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Optimal Locally Repairable Linear Codes

Wentu Song, Son Hoang Dau, Chau Yuen and Tiffany Jing Li

Abstract—Linear erasure codes with local repairability are can expect to considerably improve the storage efficiency.
desirable for distributed data storage systems. Anln, k,d] code Consider a file that is divided intb equal-size fragments. A
having all-symbol (r, §)-locality, denoted as(r, d)., is considered judiciously-designedn, k] erasure (systematic) code can be

optimal if it also meets the minimum Hamming distance bound. | dt de the data f ts (t t i
The existing results on the existence and the constructionfo employed 1o encoae ata fragments (termsystematic

optimal (r, §), codes are limited to only the special case @f=2, Symbolsin the coding jargon) inta fragments (termedoded
and to only two small regions within this special case, namgl symbol¥ stored inn different nodes. If the[n, k, d] code
m=00rm 2> (v+6—1) > (6—1), wherern =n mod (r+6—1)  reaches the Singleton bound such that the minimum Hamming
and v = k£ mod r. This paper investigates the existence conditions distance satisfied = n — k + 1, then the code isnaximum

and presents deterministic constructive algorithms for opimal . L
(r,6)o codes with generalr and 4. First, a structure theorem is distance separabl¢MDS) and offers redundancy-reliability

derived for general optimal (r,5). codes which helps illuminate Optimality. With an [n, k] MDS erasure code, the original
some of their structure properties. Next, the entire problen space file can be recovered from any set bfencoded fragments,
with arbitrary n, k, r and ¢ is divided into eight different cases regardless of whether they are systematic or parity. Inrothe
(regions) with regard to the specific relations of these panaeters. words, the system can tolerate up te — k) concurrent

For two cases, it is rigorously proved that no optimal(r, ), could . . . . . .
exist. For four other cases the optimal(r, ), codes are shown device/node failure without jeopardizing the data avaliigb

to exist, deterministic constructions are proposed and théower Despite the huge potentials of MDS erasure codes, how-
bound on the required field size for these algorithms to work § ever, practical application of these codes in massive géora
provided. Our new constructive algorithms not only cover mae  npetworks have been difficult. Not only are simple (i.e. reesii
cases, but for the same cases where previous algorithms exifhe very little computational complexity) MDS codes very diffit

new constructions require a considerably smaller field, whih ¢ truct. but dat - d i | ire th
translates to potentially lower computational complexity Our 'O CONSIrUCL, but data répair would in general require the

findings substantially enriches the knowledge on(r,§). codes, access of other encoded fragments [5], causing considerable
leaving only two cases in which the existence of optimal code input/output (1/0O) bandwidth that would pose huge chalkng

are yet to be determined. to a typical storage network.
|. INTRODUCTION Vi (C B
The sheer volume of today’s digital data has matie Group 1 v i
tributed storage system®SS) not only massive in scale but vi (C 1 + Tp
also critical in importance. Every day, people knowingly or vi € P .

unknowingly connect to various private and public disttéal v € = )
storage systems, include large data centers (such as thgeG00 ’
data centers and Amazon Clouds) and peer-to-peer storage Y oup2 < ve ( T4
tems (such as OceanStoré [1], Total Recéll [2], and DHash++ vi € T3 + T4
[3]). In a distributed storage system, a data file is stored at C
distributed collection of storage devices/nodes in a ngtwo
Since any storage device is individually unreliable andesttb
to failure (i.e. erasure), redundancy must be introduced to V1o
provide the much-needed system-level protection agaatst d Gm“p3< vir Qloy + 22 + 25 + 34) + 25)
loss due to device/node failure. | ve: (@t oa t 25 t20) £ 225) € = )
The simplest form of redundancy isplication By storing
¢ identical co_pie; of a file at distributed nodes, one cop_y pngi . 1. An example of how a locally repairable linear code &edito
node, ac-replication system can guarantee the data avallablllgﬁstmct

a distributed storage system: a ffleis first split into five equal

as long as no more thaf@—1) nodes fail. Such systems arepackets{z1,--- , x5} and then is encoded intt2 packets, using 42,3)a

very easy to implement, but extremely inefficient in storag{v ear code. These2 encoded packets are storediatnodes{vs, -+, vi2},
Y Y P y @mch are divided into three groupgvi,v2,vs,va}, {vs,ve,v7,vs} and

Space Ut”izati(.m:. incurring tremendous waste in deviaes {vg, v10,v11,v12}. Each group can perform local repair of up to two node-
equipment, building space, and cost for powering and cgolirfailures. For example, if Nodegvfails, it can be repaired by any two packets

ot ; i among Mo, Vi1 and vi2. Moreover, the entire filéF can be recovered by five
More sophlstlcated systems employl@asure COdmg[4J packets from any five nodes v, - - - , v;; which intersect each group with at
ost two packets. For examplé&, can be recovered from five packets stored

Vi,V3,V7,Vg and V.
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linear codes. Theth coded symbol of af, k] linear codeC Locality of general codes (linear or nonlinear) and bounds
is said to have locality: (1 < r < k) if it can be recovered on the minimum distance for a given locality were presented
by accessing at most other symbols irC. The concept was in parallel and subsequent works [11], [14]. An ), code
further generalized tdr, §) locality by Prakastet al. [10], to  (systematic or not) is also termedlacally repairable code
address the situation of multiple device failures. (LRC), and(r,d), codes that achieve the minimum distance

According to [10], theith code symbot;,1 < ¢ < n, in an bound are calledptimal
[n, k] linear codeC is said to have localityr, §) if there exists It was proved in [[10] that there exists optimal locally
an index sefS; C [n] containingi such thatS;|—d+1 < rand repairable linear codes whefr + § — 1)|n and ¢ > kn*.
each symbot;, j € S;, can be reconstructed by ajy;|—é+1 Under the condition that +J — 1)|n, a construction method
symbols in{cs; £ € S; and? # j}, whered > 2 is an integer. of optimal locally repairable vector codes was proposed in
Thus, whend = 2, the notion of locality in [[10] reduces to [14], where maximal rank distance (MRD) codes were used
the notion of locality in [[8]. Two cases ofr,d) codes are along with MDS array codes. For the special case ef 2,
introduced in the literature: Arfr,§); code is a systematic Tamoet al. [15] proposed an explicit construction of optimal
linear code whosenformation symbolsil have locality(r, §); LRCs when
and an(r, ), code is a linear code all of whosgmbolshave (r+1)|n
locality (r,d). Hence, an(r,d), code is also referred to as
having all-symbol locality (r, §), and an(r,¢); code is also
referred to as havingnformation locality (r,4). A symbol
with (r, d) locality — given that at the mos$t — 1) symbols are Except for the special case thamod(r+1)—1 > £ modr >
erased — can be deduced by reading at masther unerased 0, no results are known about whether there exists optimal
symbols. (r,d), code when(r + 6 — 1) { n.

Clearly, codes with a low symbol locality, such as< k, Up to now, designing LRCs with optimal distance remains
impose a low 1/0O bandwidth and repair cost in a distributeah intriguing open problem for most coding parameters, r
storage system. In a DSS system, one can use “group”aod ¢. Since large fields involve rather complicated and
describe storage nodes situated in the same physicaldacagxpensive computation, a related interesting open probss
which enjoy a higher communication bandwidth and a shorteew to limit the design (of optimal LRCs) over relatively
communication distance than storage nodes belonging to difnaller fields.
ferent groups. In the case of node failurdpeally repairable
codemakes it possible to efficiently recover data stored in tH& Main Results

failed node by downloading information from nodes in the |n this paper, we investigate the structure properties bad t
same group (or in a minimal number of other groups). Eig. donstruction of optimalr, §), linear codes of lengt and
provides a simple example of how &n d), code is used to gimensionk. A simple property of optimalr, §), linear codes
construct a distributed storage system. In this exantpie,a g proved in Lemmals, which shows that?— > k for any
(2,3)a linear code of length2 and dimensiors. Note that a gptimal (r, §), linear code. Hence we impose this condition
failed node can be reconstructed by accessing only two othgr__»__ - & throughout our discussion of optimét, §),

nmod(r+1)—1>kmodr > 0f

existing nodes, while it takes five existing nodes to repair&ég;fl
failed node if a[12,5] MDS code is used. The main results of this paper include:
(i) We prove a structure theorem for the optimal d),
A. Related Work linear codes for|k. This structure theorem indicates that it is

possible for optima(r, §), linear codes, a sub-class of optimal
(r,0); linear code, to have a simpler structure than otherwise.
(i) We prove that there exist no optimél, §),, linear codes

Locality was identified as a repair cost metric for distréalit
storage systems independently by Oggieml. [7], Gopalan
et al. [8] and PaPailiopoulost al. [9] using different terms. In
[8], Gopalaret al.introduced the concept of symbol locality of
linear codes and established a tight bound for the redurydanc (r+d¢—1)fn andrlk (1.2)
in terms of the message length, the distance, and the IpcaB}
of information coordinates. A generalized concept, i&.¢)
locality, was addressed by Prakashal. [10]. It was proved m<v+d—1andu>2(r—v)+1 (1.3)
in [10] that the minimum distancé of an (r,d); linear code |y, _ wir +8—1)+m andk = ur + v such that

C is upper bounded by 0<v<randd<m<r+d—1 (Theorem§ 10 and11).
k (iil) We propose a deterministic algorithm for construgtin
d<n—k+1- <[‘W - 1> 6-1) (1.1) optimal (r, §), linear codes over any field of size> (,")

,
when
wheren andk are the length and dimension Gfrespectively.

It was also proved that a class of codes known as pyramid (r+d-1)n (1.4)

codes [[6] achieve this bound. Since &and), code is also | _ L _ g
N Note that this condition is equivalent to the condition that> v + 1,

an (_r, )i C(_)de, [L1) also presents an upper bound for thgerer, — w(r+ 1)+ m andk = u(r + 1) + v satisfying0 < m < r + 1
minimum distance ofr, §), codes. and0 < v <r.
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(r+6-1)|n (r+68—-1)| n and rlk __(r+é-D|mandr|k
[10]: ¢ > kn*; ‘ Theorem 10: No optimal code ‘ m=w(r+8—1)+mand k=ur+v
[14]: Vector codes; LO<m<r+d—land0<y<r. |
[81,[15]:6 = 2; /
Thenrcm]S:qZ( " J m2v+0o-1 m<v+&—1and m<v+8—1and
k-1 [15]:8 = 2; u22r—v)+1 u<2r—v)
[ n J ‘Theorem]l:No optimal codV \ \\
Theorem16: g4 >
k-1
w2r+d—1-m WH122(r+8-1-m) 15 1-m r+6-1-m<w<2r+6-1-m)-1
andr—v2>u and 2(r—v)2u and r—v<u
Theorem Zﬁzqz[knl) Theorem27:q2[kn J Open problem Open problem
Fig 2. Summary of existence of optimét, d), linear codes.
or whenr|k (should they exist). In Section IV, we consider the

non-existence conditions for optim@l, ¢),, linear codes under
m2zv+d-1 (1:5) conditions [[I.2) and[{TI3). A construction of optiméat, ),
wheren = w(r +§ — 1) + m and k = ur + v such that linear codes for conditiond (1.4) and _{I.5) is presented in
0O<v<rand0<m<r+d—1 (Theoren Ib anf16). Section V, and a construction of optim@l, ¢),, linear codes
(iv) We propose another deterministic algorithm for corfor conditions[(I.6) and(T]7) is presented in Section Vhdly,
structing optimal(r, ), linear codes over any field of sizewe conclude the paper in Section VII.
¢ = (,",) when

w>r+6—1—mand mifr—v,w}>u (1.6 [I. LOCALITY OF LINEAR CODES

For two positive integerg; andt. (¢; < t3), we denote
[tl,tg] = {tl,tl +1,--- ,tg} and [tg] = {1, 2, ,tg}. For
w+1>2(r+d§d—1—m)and mif2(r —v),w} > wu (1.7) any setS, the size(cardinality) of S is denoted byS|. If I
is a subset of5 and|I| = r, then we say thaf is anr-subset
of S. Let IF’; be thek-dimensional vector space over thary
]Iield F,. For any subsef C F*, we use(X) to denote the

or

wheren = w(r + 46 — 1) + m and k = wr + v such that
O<v<randd<m<r+d—1 (Theoren2b and 27).
A summary of our results is given in F[g 2. Note that Isubspace oF’; spanned byX.

none of the conditions if_(112)-(1.5) holds, it then followrsat In the sequel, whenever we speak of @gd). or (r, 8);

m<v+d—1andu <2(r—v). code, we will by default assume it is dn, k, d] linear code
(i.e., its length, dimension and minimum distance ay& and
d respectively).

SupposeC is an [n, k,d] linear code oveiF,, and G =
(Gy,---,G,) is a generating matrix of, whereG,, i € [n],
is theith column of G. We denote byg = {G4,--- ,G,} the
collection of columns of7. It is well known that the distance
property is captured by the following condition (e.g.l[18])

In that case, if condition(I6) does not hold, we have<
r+d6d—1—morr—wv < u; and if condition [.Y) does
not hold, we havew +1 < 2(r+ 6 — 1 —m), i.e.,, w <
2(r + 5 —1—m) — 1. Hence, if, neither conditior_ (I.6) nor
condition [I7) holds (in addition to (T12J-(1.5)), then erof
the following two conditions must be satisfied:

w<r+4d6—1-—m, (1.8)

Lemma 1:An [n, k] codeC has a minimum distancé, if
or and only if |S| < n — d for every S C G having RankS) <
r4d—1-m<w<2r+6—1—m)—1andr—ov<u. k — 1. Equivalently, Rankl") = k for everyT C G of size

(1.9) n—d+ 1.

In other words, if none of the conditiorls {I.Z)-{I.7) holdsen  For any subse§ C [n], letC|s denote the punctured code of
either [L.8) or [L.9) will hold. From our existence proof dad ¢ associated with the coordinate setThat is,C|s is obtained
constructive results, the existence of optintald), linear from C by deleting all symbols;, i € [1]\S, in each codeword
code is not known only for a limited scope with parameters, ... ¢,) € C.

described by[{T18) and {11.9).

The remainder of the paper is organized as follows. In Definition 2 ([10]): Supposel < r < k and§ > 2. The
Section I, we present the notions used in the paper as wellifs code symbok;,1 < i < n, in an[n, k,d] linear codeC
some preliminary results abo(t, d), linear codes. In Section is said to have localityr, ¢) if there exists a subset; C [n]

[ll, we investigate the structure of optim@l, &), linear codes such that



@ S| <r+d6-1; which implies that—4— > k ]
(2) The minimum distance of the punctured catlg, is at

leasto. IIl. STRUCTURE OFOPTIMAL (r,d), CODE WHENT|k
Remark 3:Let G = (Gy,--- ,G,) be a generating matrix In this section, we prove a structure theorem for optimal
of C. By Lemmall, it is easy to see that the second conditid 9)a codes under the condition efr.
in Definition[2 is equivalent to the following condition Throughout this section, we assume tfias an(r, ), code
(2') Rank{Gy;:¢ € I'}) = RanKg;) for any subsef C S; of Over the fieldlF,, S.: {S1,--+,S:} is an(r, d)-cover set of
size|I| = |S;| — 0 + 1, whereG; = {Gy; ¢ € S;}; C, whereS; C [n], i =1,---¢,andG = (G1,--- ,Gy) is a
generating matrix o. We denoteG = {Gy,---,G,} and
Moreover, by conditions (1) and )2 we have Gi = {Gy; £ € S;JA. Then for anyI C [¢], we have
Rankg;) = Rank{G; £ € S;}) < [Si| —d+1 < | Uier Gil = |[{Gi;i € UperSe}| = | Uier Sil (11.1)

That iS,Vi/ € S; andVI C SZ\{ZI} of Size|I| = |Sz| —0+1, and by RemarE]4, we get
Gy is anF,-linear combination of Gy; ¢ € I}. This means
that the symbok;; can be reconstructed by the;| — d + 1 Ui = G and Ui 5y Gi # 9, V5 € [t]. (n.2)
symbols in{c; ¢ € I}.

An (r,6), codeC is said to beoptimal if the minimum
distanced of C achieves the bound in_(].1).

The following remark follows naturally from Definitiol] 2
and Remarkl3.

We first give some lemmas to help prove our main results.

Lemma 6:Consider three setgl, B, X C IF’; If Cis a
subset ofX satisfies: RaniB U C) = RanK AU BUC), then

_ ) RankKX U AU B) — |B| < RankKX).
Remark 4:If C is an(r, d), code andZ = (Gy,--- ,G,) is
a generating matrix of, then we can always find a collection Proof: SinceC' C X and RankBUC) = RanKAU B U
S={5, --,S5}, whereS; C [n],i=1,---,t, such that C), we have

D ISl <r+6-1i=1-- .t RankX UAUB) = RanKXUCUAUB)
(2) RanK{Gy;¢ € I}) = RanKG;) <r,Vie [t]jandI C S,

of size|I| = |S;| — 0 + 1, whereG; = {Gy; £ € S;}; = RankXUBUC)
(3) Ui Si = [n] andUiep 535 # [n], Vi € [t]. = RankXUB)
We call the setS = {Sy,---,S;} an (r, d)-cover setof C. < RankX) + RankB)
. . < RankX)+ |B|.
The following lemma presents a simple property(afd),
codes. Therefore, RankX U AU B) — | B| < Rank X). [ |
Lemma 5:An (r,d), codeC satisfies Lemma 7:Suppose{i,---,i¢} C [t] such thatg;, ¢
1) The minimum distancé > 6. (UZ1Gin), j=2,--- L. Then
2) If C is an optimal(r, §), code, then—4— > £, , ,
Proof: 1) LetS = {54, -, S} be an(r, §)-cover set of | Ujzr Sl = Rank Ui, Gy, ) +€(8 — 1).
C. For any0 # (c1,- -+ ,¢n) € C, sinceU;ey S = [n], there Proof: We prove this lemma by induction.

is ani € [t] such that the punctured codewofd;);cs, is From Remark13JS;,| > RankGi,) + (6 — 1). Hence the
nonzero inC|s,. By the second condition of Definitidd 2, the.i5im holds for¢ — 1. '

Hamming weight ofc;) jes, is at leas®. Thus, the Hamming N consider? > 2. We assume that the claim holds for

weight of (¢1,- -+ ,¢,,) is at leasty. Since0 # (¢q,--- ,¢,) € /-1 ie
C is arbitrary, the minimum distanaé> . T
2) SinceC is an optimal(r, §), code, from the minimum |USZ] S| > RankUiZ1Gi)) + (€ —1)(6 — 1), (II.3)

distance bound i 1),
T We shall prove that the claim is true fér

n=d+k—1+ GE-‘ — 1) (6 —1). First, we point out thatgie\(uﬁ;}gijﬂ > 0 — 1. In fact, if
. AT 1Gi \(UjZ1Gi,)| < -1, then|G;,N(USZ1Gi,| > |Gi,|—(6—1).
F laim 1),d > &; which leads t onditi i (-1
rom claim 1),d > &; which leads to From condition (2) of Remarkl47;, C (G;, N (U;2,Gi;)) €
Z71 . - . .
RS54 k—14 Gﬁ-‘ B 1) 6-1). (US21Gi,), W?Jclzh presents a contradiction to the assumption
thatG;, ¢ (U;21Gi;)- Thus,
H 1
o b G \(UI1G ) > 5 - 1.
nr > r(0+k-1)+r([=-]1-1)0-1) '

r
k 2WhenG; and G; are viewed as vectors m’;, it is possible forG; = G;
> r0+k-1)+r(-=-1(0-1) wherei # j. However, when treating them as two different columnsGof
r we shall viewG; and G; as two separate elements ¢h(even though they
kE(r+d—-1) may be identical).

\



Let X = U{Z]G;, andC = G;, N

(U§;1gh) = gie nx.

Let A be a fixed(s — 1)-subset ofG;,\(U;Z]G;;) and B =

(Gi, \ USZ] Gi, \A.
From condition (2) of Remailki 4,
BUC(C). Then, from Lemmal6, we

RafBUC) = RanK AU
get

RankKX U AU B) — |B| < RankKX)
ie.,

RankU/_,G;,) — |B| < RanKUSZ1G;)). (111.4)
Clearly, ulegi]. is a disjoint union of A, B and uf;}gij.
Hence,

Ui Gyl = (Y21 Giy |+ | Al + (B

= [UiZ1 Gy + (- 1)+ B

and from [1IL.3), we get
‘—
| Uiy S| = | U5my Gy | = [ Uj2)

Si,|+(0—1)+B|.

(111.5)
Combining [(IT1.3)-[II.5), we have
|USey Syl = JUSZY S+ (6—1) +|B]
> Rank(uj:lgij) +4(6 —1)+|B]
> RankU/_,Gi,) — |B| + (6 — 1) + |B]

which completes the proof.

RankU{_,G;,) +£(6 — 1)

Lemma 8:Suppose is an optimal(r, d), code. Then

1) t> [ 2[5
2) If J C [t] and|J| < [5] -1, the
andGp, € (UiesGi),Vh € [t]\J.

3) If J C [t] and|J| = [%], then RankU;c,G;) = k and

| Uies Sil = k+ [E](6 - 1).

n RankUie Gi) < k-1

Proof: 1) (Proof by contradiction) Supposeé <
[+=5=1— 1. Then from Remarkl4,

[Si| <r+4+6-—1.
Hence,
no= [Uip Si
< tlr+d-1)
< (o5l -V +6-1)
< n
which presents a contradiction. Hence, it must hold that
[ 5=t -
Moreover, from Claim 2) of Lemml57,+5—1 > ’“ . Thus,
n k
2 (mW 2 ( 1.

2) From Remarkl3, Rarlg;) < r,V: € [t]. Hence, if|J| <

[&] -1, then
k
RanKUingi) < T|J| < T([;-|

ie., RanKUingi) <k-1.

k
1) <rt =k
T

Now, suppos&, C (U;csG;), and we will see a contradic-
tion results. First, we can find a subskt= {i1, -+ ,is} C J
such thag, C (U3_,G:.) andG,, € (U,c s G;) for any proper
subset/’ of Jy. In particular, we have

gij »¢— <Ug\_:11gh>u7 =2,--+,8
Note that|Jy| < |J| < [£]—1. By the proved result, we have
RanKUiejogi) <k-1.

Next, we can find a sequengg, , - -+ ,Gi., Gi.,,, -, Gi, SUCh
that£ > [2],RankUl_,G;)) = k: andgi]. ¢ (UGG =
0. In parucular Ran gij) < k — 1. Therefore,

there exists &, C G;, such that RanKU;21Gi,) UG,,) =
k —dl. Denote(U:Z1G;,) UG,, = S. Then RankS) = k — 1
an

G/, \UZ1 Gi,| > RanKS)—RanKU‘Z1G:))
(k — 1) — RanKU{Z1G;, ). (111.6)
From Lemmdl,
| USZ1 G, | > RankUiZ1Gi) ) + (€= 1)(6 — 1), (IIL.7)
Then by equationg (IIT16) and_(IT1.7),

S| = |G\ UL Gi |+ U G
> (k=14 -1 -1)
> k—1+([§1—1)(5_1). (I11.8)

Sinceh € [t|\J, Gn # Gi;»j = 1,---,s. Moreover, since
gh <U)\ 1gl > andgij 1¢— <Ug\_:11gi>\>7j = 27 T ,f, Sogh 7é
Gi,,j =s+1,---, ¢ From equation[(IlLR), we have;, ¢
nglgi].. Then, from equatior_(TIT]8), we get

Gu US| > 18] >k~ 14+(15] = 1)(5 1),

Since we assumed;, C (U5_,G;,) C (S), then RankG, U
S) = RankS) = k — 1. By Lemmall, we have

dgn—|QhUS|<n—k+1—((§]—1)(5—1),

which contradicts the assumption th@is an optimal(r, §),
code. Hence, it must be thgh, ¢ (Uic;G:) 8
3) Suppose/ = {iy,-- - ,i,}, wheres = [£]. By claim 2),

gij g <U§\;11g1>\>7] =2,--+,8
First, we have Rank;c;G;) = k. Otherwise, as in the
proof of claim 2), we can find a sequengg,,---,G;,,
Gioraoo+Giy (€ > s = [%]) and & setS = (Uj21G;,) U
Gl, (Gi, € Gi,) such that
k
|S] 2k—1+(€—1)(6—1)>k—1+([;1 —-1)(6-1).
By Lemma[1l,
d<n-—|S| <n—k+1—([ﬁ1 —1)(6-1)
T

3In this proof, for any(r, §), codeC, we obtain a subsef C G such that
S| >k—1+ ([ *1 —1)(6 — 1) and RankS) = k — 1. Then by Lemma
[@, the minimum dlstance @disd<n—-k+1— (( 21 —1)(6 — 1), which
also provides a proof of the minimum distance boundﬁ (1.2).



which contradicts the assumption titais an optimal(r, ),
code. Therefore, we have Rankc;G;) = k.
Now, by LemmdT,

k
|Uies Sil > RanKUiesGi) + fﬂ (0—1)
k
= k+ (;1(5— 1).
This completes the proof. ]

We now present our main theorem of this section.

Theorem 9:Suppose is an optimal(r, ¢),, linear code. If
r|k andr < k, then the following conditions hold:
1) Si,---,S; are mutually disjoint;
2) |Si| =r+6—1,Vi € [t], and the punctured codHg, is
an[r+96—1,r,46] MDS code.
In particular, we havér + 4§ — 1) | n.
Proof: Sincer|k andr < k, thenk = ¢r for some
¢ > 2. By 1) of Lemmal8,t > [£] = ¢. Let {iy,is} C [f]
be arbitrarily chosen. Let/ be an{-subset of[t] such that
{i1,i2} C J. Then by 3) of Lemmal8,

RanKU;c;G;) = k = ¢r, (111.9)

and
|UiesSi| > k+£0(6 —1) =L(r+5 —1). (111.10)
Since|S;] < r + 4§ — 1 and by Remarkl4, Rarfg;) < r,
then equationd(Il1]9) and(1I.10) imply that Raftk) = r,

|S;| =r+6—1, and{S;}:cs are mutually disjoint.

In particular, Rankg;,) = RankG;,) =, G;, NG;, =0
and|S;,| = |S:,| =7+ ¢ — 1. Sincei; andiy are arbitrarily
chosen, we have proved that R&GK = r, |S;|=r+6 — 1,
and {S;}:c; are mutually disjoint. Hencer + 4§ — 1) | n.
Moreover, by LemmBll and Remark@s; is an[r+d—1, 7, ]
MDS code. |

In [10], it was proved that ifC is an optimal(r, §); code,
then there exists a collectiofSy,---,S.} € {S1,---,S:}
which has the same properties in Theodem 9, wheie a

that(r+0 —1) t n. Hence, there exist no optimalt, 9),, linear
codes whern(r +d — 1)  n andr|k. [ |

When(r + 6 — 1) {n andr { k, we provide in the below a
set of conditions under which no optim@l, 4), code exists.

Theorem 11:Supposer = w(r+46—1)+m andk = ur+v,
where0 <m <r+d—land0 <v <r.lf m<v+d—1and
u > 2(r —v) + 1, then there exist no optimat, ¢), codes.

Proof: We prove this theorem by contradiction.

Suppos€C is an optimal(r, §), code over the field, and
S = {51, ---,S} is an(r,d)-cover set ofC. Then by claim
1) of LemmaB, we have

t> i —w+1
“lr+6-1 -wT

Moreover, by 3) of Lemmal8, for an&é}-subsetf of [t],

(IV.1)

k
| Uies Si| > k + {;-‘ (6 —1).
For eachi € [t], if |S;] <r+d—1, let T; C [n] be such
thatS; CT; and|T;| =r+6 -1 If |[Si] =r+d—1, let
T; = S;. Then clearly,

UieTs = Uiy Si = [n]

and for any[%]-subset/ of [¢],

k
e Tz G- va)
r
Let M = (m; ;)txn be at x n matrix such thatn, ; =1
if j € T;, andm, ; = 0 otherwise. For each € [n], let

Aj={ieltmi;=1}.

Then |A,| is the number off; (i € [¢]) satisfyingj € T,
and this number equals the numberiaf in the jth column
of M. Since UicyT; = [n], then|A;] > 0,Vj € [n]. On
the other hand, by the construction &f, for each: € [¢t],
T; = {j € [n];m;; = 1}. Thus, the number of thés in each
row of M is r 4+ ¢ — 1. It then follows that the total number
of thelsin M is

properly-defined value. Thus, Theoréin 9 shows that as a sub-

class of optimal(r, §); codes, optimalr, ), codes tend to

have a simpler structure than otherwise.

V. NON-EXISTENCE CONDITIONS OFOPTIMAL (7,6),
LINEAR CODES

In this section, we derive two sets of conditions under which
there exists no optimé, 9),, linear codes. From the minimum

distance bound in((11), we know that when= k, optimal

(r,0)a linear codes are exactly MDS codes. Hence, in thi§ince,, < o+ 6 — 1, then

section, we focus on the case ok k.
The first result is obtained directly from Theoréin 9.

Theorem 10:If (r + 6 — 1) 4 n andr|k , then there exist Hence from[(IV.4), we have

no optimal(r, §), linear codes.
Proof: If C is an optimal(r, ¢),, linear code and|k, then

by TheoremiB(r + 6 — 1)|n, which contradicts the condition

n t
SIAI=D T =tr+5-1). (IV.3)
Jj=1 =1
Combining [TV1) and[{TV.B), we have
Z|Aj| >(w+1)(r4+6-1)
j=1
—n+(r+6—1-m). (IV.4)
r+6—1—m>r—ow.
Sl =n+(r—v+1). (IV.5)

j=1



Let P = {j € [n];|4;| > 1}. From [IV3), P # 0 and
D14 2 [P+ (r—v+1).

jEP
Without loss of generality, assumé = {1,---,/}. Since
|A;| > 1,Vj € P, we can find a numbek € {1,--- , ¢} such
that 2 [A;| < A+(r—v) andY> 7, [4;] > A+ (r—v+1).

This means that we can find a subdgf C A, such that
|Bx| > 1 and

A—1
S IAjl+BAl = A+ — vt L. (IV.6)
j=1
Also note that
A<r—v+1, (IV.7)

because otherwis&, |

which contradicts[(IVB).
Let B = (U}Z] 4;) U By. Then from [IV8),
A—1
Bl = [(U)Z1 Aj)) UBA < > |Ai| + By < 2(r —v +1).
j=1
Sinceu > 2(r —v) + 1, then2(r —v+1) <u+ 1, we get

|[A;j|+|Bal =22 > A +r—v+1,

k
Bl <u+1= {——‘
r

Let J be a[Z]-subset of[t] such thatB C J. By the
construction ofM and B, for eachj € {1,--- , A\ — 1}, there
are at leastA,| subsets ifT;;¢ € B} containingj, and there
are at leastB,| subsets in{T};i € B} containing\. Hence,
A—1
|Uies il < [J[(r+6—1) = (O [A;]| + [Bal = ). (IV.8)
j=1

Combining [IV.6) and[(TV.8), we have

Ues Tl S TR0 +5-1)=(r—v+1)

ur—i—v—l—i—(é](é—l)
= k—1+(§1(6—1).

which contradicts[(TVR).
Thus, we can conclude that there exist no optifiab),
linear codes whem < v+ 6 — 1 andu > 2(r —v) + 1.

Therefore,A; = {1,5}, A5 = {2,5,6}, As = {3,6}, 413 =
{5,6}, and P = {1,5,8,13}. Note that|A;| + |45] = 5 >
2+(7’—1}+1) Let By = {2,5}QA5 andB:A1 UBy =
{1,2,5}; then |B| < 4 = [%]. Let J = {1,2,3,5} 2 B,
thenU;c;T; = {1,2,3,4,5,6,7,8,9,13}. Hence,|U;c s T;| =
10 < 11 =k + [£](6 — 1). (See the illustration oft/ below.)

=
1)

13

1 2 3 4 5 6 7 8 9 10
1 1 100000000O0O0O0
0001110000000

y_|@ 000001110000
0000000 0O00O0T1T1T1O0
(1 00010000000 1
0000100100001

More generally, in this example, for any > 5 and

{Ty,---, Ty} such that|T;| = r+ 6 —1 =3 andU!_,T; =
[n] = {1,---,13}, we can always find & C [¢] such that
|Uie]Ti| <1ll=k+ (é](é—l)

In general, since® < v < r, thenr —v <r—1.If k >
2r2 +r, then we haveu > 2(r — 1) +1 > 2(r —v) + 1.
Hence, wher) < n mod(r +d —1) < (k modr) 4+ — 1
andk > 272 + r, then by Theoreri11, there exist no optimal
(r,9), codes.

V. CONSTRUCTION OFOPTIMAL (r,d), CODES.
ALGORITHM 1

In this section, we propose a deterministic algorithm for
constructing optimalr, ¢),, linear codes over the field of size
g > (,",), when(r +0 —1)|n orm > v+ 6 — 1, where
n=w(r+43d—1)+m andk = ur + v satisfying0 < v < r
and0 < m < r+ 9 — 1. Recall that wherfr + ¢ — 1)|n, it was
proved in [10] that optimalr, ), linear codes exist over the
field of sizeq > kn”*. Note that our method requires a much
smaller field than what's shown in [10], and hence it also has
a lower complexity for implementation.

To present our method, we will use the following definitions
and notations, most of which follow from![8].

Definition 12: Let S = {54, -+, S:} be a partition ofjn]
andd < |S;| <r+9d—1,Vi € [t]. A subsetS C [n] is called
an (S,r)-coreif |[SNS;| < |S;|—d6+1,Vie [t]. If Sisan
(S, r)-core and|S| = k, thenS is called an(S, r, k)-core

Clearly, if S C [n] is an(S,r)-core andS’ C S, thenS’ is

Example:We now provide an example to help illustrate th@lso an(S,r)-core. In particular, ifS C [n] is an (S, r)-core

method used in the proof of Theordml 11. Let= 13,r =
d =2 andk = 7. Supposel; = {1,2,3}, To = {4,5,6},
Ts = {7,8,9}, Ty = {10,11,12},T5 = {1,5,13} and T =

and S’ is a k-subset ofS, thenS’ is an (S, r, k)-core.
Before presenting our construction method, we first give a
lemma, which will take an important role in our discussion.

{5, 8,13}. Following the notations in the proof of Theorem

17, we have

1 2 3 4 5 6 7 8 9 1011 12 13
11100000O0O0O0OO0O0OO
00011 1000O0O0DO0UO0O0
Mo 00 00O0O0OTI1TT1T1TO0O0O0OO0
00 00O0OO0OOO0OCOTITTI1TT1OP0
10001 00O0O0OO0OUO0OTUO0OT1
00 001O0O0TI1IUO0UO0OO0TUO0OT1

Lemma 13:Let X4, ---, X, and X be ¢+ 1 subspaces of
Fkand X ¢ X;,Vie [(]. If ¢> ¢, thenX & Uf_, X
Proof: We prove this lemma by induction.
Clearly, the claim is true whehA= 1.
Now, we suppose that the claim is true for 1, i.e.,

X ¢ UiZlX;.

Then there exists an € X such thate ¢ Uf;llXi. If x ¢ X,
thenz ¢ UY_; X; and X ¢ UY_, X;. So we assume € X.



Since X ¢ X,, there exists & € X such thaty ¢ X,.
Then for any{a,a’} CF, andi € {1,--- ,¢ — 1},

{ax +y,dz+y} € Xi.

(Otherwise,(a — a')z = (az + y) — (¢’ + y) € X;, which
contradicts to the assumption thatt U‘Z! X;.)

Sinceg > ¢, we can pick a subsdt, - - ,a;} CF,. Then
{a1x+y7 R
hole principle, there is a subsgi;, , a;,} C {a1,--- ,a¢} and
aje{l,---,£—1} such that{a;,z + y,a;,z + y} C X,
which contradicts to the proven result that for daya’} C Fy
andi € {1, ,£—1},{ax+y,d'z+y} € X;.) Without loss
of generality, assume z + y ¢ Uf;lle-. Note thatr € X,
andy ¢ X, thenaiz +y ¢ X,. Hence,aix +y ¢ Uf_, X;.
On the other hand, since,y € X, thena;z +y € X. So
X ¢ Uf_, X;, which completes the proof. |

We present our construction method in the following theo-

rem.

Theorem 14:Let S = {S1,---,S;} be a partition of[n]
andé < |S;| < r+6—1,Yi € [t]. Supposet > [£] and
for any [£7-subset] of [t], | Uics Si| >k + [ 1(5— 1). If
g > (,",), then there exists an optimét, §), linear code
overF,.

Proof: For eachi € [t], let U; be an(|S;| — § + 1)-subset
of S;. Let Qy = U;jeyU; and L = |Q|. Let J be a[£]-

,arz+y} ¢ UZ1 X;. (Otherwise, by the Pigeon-

hence the algorithm does terminate successfully.

Claim 1: The codeC output by Algorithm 1 is arjr, §), linear
code overl,.

By Definition[2 and Remark]3, we aim to show that for
everyi € [t] and for every subsdtC S; with |I| = | S;|—d+1,
it holds that

Rank{Gr}eer) = Rank{Gr}res, )

Since in Line 4 of Algorithm 1, we choos@), € ({G; ¢ €
S; NQ}), we have

(V1)

Rank{G}ee(s.nuiry) = Rank{G }resna).
By induction,
Rank{G¢}res;) = RanK{Gr}res.na,)
= Rank{Ge}rev,) (V.2)
=S| —d+1.
Suppose: € [t] and I C S; such that|I| = |Si| -0+ 1.

Then|I| =18 —d6+1 < r <k Sincet > [£], we can
find a ( 1-subsetJ’ of [¢] such thati € J'. For eachj eJ,
let W; be an(|S;| — ¢ + 1)-subset ofS; such thatiV; = I.
CIearIy, UjesrW; is an (S, r)-core. From the assumption of
this lemma,

k
| Ujesr Sjl > k + [;1(5 -1).

subset offt]. SinceU;c;U; C €, from the assumptions of Hence

this theorem,

k
L = || 2 [Vies Uil = |Vies Sil = [-1(6 = 1) 2 k.

k
| Ujer Wil = [Ujes Sil = 12100 = 1) 2 k.

Let S be ak-subset ofU;c;»W; such thatl C S, then

The construction of an optimdt, §), code consists of the S is an (S,r, k)-core. Therefore{G;¢ € S} is linearly

following two steps:

Step 1 Construct an[L, k] MDS code(C, over F,. Since
g > (,",) =n > L, such an MDS code exists ov&y,. Let
G’ be a generating matrix @fy. We index the columns of’
by Qo, i.e., G’ = (G¢)eeq,, WhereGy is a column ofG’ for
each/ € Q.

Step 2 Extend(, to an optimal(r, ), codeC over F,.
This can be achieved by the following algorithm.

Algorithm 1:

1. LetQ = Q.

2. i runs froml to t.

3. While S;\Q # 0:

4 Pick aX € S;\Q and letGy € ({Gs; £ € S;NQ})
be such that for anysS, r, k)-core S C Q U {\},
{Gy; £ € S} is linearly independent.

5. Q=QU{A}.
6. LetC be the linear code generated by the matrik=
(Gla e 7Gn)

To complete the proof of Theorefn]14, we need to proud| =
three claims: In Claim 1 and Claim 2 below we show that the

codeC output by Algorithm 1 is indeed an optimét, ),

independent, which in turn implies thatG,; ¢ € I} is also
linearly independent. Therefore,

Rank{G}eer) = |I| = |Si| — 6 + 1.
Combining [V.2) and[{VB) we obtain (V.1).

(V.3)

Claim 2: The codeC output by Algorithm 1 has minimum
distance achieving the upper bourid](l.1), and hence is an
optimal (r, ¢),, linear code.

According to Lemmadll and(l.1), it suffices to prove that
for any subsef” C [n] of size|T| =k + ([£] — 1)(¢ — 1),

RankK{G¢}eer) = k.

Let
J={jethITnS;| >8] —d+1}.

For eachj € J, let W; be an(]S;| —d + 1)-subset ofl’'N S;;
For eachj € [t]\J, let W; = T'N S;. ThenU,cyW; is an
(8, r)-core. We consider the following two cases:

Case 1{.J| > [£7. without loss of generality, assume that
B Slnce| Ujes Sj| > k+[£](6 — 1), then

| Ujerg Wil > [Ujes Wil > k.

linear code overfy; In Claim 3, we prove that the vector 4 - [£7, then pick af £1-subsetJy of J, and replaces by Jo in
G described in Line 4 of Algorithm 1 can always be foundyur discussion.



Case 2]J| < [%] — 1. In that case,

[Uyetg W3l 2 1T) = 7160 -1) 2 (71~ (5] = )6 1) 2 .

In both cases| Ujc;y W;| > k. Let S be ak-subset of
UjesW;, thenS is an (S, r, k)-core. Therefore{G; ¢ € S}
are linearly independent and

Rank{G }er) = Rank{G }res) = k.
From equation[{T]1) and Lemnia 1, we get
d:n—k+1—((§] - 1)(0-1),
T

whered is the minimum distance af. Thus,C is an optimal
(r,9), code.

Claim 3: The vectorG, in Line 4 of Algorithm 1 can always
be found.

we always have thdtGy; ¢ € S} is linearly independent. Thus,
the vectorG, satisfies the requirement of Algorithm 1. =

From the proof of Theoremhi 14, we can see tifat=
{S1,--+,S:} is in fact an(r,d)-cover set of the codé€,
whereC is the output of Algorithm 1. The following example
demonstrates how does Algorithm 1 work.

Example:We now construct an optimak, ¢), linear code
with r =6 =2,k =3 andn = 6. Let S; = {1,2,3},5; =
{4,5,6} and S = {51,52}. Let Uy, = {1,2},U2 = {4,5}
and Qo = U; UU; = {1,2,4,5}. Our construct involves the
following two steps.

Step 1: Construct #, 3] MDS code, wherel = |Q]. Let
G' = (G1, G2, G4, G5) be a generating matrix of such code.
Step 2: Extend? = (G1,G2,G4,G5) t0 a matrixG =
(G1,Ge,Gs,Gy, G5, Gg) such thatG is a generating matrix

of an optimal(2, 2), linear code.

It remains to determiné/s and G via two iterations.

The proof of this claim is based on a classical technique1) j =1:Q = {1,2,4,5} andS; \ Q = {3}. We can verify

in network coding(e.g., [16], [17). Since G’ = (G¢)eecq,
is a generating matrix of the MDS cod®, then for any
(S, k)-coreS C Qq, {Gy; £ € S}is linearly independent. By
induction, we can assume that for a@y, r, k)-core S C ,
{Gy; ¢ € S} are linearly independent.

Let A be the set of allS, C Q such thatS, U {\} is an
(S, k)-core. By Definition IR, for anys, € A,

|S0| =k- 17
|So N S| < 1S5 =0 +1, Vj € [t]\{i},

and
[So N S| < |Si] — 4.
Note that
U; C85 Ny CS;NAQ.
Hence

|SiﬂQ| > |Ul| = |Sz|_§+1

Thus, there is am € (S; N Q)\Sy. Since Sy,---,5; are
mutually disjoint,n ¢ S;,Vj € [t]\{i}. Therefore,

[(SoU{n}) NS <185 =+ 1,5=1,--- ¢

Then Sp U {n} C Q is an (S, k)-core. By assumption,
{Gr}ees,uiny is linearly independent. Hence

Gy ¢ ({Geleeso)s

and
({Geleesina) € ({Ge}ees,)-

Sinceq > (,",) > |A], by LemmdIB,
{Ge}eesna) € (Usoen{{Gr}ees,))-
Let G, be a vector in{{G}ees,na)\(Usoea{{Ge}lecs,))-

Then for anySy € A, {Gr}res,uay are linearly independent.

SupposeS C Q U {A} is an (S,r, k)-core. If A ¢ S,
then S C Q and by assumption{Gy;¢ € S} is linearly
independent. IfA € S, thenS, = S\{\} € A and by the

that {1,4,3},{1,5,3}, {2,4,3}, {2,5,3} and {4,5,3}
are all subsets of1,2,3,4,5} which is an(S,r,k)-
core and contains the index Let A = {{1,4},{1,5},
{2,4}, {2,5},{4,5}} Since G’ (G17G27G4,G5)
generates an MDS code, théh, G> and G4 are lin-
early independent. S¢G1, Go) € (G1,G4). Similarly,
(G1,G2) € (G;,Gj),¥{i,j} € A. By LemmalI3, if
q > |A| = 5, then(G1, Gs) g U{i,j}eA<Gian>- Note
that.S; N Q = {1, 2}. Therefore, let

G3 € (G1,G2)\(Ugi j1en(Gi, Gy)).

Then for any(S, r, k)-core S C {1,2,3,4,5}, {Gy; ¢ €
S} is linearly independent.

i =20 ={1,2,3,4,5} and S; \ Q = {6}. Sim-
ilarly, we can verify that{1,2,6},{1,3,6}, {2, 3,6},
{1,4,6},{1,5,6}, {2,4,6} and{2,5,6} are all subsets
which is an (S,r, k)-core and contains the indek
Let A = {{1,2}, {1,3}, {2,3},{1,4},{1,5}, {2,4},
{2,5}} Clearly, <G4,G5> g <GZ,GJ>,V{Z,_]} e A.
By Lemmall3, ifq > |A| 7, then (G4,G5) ¢
U{i,j}eA<Gi7 Gj). As 52 NQ = {4,5}, let

Go € (G4, G5)\(Ugi j1en(Gi, Gy)).

Then for any (S,r, k)-core S, {Gy;¢ € S} is lin-
early independent. Thus, we can obtain a maf¥ix=
(G1,G2,Gs,G4,G5,Ge) such that for any(S,r, k)-
core S, {Gy; ¢ € S} is linearly independent. Lef be
the linear code generated ldy. ThenC is an optimal
(2,2), linear code.

We can in fact employ a smaller field thd#k. The following

is a generating matrix of an optimé, 2), linear code:

101 0 1 1
G:

01 1 0 a «
over the fieldF, = {0,1,a,1 + a}, wherea? =1 + a.

2)

0 001 1 «

In the rest of this section, we shall use Theofein 14 to prove

selection ofG, {Gy; ¢ € S} is linearly independent. Hencethat optimal(r, §), linear codes exist over a field of size>



(,",) when(r +§6—1)jn orm > v+4 — 1, wheren =
w(r+d—1)+m andk = ur + v satisfying0 < v < r and
0 <m <r+d— 1. By Claim 2) of Lemmdb, 4 > &
is a necessary condition for the existence of optiifrab),,
linear codes. For this reason, we assumg— > é holds in

both cases.

Theorem 15:Suppose(r + d — 1)|n. If ¢ > (,",), then
there exists an optimdl-, §), linear code oveff,.

10

When § = 2, the conditions of Theoren 115 and Theorem
[16 becomdr+1)|n andn mod (r+1)—1 > k£ modr > 0 re-
spectively. For this special case, Tamioal. [15] introduced a
different construction method which is very easy to impletme
However, the method in [15] requires the field size- O(n*),
which is larger than the field size= (,",) of our method.

VI. CONSTRUCTION OFOPTIMAL (r,4), CODES:

ALGORITHM 2

Proof Letn =¢(r +0 —1). Note that we have assumed In this section, we present yet another method for construct

that —%— > k. Then
n k
=[—]>
t (r+6—1] ( I
Let{Si,---,S:} be apartition of 1, --- ,n} such thaiS;| =

r+o—1li=1,--,1
For anyJ C [t] of size|J| =

Ht

[Uies Sl = TR0+ 6 1) > b+ [21(5 - 1)

By Theorem(IH, ifg > (,",), then there exists an optimal[t] and¥ = {&;, - -

(r,6)q code overF,. [ |

ing optimal(r, §), codes. This constructive method also points
out two other sets of coding parameters where optimal),,
codes exist. As the method in Section V, this method coristruc
an optimal(r, ¢), code which has a given sétas its(r,d)-
cover set. The difference is that the setised by this method
has a more complicated structure. We again borrow the notion
of core from [8].

Definition 17: LetS = {S4,--- , S;} be a collection ofr+
d — 1)-subsets ofn], A = {A1,---, Aa, B} be a partition of
,€a} C [n]. We say thatS is an (A, ¥)-
frame over the set[n], if the following two conditions are
satisfied:

If (r+¢—1)ln andé < d, then following a similar line of (1) Foreachj € [a], {&} = Neea, Se and{S;\{¢;};i € A;}

proof in [10], we can show that = [ 1. Under

[yl 2

are mutually disjoint;

these two conditions, it was proved [n [10] that there exists (2) {Ueea,;Se;j € [a]} U{S;;j € B} is a partition of[n].

optimal (r, §), code over the field, of sizeq > kn*. Our
method requires a field of size on(ygf ) which is at the
largest a fraction; of knF.

Theorem 16:Supposer = w(r+d6—1)+m andk = ur+v,
where0) < m < r+d—1and0 < v < r. Supposen > v+35—1
andd > 6. If ¢ > ("), then there exists an optimét, ),
linear code oveif,,.

Proof: Let ¢ = w + 1. Since we have assumed that

k
i > B we get

"
r+d6—1
Note thatn — m = w(r +4§ — 1).
partition of {1,--- ,n —m} and St

For anyJ C [¢] of size|J| =

t=w+l=] = (1—u+1

Let {S1,---,Sw} be a
[n—m+1,n].

[£1, we have the following

two cases:
Case 1t ¢ J. Then
k] k
Case 2t € J. Sincem > v+ 6§ — 1, then
]
.
> (; -D(r+5-1)+v+d5-1,
3
|5 e-0

Hence, for any[ £]-subset/ of [t], [Uic Si| > k+[£](6—

Example 18:LetS = {5y, -, Ss} be what's shown in Fig

[B. Clearly S is an (A, ¥)-frame over[n]|, where the subsets

S1, 592,53 have a common elemegi = 1, and the subsets
Sy, S5 have a common elemegt = 14.
5
1, 6, 7, 8 9

Sy
AI{SZ
s, [1, 10, 11,

3
{5414, 15, 16, 17, 18
45

S5 |14, 19, 20,
B{

5. [23, 24, 25,
57 128, 29, 30,

-frame, wheren = 37,7 =§ =3,t =8, A1 = {1, 2,3},

{6,7,8}, A = {A1, Az, B} and ¥ = {1,14}.

I, 2, 3, 4

26,

Si 33, 34, 35,

Fig 3. An(A, U)-fr
Az ={4,5},B =

Definition 19: A subsetS C [n] is said to be ar{S, r)-core
if the following three conditions hold:
(1) If j € o] and¢; € S, then|SN S;| <rVie Aj;
(2) If j € [a] and&; ¢ S, then there is afi; € A; such that

|Sﬁ SZ]| <r and|Sﬁ Sz| <r-— I,V’L S AJ\{ZJ},

(3) Ifi e B, then|SNS;| <.
Additionally, if S C [n] is an(S, r)-core and S| = k, thenS
is called an(S,r, k)-core

Clearly, if S C [n] is an(S,r)-core andS’ C S, thenS’ is

1). By Theorem[Il, ifg > (,",), there exists an optimal also an(S, r)-core. In particular, ifS C [n] is an (S, r)-core

(r,9), code overl,. [ |

and S’ is a k-subset ofS, then S’ is an (S, r, k)-core.



Example[IB continuedin Example[I8, letk = 7.

Then {1,2,3,6,7,10,11} and {2,3,4,6,7,28,33} are both

(S, k)-core. However,S = {2,3,4,6,7,8,28} and S’ =

{2,6,15,23,24,25,26} are not(S,r)-core, because does
not satisfy Condition (2) and’ does not satisfy Condition

(3) of Definition[19.

Lemma 20:Let S be an(.A, ¥)-frame as in Definitiof 17.

Suppose > [£] and for any[£7-subset/ of [t], |Uics Si| >

T

k+ [£7(s — 1). Then the following hold:

1) If T C [n] has size|T| > k + ([%] — 1)( — 1), then

there is anS C T such thatS is an (S, r, k)-core.

2) For anyi € [t] andI C S; of size |I| = r, there is an

(8, r,k)-core S such thatl C S.
Proof: 1) Let

J={Let];|]T NS >r}.

For eachj € [a] and? € A;, we pick a subselV, C T as

follows:
i) If JNA; =0, then letW, =T NS, for each? € A,.

i) If JNA; #0and¢; € T, then for eacll € JN A;, let
W, be anr-subset ofl'N S, satisfying¢; € W,, and for each

ZEAJ‘\J, letW,=T1TnS,.

i) If JNA; # 0 and§; ¢ T, then fix anl; € JN A;, and
let W,, be anr-subset of'n Sy, , let W, be an(r —1)-subset

of TNS, for eacht € JNA;\{¢,}, and letW, = TN S, for
eacht € A;\J.

Moreover, for eaclY € J N B, let W, be anr-subset of

TN Sy, and for eacld € B\J, let W, =T N S,.
Let W = Uy We, then by Definitior IBJV is an (S, r)-
core. We now prove thgiV| > k. Let

() ={jelal;JNA; #0}.

We need to consider the following two cases:
Case 11J| > [£]. Without loss of generality, assumé| =
[£78. Then from the assumption of this lemma,

| Ures Se| >k +|J|(6 — 1). (VI.1)
By Definition[11,
|Ures Sel = Y [JNA;|(r+6-2)
Jj€0(J)
+O)| +|JNB|(r+§—1). (VIL2)

SinceA = {A4,---, Ay, B} is a partition of[t], {JNA;;j €
O(J)} U{Jn B} is a partition ofJ and

Jl= > [JNA;|+[JnBl
jEO(J)

Combining [VI.1)- (VI.3), we have

(VI.3)

S T4 =1+ 0|+ |JNBlr > k. (VI.4)
jeoe()

SIf [J| > [£7, then pick a[£7-subsetJy of J, and replace/ by Jo in
our discussion.

11

By the construction oV, we have

|Ures Wel = ) [TNAjl(r = 1) +[O©(J)| +]J N Blr.
JEO(J)
(V1.5)

Equations[(VL.4) and(VI]5) imply that
(W[ > |Uees We| > k.

Case 2:|J| < [£]. By the construction ofi/’, for each
j €a] and? € J N Ay, W, is obtained by deleting at most
(6 — 1) elements fronil’ N S,. We thus have

| Ugea, Wel| > [T N (Ugea, Se)| — |J N A;|(6 —1).
Moreover,
|Uees We| > | Uges (TN Se)| — [N B|(6 —1).
Then
(W= Ve Wel = [T] = |JI(6 = 1).
Note that|T| > k+([£]—1)(6—1) and|J| < [£]. Therefore

Wi - (5 - -1 =+

Gathering both cases, we always h#Mé| > k. Let S be a
k-subset ofi¥. Note thatiW is an(S, r)-core. SoOS C W C T
is an (S, r, k)-core.

2) To prove the second claim of Lemimal 20, note that
[%], and hence we can always find &]-subset/ of [t] such
thats € J. Similar to the proof of 1), for eache J, we can
pick a W, such thatW,; = I, Uyc;W, is an (S, r)-core and
| Uses We| > k. Let S be ak-subset ofUye ;W, such that
I CS.ThenS'is an(S,r, k)-core andl C S. [ |

Example[IB further continuecConsider the( A, ¥)-frame
S in Example[IB. Letk = 7. ThenS satisfies the conditions
of Lemmal20. We consider the following two instances:

Instance 17" = {2,3,4,6,7,8,14,15,16,17, 19, 23, 24, 28}.
As in the proof of Lemma30J = {4|T NS, > r} =
{1,2,4} and |J| = 3 = [Z]. Let Wi = {2,3,4},
Wy, = {6,7}, Wy = {14,15,16}, W5 = {19},
We = {23,24}, W7 = {28} andW, = () for ¢ € {3,8}. Then
W = Uy Wil > | Ures Wel > k=1,

Instance 27 = {2,3,4,6,7,8,10,11,14,15,19, 23,24, 28}.
ThenJ = {¢|TN Sy > r} = {1,2} and|J| < [£]. Let
Wi = {2,344, W, = {6,7}, Wy = {10,11}, W, =
{14,15}, W5 = {19}, Ws = {23,24}, W, = {28} and
Ws =0. Then|W| = |Us_, W,| > |T|—|J|(6—1) > k=T.

Remark 21:Let S be an(A, ¥)-frame as in Definitiof 17.
For eachj € [o] andi € A;, let U; be anr-subset ofS; such
that{; € U;. For eachi € B, let U; be anr-subset ofS;. Let

Qo = Uiy Ui-
Then by Definitior _IBS2, is an (S, r)-core. Clearly,
Q] =n—1t(0—1)=|Uj_; Aj|(r — 1) +a+|B|r.
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Example 22:In Example[I8, lett = 7, thenQy, = {1, Proof: Let A be the set of allSy C Q such thatSo U {A}
2,3,6,7,10,11,14,15,16,19, 20, 23, 24, 25, 28,29, 30, 33,34, is an(S,r, k)-core. For anySy € A, by Lemma2B, there is
35} is an (S, r)-core obtained by the process of Remiark 21ann € S;NQ) such thatS,U{n} is an(S, r, k)-core. From the

assumptions{G} e s,u(,} is linearly independent. Hence
Lemma 23:Let S be an(A, ¥)-frame as defined in Defi-

nition[I7 andQ, be what's described in Remdrk]21. Suppose Gy & ({Grlees,)-
Ny CQC [TL],S() C Qandi e [t] If e SZ\Q and Sy U {/\} Thus
is an (S, r, k)-core, then there exists ane .S; N such that ' ({Gehiesina) & {Grleess).

SoU{n}is an(S,r, k)-core.
Proof: By the construction of2, |5; N €| = r. Since Sinceq > (,",) > |A|, by Lemma 1B,

fo < @ 50 P ({Cr}resinn) & (Usea{Grleesy)).

Let Gy € <{Gé}éeSiﬂQ>\(USOEA<{G€}€6SO>)- Then for any

Since Sp U {A} is an (s, , k)-core, by Definitior 1B, (S,r,k)-core S C QU {\}, the vectors in{G,;¢ € S} are

|So| =k —1 linearly independent. ]
and The second construction method for optinjald), codes
[SoNSi| <r—1. is illustrated in the proof of the following theorem.

Thus, we can find an € (S; 1 £2)\5. Theorem 25:Let S be an (A, ¥)-frame in Definition[ 1V
. o y , : ) .

. lLZ{E}Bi,stgﬁ?‘S?):ﬂ I?{()eln(;trlgllmn ¢ S, vi' € [\{i}. Then g hnoce > "] and for any[ £]-subset/ of [], | Uie, Si| >

0~ 7 7 . o k+[E)1(6—1). 1f ¢ > ("), then there exists an optimal

Now, suppose € A; for somej € [«]. We need to consider (r,6) "linear code over,
the following two cases. e ! i : :

Case 1%, € S. Sincen € (Si 1 Q)\So, thenn # & and . Eornfb:_ee;rlglzo be what's described in Remalk]21 and
n ¢ Si, Vi’ € [t]\{i}. ThenSy U {n} is an(S,r, k)-core. ot ’

Case 2¢; ¢ Sp. SinceSy U {A} is an (S, r, k)-core, from L=n—-t(6-1).
Definition[1I9, we differentiate the following two sub-cases

Subcase 2.1S, N S| <r—1,Vi’ € A;. In that case, it is
clear thatSy U {n} is an (S, r, k)-core.

Subcase 2.2: There is anc A;\{i} such thaiSoNS;;| =

Sincet > [£7, let J be a[%]-subset of[t]; then from the
assumptions,

Ui i1 > k4 T2 = 1) = k+ 1716 - 1),

r, |S()ﬁSZ| S’l’—2and|S0ﬁSi/|ST—l,VileAJ‘\{’L’j,Z‘}. ;
In that case, we have By Remark2lLU;c ;U; C Q. Hence
|(Si M)\ So| = 2. L= Q]| >|Uics Uil = UsesSi| — |J|(6 — 1) > k.

Letn € (Si NQ)\(So U{&;}), thenn # &; andn ¢ Si/, Vi’ € The construction of an optimat, §), code consists of the
[t[\{i}. It then follows thatSy U {n} is an(S,r, k)-core. B following two steps.

Step 1 Construct ar{L, k] MDS codeC, overF,. Such an
MDS code exists wheng > (,",) > n > L. Let G’ be a
generating matrix of,. We index the columns of?’ by €,

i.e., G’ = (Gr)ieq,, WhereGy is a column ofG’, V¢ € Q.

Step 2 Extend the codé, to an optimalr, §), codeC. This
can be achieved by the following algorithm, which appears
similar to Algorithm 1 (on the surface) but is actually diffat
(in details).

Examplé_IB anfi 22 continue@onsider again Example118.
Letk =17, Q=0QoU{4,5,8} and\ =9 € S5, whereQ is
as in Examplé22. We can easily verify the following:

Let Sp ={1,2,3,6, 10,14}; ThenSy U {9} is an (S, r, k)-
core. If we further let) = 7 € S3, then Sy U {n} is also an
(S, r, k)-core.

Let S; = {2,3,6,7,14,15}; ThenS{ U {9} is an (S, r, k)-
core. If we further lety = 8 € Sy, thenSj U {n} is also an
(8, r, k)-core. Algorithm 2:

Let S§ = {2,3,4,10,11,15,23}; Then S§ U {9} is an 1. LetQ = Q.
(S,r, k)-core. If we further lety” = 6 € S, thenS{ U{n”} 2. i runs from1 to ¢.

is also an(S, r, k)-core. 3. While S;\Q # 0:
S 4 Pick aX € S;\Q and letG € ({Gy; ¢ € S;NQ})
Lemma 24:Let S be an(A, ¥)-frame defined in Definition be such that for anysS, r, k)-coreS € Q U {A},
17 and be what's defined in Remalk?1. L8 C Q C [n] {Gy; ¢ € S} is linearly independent.
andG = {G, € F; (¢ € Q} such that for any(S,r, k)-core g Q=0QU{\.

S C Q, the vectors in{Gy; ¢ € S} are linearly independent.g | et¢ be the linear code generated by the matfix=
Supposei € [t] and S;\Q # 0. If ¢ > (,",), then for any (G1,-- G,

A€ Si\Q, there is aGy € ({Gr}ees,na) such that for any

(S,r k)-core S C QU {\}, the vectors in{G,; ¢ € S} are Since G’ = (Ge)eeq, is a generating matrix of the MDS
linearly independent. codeCy, so for any(S,r, k)-core S C Qq, {Gy; ¢ € S} is
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linearly independent. Then in Algorithm 2, by induction, wé et
can assume that for ar(y, r, k)-core S C Q, {Gy; ¢ € S} is b=r+d06—-1—-m
linearly independent. By Lemn@24 in line 4 of Algorithm 2,

we can always find & satisfying the requirement. Hence, by'jl nd
induction, the collectionGy; ¢ € [n]} satisfies the condition L={+1)(r+6-2)+1. (V1.6)
that for any(S,r, k)-core S C [n], {G¢; ¢ € S} is linearly
independent. Moreover, since in line 4 of Algorithm 2, wd hen from the assumptions, > (r+0—1)—m = (. Therefore
can choose &' € ({G¢; ¢ € S; N Q}), which satisfies fmwt+1> 041
Rank{G}re(sinnuiay) = Rank{Gr}ees,na)- and
By induction, n—L = (w—0Fr+35-1)
RanK{Gg}gesi) e RanK{Gg}gesiugo) = (f -0 — 1)(7” + 6 — 1) (V|7)
= Rank{G}eev,) From equation[{VIB),L — 1 = (£ + 1)(r + 6 — 2). The set
=r. [2, L] can be partitioned intd + 1 mutually disjoint subsets,

] ] say,T1,---,Ty11, each of size- + § — 2. Let
For anyi € [t] andI C S; of size|I| = r, by Claim 2)
of Lemmal20, there is afS, r, k)-core S such thatl C S. Si={1}uT;,i=1,--- £+ 1.

Hence{G/; ¢ € S} is linearly independent. Thus, Moreover, from equation{VII7), the séL + 1,n] can be

Rank{G}eer) = 7. partitioned intot — (¢ + 1) mutually disjoint subsets, say,
L _ Set2,-+, S, each of sizer 46 — 1.
Therefore, by Definition]2 and Remdrk@iis an(r, §), code. leto=1andA; = {1,--- £+1},B={l+1,---,t},
Finally, we prove that the minimum distance @fis d = 4 = {4, B}, and¥ = {1}. ThenS = {Sy,---, S} is an

n—k+1—([F]-1)(@-1). (A, ¥)-frame. For any[£]-subset/ of [t], sincer — v > u,
Supposel’ C [n] and |T| = k + ([£] = 1)(0 = 1). By 1) then

of Lemmal[20, there is al¥ C T which is an(S, r, k)-core. 17| = [ﬁ w1 <r vl

Therefore, -

LetJ; =Jn{l,---,£+1},andJ, = J\{1,--- ,£+1}. By
the construction 015‘ we have

By the minimum distance bound ia0.1) and Lemia 1, the '\, o\ _ | 71(r46—2) 41+ | Jo|(r +6 — 1)
minimum distance o€ is D |J1|( §—1)—|Jp f
= r+0— - 1 +

[J|(r+6—-1)—|J|+1

[J[(r+0—-1)—(r—v+1)+1
(|J] = Dr+v+|J[|06 —1)

Rank{G; ¢ € T}) = RanK{G; ¢ € S}) = k.

d=n—k+1-(E1-10@-1).

r

(AVANY]

HenceC is an optimal(r, ¢), code. |

Example[IB continuedConsider the(A, ¥)-frame S in k
Example[IB. Letk = 7. Then it is obviousS satisfies the = wr+v+[-](0-1)
conditions of Theorerh 25. Thus, we can use Algorithm 2 to _ okt [51(5 _ 1)
construct an optimalr, §), linear code over the field of size a r ‘
g > (,",) = (). Note thatr = 6 = 3. Hence,(r+4—1)  n By TheoremZb, ifg > (,",), then there exists an optimal
and this is a new optimdlr, §), code. (r,6)a code OverF,. ! -
As applications of Theorefn P5, in the following, we show
that optimal(r, §), codes exist for two other sets of coding Theorem 27:Supposen = w(r +6 —1) + m andk =
parameters. From Claim 2) of Lemnid 5, we know thatr +v, where0 <m <r+4d—1and0 < v < r. Suppose

n__ > k is a necessary condition for the existence of +1 > 2(r+0—1—m)and2(r —v) > u. If ¢ > (")),

rrel o - hen th i 8)a d
optimal (r, §), linear codes. Thus we will assumez—; > &  then there exists an optimé#, 9), linear code ovef,.
in the following discussion. Proof: Let ¢ = w + 1. Note that we have assumed that

r+5 1 Z k . Then
Theorem 26:Supposen = w(r +6 — 1) +m and k =
n k
ur + v, where0 <m <r+0—1and0 < v < r. Suppose t=w+1= {TW > [—w =u+1.
er—i—&—l—mandr—vZu.Iqu(kfl),thenthere rto—1 r
exists an optima(r, ¢), linear code oveff,. Let
Proof: Let t = w + 1. Note that we have assumed that l=(r+d6-1)—
k
r+5 1 Z rt . Then and
n k
w + fr_'_&_l]_(ﬂ u+ L=(2(r+5-1)-1) (VL1.8)



Then by assumption,=w+1>2(r+d—1—-—m)=2¢. It
then follows that

n—L=(t—20(r+65—1)>0. (V1.9)

From equation[{VLB), the seil] can be partitioned intd
mutually disjoint subsets, sa¥y, - - - , Ty, each of size&(r +
d—1)—1. For eachi € {1,---,¢}, we can find two subsets
Sgi_l, So; of T; such that

[S2i—1] = |S2i| =r+0—1

and
S2i—1 U Sy = T;.

Then
[S2i—1 N Sz;| = 1.

Let Sgi,1 N SQZ' = {51} andV¥ = {51, R ,5[}.
Moreover, from Equation[{VT]9), the séf. + 1,n] can
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Enr
Nll
Nio
N1o
Enr
En
Ei6
N1o
En

O[T =W

[y
o
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Table 1. Existence of optimdlr, §), codes for parameters
n=:60,0=52<r<1landll <k < 20.

VII. CONCLUSIONS

We have investigated the structure properties and construc
tion methods of optimal(r, §), linear codes, whose length and
dimension aren and k respectively. A structure theorem for

be partitioned into¢ — 2¢ mutually disjoint subsets, say gptimal(r,§), code withr|k is first obtained. We next derived

Soet1,- -, each of size +¢§ — 1.

Let A; = {2i —1,2i},i = 1,--- ,¢, B = [2¢+ 1,¢] and
A={Ay,---, Ay, B}. ThenS = {S1,---,S;} is an(A, T)-
frame. For any[£7-subset/ of [t]. Since2(r — v) > u, then

|J|:[E1:u+1g2(r—v)+1. (VI.10)
T
LetI'(J) = {j € [{]; A; C J}. Then
|1 = [ Ujer(s) A5l = 2[0(J)]. (VI.11)

Combining [VL.I0) an[(VLIN), we have

m<2(r—v)—|—1:
2 2

Since|T'(J)| is an integer, then

1
IT(J)| < T—U+§.

T < r—wv.

By the construction of5, we have

| Ui Sil |J|(r +6 —1) = [D(J)]
[J|(r+6—1)—(r—v)

([J] = 1)r4+v+]|J)(6—1)
k+ [k](é —1).

r

\

By Theoremi2b, ifg > (,",), then there exists an optimal

(r,9), code overl,. [ |

We now provide some discussions of Theorem 27. Sinkd

O<m<r+d—1,then2(r+d—-1—m) < 2(r+4J§—1).
Givenk,r andd, let o« = max{2(r + § — 1), [£7]}. Then the
conditionsw +1 > 2(r+ ¢ —1 —m) andw > u can always
be satisfied whem > «(r 4+ § — 1). On the other hand, when
k<r<kandr+%, thenu=1or2andr—v> 1, which

leads to2(r — v) > u. By Theoren 27, there exist optimaly

(r,8), codes whem > a(r+6—1), £ <r <k andr # £.

two sets of parameters where no optingald), linear codes
could exist (over any field), as well as identified four sets of
parameters where optimét, §), linear codes exist over any
field of sizeq > (,”,). Some of these existence conditions
were reported in the literature before, but the minimum field
size we derived is (considerably) smaller than those deiive

the previous works. Our results have considerably subistant
ated the results in terms of constructing optirrak)),, codes,

and there are now only two small holes (two subcases with
specific parameters) where the existence results are umknow
Except for these two small subcases, for all the other cases,
given each tuple ofn, k, r, 8), either an optimalr, §), linear
code does not exist or an optim@l, §), linear code can be
constructed using a deterministic algorithm.

As an illustrative summary of our results, we also provide in
Table 1 an example of the existence of optirfiald), linear
codes for the parameters af = 60, § = 5,2 < r < 11
and 11 < k£ < 20. In this table, ; means that optimal
(r,0), linear codes can be constructed by the method in [10]
or by our Theoreni_15 and Algorithm 1 (which requires a
substantially smaller field); & (resp. &g, E27) means optimal
(r,8), linear codes can be constructed by Theokef(re8p.
Theorem 2B, Theorem B7N;, (resp. N;) means optimal
(r,8), linear codes do not exist according to Theorem 10
(resp. Theoref 31 and~ means we do not yet know whether
an optimal(r, d), linear code exists or not.
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