + δ − 1 and0 < v < r. Suppose
w ≥ r + δ − 1 −m andr − v ≥ u. If q ≥

(

n
k−1

)

, then there
exists an optimal(r, δ)a linear code overFq.

Proof: Let t = w + 1. Note that we have assumed that
n

r+δ−1 ≥ k
r
. Then

t = w + 1 = ⌈
n

r + δ − 1
⌉ ≥ ⌈

k

r
⌉ = u+ 1.

Let
ℓ = r + δ − 1−m

and

L = (ℓ+ 1)(r + δ − 2) + 1. (VI.6)

Then from the assumptions,w ≥ (r+δ−1)−m = ℓ. Therefore

t = w + 1 ≥ ℓ+ 1

and

n− L = (w − ℓ)(r + δ − 1)

= (t− ℓ− 1)(r + δ − 1). (VI.7)

From equation (VI.6),L − 1 = (ℓ + 1)(r + δ − 2). The set
[2, L] can be partitioned intoℓ + 1 mutually disjoint subsets,
say,T1, · · · , Tℓ+1, each of sizer + δ − 2. Let

Si = {1} ∪ Ti, i = 1, · · · , ℓ+ 1.

Moreover, from equation (VI.7), the set[L + 1, n] can be
partitioned into t − (ℓ + 1) mutually disjoint subsets, say,
Sℓ+2, · · · , St, each of sizer + δ − 1.

Let α = 1 andA1 = {1, · · · , ℓ + 1}, B = {ℓ + 1, · · · , t},
A = {A1, B}, andΨ = {1}. ThenS = {S1, · · · , St} is an
(A,Ψ)-frame. For any⌈k

r
⌉-subsetJ of [t], sincer − v ≥ u,

then

|J | = ⌈
k

r
⌉ = u+ 1 ≤ r − v + 1.

Let J1 = J ∩ {1, · · · , ℓ+1}, andJ2 = J\{1, · · · , ℓ+1}. By
the construction ofS, we have

| ∪i∈J Si| = |J1|(r + δ − 2) + 1 + |J2|(r + δ − 1)

= |J |(r + δ − 1)− |J1|+ 1

≥ |J |(r + δ − 1)− |J |+ 1

≥ |J |(r + δ − 1)− (r − v + 1) + 1

= (|J | − 1)r + v + |J |(δ − 1)

= ur + v + ⌈
k

r
⌉(δ − 1)

= k + ⌈
k

r
⌉(δ − 1).

By Theorem 25, ifq ≥
(

n
k−1

)

, then there exists an optimal
(r, δ)a code overFq.

Theorem 27:Supposen = w(r + δ − 1) + m and k =
ur + v, where0 < m < r + δ − 1 and 0 < v < r. Suppose
w + 1 ≥ 2(r + δ − 1 −m) and2(r − v) ≥ u. If q ≥

(

n
k−1

)

,
then there exists an optimal(r, δ)a linear code overFq.

Proof: Let t = w + 1. Note that we have assumed that
n

r+δ−1 ≥ k
r
. Then

t = w + 1 =

⌈

n

r + δ − 1

⌉

≥

⌈

k

r

⌉

= u+ 1.

Let
ℓ = (r + δ − 1)−m

and

L = ℓ(2(r + δ − 1)− 1). (VI.8)
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Then by assumption,t = w + 1 ≥ 2(r + δ − 1 −m) = 2ℓ. It
then follows that

n− L = (t− 2ℓ)(r + δ − 1) ≥ 0. (VI.9)

From equation (VI.8), the set[L] can be partitioned intoℓ
mutually disjoint subsets, say,T1, · · · , Tℓ, each of size2(r +
δ − 1)− 1. For eachi ∈ {1, · · · , ℓ}, we can find two subsets
S2i−1, S2i of Ti such that

|S2i−1| = |S2i| = r + δ − 1

and

S2i−1 ∪ S2i = Ti.

Then

|S2i−1 ∩ S2i| = 1.

Let S2i−1 ∩ S2i = {ξi} andΨ = {ξ1, · · · , ξℓ}.
Moreover, from Equation (VI.9), the set[L + 1, n] can

be partitioned intot − 2ℓ mutually disjoint subsets, say
S2ℓ+1, · · · , St, each of sizer + δ − 1.

Let Ai = {2i − 1, 2i}, i = 1, · · · , ℓ, B = [2ℓ + 1, t] and
A = {A1, · · · , Aℓ, B}. ThenS = {S1, · · · , St} is an(A,Ψ)-
frame. For any⌈k

r
⌉-subsetJ of [t]. Since2(r − v) ≥ u, then

|J | = ⌈
k

r
⌉ = u+ 1 ≤ 2(r − v) + 1. (VI.10)

Let Γ(J) = {j ∈ [ℓ];Aj ⊆ J}. Then

|J | ≥ | ∪j∈Γ(J) Aj | = 2|Γ(J)|. (VI.11)

Combining (VI.10) an (VI.11), we have

|Γ(J)| ≤
|J |

2
≤

2(r − v) + 1

2
= r − v +

1

2
.

Since|Γ(J)| is an integer, then

|Γ(J)| ≤ r − v.

By the construction ofS, we have

| ∪i∈J Si| = |J |(r + δ − 1)− |Γ(J)|

≥ |J |(r + δ − 1)− (r − v)

= (|J | − 1)r + v + |J |(δ − 1)

= k + ⌈
k

r
⌉(δ − 1).

By Theorem 25, ifq ≥
(

n
k−1

)

, then there exists an optimal
(r, δ)a code overFq.

We now provide some discussions of Theorem 27. Since
0 < m < r + δ − 1, then2(r + δ − 1 −m) < 2(r + δ − 1).
Given k, r and δ, let α = max{2(r + δ − 1), ⌈k

r
⌉}. Then the

conditionsw + 1 ≥ 2(r + δ − 1−m) andw ≥ u can always
be satisfied whenn ≥ α(r+ δ− 1). On the other hand, when
k
3 < r < k andr 6= k

2 , thenu = 1 or 2 andr− v ≥ 1, which
leads to2(r − v) ≥ u. By Theorem 27, there exist optimal
(r, δ)a codes whenn ≥ α(r + δ − 1), k

3 < r < k andr 6= k
2 .

r\k 11 12 13 14 15 16 17 18 19 20
2 EM EM EM EM EM EM EM EM EM EM

3 N11 N10 E27 E27 N10 N11 N11 N10 N11 N11

4 E27 N10 E27 E27 N11 N10 E27 E27 N11 N10

5 E16 E27 E27 E27 N10 E27 E27 E27 N12 N10

6 EM EM EM EM EM EM EM EM EM EM

7 E26 E26 E26 N10 E26 E26 E26 E26 E26 ∼

8 EM EM EM EM EM EM EM EM EM EM

9 E16 E16 E16 E26 E26 E26 E26 N10 E16 E16

10 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ N10

11 EM EM EM EM EM EM EM EM EM EM

Table 1. Existence of optimal(r, δ)a codes for parameters
n = 60, δ = 5, 2 ≤ r ≤ 11 and11 ≤ k ≤ 20.

VII. C ONCLUSIONS

We have investigated the structure properties and construc-
tion methods of optimal(r, δ)a linear codes, whose length and
dimension aren and k respectively. A structure theorem for
optimal(r, δ)a code withr|k is first obtained. We next derived
two sets of parameters where no optimal(r, δ)a linear codes
could exist (over any field), as well as identified four sets of
parameters where optimal(r, δ)a linear codes exist over any
field of size q ≥

(

n
k−1

)

. Some of these existence conditions
were reported in the literature before, but the minimum field
size we derived is (considerably) smaller than those derived in
the previous works. Our results have considerably substanti-
ated the results in terms of constructing optimal(r, δ)a codes,
and there are now only two small holes (two subcases with
specific parameters) where the existence results are unknown.
Except for these two small subcases, for all the other cases,
given each tuple of(n, k, r, δ), either an optimal(r, δ)a linear
code does not exist or an optimal(r, δ)a linear code can be
constructed using a deterministic algorithm.

As an illustrative summary of our results, we also provide in
Table 1 an example of the existence of optimal(r, δ)a linear
codes for the parameters ofn = 60, δ = 5, 2 ≤ r ≤ 11
and 11 ≤ k ≤ 20. In this table, EM means that optimal
(r, δ)a linear codes can be constructed by the method in [10]
or by our Theorem 15 and Algorithm 1 (which requires a
substantially smaller field); E16 (resp. E26, E27) means optimal
(r, δ)a linear codes can be constructed by Theorem 16(resp.
Theorem 26, Theorem 27); N10 (resp. N11) means optimal
(r, δ)a linear codes do not exist according to Theorem 10
(resp. Theorem 11); and∼ means we do not yet know whether
an optimal(r, δ)a linear code exists or not.
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