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Abstract

Dynamic spectrum access under channel uncertainties sidared. With the goal of maximizing
the secondary user (SU) throughput subject to constraimthe® primary user (PU) outage probability
we formulate a joint problem of spectrum sensing and chastaé estimation. The problem is cast
into a sequential framework since sensing time minimizai® crucial for throughput maximization.
In the optimum solution, the sensing decision rule is codipléth the channel estimator, making
the separate treatment of the sensing and channel estimsttiotly suboptimal. Using such a joint
structure for spectrum sensing and channel estimation wpoge a distributed (cooperative) dynamic
spectrum access scheme under statistical channel statenatfon (CSI). In the proposed scheme, the
SUs report their sufficient statistics to a fusion center)(Fi@a level-triggered sampling, a nonuniform
sampling technique that is known to be bandwidth-and-gnefficient. Then, the FC makes a sequential
spectrum sensing decision using local statistics and eHastimates, and selects the SU with the best
transmission opportunity. The selected SU, using the sgrigcision and its channel estimates, computes
the transmit power and starts data transmission. Simulaéisults demonstrate that the proposed scheme
significantly outperforms its conventional counterpamsder the same PU outage constraints, in terms

of the achievable SU throughput.

Index Terms. sensing-based dynamic spectrum access, sequential jeiattbn and estimation,

cooperative dynamic spectrum access, level-triggeregkagn

. INTRODUCTION

Addressing the well-known problem of spectrum utilizatggarcity in current wireless networks, the
cognitive radio (CR) technology employs a hierarchicalcspan access model consisting of primary

users (PUs) and secondary users (SUs) [1]. In this moddh, BOs and SUs are able to access a same
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band with a higher priority for PUs. The spectrum sharingMeein PUs and SUs can be realized in an
underlay fashion, which allows SUs to coexist with PUs without segdime spectrum band. Thus, SUs
are blind to the idle state of PUs (spectrum holes), regultina worst-case assumption that PUs use the
band all the time. As a result, SUs can coexist only with sevemstraints on the transmission power
in order to protect the quality of service (QoS) of PUs. Fauy®n the analysis of underlay spectrum
access,[[2]£[4] derive fading channel capacities and aptinpower allocation strategies for SUs. In
contrast to underlay, thepportunistic access approach permits the existence of SUs only when PUs are
idle, i.e., no coexistence. Hence, in this approach ther@itarsh constraints on the SU transmission
power. Instead, an effective spectrum sensing scheme dedd&]-[7]. In [5], [€] the SU throughput is
maximized while satisfying the PU QoS constraints.

Methods for combining the underlay and opportunistic as@ggproaches have also been proposed,
e.g., [8]-[11]. In such combined methods, the SU sensespeetrsim band, as in opportunistic access,
and controls its transmit power using the sensing resuliclwhllows SU to coexist with PU, as in
underlay. While deriving the power control function, theeeage or peak constraints on SU transmit
power and PU interference level are imposed [10],] [11]. lis aper, we propose such a combined
method under the peak interference and power constraimtspéctrum access methods it is customary
to assume perfect channel state information (CSI) at theeSyJ, [2]14], [8]-[11]. That is, the perfect
CSI of SU channels (and even PU channels) can be made aeaitalthe SU. The quantized CSI case
is treated in[[11]. However, how to obtain the CSI in the pescef dynamic spectrum access has not
been addressed. We consider the problem of joint spectrasingeand channel estimation in this work.

For such a joint problem, a straightforward solution is &atrthe two subproblems separately by using
the optimum solution for each subproblem. More specificalhe can use the likelihood ratio test (LRT)
for spectrum sensing and the minimum mean square error (MMSEmMator for channel estimation
to solve the joint problem. However, as shown [inl[12],][13¢&ating each subproblem separately and
solving it optimally does not necessarily result in the optim overall performance. In_[12], [14], [15],
optimum solutions to different formulations of the jointtdetion and estimation problem are given
under the fixed-sample-size framework. More recently, B] FL.sequential joint detection and estimation
problem is considered, and the optimum solution is givenerehthe decision rule is a function of
the estimator, making the separate treatment strictly gtirbal. The sequential framework ideally suits
the goal of maximizing the SU throughput in dynamic spectaguess. In particular, it is desirable to
perform reliable sensing as soon as possible to let the Sidrtrih data as long as possible, leading to

higher throughput. Indeed, in the sequential frameworkstesing time is minimized. Here we propose
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a dynamic spectrum access method based on sequential jjeictregm sensing and channel estimation.

Pilot signals are often used in channel estimation, €.@], [L7], and also in spectrum sensing, e.g.,
[18]-[20]. We similarly propose to make use of the pilot gifptransmitted for PU communications to
jointly sense and estimate the channels linked to the SU. ¢ognitive radio network, multiple SUs
can cooperate to sense the spectrum by sharing their Idairiation either over a fusion center (FC)
or directly with other SUs. For such a decentralized systemdividth and energy-efficient scheme is
required for information transmission and processing.eRéyg, in a series of papers [21]-]23], it is
shown that a nonuniform sampling technique call-triggered sampling is an ideal fit for distributed
information transmission and processing. This is becaueadbles highly accurate recovery at the FC
by transmitting only a single bit per sample. Furthermarallows for complete asynchrony among SUs,
a highly desirable feature in distributed systems, andamsnsninformative local information. Due to its
attractive features we use level-triggered sampling inpteposed dynamic spectrum access scheme to
enable cooperation between SUs.

The remainder of the paper is organized as follows. In Sedfiowe formulate the problem and
briefly discuss the conventional spectrum access methddesn,Tin Sectior_Ill the sequential joint
spectrum sensing and channel estimation problem is intexiand the optimum solution is given. The
proposed cooperative spectrum access scheme is given tior§8¢ and simulation results comparing
its performance with other schemes are provided in SettloRinally, the paper is concluded in Section

VIl

[I. SYSTEM DESCRIPTIONS

Consider a cognitive radio network consisting of a primasgruPU) pair, a secondary user transmitter
(SU Tx) and receiver (SU Rx), and a fusion center (FC), as shiowFig.[1, where the PU pair can
simultaneously communicate to each other through full exiph. Although no direct communication
takes place between the PUs and the SUs, interference toltheoPmunications occurs through the
cross links, represented by dashed lines in Big. 1. The Filitdées cooperation among the SUs, and it
can be either a dedicated entity or one of the SUs. The chaingelcross link, between PJand SU
Tx is represented by a complex random coefficient, i.e., sbbgain,h;;. Similarly the complex random
coefficienth;, denotes the channel gain between theiRldd SU Rx. We assume Rician fading channels,
i.e., the real and imaginary parts bfi, R(h;x) and<S(h;x), are independent and identically distributed
(i.i.d.) asN (wik, 02,), Vi, k, with w;; = 0 corresponding to Rayleigh fading channels. Moreoyés; }

are assumed to be independent, but they are in general mdically distributed with different means
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Fig. 1. The cognitive radio system under consideration.

and variances.

A. Problem Formulation

As a fundamental requirement in cognitive radio systermes 3bls should not cause degradation in the
quality of service (QoS) to the PUs. In other words, the fetence from the SUs to the PUs must be
kept below some maximum tolerable levels. Under such iaterfce constraints, a natural objective is
to maximize the SU throughput, i.e., the average bit-rat8 dfTx. Hence, assuming Gaussian noise in

channels between the PUs and also between the SUs we ainvéatiselfollowing optimization problem

log (1 + Wp(f\;iéhhm> i
|BI2P(hi1,ha1) 1
Pl < | 18 (1 + No+|h12\2Q1+|h22\2Q2) it H ()

s.t. |k [2P(h11,ho1) < I and |hgy [2P(hi1, hoy) < I
where P(hi1, he1) is the transmit power of SU Tx, constrained by the maximum grofy,ax, and is
a function of the channel gairis;1, ho1, between SU Tx and the PUS; and N, are the channel gain
and the variance of the Gaussian noise, respectively, eat®t Tx and SU Rx{); and @), are the
transmit powers for PUs; anfi and /> are the maximum tolerable interference powers at PUs, which
are determined by the PU outage constraints. The null hgsahl, and the alternative hypothediy
correspond to the absence and presence of PU communiceggpectively. More specificallyy, =
@2 = 0 underHg, whereaamax{Q1,Q2} # 0 underHj.

In (X)), we in fact maximize the average capacity of a Gaussiamnel, where the interference constraint
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I is determined according to the outage constraint on and@hessian channej

Pl log (1 + LQ%) < Rz | < Pout, (2)
m + [hi[°P
~——

I
wheren; is the variance of the Gaussian noise; dddis the bit-rate of PW. The outage constraint in

(@) yields the interference constraint {0 (1), giveR, Ra, 11, Pou- The maximum interference valug
is written similarly. We assumé&, and I, are available to SUs. In a careful design, there should besom
safety margin between the probability on the left hand-siti¢Z) and P, while determiningl;. This
is because SUs may unintentionally excdedue to lack of information on the true hypothesis and the

actual channel coefficients.

B. Spectrum Access Methods

The conventional spectrum access methods for cognitivie,radmely the opportunistic access and
underlay methods, provide simplistic solutions (1). lartigular, the opportunistic access method
focuses only on the binary hypothesis test, i.e., spectreansisg, and conforms to the interference
constraints by simply turning off SU Tx, i.eF = 0, whenH; is declared. Whem, is declared, SU
Tx transmits at the maximum power, i.6?,= Pphax. On the other hand, the underlay method does not
perform spectrum sensing and solves only the constraingohiaption problem undeH;. As a result,
the constant poweP = min {Pmax, \h{—hz’ Ihﬁ—fP} is transmitted under bothl, and H;. It is seen that
deep fades in the cross linKs;;.} are beneficial for the SU throughput.

In practice, the channelg, go between the PUs, and the cross links;} are not known a priori.
Hence, the PUs perform a preamble communication with duréfj, at the beginning of each data
transmission frame to estimagg and go. Specifically, for transmission frame, as shown in Fid.12, PU
i estimatesy; during¢ € (T'(m — 1), T(m — 1) 4+ T,] using pilot symbols, and then data transmission
takes place during € (T(m —-1)+ Tp,Tm], whereT is the frame duration. Assuming the SUs are
synchronized with the PU frame timing and observe pilot aignheach SU can estimate its cross links
during each preamble period.

As opposed to the naive solutions of the conventional specticcess methods, an efficient solution
to (I) should involve both spectrum sensing and channeinasitn, hence it is a combination of the
opportunistic access and underlay methods. For exampéefised timer € (0,7,], we can employ the
optimum detector, i.e., the likelihood ratio test (LRT) fgpectrum sensing, and the optimum estimator,

i.e., the minimum mean square error (MMSE) estimator forncleh estimation. Once we obtain the
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Fig. 2. Frame structures for the PU communication and the &untunication.

spectrum sensing resuld{ or H;) and the channel estimate{éz-k}, we can use them to solvel (1) as

follows: SU Tx transmits withP = Pnax When Hy is declared, as in opportunistic access, and with

P = min {Pmax, \BiP’ mﬁ‘z} whenH; is declared, as in underlay.

As a more sophisticated example, instead of performing fsadple-size detection and estimation
(at a fixed timer) we can determine the sample number based on the observgdesamesulting in a
sequential method with a random sensing timeln particular, we can use the sequential probability ratio
test (SPRT)[[24], which is the optimum sequential deteaboti.f.d. observations in terms of minimizing
the average detection delay, for spectrum sensing, and uberthe MMSE estimator at the random
sensing timer to estimate the unknown channel gaifis; }.

However, the above approaches based on separate deteddiestanation in general may not yield the
optimal solution. In the following section, we propose a reavd powerful solution based on sequential

joint detection and estimation.

I1l. SEQUENTIAL JOINT SPECTRUM SENSING AND CHANNEL ESTIMATION

In this section, we focus on SU Tx, to introduce the sequkjdiat spectrum sensing and channel

estimation framework. Hence, the subscript denoting SUsTdropped.

A. Motivation

In our system model, in each frame during the preamble periotie (T'(m — 1),T(m — 1) + T,],

the signal received by the SU from PUs given by

wi[t] if Hg ]
yilt] = ,i=1,2, t=1,2,..., 3)
hi pilt] +wilt] if Hy
wherew;[t] ~ N.(0, N}) is the complex additive white Gaussian noigg;~ N.(i;,0?) is the proper

complex channel coefficient between Rland the SU; andg;t] is the complex random pilot signal
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used in the preamble. The procesdegt|} and {w;[t]} are independent and they are independent of
the random variablé;. We assume the SU observgs$t| at time ¢, e.g., the SU knows the seed of the
random number generator that generatgsg, for i = 1, 2.

In ), we would like to decide betwedt, and H; as soon as possible, and also estiniatéf we
decide forH;. In other words, our objective is to have a reliable estin@ftéhe channel coefficient
h; every time we detect the presence of PU communication. Degias soon as possible is important
because an early sensing time, i.e., smaknables the SU to transmit data for a longer period of time,
i.e., largeT — 7, increasing the SU throughput. On the other hand, the SWsinarpower, which is
a function of sensing decision and estimates{bf, h2}, should obey the PU maximum interference
constraints. Small- may increase the misdetection probability and decreaseedtimation accuracy,
leading to the violation of such constraints and PU outagendd, there is a tradeoff in selecting the
value. Conventionally- is selected offline, resulting in a fixed-sample-size testey®as in a sequential
testr is determined online, i.e., it depends on the observatamd thus it is random. Although sequential
tests are more sophisticated than fixed-sample-size tesgsare much more powerful in minimizing the
average sensing tim&][r|, hence suit better the cognitive radio application.

In the separate detection and estimation approach, theowrkohannel gair; is treated as a nuisance
parameter while performing detection. However, channiinasion is an integral part of the problem of
interest. Hence, formulating the problem as a joint det@ciind estimation problem is a more natural way
to obtain better overall performance, i.e., SU throughpdeed it was shown ir_[13] that the combined
optimum detector and optimum estimator do not produce thinopn overall detection and estimation

performance.

B. Problem Formulation

Since the results in_[13] are obtained for real signals, faalical convenience in our problem we
will treat a complex observation (channel) as two real olzg@ns (channels). Specifically, we compute
yllt] & R(ps[t)*yit]) andy?[t] = S(ps[t]*vit]), hence instead of3) we use the following signal model

w;[t] if Ho
yrlt] = ,i1=1,2, n=1,2 t=12 ..., 4
h? ‘pz[t]F +’Ll)ln[t] if Hl
whereh! £ R(h;), h? £ S(hi), wit] £ R(pi[t]*w;[t]), and w?[t] & I(pi[t]*w;[t]). Note in [4) that
hl ~ N (“7, %2> ,n=1,2; and givenp;[t], the noisew![t] ~ N (O, \pi[t]PNT3> ;n=1,2, and{w?[t]}

are independent across channels (for diffes¢r@nd time. Similar to[(3), we want to sequentially decide

betweerH, andH;, and also estimatg] when we decide ohl;. To present the sequential joint detection
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and estimation (SJDE) problem and the optimum solutionweifirst focus on a single channel case, i.e.,
the signal model in({4) for specificn values. In particular, the SU, using its observati¢ag'[t], p;[t]) },
through the real channel linked to PU4, wants to jointly detect the PU communication and estimate
the channel coefficient] when it decides on its presence.

In sequential methods, in general, the average sample nuwifieh corresponds to the average sensing
time in our context, is minimized subject to a set of constsie.g., false alarm and misdetection con-
straints for detection, and mean squared error constrairggtimation. In the proposed joint framework

we use the following combined cost function
C (7_7 dTai'T) = coPo (dT = 1|]:7') +c1Pq (dT = O|]:T) + CeEl (i‘T - l’)2 ]]-{drzl} + xzﬂ-{d7=0}|}—7’ (5)

whered. is the decision functiony £ h} is the unknown parametef; is the estimate of; co, ¢, ce

are nonnegative constants selected by the desighgmand E; denote the probability measure and
expectation under hypothesk$,; P; and E; denote the probability measure and expectation under
Hi; P; and E; denote the probability measure and expectation umtiewith = being marginalized;

Fi = o{pi[l],...,pi[t]} is the o-algebra, that is, the accumulated history pertinent to dhserved
process{p;[t]}; and1 4, is the indicator of the eve, taking the valud if A occurs and) otherwise.

Then, our constrained optimization problem is given by

min E[7|F;] subjectto C(r,d;, &;) < a, (6)

e ir
wherea > 0 is a given constant, denoting the target accuracy level.

Our formulation in [(b) and[(6) is conditioned on the auxyiatatistic 7; because using such extra
information we can assess the accuracy of the detector aimdaésr more precisely than the uncon-
ditional formulation. More specifically, sincBq (d, = 1) = Eqg [1yq.=13] = E[Eo [L{g,=1}|F+]] =
E[Po (d; = 1|F;)], there is no need to use the expectation, €g(d, = 1), of an accuracy assessment
term when the term itself, e.dRy (d, = 1|F;), is available. Moreover, with the conditional formulation
used in [(5) we do not need to specify the distribution of tHetmignal p;[t]. Note that the constraint
C(r,d;,&;) < « in (@) is required to hold for each realization of the procésst|}, hence is stricter
than its unconditional counterpart, which is required tédhanly on average with respect {o;|t]}.

In (B), the first two terms, which are related to the detecimmblem, correspond to the false alarm and
misdetection probabilitiesP(; and P,,,), respectively. On the other hand, the last term, which lated
to the estimation problem, depends on both the decision stiation strategies. Without this term, i.e.,

for ¢, = 0, the combined cost depends only on the decision funetignmplying that the joint problem

DRAFT June 23, 2018



reduces into a pure detection problem.

Similar to F; let G; = o {(y!'[1],pi[1]),. .., (y]'[t],pi[t])} denote thes-algebra generated by the
processedy!'[t]} and{p;[t]}, i.e., the complete observation history. Then, we have tireesponding
filtrations { 7; }+>0 and{G: }+>0. In general, the solution we seek should use all availaliterimation, that
is, we are looking for a tripletr, d,, z,) wherer is {G,}-adapted/, and, are G.-measurable. It is
known in the pure estimation problem that wit{ & }-adapted stopping time, in most cases, finding an
optimum sequential estimator, &) is not tractable[25]. Instead, [26] considered using &p}-adapted
stopping time, which was later shown to have a simple optsoaltion for continuous-time and discrete-
time observations in_[27] and [23], respectively. Simi§aih the pure detection problem with {7, }-
adaptedr we have a two-dimensional optimal stopping problem, whilmaét tractable. Consequently,
following the approach used for the pure estimation prohike{23], [26], [27] we conside F; }-adapted
stopping times for our joint problem. On the other hand, weesdill interested irG,-measurable decision
rule d. and estimatoti, which use all available information acquired up to stogpime 7. As a result,

the problem in[(b) takes the following form

min 7 s.t. C(7,dr,%;) < a. (7)

T7d7’7xﬂ'

C. The Optimal Solution

The following theorem gives the optimum solution to the abpvoblem.

Theorem 1. Consider the observations {(y;[t], p;[t]) }, obtained through the real channel = = h}'. Then,
the optimum triplet (7, d,,Z,) of stopping time, decision function, and estimator for the sequential joint

detection and estimation (SIDE) problem in (7)) is given by

T:min{t>0:U52’y} (8)

1 if L'™>1o Co_
d, = T = O eedt 9)
0 otherwise

in wi Ng
Vit + 55t
Ty =

Ui + 4

where U} £ >* | |p;[m]|? is the conditional Fisher information given F; in estimating 2 = h? under

Hy [cf. @)]; Vi~ = an:l y[m]; ~ is a constant threshold [[13, Theorem 1]; and

(10)

) i\ 2
: (Vt’" +5 —Jf.z“) 2 2
Lin2& B Cog (it (11)
! (1ri 4 Ni 402 2 NGt
Nj (Ug + C,_g) i 0
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10

is the conditional log-likelihood ratio (LLR) between the hypotheses Hy and H; given F; with x under
H; being marginalized [[13, Lemma 2].

Proof: The proof closely follows [13], so omitting the details welyhighlight the differences here.
The main difference is that the noise id (4) is independerdsactime but has a time-varying variance,
whereas i.i.d. noise is assumed [n][13]. The common tgria|? in the variance and the mean of the
observationy?[t] given h?* andp;[t] underH; cancels while writing the estimatdr, and the LLRL{".
As a result, the definitions of the Fisher information teffh and its companior;™ differ from their
counterparts in[[13]. However, the results in[13] still thdiere with the new definitions df}, V;»
and the noise variance appearing withguft]|> as % sinceU;, V™ and accordingly other key terms
maintain their properties, e.dJ; is increasing. [ |
The optimum stopping rule i 8) terminates getting new damphen the conditional Fisher informa-
tion exceeds a threshold whose exact expression can be foyh8, Theorem 1]. Since the conditional
Fisher information is increasing, it is guaranteed to hafieite stopping, i.e., sensing, time. The optimum
decision function in[{(B) is a modification of the well-knowikedlihood ratio test (LRT). For, = 0, i.e.,
in the pure detection problem, it boils down to LRT. FQr# 0 the estimator is incorporated into LRT.
The way it modifies LRT is quite intuitive. When the estimagenionzero, the threshold is decreased,
supporting a decision in favor di;. The further the estimate is from zero, the easier to deadéif.
The estimate provides some side information about the typethesis, and the optimum solution to the
joint problem uses it. Such a plausible modification app@atke decision function since the detection
and estimation problems are formulated jointly. The optimestimator, given in[(10), is the minimum
mean square error (MMSE) estimator, which is equivalenh&rhaximum a posteriori (MAP) estimator

in the Gaussian case under consideration.

D. Discussions

Comparing the optimum triplet in Theordrh 1 with the combilsRRT & MMSE method, we see that
there are fundamental differences in the stopping rule aisibn function. In SPRT [28], the stopping
time and detection decision are determined together tfreugpmmon procedure. More specifically, two
thresholds are used to jointly terminate the scheme and malexision. When the scheme terminates,
the decision is already clear as it is determined by the limldsthat causes termination. As a result, the
performance metricB;, P,,, E[7], and also MSE E[(Z, —z)?] are closely interrelated since they are all

controlled by the two thresholds, which are the only systemameters. On the other hand, in SIDE the
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Fig. 3. Average sensing time vs. combined cost for the SJDEh#orentll, and the SPRT & MMSE and the sequential LRT
& MMSE equipped with the stopping rule of SIDE.

stopping time and decision are computed using two separategures. First the stopping time is found
by performing a single-threshold-test, and then the decid made via a modified LRT. In particular,
E[r] andE[(Z, — z)?] are controlled by only the stopping thresheldwhereas®; andP,, are controlled
by v, co, c1, ande,. That is to sayE[r] andE[(&, —z)?] can be controlled independently fraPy andP,,
through~, and similarlyP; andP,,, can be controlled independently frobir] andE[(&, — z)?] through
co, c1, andc.. The latter set of parameters enables a trade-off betWgeand P,,, without affectingE|[7]
and E[(2, — h")?]. For instance, we can trade false alarm probabfifyfor misdetection probability
P.., which is crucial for complying with the outage constrainfsPUs, by decreasing the ratio of
to ¢; or ¢, without sacrificing early stopping or estimation qualitye\Wbviously have a higher degree
of freedom in SJDE than SPRT due to the number of parametatstmtrol the system performance,
which endows us with the ability to strike a right balancewsstn our objectives of early stopping, and
accurate detection and estimation.

In Fig.[3, we numerically show the superior performance dBaver the combined SPRT & MMSE
(SPRT&E) in terms of the combined detection and estimatiost  [5). We also compare SJIDE with
the sequential LRT & MMSE (SLRT&E) that is equipped with thieping rule of SJDE to demonstrate
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the advantage of incorporating the estimate into the dmtifiinction. SLRT&E uses the unmodified
(original) LRT to detect, hence can be seen as a separatedfmion-method. It outperforms SPRT&E
since it enjoys the flexibility of SIDE to strike a desiredavade for the specific problem of interest by
employing two separate procedures, namely the stoppiegofubJDE and LRT, to terminate the scheme
and make a decision respectively. In our problem of interigss crucial that SUs do not violate the
maximum interference constraint, which in turn ensuresdmissible PU outage probability. In case of
misdetection the SU transmits with maximum power, which rmayse the violation of outage constraint.
Even when the SU correctly detects PU communication, poaniél estimate may still cause the SU to
transmit with a non-admissible power. On the other handfdlse alarm, which corresponds to deciding
on H; underHy, is not related to the outage constraint, but only degrduesst) throughput. Therefore,
in the combined cost expression [ (5) the second and thindstare more important than the first term.
Accordingly, in Fig.[B3 we usey = ¢; = 0.2 and ¢, = 0.6. Since the second part of the third term in
(®) already penalizes misdetection, we do not differeatiaétween the coefficients, and ¢, of the
detection error probabilities. In Figl 3, referring {d (4¢wsey; = 0, i.e., Rayleigh fading channél?,
ando? = Nj = E[|pift][?] = 1.

E. SIDE for a Single SU with Multiple Channels

Here, following the optimum SJDE scheme in Theotém 1 for thgls channel case we are interested
in finding the optimum SJDE scheme for the SU observing theadsg{y!*[t]} and {p;[t|} through the
channels{r?}, i = 1,2, n=1,2 from PU1 and PU2. We first need to modify the cost function in
(5) by adding the new MSE terms, i.e.,

C (7.de, 1)) = coPo (dr = 11F7) + 1Py (dr = O|F)

2 2
+teey > B [(hﬂr] - h?)Q Lgg,—1y + (h?)zll{d;o}‘}}] . (12
1=1 n=1

The following theorem, whose proof is provided in the App&ndives the optimum SJDE scheme in

this case.

Theorem 2. With the cost function in (12), and the observations {y'[¢], p;[t]} obtained through the
channels {hr?'}, i =1,2, n=1,2 from PU 1 and PU 2, the optimum triplet of stopping time, decision

function, and estimator for the sequential joint detection and estimation (SIDE) problem in (7)) is given
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by

T=min{t >0:U; > 7} (13)
1 if Ly >log PRI Gy

dT _ c1Fce i, n:l(h?[T]) (14)
0 otherwise

in pi Ni
Vit 5o

Ui + 28

a3

holt] = Vi, n, (15)

whereU; = Y7, S _ | |pi[m]|? isthe conditional Fisher information given F; under Hy; 7 is a constant
threshold [cf. @)]; and L; = 32, S22 Li" [cf. (@T)] is the global LLR.

For systems with multiple SU pairs, in the next section weppee a distributed and cooperative
spectrum access method which selects the SU with the maxiauievable throughput, and controls its

transmit power.

IV. DISTRIBUTED SPECTRUMACCESSBASED ONSJDE

In the previous section we formulated the joint spectrumssgnand channel estimation problem
for a single SU and gave the optimal solution to it. In thisteecwe considerk” SUs, i.e.,K/2 SU
transmitter-receiver pairs, where each SU observes sighadugh4 different real channel(from each
PU). All observations of SUs throught K channels are used to detect a single event, namely the PU
communication. Hence, under the joint framework introdlireSectiori 1, SUs can cooperate to detect
the PU communication. We next propose a bandwidth and eredfigjent distributed spectrum access

algorithm for the cognitive radio system under considerati

A. SIDE-based Spectrum Access with Multiple SUs

We now consider the multi-SU case for SIDE, and propose antigrepectrum access method (DSA-
SJDE). From[(12), we have the following cost function,

C (7.de, 1)) = coPo (dr = 11F7) + 1Py (dr = O|F)

K 2 2
+eey > D> B {(l}lﬂk[ﬂ - h?k)Q Lig,=1y + (h?k)zl{d,:o}‘}}] . (16)

k=1 1=1 n=1
Note that allK” SUs observe the same pilot signéis [¢t]} and{p2[t]}. Hence, from[(1B) it is seen that they

have the same stopping time, which in this case serves adal glmpping time. Each channel coefficient

L} is again estimated using_(15) for dlli,n because they are independent. Since the observations
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{vi;[t]},, across SUs, are independent givign[t|}, the global LLR is written ad.; = S LEF, and
as in [14) we sum the channel estimates to write the thresfdlen, substituting the global LLR and

the global threshold if(14) we obtain the decision funcionthe multi-SU case.

Corollary 1. In the multi-SU case with the cost function in (168), the optimum solution to (7)) is given by

T=min{t >0:U; > 75} a7
1 if L, >log — 3
d, = C1tcCe 3oy 2 n:l(h;lk[T]) (18)
0 otherwise
1kn ik Né'k
ho 1] Gl Vi, k (19)
ik =T . ik 1, R, N,
Ui + %

whereU; = Y7, S _ | |pi[m]|? isthe conditional Fisher information given F; under Hy; 7 is a constant

threshold [cf. @)]; V/&» = 2! _ yi[m] [cf. @)]; and Ly = S0 S22 S22 Lik» [cf. @) is the
global LLR.

It looks like the SIDE scheme for the multi-SU case simplyofes from [13)-(15) in the single-
SU case. However, in the multi-SU case the stopping timesatiet and estimator are computed at the
FC, which requires some local information. Note that the @ ceasonably observe the pilot signals
{p1[t]} and{p2[t]} in the same way SUs do. Then, the FC needs to know the locabmandriables
{V;’“”}an at the stopping time-. In a straightforward way SUs can quantize and sémﬁl‘f"}lkn at
time 7. However, this method has several disadvantages in peadticstly, it needs high bandwidth at
time 7 on each reporting channel between SUs and the FC. Moretwereporting channels are utilized
inefficiently. They remain idle until time, and at timer each SU sends a number of bits, which may cause
congestion at the FC. To overcome these practical issuesc&bsequentially repor{Vj’m}M’n. For
sequential reporting level-triggered sampling, a norfarm sampling technique, was shown to be much
superior to the traditional uniform sampling in terms of Basdth and energy requirements for detection
and estimation purposes in |22] and|[23], respectivelyréfuge, we propose that SUs sequentially report

{Vj’f"}ikn using level-triggered sampling.

B. Level-triggered Sampling

Each SUk, via the same level-triggered sampling procedure, infotlnesFC whenever considerable
change occurs in its four local procesﬁe‘gik"}, 1 =1,2, n = 1,2. In other words 4K identical

samplers run in parallel fotK different processes. Hence, we will describe the procetiura single
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process{Vt““”}t. The level-triggered sampling is a simple form of everggdred sampling, in which
sampling (communication) timeg,,,}, m € N, are not deterministic, but rather dynamically determined

by the random proces{s‘/’t"’m}t, ie.,

bt 2 min{t > t,,_q : V"=V & (A A)}, meN, tg=0. (20)

The threshold parametéx is a constant known by both SUs and the FC. At each samplingtjmSU
k transmitsr bits, b, 10,2 . . . by, t0 the FC. The first bith,, 1, indicates the threshold crossed (either

A or —A) by the incremental process, = Vikn — Vikn je

b1 = Sign(vy,). (21)
The remainingr — 1 bits are used to quantize the over(under)shgot= |v,,| — A into G,,. At each
sampling timet,,, the overshoot value,, cannot exceed the magnitude of the last samlgt,,]| in
the incremental process, = Zigtm,1+1 yl.[t]. The quantization intervaD, ¢] is uniformly divided into
271 subintervals with the step sizﬁ‘i—l. The mid value of each subinterval is used as the correspgndi
quantization level, i.e., a mid-riser quantizer is used.eWd,, > ¢, the uppermost quantization level is
used. The parameter is determined so tha(q,, > ¢) is sufficiently small. From[[22, Section IV-B]
we can set the threshold using

K 2 2
A tanh <%> = % SN EVE (22)

k=1 i=1n=1
for the FC to receive messages with an average rafe ahessages per unit time undéy, i =0, 1. In

Fig.[, the level-triggered sampling procedure is dematstt on a sample path &f*".
The FC, upon receiving the bits,, 16,2 . .. by, » from SU £ at timet,,, recovers the quantized value
of v, by computing
Ty 2 b1 (A + Gm).- (23)

Then, it sequentially sums uf,, }, at the sampling (communication) tim¢s,,} to obtain an approxi-

mation V/#" to the sufficient statistid;’*", i.e.,
M,

S Pr (24)
t
m=1

where M; is the number of messages that the FC receives fromk $lbout the proces§V;*"} up to

time ¢. During the times the FC receives no message, i.¢.{t,,}, V/*" is kept constant.
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Fig. 4. The level-triggered sampling procedure used at SUs.

At the stopping timer, given by [13), the FC estimates each channel coeffidignusing

Vyikn i N2
;:Lnk [T] = . iko—ik ) (25)
’ Ui + 2

2
Tik

and decides according to the following rule

1 if L,>log CE=TI=r e ey
dT: Citce Dy 2i n:l(h?k[T]) s (26)

0 otherwise

where L, = S5 572 S22 %", and L%*" is computed from[{I1) by substitutingj”*" for V;/*".
After making a decision, the FC grants the transmissiorilpge to the SU Tx with the highest achievable
throughput. When the decision is in favor f, i.e., d, = 0, one of them is selected randomly (or in
some specific order) since in this case any SU Tx can transitiitits maximum powerPpax. On the

other hand, wherziT =1, the FC selects SU Tk* where
I I
E* £ arg max {min { ! 2 }} , (27)

|k [7)2 [, [7]2

~ ~ 2
k; is the SU Tx index, anth[7]|*> = Zizl (hlﬂk[ﬂ) , 1 =1,2. The pseudocodes for the procedures at
SU k and the FC in the proposed SJDE-based dynamic spectrumsatetsod (DSA-SJDE) are given

in Algorithms[1 and R, respectively. In Algorithm 1, an SU Rever executes lines 17-23 since the FC

reportsd, to SU Tx k* (cf. line 20 in Algorithm[2).
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Algorithm 1 DSA-SJDE procedure at SK

1: Initialization: {¢t, min, Vin, Vin, Ui} < 0, Vi, n

2: while |v| < A, Vi, n and Zle U; <~ do

3 tet+1

4 v < Ui + YLt

5 Vin < Vin + Y5 [1]

6: U, < U+ |pilt]]?

7: end while

8: if |viy| > A {for anyi,n} then

9: Min < Myp, + 1

10:  tin=t

11: Sendb:]; 1 = sign(v;,) andr — 1 quantization bits fog'" = v;, — A to FC
12: Vin < 0

13: end if

14: if Y22 U; >~ or ¢ > T, then

150 7=1

16: if FC reportsd, then

17: if d; =0 then

18: P = Prax

19: else
20: Computeh;,, as in [1‘5) usingVin, andU
21: P = min { Prax, > 1(h1 E e 1(h )2} {see [2D) forl7}
22: end if
23: Start data transmission with powé&r
24:  dse
25: Stop
26: end if
27: else
28: Goto line 2
29: end if

C. Discussions

The procedures at SUs and the FC, given in Algorithins 1 &nelstarts at the beginning of each frame
with durationT (see Fig[R). Each SW performs the procedure in Algorithid 1. The stopping thrégho
~ is selected through offline simulations to maximize the agerSU throughput in DSA-SJDE, given

by

_ T—71
R=E [ —{[mo(1 = Py) + (1= m0)Pm] Do + [moPs + (1 = mo)(1 - Pm)]Fl}} (28)
wherel'y £ log (1 + 1Bl Pma*) I £ log (1 + N(’;*+|h1‘,ikizgﬁ*|h2k*|2c22)’ k* denotes the SU Rx corre-

sponding to SU Tx*, g is the prior probability for the hypothesi, P is the false alarm probability,

i.e., PO(JT = 1), andP,, is the misdetection probability, i.el?,l(JT = 0). The sensing time is governed
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Algorithm 2 DSA-SJDE procedure at FC
1: Initialization: {Vign, U;} < 0, Vi, k,n
2: while Y2, U; < or t < T}, do
3 t—t+1
4 U; + U + |pilt]?
5. if bikn .. bikm received{for anyi,k,n} then
. s
7
8
9

Computegik™ from bif™ ... bikm,
Vikn = Vikn + bIE™ (A + giln)
end if
. end while

10 7=t
11: Computeh,y, from (28) usingVis, andU;, Vi, k,n
12: ComputeL;,, from (I1) usingV;x, andU;, Vi, k,n
13: L= Zszl Z?:l 2721:1 Likn _
14: Computed. from (28) usingL and {h;x, }
15: if d; =0 then
16:  Selectk* randomly or in some specific order from SU transmitters
17: else
18:  Find k* as in [27) using{ ik, }
19: end if
20: Reportd, to SU Tx k*, and instruct the others to stop

by the threshold,. The scaling termTTi in (28) represents the throughput penalty due to sensingcéje

small thresholdy on average increases the scaling term, affecfingositively. On the other hand, it
_ j;—k* _ f;k* } <P
|hags [T]|27 |haw[7]|2 ) — maxs

thusT'y > I'y. As a result, increasinB; decrease®. Although it looks likeR is directly proportional to

causes larger error probabilitieB; and P,,,. Note thatP]. = min{Pmax,

P.., large P, values are not feasible due to the interference constraihis defines a lower bound on
the stopping threshold. As clearly seen, there is a trade-off in selectingthealue. It is convenient to
find the besty value, that maximize$:, performing an offline numerical search in the interfra, 71 ].

The lower boundy, is determined by the interference constraints as mentieadikr. We need the upper
bound~,; to control the probability that the sensing time exceedspiieamble duration, i.eR(r > T,,),
where the signal model ir](4) is valid. In such an exceptic®de, whenr > T, the sensing and
estimation should terminate, i.e:,= 7, since the signal model is no more valid.

When PU communication is detected, i.é,, = 1, the SU selected for data transmission needs to
A

use calibrated maximum interference levéfs. £ o7,.1;, instead of original valueg;, i = 1,2, in

computing its transmission power. This is required to conspte for estimation errors. To satisfy the
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interference constraints we should have
T .
oL

— W a2 < I, i =1,2, 29
e @9

henceo],. < o [r]2 with a high probability. Since the actual channel coeffitigp,- is unknown,

[Pk |2 A
[P, [T]12

through offline simulations we set], for eachr € (0,7,] so thatP ( s 2 2 O‘Zkt) is sufficiently

high. Note that there are two sources that cause excesfeietece overl;, namely misdetection and
the event'ﬁ;;;&q]f < af.. The probabilitiesP,,, = P1(d, = 0) andP (%:JT\LP < a[k*) should be made
sufficiently small in order to meet the PU outage constraints

V. SIMULATION RESULTS

In this section, we provide simulation results to compaféedint spectrum access methods in terms
of the average SU throughput. We first consider two convaatimethods: underlay and opportunistic
access. These two methods have intrinsic deficiencies.drfaimer the SU is blind to the idle state
of PUs, and in the latter it is unable to benefit from deep fadesross links. It could be anticipated
that a combination of these two methods, as in DSA-SJDE and-BFRT, may result in a higher
SU throughput. DSA-SPRT is the straightforward sequeritigdlementation of such combination. It
uses SPRT for spectrum sensing, MMSE estimator for charstehation, and uniform sampling for
distributed operation. On the other hand, DSA-SJDE, th@@sed novel spectrum access method, uses
the SJDE for sensing and estimation, and level-triggeredpiiag for distributed implementation. In
the opportunistic access scheme, we use the LRT for senaithghe traditional uniform sampling for
distributed implementation. In the underlay scheme, werassthat SUs somehow perfectly estimate the
channel coefficients during the preamble.

We plot the average SU throughpiit against the outage probability constrafyy, the maximum
transmission powePyax for SU, the prior probabilityry of idle PU, and the fractionTT—P of frame
length to the preamble duration respectively in the subseiiigures. The preamble duration is fixed at
T, = 10 ms and the global clock runs, i.e., PUs transmit pilot symsl@id SUs observe discrete-time
samples, with a frequency ¢gf = 1 MHz. In PU communication 16-QAM is used with an average power
E[|p:[t]|?] = P; = 1. PUs utilize random number generators, whose seeds arenkind®Js and the FC, to
generate pilot symbols in the preamble. All simulated cledsyare Rayleigh fading channels, i.e., channel
coefficienth;;, is proper complex Gaussian random variable with zero medrfiaite variances? . We
setNik = 02 =1, hence SNR E[|p;[t]|*] = 1 (0 dB) underH;. In opportunistic access and DSA-SPRT,

the period of uniform sampling for reporting’*" is set as four unit time, i.eT, = 47, = %. Since
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each SU samples four processes, the FC recdivesessages per unit timd,. For a fair comparison
we set the average message rate of level-triggered saniplifg same value, i.e)M = K. Then, using
(22) the corresponding value of the sampling threshblg found. Throughout this section we simulate
a two-SU system, i.e{ = 2.

We use a 50% safety margin while determining the maximunrference levell; from Pq using
(2). Moreover, as additional safety measures to protecPiieQoS, i.e., to satisfy th8,, constraint,

we determinen]; as the fifth percentile o% to calibrate the maximum interference levels at SUs,
and confine the misdetection probabili®y, to values smaller thaR,,;/5. For the DSA-SPRT, DSA-
SJDE, and the opportunistic access scheme, through offlimdations we find the best parameters that
maximize R, complying with the constrain®,,, < Pou/5. Specifically, via offline numerical search, we
use the optimum values for the threshold pair in SPRT, thepstg thresholdy in SIDE, the deterministic
sensing time- and the LRT threshold in the opportunistic access schemeisé® = ¢; = 0.2, ¢, = 0.6

for SIDE as in SectionlIl.

SU throughput vs. PU outage probability: In the first set of simulations, we sét,,x = 15 dB,

mo = 0.5, T'= 10 x T}, and varyP € [0.025,0.125]. In this case, the maximum interference levéls
vary between-9 dB and6 dB.

In Fig.[3, we see that the proposed spectrum access schethesegiential detectors and estimators,
being combinations of conventional methods, perform bdtian the underlay and the opportunistic
access schemes, as expected. Not surprisingly, the updeti@me performs poorly under strict outage
probability (interference) constraints, and considerailproves its performance as the constraints relax
because its transmit power solely depends on the maximwrfénénce levels. Conversely, the oppor-
tunistic access scheme is mostly unaffected by the charmitage probability constraint as it does not
utilize the maximum interference levels to determine i&mit power. The slight performance increase
as Pqy grows is due to the relaxation on tiitg, constraint. On the other hand, the sequential schemes,
being combinations of the conventional approaches, enjeyadvantages of opportunistic access and
underlay wherP, is small and large, respectively. Moreover, the novel DSBS scheme significantly
outperforms DSA-SPRT, which uses well-known techniquesé&mpling and distributed implementation,
due to its distinct features: the joint nature of detectod astimator (cf. Section_lll), the separation
property of stopping rule and detector (cf. Secfioh Ill)ddhne adaptive nature of level-triggered sampling
(cf. Sectior IV=A). Note that the estimator provides sontesnformation about the true hypothesis, and
thus its incorporation into the decision function improWies SU throughput, which is a joint function of

detector and estimator. For the advantages of the latteféatres we refer to Sectign]lll and Section
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Fig. 5. Average SU throughput vs. PU outage probability fer tonventional (underlay and opportunistic) and the ego
(DSA-SJDE and DSA-SPRT) dynamic spectrum access schemes.

[V-A] respectively.
SU throughput vs. SU maximum power: We next plotR vs. Pnax € [9 dB, 21 dB] in Fig.[8, where

Pout = 0.075, mp = 0.5, T' = 10 x T},. In this figure, we see that the sensing-based-schemedygreat
benefit from increasing’nax as they set their transmit power f@,,x When Hg is decided. In contrast,

in the underlay scheme, where no spectrum sensing is pexthrthe direct effect of increasingnay is

not observed. For smalfy 54 values, the utility of spectrum sensing is deemphasized tla@ advantage

of the perfect CSI assumption of the underlay scheme becappearent. It is again notable that the
proposed sequential schemes, especially DSA-SJDE, @yabig outperform the conventional methods.

SU throughput vs. Hy prior probability: In the next set of simulations, we investigate the effect of

the prior probabilityr, of Hy on the average SU throughpit, while we setPray = 15 dB, Py = 0.075,
andT = 10 x T,. Because of the same reason in the chandig case the sensing-based-schemes
significantly improve their performances with increasing as shown in Fid.]7. The advantage of perfect
CSl in the underlay scheme is even more emphasized herguedgriay outperforms the sensing-based-
schemes forrg = 0. The slight improvement in the underlay performance wittréasingr, is due to

the lack of interference at the SU receiver undigr
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Fig. 6. Average SU throughput vs. SU maximum power for theveantional (underlay and opportunistic) and the proposed
(DSA-SJDE and DSA-SPRT) dynamic spectrum access schemes.

SU throughput vs. Frame length: Finally, in Fig.[8 we setPnax = 15 dB, Py = 0.075, mp = 0.5,

and analyze the effect of the frame lengthon R. Note thatT' corresponds to the coherence time in
the system. PUs carry out preamble communication e¥eseconds to estimate the changing channel
coefficients. In other words, it is assumed that the charh@lsot change during each frame of length
T. Hence, smalll’ corresponds to fast fading channels, whereas ld@rgmplies slow fading channels.
ChangingI” while keeping the preamble duratidiy fixed does not affect the detection and estimation
performances, but only changes the remaining time for datsinission, i.e., the scaling term in the
expression in[(28). Since the scaling term is common to dlestes, they all exhibit similar behaviors
with changing?'. After some certain value, e.dl;/T,, = 10, the scaling term well approximates unity,

and as a result the throughput curves saturate.

VI. CONCLUSIONS

We have considered dynamic spectrum access under s&tiSi8l. For a cognitive radio network, a
cooperative scheme based on sequential joint spectrurmgearsd channel estimation has been proposed.

With the objective of SU throughput maximization subjectRU outage constraints, the sensing time
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Fig. 7. Average SU throughput vsly prior probability for the conventional (underlay and oppoistic) and the proposed
(DSA-SJDE and DSA-SPRT) dynamic spectrum access schemes.

needs to be minimized, hence the sequential framework igtarbi to the problem of interest than the
fixed-sample-size framework. Unlike the existing workshe titerature, channel estimation, which is of
practical interest, has been included in the problem foatiwri. A salient feature of the proposed scheme
is that the sensing decision rule makes use of the side iafitom on the true hypothesis provided by
the channel estimator. A bandwidth and energy-efficientundorm sampling technique, called level-
triggered sampling, is used to transmit the informatiomfr8Us to the FC, which makes the spectrum
sensing decision. Then, the sensing decision and the chastimaates are employed to determine the SU
transmit power. Through simulations we have shown the sopperformance of the proposed scheme
in terms of the average SU throughput over its counterpatttteat the sensing and estimation problems
separately, and the conventional spectrum access methodsr{ay and opportunistic access) under the

same PU outage constraints.

APPENDIX. PROOF OFTHEOREM[Z

As shown in [138] the optimum estimators, decision functiand the stopping time can be found

separately, i.e., we can fix two of them, and find the optimuhat&m for the remaining one. Furthermore,
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Fig. 8. Average SU throughput vs. frame length in terms o&priele duration for the conventional (underlay and oppastia)

and the proposed (DSA-SJDE and DSA-SPRT) dynamic spectogesa schemes.

since {h!'} are independent, we can minimize each MSE term individuallgr the corresponding
estimator. Hence, the MMSE estimator [in](15) is the optimwtingator for eacth.
Next, substituting the MMSE estimates 8} into (12) we seek the optimum decision rule. From

the classical estimation theory (e.d.,[[29, page 151]) wankthat the conditional mean of the parameter

to be estimated gives the MMSE estimator, i.B;/h?|G;] = h?[t], and its conditional variance is
2
E, [(h? - h?[t]) } — No/2_ Hence, using
Ui +—
_ S n n 2
Es [(h (7] - h) ]l{del}\}'T] ZEl 7]%]1%_1} Fi| Ly
= N§/2 N§/2
_Z 0/ P1 (di = 1|F) Lery = Oi/Pl( d. =1|F;) (30)
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and
E1 [(h)*Lia, =0y | F7] Z 2 1ig—0y |Ft] Lirny
t=0
> 2 Ni/2
= Z [E1 [(B)?1Ge] Lia,=0y | Fe] Lty = Ex [((h?[ﬂ) 1{d,=0}|ft] + o/ w7 P1 (dr = 01F7)

i

(31)

we can rewrite the cost i _(12) as

C (T, dT) = coPyg (dT = 1|]:7—) + 1Py (dT = 0|]:7—)

+ ce 22: 22: (El [(ﬁ?[TD?

i=1 n=1

T

N¢/2
T]+ B2 ) ()
Ui + 2

Wherei}?[T] is given by [15). Since the last term in_{32) does not depend.Qmwe consider only the

remaining terms, i.e.,

C(r,d,) = coPo (dy = 1|F;) + c1Py (dr = O] F) —i—CGZZEl [( Z. T> T — T} (33)

i=1 n=1
We next combine the terms on the right-hand side€_of (33) uigdsy changing the measure undéy

to its counterpart undety. The likelihood rano% = el is used for change of measures.

é(T, d:) =Ep [Co]l{dle} + el {Cl + ce ZZ <i17[7']>2} ]l{d _
o0 2
= Z EO CO]l{dt:I} + 6Lt {Cl + Ce Z Z (}A‘L?[t]>2} l{dt:O}‘ft] ]]'{T:t}

i=1 n=1

t=0 L i=1 n=1
00 B 2 2
= Z Eo <C() — et {Cl + ce Z Z <h? > }) l{dtzl}‘ft] ]l{T:t} (34)
t=0 L i=1 n=1
e 2 2
+ZEO [eLt {Cl +CGZZ (il?[t]>2} ‘]:t] ]]-{th}v
t=0 i=1 n=1

The optimum decision rule that minimizds [34) selddts i.e.,d, = 1, when

co < el {61 +6622:Z2: (ﬁ?[T]>2},

i=1 n=1
and select$l, otherwise, proving[(14).
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Finally, substituting the optimum detector into the cosidiion [32) we have

C () = Eo (co—e {cl—i-ceZZ( )}>_‘fT +e

i=1 n=1

—i—cezz El[( )\f] % . (35)

i=1 n=1 T o2

~ 2
where ()~ = min(z,0) is the negative part operator. We now focus E)p[(h?[t]) \]—“T], where

- Ving i 2
hP[t] = ——= is given by [I5). Note fron{4) that undel; givenF; we haveV;™ = 3¢ |y [m] ~

i

[ m‘o &

Ui+

3

i ; ~ . . . . ﬁ t . 4 LéUl
N (“1 U;, % Zﬁnzl lpi[m][* + %UZ), hencen' [t] is Gaussian with meaty and variance= Zm<1 val[:?i” Al
Ut7+072>

me P[]l OU , Which is decreasing if/;. As a result, the

ThereforeE1[<i ) ‘}-]:%g+§

Ui+ i
last term in [(35) is decreasing if;. Indeeg the flrst term is also decreasinglin hence the optimum
stopping rule is a thresholding on the conditional Fishéormation U; as shown in[(113). The analysis
of the first term, which is very technical and involved, ditgdollows from [13, Theorem 1], thus is

omitted here.
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