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Irregular Fractional Repetition Code Optimization
for Heterogeneous Cloud Storage
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Abstract—This paper presents a flexible irregular model for
heterogeneous cloud storage systems and investigates how the
cost of repairing failed nodes can be minimized. The fractional
repetition code, originally designed for minimizing repair band-
width for homogeneous storage systems, is generalized to the
irregular fractional repetition code, which is adaptable to het-
erogeneous environments. The code structure and the associated
storage allocation can be obtained by solving an integer linear
programming problem. For moderate sized networks, a heuristic
algorithm is proposed and shown to be near-optimal by computer
simulations.

Index Terms—Cloud Storage, Distributed Storage Systems,
Irregular Fractional Repetition Code, Regenerating Code

I. I NTRODUCTION

CLOUD storage is a new paradigm of storing data. It
allows users to access data anywhere and anytime. Com-

panies such as Google and Apple are providing this service
through their data centers, which are network-connected. Such
an architecture is called the distributed storage system (DSS).
Storage nodes in a DSS are generally unreliable and subject
to failure. When a failure occurs, a newcomer needs to
repair the lost data by retrieving data from surviving storage
nodes, called helper nodes, so as to maintain thereliability
of the DSS. Besides, the DSS should be able to provide data
availability, which allows users to access their data anywhere
and with low delay.

To provide reliability and availability, erasure codes such as
replication or Reed-Solomon (RS) code are commonly used.
While replication requires less network bandwidth during node
repair, RS code is more efficient in terms of storage space.
In 2007, Dimakis et al. showed that there is a fundamental
tradeoff between storage space and repair bandwidth [1].
Points on the tradeoff curve can be achieved by a class of
codes calledregenerating codes, which is based on the concept
of network coding. In their formulation, a newcomer is able to
recover the lost data by connecting to anyd surviving storage
nodes, and a data collector is able to retrieve the data object by
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downloading data from anyk out of then storage nodes. We
call this distributed storage model theregular model. Since
then, many codes that achieve points on the tradeoff curve
have been constructed (e.g. [2], [3], [4], [5]).

The design rationale of regenerating codes is to minimize
repair bandwidth. These codes, however, generally incur high
disk I/O access during repair, since helper nodes need to read
its stored data and linearly combine them to form packets to
be sent to a newcomer. The stored data that needs to be read
is often much more than the data to be sent to the newcomer.
The disk access bandwidth thus becomes the bottleneck. In [6],
the repair problem is considered in a different way. It aims to
minimize the amount of information to be accessed when the
number of node failures is smaller than the erasure correcting
capability of an MDS code. Another approach is considered
in [7]. It proposes a new code formed by concatenating an
outer MDS code with an inner fractional repetition (FR) code.
We call it MDS-FR code. This code is a minimum bandwidth
regenerating (MBR) code, which means that it minimizes the
repair bandwidth of the system. Furthermore, it has the nice
uncoded repairproperty: a helper node only needs to read the
exact amount of data that it needs to forward to the newcomer
without any processing. In other words, it minimizes both
repair bandwidth and disk access bandwidth at the same time.
While the original construction of the FR code in [7] is based
on regular graph and Steiner system, other constructions exist,
which are based on bipartite graph [8], randomized algo-
rithm [9], resolvable designs [10], and incidence matrix [11].
Note that the above mentioned works do not strictly follow the
regular model, as they have different design considerations
in mind. Another notable example is the locally repairable
code [12], [13], [14], which aims at reducing the number of
nodes that need to be contacted during repair.

In this paper, we focus on heterogeneous distributed storage
systems. Examples include heterogenous data centers, peer-to-
peer cloud storage systems (e.g. Space Monkey) [15], peer-
assisted cloud storage systems, and some wired or wireless
caching systems [16], [17]. In these applications, the storage
nodes and the network links areheterogeneous, meaning
that the storage capacities and costs associated with different
storage nodes may not be the same, and the communication
links between each pair of storage nodes may have different
characteristics in terms of bandwidth, communication cost, and
transmission rate. Furthermore, it is also possible that some
storage nodes are not directly connected. In such an environ-
ment, new issues arise. The storage allocation problem, which
focuses on how to allocate a given storage budget over the
storage nodes such that the probability of successful recovery
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is maximized, is studied in [18]. A distributed storage system
in which the storage nodes have different download costs is
considered in [19]. In a distributed storage system with storage
cost, how to allocate storage capacities among the storage
nodes so as to minimize the total storage cost is investigated
in [20]. In [21], the bandwidth heterogeneity is taken into
account to demonstrate that the tree-structured regeneration
topology is an efficient topology to reduce the regeneration
time. Under functional repair model, the link costs and the
impact of network topology are jointly considered in [22],
and an information-theoretic study is performed in [23].

To address the design issues of heterogenous cloud storage
systems, we set up a flexible model, called theirregular model,
in which the underlying network topology can be arbitrary,
the storage capacities and costs of different storage nodes
are allowed to be different, and the bandwidth and costs of
communication links need not be the same. We relax the
constraints of data repair and data retrieval in the regularmodel
by introducing the concepts of repair overlay and retrievalsets.
We use the term repair overlay to refer to the structure of an
overlay network for data repairing. Note that it is called repair
table in [7]. In the work of [7], for single failure case, the
repair overlay is restricted to be a regular graph with each
vertex having degreed, and the graph is randomly generated.
In this paper, we do not restrict the repair overlay to be
a regular graph. For the general case of multiple failures,
the repair overlay in [7] is a Steiner system. However, the
existence of a Steiner system requires the system parameters
to satisfy some specific conditions, which makes the system
design inflexible. In this paper, hypergraph is used to model
the repair overlay, which exists for arbitrary system parameters
and can be constructed easily compared with Steiner system.

Recall that the code used in [7] is a concatenation of an outer
MDS code and an inner FR code. We call this construction
the MDS-FR code. We extend the idea and propose the use
of the Irregular Fractional Repetition(IFR) code as the inner
code. While it preserves the desirable uncoded repair property,
it further allows more flexibility in system design. When
the distributed storage system and the underlying network is
heterogeneous, the IFR code can be constructed and adapted
to the given environment by solving an optimization problem,
thus further reducing repair bandwidth. In our formulation,
we minimize the system repair cost by properly choosing
the MDS-IFR code. The problem is shown to be an integer
linear programming (ILP) problem. When the number of
storage nodes is small, the optimal solution can be found in
a reasonable time. For larger networks, we decompose the
problem into subproblems and propose a heuristic solution.
For small network sizes, our heuristic is shown to be nearly
optimal by comparing it with the optimal ILP method.

The rest of the paper is organized as follows. A motivating
example is given in Section II. Section III states our irregular
model for distributed storage systems. In Section IV, we de-
scribe the construction of MDS-IFR code and its relationship
with the concept of relay overlay. In Section V, we formulate
the repair cost minimization problem as an integer linear
problem (ILP). In Section VI, we describe how the storage-
repair tradeoff of our code can be found. In Section VII, we

design heuristic algorithms to find suboptimal repair overlay
and retrieval sets. Section VIII provides our simulation results.
We conclude the paper in Section IX.

II. A M OTIVATING EXAMPLE

The regular model assumes that a newcomer is able to
replace a failed storage node by contacting anyd surviving
storage nodes and a data collector can retrieve the stored data
object by downloading data from anyk out of then storage
nodes. In some practical scenarios, however, the communi-
cation costs between a newcomer and each of the surviving
storage nodes are different. Furthermore, the distances and
transmission rates between a data collector and each of the
n storage nodes vary with the location of the data collector.
The d surviving nodes to be contacted by a newcomer and
the k storage nodes to be contacted by a data collector need
not be arbitrary. It is reasonable to determine some sets of
helper nodes, calledhelper sets, for a newcomer and some
subsets of then storage nodes, calledretrieval sets, for a data
collector. The collection of helper sets of all then storage
nodes defines the repair overlay. Thus, we modify data repair
and data retrieval mechanisms based on the concepts of repair
overlay and retrieval sets. We only require that a newcomer
can rebuild the corresponding failed node by contacting the
storage nodes in any one of its helper sets and a data collector
can retrieve the data object by contacting the storage nodesin
any one of the retrieval sets.

Consider a distributed storage system that can tolerate single
failures with the following parameters:n = 6, andd = k = 2.
A data object consisting of four packets would be stored in
this distributed storage system. For the regular model, the
corresponding tradeoff between storage amount and repair
bandwidth under functional repair is shown in Fig. 1, where
the feasible region is shown as the shaded area. Note that all
points on the tradeoff curve are normalized by the number
of packets contained in the data object. The points below the
tradeoff curve are impossible to achieve by functional repair.
Clearly, they cannot be achieved by exact repair either.

Now we consider the irregular model, which includes the
concepts of repair overlay and retrieval sets. We require that
the number of retrieval sets are large enough. In this example,
we require that there should be at least9 retrieval sets. Assume
that the chosen repair overlay, denoted byτ , is a ring with six
nodes, as shown in Fig. 2(a) (solid lines). We show how to
construct MDS-FR code based on the repair overlay. The data
object consisting of four packets are first encoded into six
packets,F1, F2, . . . , F6 by a (6, 4)-MDS code. Each edge
in the 6-node ring is then associated with a coded packet.
Each node stores the two packets that are associated with its
incident edges, as shown in Fig. 2(a). Thus, the storage amount
of each of the six storage nodes is2. In this example, each
storage node has one helper set and a newcomer can recover
the lost data by connecting tod = 2 nodes in its helper set, i.e.,
its two neighboring nodes in the ring, rather thanany d = 2
surviving nodes. Since each newcomer downloads one packet
from each of its two helper nodes to recover the lost data, the
repair bandwidth of a failed node is2. Suppose node 3 fails.
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Fig. 1. Tradeoff between storage amount and repair bandwidth (n = 6, d =

2, andk = 2).

A newcomer can replace it by downloading coded packetsF2

and F3 from its two helper nodes 2 and 4, respectively, as
shown in Fig. 2(b). As for data retrieval, we can have nine
retrieval sets of cardinalityk = 2, which are listed asR1 =
{1, 3}, R2 = {1, 4}, R3 = {1, 5}, R4 = {2, 4}, R5 = {2, 5},
R6 = {2, 6}, R7 = {3, 5}, R8 = {3, 6} andR9 = {4, 6}. A
data collector can reconstruct the data object by connecting to
the k = 2 storage nodes in any one of the nine retrieval sets.
After normalizing by the number of packets of the original
data object, the storage amount of each storage node is0.5
and the repair bandwidth per failed node is also0.5. This point
is also plotted in Fig. 1, which is below the tradeoff curve of
the regular model. From Fig. 1, we can see that with the same
storage amount per node, the repair bandwidth is reduced by
50%, which shows that the potential gain can be enormousif
the constraints of data repair and data retrieval are relaxed.

In the irregular model, different storage nodes are allowedto
have different storage costs and different links are allowed to
have different communication costs. An irregular model with
storage cost and communication cost is given in Fig. 2(c),
where nodei has a (per-packet) storage costsi and the link
connecting nodei and nodej has a (per-packet) communi-
cation costcij . For both FR code and IFR code, we assume
that the number of packets assigned to edge{i, j} ∈ τ is βij

and the number of packets stored in nodei is αi. The total
storage cost can then be obtained as

∑6

i=1
αisi and the total

repair cost of all possible single node failures can be calculated
as

∑6

i=1

∑

{i,j}∈τ cijβij . If we use the same MDS-FR code
as before, the total storage cost of the six storage nodes is
2
∑6

i=1
si = 34 since each node stores2 packets, and the

total repair cost of all possible single node failures can be
calculated as(c12 + c16) + (c12 + c23) + (c23 + c34) + (c34 +
c45)+(c45+c56)+(c56+c16) = 36, where the six components
of the summation correspond to the repair costs of node 1 to
node 6, respectively. If we use MDS-IFR code, we first encode
the data object into seven packets by using a(7, 4)-MDS code.
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Fig. 2. An example of constructing MDS-FR code and MDS-IFR code for
the irregular model.

Then we assign coded packetF1 to edge{1, 2}, F2 to edge
{2, 3}, F3 to edge{3, 4}, F4, F5, andF6 to edge{5, 6}, and
F7 to edge{1, 6}. Each node then stores the packets associated
with its incident edges, as shown in Fig. 2(d). In this example,
a newcomer can recover the lost data by connecting to only
one node or to two nodes, depending on which node is failed.
This contrasts with the MDS-FR code, in which a newcomer
always connects toexactlyd nodes. For example, if node 4
fails, a newcomer can replace it by downloading packetF3

from node 3. As for data retrieval, we can have ten retrieval
sets of cardinalityk = 2, which are listed asR1 = {1, 3},
R2 = {1, 5}, R3 = {1, 6}, R4 = {2, 5}, R5 = {2, 6},
R6 = {3, 5}, R7 = {3, 6}, R8 = {4, 5}, R9 = {4, 6} and
R10 = {5, 6}. The total storage cost of the six nodes is
2s1 + 2s2 + 2s3 + s4 + 3s5 + 4s6 = 33 and the total repair
cost of all possible single node failures can be calculated as
(c12+c16)+(c12+c23)+(c23+c34)+c34+3c56+(3c56+c16) =
22, where the six components of the summation corresponding
to the repair costs of node 1 to node 6, respectively. Compared
with MDS-FR code, we can see that both storage cost and
repair cost can be reduced if MDS-IFR code is adopted in the
irregular model. Although the retrieval sets in the two cases
are different, in the latter case, more retrieval sets are provided,
which is often more desirable. Should exactly the same number
of retrieval sets are needed for a fairer comparison, one can
simply remove one of the retrieval sets for the latter case, as
that would not affect the storage and repair costs.

In the above example, we show that there can be large
performance gain in designing distributed storage systems.
However, the result should be interpreted with caution. We
do not claim that MDS-IFR code outperforms well-known
regenerating code and MDS-FR code under their respective
problem settings. In fact, they are known to be optimal under



their respective problem definitions. Instead, the example
serves two purposes. First, it justifies the setup of the irregular
model, which is more appropriate for heterogeneous cloud
storage systems. Second, it explains the irregular model and
the MDS-IFR code in an intuitive way, which facilitates the
understanding of the next two sections, which formally define
these concepts.

III. SYSTEM MODEL

Consider a distributed storage network, in whichn storage
nodes are distributed across a wide geographical area and
connected by a network with a specific topology. A data object
is encoded and distributed among then storage nodes. Let the
data object be represented by a collection ofB packets, where
each packet is an element drawn from a finite field GF(q) of
sizeq. Note that a packet is the minimum unit for all storage
and transmission operations in a storage system.

A. Storage and Communication Costs

We model the underlying storage network as a connected
weighted undirected graph̃G = (V , Ẽ), where the storage
nodes are vertices in the vertex setV and the communication
links correspond to the edges in the edge setẼ . Throughout
this paper, we assume thatV , {1, 2, . . . , n}. Each vertex
i ∈ V has an associated storage costsi indicating the cost of
storing a packet in nodei. We define the storage cost vector
s , [s1, s2, ..., sn]. Besides, each edgẽe = {i, j} ∈ Ẽ connect-
ing verticesi andj (i 6= j) has an associated weightc̃ij , called
single-hop cost, which represents the cost of transmittinga
packet along this edge. If there is no direct communication
link between two vertices, we let the corresponding single-hop
cost be infinite. The cost to transmit a packet from vertexi to
vertex j is called the communication cost and is denoted by
cij . The values ofcij ’s can be obtained from̃cij , depending
on the underlying communication assumptions. For example,if
multi-hop transmissions are allowed, thencij can be defined as
the cost of the minimum-cost path fromi to j, where the cost
of a path is the sum of the single-hop costs of its constituent
edges. If only single-hop transmissions are allowed, thencij
equals c̃ij for all i and j. The matrix C̃ = [c̃ij ] is called
the single-hop cost matrix, and the matrixC = [cij ] is called
the communication cost matrix. Note that bothC̃ andC are
symmetric.

In this paper, multi-hop transmissions are allowed in the
underlying storage network. Since the storage network is as-
sumed to be connected, we can construct a complete weighted
graphG = (V , E) on the vertex setV , where the weight of an
edgee = {i, j} ∈ E is equal to the cost of the minimum-cost
path between verticesi and j, say the communication cost
cij . We callG the metric closure of̃G. To compute the metric
closureG of G̃, we can use Johnson’s algorithm [24, Chapter
25] to find the costs of the minimum-cost paths between all
pairs of vertices inV .

B. Repair and Retrieval Requirements

We formally define a distributed storage system with spe-
cific repair and retrieval requirements as follows:

Definition 1 (Distributed Storage System). DSS(n, ρ, d, k, w)
is a distributed storage system withn storage nodes which
satisfies the following requirements:

1) (Data Repair) As long as there are no more thanρ
simultaneous node failures, the lost packets of any failed
node can be exactly recovered from no more thand
surviving nodes.

2) (Data Retrieval) A collection ofw retrieval sets of
cardinality k, denoted byΨ , {R1, R2, . . . , Rw}, is
specified such that the data object can be obtained from
any retrieval set inΨ.

In realistic distributed storage systems,ρ is typically a
small value. For example, the 3-replication scheme where
ρ = 2 serves the Google File System (GFS) well [25]. On
the other hand, the data repair requirement is different from
the regular model in that we do not require that a failed
node can be repaired by contactingany d surviving nodes.
As for data retrieval, we require that the storage system has
w retrieval sets of cardinalityk. This encompasses the data
retrieval requirement of the regular model as a special case,
which corresponds to the setting ofw =

(

n
k

)

. Although in our
formulation, all the retrieval sets have the same cardinality, it
does not mean that all the storage nodes in a retrieval set need
to be contacted for data retrieval, since it is allowed that the
data object can be retrieved from a subset ofRj ∈ Ψ.

IV. CODE CONSTRUCTION

A. MDS-IFR Code

Our code construction is a concatenation of an outer MDS
code and an inner Irregular Fractional Repetition (IFR) code.
We call it MDS-IFR code. The data object comprised ofB
packets is first encoded intoF packets over GF(q) by using
an(F,B)-MDS code. Note that such code exists provided that
q ≥ F (e.g. [26]). In practice, the decoding complexity may be
high for large values ofq. In that case, the vector linear code
recently proposed in [27] can be used instead. This code is
easy to decode as it has the property called zigzag decodability
and all computations are performed over GF(2). The price to
pay is some extra storage overhead. We refer interested readers
to [27] for details.

After encoding by the outer code, the set of theF coded
packets, denoted byF , is partitioned intoθ coded blocks,
B1,B2, . . . ,Bθ, where|Bi| , βi ≤ B for all i. Note thatβi

denotes the number of packets inBi, andF =
∑θ

i=1
βi. We

call b , [β1, β2, . . . , βθ] the block assignment vector, which
will be optimized in the next section. We remark that the block
assignment vectorb, rather than what packets contained in
Bi for i = 1, 2, . . . , θ, will affect the solution of minimizing
the system repair cost in the next section. That is why we
introduce the definition of coded blocks instead of working
directly on packets. Each coded block is then replicatedρ+1
times and stored onρ + 1 different storage nodes according
to an IFR code, defined as follows:

Definition 2 (Irregular Fractional Repetition Code). An Irreg-
ular Fractional Repetition (IFR) codeC for DSS(n, ρ, d, ·, ·)
is a collectionC of n subsets ofΩ , {1, 2, . . . , θ}, satisfying
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the requirements that each set inC has cardinality at mostd
and each element ofΩ belongs to exactlyρ+ 1 sets inC.

Note that IFR code generalizes FR code in that it only
requires the cardinality of each set inC to be no more thand,
rather than exactlyd. That is why we call itirregular. Besides,
it addresses only the repair issue, which will become clear after
we introduce the concept of repair overlay, and is independent
of the parameters related to data retrieval, that is,k andw.

An IFR code can be represented by a hypergraph
τ = (V ,Hτ ), where V is the vertex set andHτ ,

{E1, E2, . . . , Eθ} is a family of θ non-empty subsets ofV ,
called hyperedges. A hypergraph is said to beζ-uniform if all
of its hyperedges have the same sizeζ. The following fact is
evident:

Fact 1. An Irregular Fractional Repetition (IFR) codeC for
DSS(n, ρ, d, k, w) is equivalent to a(ρ + 1)-uniform hyper-
graph τ with θ hyperedges andn vertices, each of which has
degree less than or equal tod.

We call such kind of hypergraphτ a repair overlay, or an
overlay hypergraph. The above fact follows directly from the
definitions of IFR code and uniform hypergraph, which can
be illustrated by the example below.

Example: Let Ω = {1, 2, 3, 4} and C =
{{1, 2}, {1, 3}, {1, 4}, {3, 4}, {2, 3, 4}, {2}}. Note that
n = |C| = 6. Furthermore, it can be checked that each
element ofΩ belongs to three sets inC, so ρ = 2. Besides,
the cardinality of each set inC is at most three, sod = 3.
Therefore,C is an IFR code for DSS(6, 2, 3, k, w).

This IFR codeC can be represented by a3-uniform hy-
pergraphτ = (V ,Hτ ), where V = {v1, v2, v3, v4, v5, v6}
and Hτ = {E1 = {v1, v2, v3}, E2 = {v1, v5, v6}, E3 =
{v2, v4, v5}, E4 = {v3, v4, v5}}, as shown in Fig. 3. The
hypergraphτ hasn = 6 vertices, each of which has degree
less than or equal tod = 3. Each hyperedge inτ contains
ρ+ 1 = 3 vertices.

B. Data Distribution and Data Repair

Let τ = (V ,Hτ ) be a given repair overlay. As described
before, the data object is first encoded intoθ coded blocks
by an outer MDS code. Fori = 1, 2, . . . , θ, the coded block
Bi is then assigned toEi ∈ H

τ . All vertices contained inEi

then storeBi in common. The storage amountαv of a vertex
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v ∈ V can then be obtained asαv =
∑

i:v∈Ei
βi. Note thatF

andαv are related by(ρ+1)F =
∑

v∈V αv, since each coded
block is replicatedρ+ 1 times.

Data repair is very simple. When there is a node failure,
a newcomer will replace the failed node by retrieving the
previously stored data from a set of helper nodes. For example,
suppose nodev which contains coded blocks{Bi : v ∈ Ei}
fails, the newcomer can directly retrieveBi from any surviving
node inEi for all i such thatv ∈ Ei. This is what we call
uncodedandexactrepair. Since the cardinality of a hyperedge
is ρ+1, this kind of repair can be done successfully provided
that the number of node failures is no more thanρ.

Example: Consider a distributed storage networkG̃ shown
in Fig. 4(a). The number associated with an edge denotes the
single-hop cost between its two endpoints. Fig. 4(b) is the
metric closure,G, of G̃, where the number associated with
an edge is the corresponding communication cost. Suppose
this storage network can tolerate up toρ = 2 node failures,
and each failed node can be recovered from at mostd = 3
available storage nodes. One feasible repair overlay is shown
in Fig. 4(c), where every hyperedge hasρ+1 = 3 nodes and
the degree of each node is less than or equal tod = 3. Assign
coded blocksB1, B2, B3 andB4 to hyperedgesE1, E2, E3

andE4 respectively. Then node1 would store blocksB1 and
B2, node2 would storeB1 andB4, node3 would storeB1, B3
andB4, node4 would storeB2, B3 andB4, and node5 would
storeB2 andB3. Suppose nodes1 and2 fail. The newcomer
for node 1 can downloadB1 from node 3 and downloadB2
from either node 4 or node 5, while the newcomer for node 2
can downloadB1 from node 3 and downloadB4 from node 3
or node 4.



V. REPAIR COST M INIMIZATION

In this section, we consider the problem of minimizing
repair cost. We first present an algorithm to find optimal repair
order when there is more than one failed node. Based on
this result, we further construct an optimization framework
to determine the rate of the outer MDS code, the structure of
the IFR code by means of repair overlay, the storage amount
of each node, and the collection of retrieval sets.

A. Repair Order under Multiple Failures

In this subsection, we assume that a repair overlay,τ , is
given. We useΥ to denote a set of failed nodes and call it
a failure pattern. LetΥi , Υ

⋂

Ei be the set of failed nodes
in hyperedgeEi ∈ τ under failure patternΥ. To repair all
the failed nodes inΥ, we need|Υ| newcomers in total. All
lost blocks, i.e.,{Bi : Υi 6= ∅}, need to be regenerated in the
corresponding newcomers. This can always be done provided
that |Υ| ≤ ρ. In that case, we say thatΥ is repairable.

Let us focus on one particular lost block,Bi. Each new-
comer of a failed node inΥi needs to get a copy ofBi from a
certain helper node, which can be a surviving node or another
newcomer that has already recovered the coded blockBi. The
cost for a newcomer to repairBi is simply the block size,βi,
multiplied by the communication cost between the newcomer
and its helper node. If there is only one node inΥi, then it
is clear that the only newcomer, say nodev, should choose a
helper nodeu that minimizes the communication costcuv. If
there are multiple nodes inΥi, the repair order will affect the
total repair cost. To minimize the total repair cost forBi, a
greedy algorithm, which is stated in Algorithm 1, can be used.

Algorithm 1: Repair process of coded blockBi in hyper-
edgeEi

1) Pick the minimum-weight edgee = {u, v} ∈ G, where
u ∈ Ei\Υi andv ∈ Υi. Then the newcomer of nodev
chooses nodeu to be its helper node and downloads a
copy ofBi from nodeu along the minimum-cost path.

2) Remove nodev from Υi, i.e.,Υi ← Υi\{v}, which
means that the newcomer of nodev has already
recoveredBi and is able to act as helper node of other
newcomers that still need to recoverBi.

3) Repeat Steps 1) and 2) until all the newcomers inEi

recoverBi, i.e.,Υi = ∅.

Theorem 1. For any given repairable failure patternΥ,
Algorithm 1 minimizes the cost of repairingBi, for all i such
that Υi 6= ∅.

Proof: Replace all nodesEi\Υi by a virtual nodes. For
v ∈ Υi, let csv , min{cuv : u ∈ Ei\Υi}. A weighted com-
plete graphK can be constructed on the vertex setΥi ∪ {s},
where the edge weight is the corresponding communication
cost. The repairing ofBi is equivalent to sendingBi from node
s to all nodes inΥi. Therefore, the minimum cost of repairing
Bi is equal toβi times the weight of the minimum spanning
tree of the graphK. Let e1, e2, . . . , e|Υi| be the sequence of

edges ofG chosen by Algorithm 1. Letf1, f2, . . . , f|Υi| be
the sequence of edges ofK chosen by the well-known Prim’s
algorithm [24, Chapter 23] for finding a minimum spanning
tree on graphK with s being the initial vertex. It can be seen
that the communication cost ofei is equal to the weight offi
for all i. Therefore, Algorithm 1 is optimal.

Note that the repair processes of different coded blocks are
independent, and thus can be executed in parallel. In repairing
Bi under the failure patternΥ, let the set of edges chosen by
Algorithm 1 be denoted byTΥ

i . Given a repair overlayτ and
a block assignment vectorb, the total repair cost, normalized
by the object sizeB, under failure patternΥ is then given by

c̃r(τ,b,Υ) =
1

B

∑

i:Υi 6=∅

∑

{u,v}∈TΥ
i

cuvβi. (1)

B. MDS-IFR Code Optimization

Our objective is to design the MDS-IFR code so as to
minimize the system repair cost. If a non-repairable failure
patternΥ occurs, the whole data object will be decoded by
downloading data from one of the retrieval sets and then re-
encoded for storage in the newcomers. We assume that the
system is properly designed so that the probability of occur-
rence of a non-repairable failure pattern is small. Therefore,
we focus on minimizing the expected repair cost per unit data,
where the expectation is taken over all repairable patterns. We
call it the system repair costand denote it bycr(τ,b). Given
a repair overlayτ and a block assignment vectorb, it can be
written as

cr(τ,b) ,
∑

Υ:repairable

p(Υ)c̃r(τ,b,Υ), (2)

where p(Υ) be the probability of occurrence ofΥ, on the
condition that the failure patternΥ is repairable.

Let Ẽ1, Ẽ2, . . . , Ẽ( n

ρ+1)
be all the(ρ+1)-subsets ofV . We

use a binary variable to indicate whetherẼi belongs to the
hyperedge setHτ of a repair overlayτ :

xi ,

{

0 if Ẽi /∈ Hτ ,

1 if Ẽi ∈ H
τ .

Let x , [x1, x2, ..., x( n

ρ+1)
]. We call it anoverlay selection

vector. To ensure that the degree of each vertexv in V is not
larger thand, we have the following constraints

∑

i:v∈Ẽi

xi ≤ d, ∀v ∈ V . (3)

Note that the binary vectorx defines a repair overlay, which
we denote it byτ(x).

As a coded blockBi ⊆ F is assigned to hyperedgẽEi if
and only if it would be contained in the overlay hypergraph,
we therefore have the constraints

0 ≤ βi ≤ Bxi, i = 1, 2, . . . ,

(

n

ρ+ 1

)

. (4)

For each storage node, it stores all the coded blocks as-
sociated with the hyperedges containing it. Thus the storage



amount of nodev, denoted byαv, can be obtained as

αv =
∑

i:v∈Ẽi

βi, ∀v ∈ V . (5)

Note that considering data retrieval,αv need not be greater
than B due to the outer MDS code. To facilitate efficient
uncoded repair, however, we allowαv to exceedB. Given a
repair overlayτ and a block assignment vectorb, we assume
that there is a constraint on thesystem storage cost, denoted by
cs(τ,b), which is defined as the cost of storing one unit data
object in DSS(n, ρ, d, k, w). LetCs be the maximum allowable
system storage cost. Then we have

cs(τ(x),b) ,
1

B

n
∑

v=1

svαv ≤ Cs. (6)

Note thatCs is a given constant, which constrains the total
storage cost in the system. We do not impose any constraint on
the storage amount of each storage node. If needed, that kind
of constraints can be easily added, and our proposed algorithm,
to be described in a later section, can still be applied without
any modification.

Recall that the DSS(n, ρ, d, k, w) needs to satisfy the data
retrieval requirement. There is a collection of retrieval sets,
Ψ = {R1, R2, . . . , Rw}. Part or all of these sets may be pre-
determined based on considerations other than storage and
repair costs. For example, if a data object is mainly needed
by users in a specific geographical region, it would be more
convenient if one or more retrieval sets are formed by storage
nodes in that region, so that the response time for a user
to download that object can be shortened. To provide more
flexibility in our optimization framework, we alloww1 ≤ w
retrieval sets be given while the remainingw2 = w − w1

retrieval sets are obtained by our optimization procedure.For
the pre-determined retrieval sets,R1, R2, . . . , Rw1

, we need
to ensure that each of them stores at leastB coded packets in
F . Therefore, we have the following constraints:

∑

i:Ẽi∩Rj 6=∅

βi ≥ B, j = 1, 2, . . . , w1. (7)

It remains to determine the otherw2 retrieval sets. Denote the
k-subsets ofV , excluding the pre-determined retrieval sets, by
Q1, Q2, . . . , QW , whereW ,

(

n
k

)

− w1. To indicate whether
Qj is a retrieval set or not, we introduce a binary variable

yj ,

{

0 if Qj /∈ Ψ,

1 if Qj ∈ Ψ.

Let y , [y1, y2, ..., yW ]. We call it a retrieval set selection
vector. To guarantee that there arew2 more retrieval sets, we
have

W
∑

j=1

yj = w2. (8)

Note thaty defines a collection of retrieval sets, which we
denote it byΨ(y). Similar as before, we have

∑

i:Ẽi∩Qj 6=∅

βi ≥ Byj , j = 1, 2, . . . ,W. (9)

As mentioned before, our objective function is the system
repair cost of DSS(n, ρ, d, k, w). Formally, the repair cost
minimization problem can be stated as follows.

Minimize cr(τ(x),b) ,
∑

Υ:repairable

p(Υ)c̃r(τ(x),b,Υ), (10)

subject to

(3)− (9),

xi ∈ {0, 1}, i = 1, 2, . . . ,

(

n

ρ+ 1

)

, (11)

yj ∈ {0, 1}, j = 1, 2, . . . ,W, (12)

βi ∈ N, i = 1, 2, . . . ,

(

n

ρ+ 1

)

. (13)

The optimization is an integer linear programming (ILP)
problem, wherex, y, andb are the optimization variables.

VI. REPAIR-STORAGE TRADEOFF

In our formulation, it is clear that there is a tradeoff between
the system storage cost,cs, and the system repair cost,cr.
To make this relationship more explicit, we introduce the
following notions. For the ease of presentation, we assume
thatw1 = 0 for the rest of this paper.

Definition 3 (Achievability). A cost pair (c∗r , c
∗
s) is B-

achievable by the MDS-IFR code if given any data object
of sizeB, there exists a repair overlayτ , a collection of
retrieval setsΨ, and a block assignment vectorb such that
cr(τ,b) ≤ c∗r , cs(τ,b) ≤ c∗s, and the data repair and retrieval
requirements are satisfied.

Note thatβi’s must be integers no more thanB. There-
fore, the achievable region enlarges whenB increases. It is
therefore natural to define the asymptotic achievable region
for arbitrarily large value ofB:

Definition 4 (Asymptotic achievability). A cost pair(c∗r , c
∗
s)

is asymptotically achievable by the MDS-IFR code if for any
ǫ > 0, there exists for sufficiently largeB, a repair overlayτ ,
a collection of retrieval setsΨ, and a block assignment vector
b such thatcr(τ,b) < c∗r + ǫ, cs(τ,b) < c∗s + ǫ, and the data
repair and retrieval requirements are satisfied.

The following result shows that the asymptotically achiev-
able cost can be obtained by relaxing the integer constrainton
b:

Theorem 2. Given anyB andCs, let b∗ = [β∗
i ], x

∗, andy∗

be the solution to the repair cost minimization after relaxing
the integer constraint onb, and c∗r , cr(τ(x

∗),b∗) be the
corresponding system repair cost. The cost pair(c∗r , Cs) is
asymptotically achievable by the MDS-IFR code.

Proof: First of all, note thatcr and cs are invariant to
scalingB and allβi’s by the same amount, no matter whether
βi’s are integers or not. Suppose we scale upB andβi’s all



by γ > 1. Then we roundup all βi’s to the nearest integers.
By (1) and (10), the new system repair cost is given by

c̃r =
1

γB

∑

Υ:repairable

p(Υ)
∑

i:Υi 6=∅

∑

{u,v}∈TΥ
i

cuv(γβi + zi) (14)

=
1

B

∑

Υ:repairable

p(Υ)
∑

i:Υi 6=∅

∑

{u,v}∈TΥ
i

cuvβi

+
1

γB

∑

Υ:repairable

p(Υ)
∑

i:Υi 6=∅

∑

{u,v}∈TΥ
i

cuvzi, (15)

where 0 ≤ zi < 1. Since γ can be arbitrarily large, the
second term can always be made smaller thanǫ. Similarly,
the new storage cost can be proven to be smaller thanCs + ǫ
for sufficiently largeγ. Therefore,(c∗r , Cs) is asymptotically
achievable.

To identify the optimal tradeoff between system repair cost
and system storage cost, we need to introduce the following
two concepts:

Definition 5 (Pareto-optimality). A B-achievable cost pair
(c∗r , c

∗
s) is called Pareto-optimal if and only if there does

not exist otherB-achievable cost pair(cr, cs) such that the
following two conditions are satisfied:

1) cr ≤ c∗r and cs ≤ c∗s, and
2) cr < c∗r or cs < c∗s.

Roughly speaking, Pareto-optimalB-achievable cost pairs
are “on the boundary” of the set of allB-achievable cost pairs.
In fact, to characterize the set ofB-achievable cost pairs, it
is necessary and sufficient to characterize only the so-called
Pareto frontier:

Definition 6 (Pareto frontier). The Pareto frontier is the set
of all Pareto-optimalB-achievable cost pairs.

Theorem 3. The Pareto frontier is a finite set.

Proof: Note thatβi’s are non-negative integers. According
to (4), they are all less than or equal toB. Since the other
variables,xi’s and yi’s, are all binary, the solution space is
finite. Hence, the Pareto frontier is finite too.

Since the Pareto frontier is finite, it is possible to list allof
them in finite time, which can be done by Algorithm 2.

Algorithm 2: Find the Pareto frontier

1) Generate a solution which minimizescr subject to the
constraints (3)-(4), (7)-(9) and (11)-(13). Exit if no
solution is found. Otherwise, letc∗r be the optimal
value forcr.

2) Constraincr to be equal toc∗r , and generate a solution
which minimizecs subject to constraints (3)-(4),
(7)-(9) and (11)-(13). Letc∗s be the optimal value for
cs. Output(c∗r , c

∗
s).

3) Replace the constraintcr = c∗r (which was added in
Step 2) by the constraintcs < c∗s.

4) Go to Step 1.

Theorem 4. All the cost pairs in the Pareto frontier can be
listed by Algorithm 2 in finite time.

Proof: By Theorem 3, there is a finite number of
Pareto-optimalB-achievable cost pairs. Denote them by
(a1, b1), (a2, b2), . . . , (aM , bM ), whereM is the cardinality of
the Pareto frontier. Furthermore, let them be ordered so that
ai < aj andbi > bj for i < j.

We claim that the first point output by Algorithm 2 is
(a1, b1). To see this, note that it first minimizescr, without
any constraint oncs. The result so obtained must bec∗r = a1,
for otherwise(a1, b1) would not be the first point in the Pareto
frontier. Then in Step 2, it minimizescs, with the constraint
cr = c∗r = a1. The resultc∗s must be less than or equal tob1,
since(a1, b1) is B-acheivable. Moreover,c∗s cannot be strictly
less thanb1, for otherwise(a1, b1) is not Pareto-optimal. As
a consequence, the first point(a1, b1) is output.

By the same argument, we can see that all points output
by Algorithm 2 must be Pareto-optimal, and thus belong to
the Pareto frontier. Assume the pair(ai, bi) has just been
output. Algorithm 2 first minimizescr, with the constraint
cs < bi. The result so obtained must bec∗r > ai, for otherwise,
(ai, bi) is not a Pareto-optimal point. It must be equal toai+1,
for otherwise(ai+1, bi+1) is not in the Pareto frontier. Next,
Algorithm 2 minimizescs, with the constraintcr = ai+1.
The result will then bec∗s = bi+1. Therefore, the next Pareto-
optimal pair(ai+1, bi+1) is output.

As a result, all points in the Pareto frontier will be output.
The algorithm terminates when no more Pareto-optimal points
can be found.

We remark that Algorithm 2 cannot be replaced by solving a
family of weighted sum minimization problems (with different
weights), since not all Pareto optimal cost pairs lie on the
boundary of the convex hull of all achievable cost pairs.

VII. A H EURISTIC SOLUTION

Our repair cost minimization problem is a joint repair over-
lay, retrieval sets, and block assignment optimization problem.
In theory, it can be solved by ILP. For large network size,
however, ILP is too time consuming due to the fast-growing
problem dimension. In this section, we present an efficient
heuristic to solve the problem.

Our heuristic algorithm is divided into the following three
steps:

1) Determine the repair overlay,τ , or equivalently, the
overlay selection vectorx.

2) Determine the collection of retrieval sets,Ψ, or equiva-
lently, the retrieval set selection vector,y.

3) Determine the block assignment vector,b.

First, we determine the repair overlayτ = (V ,Hτ ) by a
greedy approach. We examine all

(

n
ρ+1

)

possible hyperedges

that could be put intoHτ . Let them beẼ1, Ẽ2, . . . , Ẽ( n

ρ+1)
.

Let Gi be the subgraph of the metric closureG induced by
the vertices inẼi. The cost of the minimum spanning tree of
Gi is called theMST weightof Ẽi. At each step, we choose
an hyperedge, not previously chosen, with the smallest MST
weight while obeying the degree constraint. Such an hyperedge



is then added toHτ . The procedure then repeats. We formally
state our method as Algorithm 3.

Algorithm 3: Find a repair overlayτ

Input : G̃ = (V , Ẽ), d, ρ
Output : τ = (V ,Hτ )

1) Compute the metric closureG of G̃.
2) Initialize τ with Hτ ← ∅, andN τ

v ← 0 for all v ∈ V .
(Note thatN τ

v represents the degree of vertexv in τ .)
3) Sort all the(ρ+ 1)-subsets ofV in ascending order of

MST weight and get the sequencẽE1, Ẽ2, . . . , Ẽ( n

ρ+1)
.

4) for i = 1 to
(

n
ρ+1

)

do
if N τ

v < d for all v ∈ Ẽi then
Hτ ← Hτ ∪ {Ẽi}
N τ

v ← N τ
v + 1 for all v ∈ Ẽi

end
end

5) Returnτ = (V ,Hτ ).

Let m be the number of edges in the underlying storage
network G̃ = (V , Ẽ). The complexity of Algorithm 3 is
O(n2 logn+mn+ρnρ+1(ρ+logn)), since computing the met-
ric closureG of G̃ by Johnson’s algorithm has the complexity
of O(n2 logn+mn) , finding the MST weight of the

(

n
ρ+1

)

hy-
peredges has the complexity ofO(ρ2nρ+1), the sorting in the
second step has complexity ofO(ρnρ+1 logn) and the third
step has complexity ofO(nρ+1). Sinceρ ≥ 1, the complexity
of Algorithm 3 can be simplified asO(mn+ρnρ+1(ρ+log n)).

Next, we need to findΨ, given a fixed repair overlayτ
obtained in the previous step. According to the structure of
the MDS-IFR code, we know that the coded blocks associated
with two different hyperedges are distinct. For this reason, we
require thek storage nodes in a retrieval set jointly hit as
many hyperedges ofτ as possible. In other words, we require
Ψ be the collection of the firstw k-subsets ofV that hit the
maximum number of hyperedges ofτ . To find it, we use a
recursive approach, which is formally stated as Algorithm 4.
Note that in Step 4 of Algorithm 4, we useu

⊕

Ψ, whereu
is a vertex andΨ is a collection of vertex sets, to denote the
operation of addingu to each set inΨ. For example,v1 ⊕
{{v2, v4}, {v3, v6}} = {{v1, v2, v4}, {v1, v3, v6}}.

We remark that Algorithm 4 is for the case wherew1 = 0.
If there arew1 > 0 pre-determined retrieval sets, Algorithm 4
can be applied with a very minor modification. Before ak-
subset ofV is added to the collection of retrieval setsΨ, the
algorithm first check whether thatk-subset happens to be one
of the pre-determined retrieval sets. It would be added if and
only if it is not one of them. The procedure repeats untilw−w1

retrieval sets have been added toΨ.
The complexity of Step 2 in Algorithm 4 isO(n|Hτ |),

which is the same asO( n2d
ρ+1

), since|Hτ | ≤ nd
ρ+1

. Step 2 would
be implementedk times to find a retrieval set containingk
vertices, and Algorithm 4 needs to findw retrieval sets. Thus,
the complexity of Algorithm 4 isO(wkn2d

ρ+1
).

Last, we need to findb, given a fixed repair overlayτ and
a fixed collection of retrieval setsΨ. This can be done by

Algorithm 4: Find a collection of retrieval sets
Ψ=RS(V ,Hτ , k, w)

Input : τ = (V ,Hτ ), k, w
Output : Ψ

1) if (V = ∅)
∨

(|Ψ| = w) do
returnΨ

end
2) Find u ∈ V that hits the maximum number of

hyperedges inHτ .
3) Let τ ′ = (V ′,Hτ ′

) be the hypergraph obtained from
τ = (V ,Hτ ) by removingu from V and all
hyperedges containingu from Hτ .

4) Ψ← u
⊕

RS(V ′,Hτ ′

, k − 1, w)
5) if |Ψ| < w do

Ψ← Ψ
⋃

RS(V ′,Hτ ′

, k, w − |Ψ|)
end

6) ReturnΨ

solving the ILP problem while fixingx andy to the values
corresponding toτ andΨ, respectively. Alternatively, we can
solve the LP problem by relaxing the integer constraint onb

if we want to minimize the asymptotically achievable cost.
For our ILP formulation of the repair cost minimization

problem, the number of variables is2
(

n
ρ+1

)

+
(

n
k

)

and the
number of constraints is

(

n
ρ+1

)

+n+w+2. If the repair overlay
and the collection of retrieval sets are fixed, the number of vari-
ables can be reduced to|Hτ | while the number of constraints
can be reduced to|Hτ | + w + 1. Since |Hτ | ≤ nd/(ρ + 1)
and d ≤ n − ρ + 1, the number of variables and constraints
of the ILP problem can be reduced fromO(nρ+1 + nk) and
O(nρ+1), both toO(n2).

To conclude, the heuristic method consists of three steps.
The first two steps have complexitiesO(mn + ρnρ+1(ρ +

logn)) andO(wkn2d
ρ+1

), respectively. For practical scenarios,ρ
is a small constant, typically equal to 1 or 2. In theory, linear
programming can be solved in polynomial time. Therefore, re-
gardingρ as a constant, the overall computational complexity
of the heuristic method is polynomial inn.

Example: Consider a 5-node ring,̃G, shown in Fig. 5(a).
The number associated with an edge denotes the single-hop
cost between its two endpoints. Fig. 5(b) showsG, the metric
closure ofG̃, where the number associated with an edge is
the corresponding communication cost. Suppose the storage
network is able to tolerate double failures, i.e.,ρ = 2,
and the degree constraint isd = 3. We need to consider
all hyperedges whose cardinality is equal toρ + 1 = 3,
i.e., Ẽ1 = {1, 2, 3}, Ẽ2 = {3, 4, 5}, Ẽ3 = {1, 2, 5}, Ẽ4 =
{2, 3, 4}, Ẽ5 = {1, 2, 4}, Ẽ6 = {1, 3, 4}, Ẽ7 = {1, 4, 5}, Ẽ8 =
{2, 3, 5}, Ẽ9 = {2, 4, 5}, Ẽ10 = {1, 3, 5}. Their MST weights
are 5, 5, 6, 6, 7, 7, 8, 9, 9, 10, respectively. According
to Algorithm 3, the hyperedges̃E1, Ẽ2, Ẽ3, Ẽ4 and Ẽ7 are
successively added intoHτ . The resulting repair overlayτ
is shown in Fig. 5(c). Furthermore, suppose thatk = 3 and
w = 6. According to Algorithm 4, we can obtain a collection
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Fig. 5. An example of finding a repair overlayτ and a collection of retrieval
setsΨ in a given graphG̃.

of retrieval setsΨ = {R1 = {1, 3, 2}, R2 = {1, 3, 4}, R3 =
{1, 3, 5}, R4 = {1, 4, 2}, R5 = {1, 4, 5}, R6 = {1, 2, 5}}.

VIII. S IMULATION RESULTS

In this section, we consider heterogeneous storage systems.
We compare the optimal tradeoff between system storage cost
and system repair cost that can be achieved by the MDS-IFR
code with that achieved by the regenerating code. Moreover,
we compare the minimum system repair cost that can be
achieved by the MDS-IFR code with that achieved by the
regenerating code for different network size. Here, we use
the term “regenerating code” to refer to any code that achieve
points on the tradeoff curve under the regular model.

In our simulations, both the storage cost vectors = [si] and
the single-hop cost matrix̃C = [c̃ij ] are randomly generated.
For the storage system whose size is less than or equal to
20, each entry ins and C̃ is an integer selected from the
uniform distribution on the interval[0, 50]. For the storage
system whose size is larger than20, each entry ins andC̃ is an
integer selected from the uniform distribution on the interval
[0, 100]. We assume that the probabilities of occurrence of all
repairable failure patterns are the same.

Consider a distributed storage system with parameters:
n = 10, ρ = 2, d = 3, k = 3. For the MDS-IFR code,
all Pareto-optimalB-achievable cost pairs(c∗s, c

∗
r) can be ob-

tained by running Algorithm 2 and solving the corresponding
ILP problems. The curve connecting all Pareto-optimalB-
achievable cost pairs is the optimal tradeoff between system
storage cost and system repair cost that can be achieved by
the MDS-IFR code, as shown in Fig. 6. For the regenerating
code, there exists a fundamental tradeoff between the storage
amount per node,α, and the amount of data downloaded from

each surviving node when repairing a failed node,β. Based on
the tradeoff betweenα and β, if each newcomer downloads
data along thed paths with the least communication costs,
the optimal tradeoff between system storage cost and system
repair cost can be obtained. From Fig. 6, it can be seen that,
compared with the regenerating code, under the same data
retrieval requirement, i.e.,w =

(

n
k

)

=
(

10

3

)

= 120, the system
repair cost that achieved by the MDS-IFR code can be reduced
if the system storage cost are increased. However, if the data
retrieval requirement are properly relaxed, i.e.,w = 10, both
the system repair cost and system storage cost achieved by the
MDS-IFR code can be reduced.

For the heuristic of minimizing repair cost in the irregular
model by using the MDS-IFR code, to illustrate the integrality
gap, we consider a distributed storage system with parameters:
n = 10, d = 6, k = 4, w =

(

10

4

)

, and ρ = 1. We increase
the data object sizeB from 10 to 30, with step size10. For
each value ofB, we increase the maximum system storage
cost per unit data object,Cs, from 80 to 100 and solve
the corresponding ILP. The tradeoff curves between system
storage cost,cs, and system repair cost,cr, are plotted in
Fig. 7. We can observe that the gap between the solution of the
ILP and of its relaxation is tiny and decreases with the growing
of the data object sizeB. Thus, to improve the efficiency of
simulation, we solve the LP problem by relaxing the integer
constraints onb to minimize the asymptotically achievable
repair cost in our simulation.

We next compare the minimum system repair cost of the
MDS-IFR code with that of the regenerating code for different
network size. The maximum allowable system storage cost
per unit data objectCs is set to a sufficiently large value,
1000000. The simulation for each value ofn is averaged over
100 runs. For small storage networks, from Fig. 8, it can be
seen that if the number of retrieval sets is equal to

(

n
k

)

, the
minimum system repair cost that can be achieved by the MDS-
IFR code is roughly reduced at least by20%. Moreover, the
asymptotically achievable minimum system repair cost found
by our heuristic is near-optimal. The gap between heuristicso-
lution and optimal solution is at most6%. If the data retrieval
requirement is relaxed, for example the number of retrievalsets
is reduced tow = 50, the asymptotically achievable minimum
system repair cost achieved by the MDS-IFR code can be
reduced at least by70%. Since the constraints of data repair
and data retrieval are relaxed in the irregular model, it is not
surprising that there exists a performance gain. Nevertheless,
it demonstrates that there is a large room for improvement if
the regular model is refined. This is particularly relevant when
the networking environment is heterogeneous.

To gain more understanding about the computational ef-
ficiency of our heuristic, we increase the network size and
measure its running time. The machine employed for simula-
tion is a Dell computer with an Intel(R) Core(TM)2 Quad
CPU running at 3 GHz with 4 GB RAM. The operating
system is Windows 7, and the computer is a 32-bit machine.
The simulation programs were written in MATLAB. Our
method requires solving LP and ILP problems. These tasks
were done by a free linear integer programming solver called
“lp solve”, which was called from our MATLAB program.
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In our simulation, the system parameters are set as follows:
d = 5, k = 4, ρ = 2, w = 100, Cs = 1000000 andB = 50.
The simulation for each value ofn is averaged over100
runs. The minimum system repair cost obtained by using our
heuristic for different network size is shown in Fig. 9. The
average running time of the three steps of our heuristic for
a given problem instance is also recorded in Fig. 10. From
Fig. 10, it can be seen that the most time consuming step
of our heuristic is solving the LP problem after determining
the repair overlay and retrieval sets. Moreover, the total time
consumed by our heuristic is less than4 minutes when the
network size is less than150.
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IX. CONCLUSION

Due to the emergence of heterogeneous cloud storage
systems, we generalize the concept of the FR code and
propose the IFR code. A key property of the FR code is
its uncoded repair process. This simple repair mechanism
minimizes the repair bandwidth and the disk access bandwidth
simultaneously, without any computational cost. The IFR code
preserves this nice property. Moreover, its irregular structure
allows the repair pattern and the storage amount of each node
to be different, thus enabling the cloud system to be optimized
according to network heterogeneity including different storage
costs of the storage nodes and different communication costs
of the links. To determine the repair pattern, which we call
the repair overlay, and the storage allocation, we formulate the
whole problem based on a new irregular model, with the aim
of minimizing the system repair cost by properly designing
the MDS-IFR code and the retrieval sets. For large networks,
we decompose the repair cost minimization problem into three
subproblems: repair overlay selection, retrieval sets selection,
and block assignment, and propose a heuristic solution. For
small network sizes, it is shown to be nearly optimal by
comparing it with the optimal ILP method.

While the optimization framework established in this paper
concerns mainly on system repair cost, it can be modified to
include other system objectives and extended by incorporating
more resource constraints. On the other hand, as it is based on
the MDS-IFR code, it provides very low repair cost at the ex-
pense of higher storage overhead. If higher storage efficiency is
needed in some applications, other codes will be needed (using
at the expense of higher repair cost or computing cost). This
problem is beyond the scope of this paper. Nevertheless, we
have demonstrated how optimization techniques can be used to
construct good codes, providing insights and new methodology
on how to design future heterogeneous cloud storage systems.
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