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Primary User Traffic Classification in Dynamic

Spectrum Access Networks
Chun-Hao Liu, Przemysław Pawełczak, and Danijela Cabric

Abstract

This paper focuses on analytical studies of the primary user(PU) traffic classification problem.

Observing that the gamma distribution can represent positively skewed data and exponential distribution

(popular in communication networks performance analysis literature) it is considered here as the PU

traffic descriptor. We investigate two PU traffic classifiersutilizing perfectly measured PU activity (busy)

and inactivity (idle) periods: (i) maximum likelihood classifier (MLC) and (ii) multi-hypothesis sequential

probability ratio test classifier (MSPRTC). Then, relaxingthe assumption on perfect period measurement,

we consider a PU traffic observation through channel sampling. For a special case of negligible probability

of PU state change in between two samplings, we propose a minimum variance PU busy/idle period length

estimator. Later, relaxing the assumption of the complete knowledge of the parameters of the PU period

length distribution, we propose two PU traffic classification schemes: (i) estimate-then-classify (ETC),

and (ii) average likelihood function (ALF) classifiers considering time domain fluctuation of the PU

traffic parameters. Numerical results show that both MLC andMSPRTC are sensitive to the periods

measurement errors when the distance among distribution hypotheses is small, and to the distribution

parameter estimation errors when the distance among hypotheses is large. For PU traffic parameters
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with a partial prior knowledge of the distribution, the ETC outperforms ALF when the distance among

hypotheses is small, while the opposite holds when the distance is large.

Index Terms

Dynamic spectrum access, traffic classification, traffic sampling, traffic estimation, performance

analysis.

I. INTRODUCTION

Dynamic/Opportunistic spectrum access (DSA/OSA) aims at increasing radio spectrum utilization [2],

[3]. In order to do so, the secondary (unlicensed) users (SUs) of DSA networks are allowed to transmit

on licensed channels, when they are not occupied by primary (licensed) users (PUs). Understanding the

PUs’ channel occupancy distributions becomes important from a theoretical point of view [4], but most

importantly it allows to improve seamless DSA operation [5,Sec. IV-B], [2, Fig. 2]. For example, if SUs

have sufficient knowledge about the PUs’ traffic distributions, they can minimize the channel switching

latency [6], predict the PUs’ behavior to minimize interference [7] or find an optimal PU channel sensing

order [8]. Therefore, the SUs should accurately estimate the PUs’ traffic distribution, i.e., classify the PU

traffic correctly from a set of possible distributions, e.g., exponential, gamma, log-normal, and Weibull

distributions as tested in [9]. Looking at the recent DSA/OSA applications, traffic classification can be

used in Licensed Shared Access [10] (LSA) systems, where traffic classification would help in identifying

the behavior of individual LSA licensees [11] and adapting licensing rules accordingly.

A. Related Work

Traffic classification is an important research area in many telecommunication domains, e.g. in IP

networks [12]. In parallel, analytical modeling of IP traffic has also been concerned, refer to a discussion in

e.g. [13, Sec. III-D]. In the DSA area, the topic has started to receive attention as well. Considering relevant

works that aim at PU traffic classification, [14] was the first to deal with traffic pattern classification in

DSA networks. Therein, the classification of the traffic pattern was done by using the autocorrelation

function of the received PU signal. Work of [15] improved theclassification algorithm of [14] by filtering

away the errors that were caused by noise and incorrect spectrum sensing. Inspired by machine learning,

the authors in [16] proposed two behavior classifiers, namely a naive Bayesian classifier and an averaged

one-dependence estimation classifier to classify the channel selection strategy for SUs. However, the

authors of [14], [15] considered the PU traffic pattern to be either stochastic or deterministic, without
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assigning the PU traffic to a specific distribution. Furthermore, the classifier of [16] did not take the

distributions of PU traffic but only the mean busy/idle time into consideration. We thus conclude, to the

best of our knowledge, the performance of PU traffic classification is still relatively unexplored from the

theoretical point of view.

B. Our Contribution

This motivated us to perform detailed theoretical studies of PU traffic classification. Considering the

classification of gamma-distributed PU busy/idle time collected through an error-free spectrum sensing

process, the contribution of our work is fourfold:

1) We analytically derive the performance for the PU traffic classifier based on maximum likelihood

using Gaussian approximation;

2) We re-evaluate a sequential algorithm based on a multi-hypothesis sequential probability ratio

test [17], to deal with the classification problem for multiple PU traffic classes, when parameters

of PU traffic classes are known in advance;

3) Considering PU channel sampling, for a special case when probability of PU period change in-

between two samples (busy-to-idle-to-busy or idle-to-busy-to-idle) is negligible, we evaluate (i)

a minimum variance PU state length estimator, and (ii) propose a modified maximum likelihood

classifier, quantifying its performance analytically and providing design guidelines based on traffic

parameters;

4) Finally, we propose (i) a PU traffic estimate-then-classify scheme which requires no complete

knowledge of the PU traffic parameters, and (ii) an average likelihood function method which

requires knowledge on the statistics of the PU traffic parameters when they fluctuate in time domain.

In addition, we list the important limitations of our work:

1) We assume that the set size of distributions considered for classification is finite and does not

change over time;

2) The effect of spectrum sensing errors at the physical layer on the classification accuracy is not

considered;

3) The calculations of classification accuracy obtained in this paper depend on the exact knowledge

of a subset of traffic parameters and their stationarity.

The rest of the paper is organized as follows. The system model is given in Section II. The proposed

PU traffic classifiers with perfect knowledge of PU traffic parameters are presented in Section III, and
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traffic classification using traffic period estimation schemes is presented in Section IV. The proposed

PU traffic classifiers with imperfect knowledge of PU traffic parameters are presented in Section V.

Numerical results are given in Section VI. Finally, SectionVII concludes the paper.

II. SYSTEM MODEL

We consider a single channel randomly accessed by a PU. To ease the analysis we disregard (i)

the effect of incidental SU operation within a PU band, i.e.,the injection of SU traffic into PU traffic

which obfuscates the correct classification of the latter, and (ii) the effect of spectrum sensing errors.

The assumption (ii) is taken consciously, as the problem of traffic classification is strictly coupled

with the spectrum sensing problem and requires a separate analytical study due to its complexity. For

example, in [18, Sec. 4.2] it has been concluded that “different energy detection thresholds (. . . ) result in

significantly different [PU traffic] distributions.” Recent work of [19] provides a more formal discussion

on the effect of sensing errors on PU traffic analysis. Nevertheless, assumptions (i) and (ii) allow us to use

the results obtained in this paper also for the non-DSA scenarios and provide a classification benchmark

for interference-prone and sensing error-prone cases.

Further, we assume we can obtain traffic busy/idle periods (denoted as ON/OFF, respectively) per-

fectly through time-domain fine-grained spectrum sensing,as in e.g. [20, Sec. II]. This assumption,

in practical terms, results in a sampling time much smaller than the shortest duration of PU traffic

periods. The ON/OFF periods are denoted as a random variableX with its n independent and identically

distributed realizationsx = (x1, x2, · · · , xn)T , xi ∈ (0,∞). Those are assumed to belong to one of

M = {1, · · · ,M} possible gamma distributions. The gamma distribution is chosen for its flexibility to

represent: (i) exponential distribution, due to its analytical popularity [21, Sec. V-B] and existence in

real networks, e.g. as measured in [22, Sec. IV-A] for call arrival times in CDMA-based system; and (ii)

positively skewed data, which is also confirmed through the traffic measurement, e.g. in [23, Fig. 10] for

call holding time in public safety systems.

Our objective is to minimize the required number of measurement periods inx in order to classifyX

to the correct distribution. We can formulate such a classification problem as a multi-hypothesis problem,
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i.e.,

X ∼ fX(x) =







































f1(x|Θ1), H1,

f2(x|Θ2), H2,

...

fM(x|ΘM ), HM ,

(1)

wherefX(x) is the hypothesized probability density function (PDF) ofX, fj(x|Θj) =
β

αj

j

Γ(αj)
xαj−1e−βjx

is the gamma PDF ofX under hypothesisHj given the shape parameterαj and the rate parameterβj ,

whereΘj = (αj , βj)
T and Γ(x) =

∫∞
0 tx−1e−tdt is the gamma function, where againx ∈ (0,∞).

We assume that each hypothesisHj has a prior probabilityπj, and we defineΩ = (π1, π2, · · · , πM )T ,
M
∑

i=1
πi = 1. Without loss of generality, in this paper we assume that theelements inx denote either PU

channel occupancy periods (ON times) or idle periods only (OFF times).

III. T RAFFIC CLASSIFICATION WITH PERFECTKNOWLEDGE OFPU TRAFFIC PARAMETERS

We start with assuming a perfect knowledge of all PU traffic parametersΘj = (αj , βj)
T , ∀j ∈ M.

Firstly, we introduce a maximum likelihood classifier (MLC)that requires a constant number of PU

traffic periods, which is an optimal classifier in terms of probability of correct classification when the

PDFs are known [24, Sec. I] and derive its classification performance for the considered model in

Section II. Such an analysis, to the best of our knowledge, has not been performed before. Secondly,

as a comparison to MLC, we re-introduce the multi-hypothesis sequential probability ratio test classifier

(MSPRTC) using [17] which adopts a sequential sample test instead of using a fixed number of PU traffic

periods for classification.

A. Maximum Likelihood Classifier

For the considered gamma distributionfj(x|Θj) the likelihood function givenx for Hj can be written

as

LHj
(x) = πj

n
∏

i=1

fj(xi|Θj)

= πj

n
∏

i=1

(

β
αj

j

Γ(αj)
x
αj−1
i e−βjxi

)

,∀j ∈ M. (2)

Then, the MLC final decision,ν, is

ν = H
m,argmax

j
LHj

(x). (3)
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To analyze the MLC classification performance for the systemmodel considered in Section II, we start

with calculating the log-likelihood functiongHj
(x) , logLHj

(x) which can be represented as

gHj
(x) = log

πjβ
nαj

j

Γ(αj)n
+

n
∑

i=1

[(αj − 1) log xi − βjxi]. (4)

Then we can calculate the probability of correct classification underHj using (4) as

Pr{ν = Hj|Hj} = Pr{gHj
(x) > gHk

(x)} ∀k ∈ {M− {j}}

=

M
∏

k=1, k 6=j

Pr{gHj
(x) − gHk

(x) > 0}. (5)

Embedding (4) into (5) we can simplify (5) as

Pr{ν = Hj |Hj}

=

M
∏

k=1, k 6=j

Pr

{

n
∑

i=1

y
(j,k)
i > − log

πjβ
nαj

j Γ(αk)
n

πkβ
nαk

k Γ(αj)n

}

, (6)

wherey(j,k)i = αj,k log xi − βj,kxi andαj,k = αj − αk, βj,k = βj − βk. We also define the mean and

variance for the variabley(j,k)i asµj,k andσ2j,k, respectively, which are derived in Appendix A.

We can now definēy(j,k) ,
n
∑

i=1
y
(j,k)
i and calculate its PDF asf

(

ȳ(j,k)
)

= f (n)
(

y
(j,k)
i

)

, wheref (n)(·)
denotes then-fold PDF convolution. Then, by calculating the cumulativedistribution function (CDF) of

ȳ(j,k) we can obtain an exact analytical expression for (6). However, due to mathematical intractability

of such operations we use a simple approximation instead, which has a closed-form expression, to derive

the probability of correct classification. Therefore, let us transform (6) as

Pr{ν = Hj |Hj} =
M
∏

k=1, k 6=j

Pr{zj,k > τj,k}, (7)

wherezj,k = 1√
nσ2

j,k

n
∑

i=1

(

y
(j,k)
i − µj,k

)

and τj,k = − 1√
nσ2

j,k

(

log
πjβ

nαj

j Γ(αk)n

πkβ
nαk
k Γ(αj)n

+ nµj,k

)

. According to

the Central Limit Theorem, asn is large enough,zj,k will approach a standard normal distribution,

N (0, 1). Hence we can approximate (7) as

Pr{ν = Hj |Hj} ≈
M
∏

k=1, k 6=j

Q(τj,k), (8)

whereQ(·) is the tail probability function of the standard normal distribution. Finally, the average

probability of correct classificationPc for all hypotheses is derived using (8) as

Pc =

M
∑

j=1

πj Pr{ν = Hj|Hj}. (9)
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B. Multi-Hypothesis Sequential Probability Ratio Test Classifier

To compare the performance with MLC, we introduce a new classification method based on MSPRTC

of [17]. Unlike MLC which uses a constant number of PU traffic ON (or OFF) periods, MSPRTC

sequentially classifies multiple hypotheses requiring only as many PU traffic periods as needed for

correct classification. We adopt MSPRTC since the authors in[17, Sec. III] show that it provides a

good approximation to the optimal solution on the conditionof a perfect a priori knowledge for all

distributions, i.e. their parameters, in the sequential multi-hypothesis classification problem.

MSPRTC decision is thenν = H
m,argmax

j
p
j

NA

, where the posteriori probabilitypjn is given as [17,

Sec. II]

pjn , πj

n
∏

i=1

fj(xi|Θj)

[

M
∑

l=1

πl

(

n
∏

i=1

fl(xi|Θl)

)]−1

. (10)

We defineNA as the firstn ≥ 1 such thatpjn > 1
1+Aj

for at least onej ∈ M, whereAj > 0 is the

design threshold.

Recalling [17, Sec. VII]Ak = c
δkγk

, wherec = α
∑

M−1
k=0

πk
δk

, α is the total probability of incorrect decision,

γk is the constant defined in [17, Sec. VI] andδk is the measure of probabilistic distance. In [17, Sec. VII]

δk = min
k:k 6=j

D(fj(x|Θj), fk(x|Θk)), D is the Kullback-Leibler (KL) divergence which for two gamma

distributions is defined in [25, Eq. (6)] and after simplifications

D(fj(x|Θj), fk(x|Θk)) ,

∫ ∞

−∞
fj(x|Θj) log

fj(x|Θj)

fk(x|Θk)
dx

= (αj − αk)ψ(αj)− log Γ(αj)

+ log Γ(αk) + αk(log βk − log βj) + αj

(

βj − βk
βk

)

, (11)

whereψ(x) = Γ′(x)
Γ(x) is the digamma function1

Observation 1:The authors of [17] suggest to use KL forδk as a descriptor of probabilistic distance

for two distributions. For the squared Hellinger (SH) distance, defined as [26, Ch. 14.5, pp. 211]

H2(fj(x|Θj),fk(x|Θk))

, 1−
∫ ∞

−∞

√

fj(x|Θj)fk(x|Θk)dx, (12)

1For the derivation see http://stats.stackexchange.com/questions/11646/kullbackleibler-divergence-between-two-gamma-distributions,

retrieved December 22, 2013.

http://stats.stackexchange.com/questions/11646/kullbackleibler-divergence-between-two-gamma-distributions


8

(note that the 0.5 constant is omitted for convenience as remarked in [27, Ch. 3.3, pp. 61]), it can be

shown to be the lower bound of KL divergence [28, Proposition1], i.e.,

D(fj(x|Θj), fk(x|Θk)) ≥ H2(fj(x|Θj), fk(x|Θk)). (13)

We thus propose to replaceδi used in calculating the threshold for MSPRTC,Aj , with ηj where

ηj = min
k:k 6=j

H2(fj(x|Θj), fk(x|Θk)), (14)

and the SH distance between two gamma distributions (considered in the system model in Section II) is

derived in Appendix B.

Observation 2:The procedure to calculateγk explained in [17, Sec. VII] is convolved2. Therefore, in

numerical evaluation in Section VI we will replaceAk with a single valueγ for all the hypotheses. To find

γ, before performing classification we sweep throughγ ∈ [0,∞) to determine the desired classification

probability. For example, we can setγ = 0 and obtain the first classification performance. If it does not

satisfy the classification system requirement, we increaseγ by a pre-defined step size∆γ > 0 until we

reach our desired classification performance.

IV. JOINT PU TRAFFIC PERIOD ESTIMATION AND TRAFFIC CLASSIFICATION

So far, we have assumed the continuous observation of the PU channel state. In this section we consider

a more general traffic classification problem, where the elements ofx also need to be estimated. Therefore

we relax the assumption on the continuous observation of PU state and assume a PU channel observation

at instants everyTs seconds to find the elements inx.

First, we introduce the model for the PU period length estimation in Section IV-A. Then, in Sec-

tion IV-B, we propose a minimum variance period length estimator to minimize estimation errors.

Subsequently, we propose a modified MLC considering estimation error and analytically derive the

approximation of its classification performance in SectionIV-C. We then propose a modified MSPRTC

considering estimation error in Section IV-D. Finally, in Section IV-E we propose a design guideline for

MLC with energy or time constraints on the spectrum sensing budget.

2Even though we used it in [1] by actually not calculating it, but sweeping through a large set of values of constantγ (Bayes

classification risk minimizer) to obtain a desired classification.
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A. Period Estimation Noise Modeling under PU Traffic Sampling

We follow the system model shown in [19, Section II, Fig. 1(a)], where a PU traffic period, i.e.,

ON/OFF durationTon/Toff , is estimated through sampling performed at regular intervals of Ts seconds.

Without loss of generality, we will focus on estimatingTon only, while Toff can be estimated using the

same technique. In addition, to ease the analysis, we assumethat the probability of PU state change

between two samplings is negligible.

Denotes = 1 represents the channel being busy, whiles = 0 represents the channel being idle.

Assuming as previously that we ignore spectrum sensing errors we would like to estimate the length of

Ton based on the set of samples obtained atTs intervals. For the actualTon we denote four time instants,

i.e., t0, t1, t2, and t3: (i) t0 is the starting point withs = 0, (ii) t1 and (iii) t2 are the transition points

from s = 0 to s = 1 and s = 1 to s = 0, respectively, and (iv)t3 is the end point withs = 0. After

sampling the traffic, we define the nearest sampling point tot1 as ζ1 in region (t0, t1) andζ2 in region

(t1, t2). Similarly, we define the nearest sampling point tot2 as ζ3 in region (t1, t2) and ζ4 in region

(t2, t3). In other words,ζi are the actual discrete channel measurement points. Then wecan think of this

PU channel sampling as a quantization process, i.e., there are four sources of quantization noise which

areφ1 = t1 − ζ1, φ2 = ζ2 − t1, φ3 = t2 − ζ3, andφ4 = ζ4 − t2. We can now model quantization error

as a uniformly distributed random variable, which implies that φi ∼ U(0, Ts), ∀i ∈ {1, 2, 3, 4}, where

U(a, b) denotes the uniform distribution anda, b are the minimum and maximum value for the random

variableφi, respectively.

B. Ton Length Estimator

We first propose a minimum variance PU period length estimator that reduces the sampling noise

effect. Then we derive the average number of PU traffic samples needed forTon length estimation using

the proposed estimator.

1) Minimum Variance Estimator:First we considerT1, i.e., the interval between two nearests = 0

points, whereT1 = ζ4− ζ1 = Ton+φ1+φ4. Then, we considerT2, i.e., the interval between two nearest

s = 1 points, whereT2 = ζ3 − ζ2 = Ton− φ2 − φ3. We propose a weighted average ofT1 andT2, i.e.,

Ta = wT1 + (1 − w)T2 as ourTon estimator, wherew ∈ [0, 1] is the weight that needs to be designed.
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We know that the mean forTa is

E{Ta} = wE{T1}+ (1− w)E{T2}

= wE{Ton + φ1 + φ4}+ (1− w)E{Ton− φ2 − φ3}

= (2w − 1)Ts + E{Ton}, (15)

sinceE{φi} = Ts

2 , ∀i ∈ {1, 2, 3, 4}. We can observe that withw = 1
2 , the mean ofTa will be the same

as the mean ofTon, resulting inTa an unbiased estimator. Then we would like to minimize the variance

of Ta to derive the optimalw. Such variance is expressed as

Var{Ta} =
T 2
s

6
(w2 + (1− w)2) + Var{Ton}, (16)

since Var{φi} = T 2
s

12 , ∀i ∈ {1, 2, 3, 4}. Taking the derivative of (16) with respect tow and setting it to

zero, we can obtain the optimal weight asw∗ = 1
2 . Therefore, the minimum variance estimator (MVE)

is expressed as

Ta =
1

2
(T1 + T2) = Ton + φ1 − φ3 = Ton− φ2 + φ4. (17)

2) Average Number of PU Traffic Samples for Period Estimationusing Minimum Variance Estimator:

The following theorem summarizes the analytical results for the average number of PU traffic samples,

N , when we adopt the proposed MVE to estimate one PU state length Ton.

Theorem 1:The expected average number of traffic samples for estimating one PU period is

E{N} =
M
∑

j=1

πjE{N |Hj}, (18)

where

E{N |Hj} =
∞
∑

k=1

Γ(αj, kβjTs)

Γ(αj)
+ 1. (19)

Proof: See Appendix C.

Corollary 1: If hypothesisHj is an exponential distribution with parameterλ, then

E{N |Hj} =
1

1− eλTs
. (20)

Proof: We can simplify (19) by assigningαj = 1 andβj = λ, which results in

E{N |Hj} =
∞
∑

k=1

Γ(1, kλTs)

Γ(1)
+ 1 =

∞
∑

k=1

∫ ∞

kλTs

e−tdt+ 1

=

∞
∑

k=1

e−kλTs + 1 =
1

1− e−λTs
. (21)
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Corollary 2: If hypothesisHj is an Erlang distribution with parameterαj = 2 andβj = λ then

E{N |Hj} =
1− e−λTs + λTse

−λTs

(1− e−λTs)2
. (22)

Proof: If αj is an integer thenΓ(αj) = (αj − 1)! andΓ(αj , kλTs) = (αj − 1)!e−kλTs
αj−1
∑

l=0

(kλTs)l

l! .

Plugging the above two results withαj = 2 into (19) we have

E{N |Hj} =
∞
∑

k=1

e−kλTs

1
∑

l=0

(kλTs)
l

l!
+ 1

=

(

∞
∑

k=1

e−kλTs + 1

)

+

∞
∑

k=1

kλTse
−kλTs . (23)

The left hand side in (23) can be simply obtained from (21), and the right hand part in (23) can be

calculated as
∞
∑

k=1

kλTse
−kλTs = λTse

−λTs

(1−e−λTs)2 . Combining the left hand and right hand parts completes the

proof.

C. MLC under PU Period Estimation Error

To derive the MLC considering PU period estimation error, wefirst need to derive the modified PDF

for our proposed estimator. From (17) we can observe that theestimated PU period length is represented

by the real PU traffic periods plus two uniformly distributedvariables (representing sampling noise), one

for the beginning and one for the end of the PU traffic period. The PDF for the combined sampling noise,

φ = φ1−φ3 or φ = −φ2+φ4, can be calculated by taking the convolution of two uniform distributions,

which can be expressed as a triangular function

fΦ(φ) = Λ(−Ts, Ts) =
I(−φ)
T 2
s

φ+
1

Ts
, (24)

whereI(φ) = 1 if φ ≥ 0, elseI(φ) = −1. By convolving the PDF forTon andφ, we can obtain the

PDF for Ta, which can be derived using the following theorem.

Theorem 2:Given a random variablẽx = x + φ, wherex is gamma distributed with parameters
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Θ = (α, β) andφ is triangular distributed with parameterTs, the PDF ofx̃ can be expressed as

f(x̃|Θ, Ts) =



















































































































Γ(α+1,(x̃+Ts)β)−2Γ(α+1,x̃β)+Γ(α+1,(x̃−Ts)β)
Γ(α)βT 2

s

− (x̃+Ts)Γ(α,(x̃+Ts)β)
Γ(α)T 2

s

+2x̃Γ(α,x̃β)−(x̃−Ts)Γ(α,(x̃−Ts)β)
Γ(α)T 2

s

, if x̃ ≥ Ts,
Γ(α+1,(x̃+Ts)β)−2Γ(α+1,x̃β)+Γ(α+1)

Γ(α)βT 2
s

− (x̃+Ts)Γ(α,(x̃+Ts)β)
Γ(α)T 2

s

+2x̃Γ(α,x̃β)−(x̃−Ts)Γ(α)
Γ(α)T 2

s

, if 0 ≤ x̃ < Ts,

Γ(α+1,(x̃+Ts)β)−Γ(α+1)
Γ(α)βT 2

s

− (x̃+Ts)[Γ(α,(x̃+Ts)β)−Γ(α)]
Γ(α)T 2

s

, if − Ts ≤ x̃ < 0,

0, otherwise.

(25)

Proof: See Appendix D.

Denote the realization forTa as x̃i. We can obtain its PDF,fj(x̃i|Θ, Ts), under hypothesisHj from

Theorem 2. We follow the same step in Section III-A to derive the MLC, where the likelihood function

can be written asLHj
(x̃) = πj

n
∏

i=1
fj(x̃i|Θ, Ts),∀j ∈ M, similarly to (2).

To quantify the probability of correct classification with estimation error,P̃c, in a closed-form, we

apply approximation in the same manner as in Section III-A. First, let us assume that the sampling

periodTs is not large, which means that PDF ofx̃i andxi would not significantly deviate from each

other. We first replacey(j,k)i with the ỹ(j,k)i = αj,k log(xi + φi)− βj,k(xi + φi) whereφi is a realization

for the quantization noise. To be able to apply (6) considering sampling noise we need to first find an

expectation and variance of̃y(j,k)i , i.e., µ̃j,k and σ̃2j,k, respectively. For̃µj,k, sincexi + φi might be a

negative value, the mean for̃y(j,k)i might be a complex number, which can not be used in the Q function.

Therefore we usẽµj,k = µj,k. On the other hand, the derivation forσ̃2j,k is given in Appendix E, which

is always a real number. We can now obtain the average probability of correct classificationP̃c under

estimation noise using (8) and (9) by replacingσ2j,k with σ̃2j,k. It is thus imperative to emphasize that the

proposed calculation method (due to above assumptions) is quite inaccurate considering all parameter

combinations and needs to be taken with caution. Therefore calculation of classification performance

is still considered to be an open problem. The reader is encouraged to experiment with our analytical

procedure of classification based on the accompanying MATLAB code, see Section VI-A.
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D. MSPRTC under Period Estimation Error

The proposed MSPRTC under period estimation error follows the same procedure explained in Sec-

tion III-B. The only adaptation is to replace the PDFfj(x|Θj) in (10) with the modified PDFfj(x̃|Θj , Ts)

derived in (25).

E. A Design Guideline for Traffic Classification using MLC

There are two parameters, i.e., total observation time,T , and total number of samples,N , to be used in

classification that need to be optimized. Naturally, we would like to use the smallestT orN to achieve the

desired performance for MLC. To derive the performance of correct classification using period estimation

P̃c, we need to obtain the number of periods and the sampling period Ts. ObviouslyTs = T
N−1 . The

average number of periods can be derived as

E{K} =
M
∑

j=1

πjE{K|Hj}, (26)

where

E{K|Hj} =
T

E{Ton|Hj}
(1−R(Ts|Hj)). (27)

HereE{K|Hj} is the average number of periods we can obtain under hypothesisHj, which is equal to the

total average number of periods T
E{Ton|Hj}

times the successful period detection rate1−R(Ts|Hj), whereR

is the mis-detection rate for detecting one period defined asR(Ts|Hj) = Pr{Ton < Ts|Hj} = G(Ts|Θj),

whereG(·|Θj) is the CDF function for a gamma distribution under hypothesis Hj. Note thatTs and

E{K} are functions ofT andN , therefore we know̃Pc is a function of traffic parametersΘj , ∀j ∈ M,

Ω, observation timeT , and number of traffic samplesN . Once the classification performance constraint

ǫ is given, we can solve the optimization problem

min T (or N) subject toP̃c ≥ ǫ (28)

analytically.

V. TRAFFIC CLASSIFICATION WITH IMPERFECTKNOWLEDGE OFPU TRAFFIC PARAMETERS

We further relax the system model assumptions from Section II and consider the lack of complete

information onΘj . Specifically, for the perfectly measuredx we assume that the shape parametersαj

are known, but the rate parametersβj , ∀j ∈M are not.

First, we consider to treatβj as unknown deterministic value. In this case we propose theestimate-then-

classify(ETC) scheme to complete the traffic classification, where weestimate all PU traffic parameters
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before applying them to the MLC (Section V-A) and MSPRTC (Section V-B). Additionally, for the ETC

we derive the classification performance of MLC analytically. Then, if the PU traffic parametersβj follow

a certain distribution, we propose in Section V-C theaverage likelihood function(ALF) for the classifiers.

A. Estimate-Then-Classify: Using MLC

The ML estimator ofβj for the distributionfj(x|Θj) can be derived by solving
∂

n
∏

i=1

fj(xi|Θj)

∂βj
= 0

which gives

β̂j = αjn

(

n
∑

i=1

xi

)−1

. (29)

Considering MLC, the ETC scheme is based on replacingβj with its estimateβ̂j in the PDF ofx as

fj(x|Θ̂j) whereΘ̂j = (αj , β̂j) and subsequently to the likelihood function defined in (2).

To analyze the classification performance for the proposed ETC-based MLC, we can simply use (9)

exceptβj is replaced by the corresponding mean of the estimatorE{β̂j}. To be more specific, under

hypothesisHj, the mean is expressed asE{β̂−1
k |Hj} = 1

nαk

n
∑

i=1
E{xi|Hj} = αj

αk
β−1
j , and the variance is

expressed as Var{β̂−1
k |Hj} = αjβ

−2
j

nα2
k

, ∀k ∈ M. Therefore asn approaches infinity, the variance for̂β−1
k

approaches zero, which means thatβ̂−1
k converges toαj

αk
β−1
j asymptotically. To conclude, we replaceβk

with E{β̂k} and embed it into (9), and the probability of correct classification using ETC-based MLC

can be represented as

P̂c =

M
∑

j=1

πj

M
∏

k=1,k 6=j

Q



− 1
√

nσ̂2j,k

×
(

log
πjα

nαk

j β
n(αj−αk)
j Γ(αk)

n

πkα
nαk

k Γ(αj)n
+ nµ̂j,k

))

, (30)

whereµ̂j,k andσ̂2j,k are the mean and variance ofŷ(j,k)i = αj,k log xi−
(

αj−αk

αj

)

βjxi, respectively, which

can also be derived analytically using the scheme given in Appendix A.

B. Estimate-then-Classify: Using MSPRTC

For the MSPRTC, we need to update the estimated posterior probabilities after collecting each new

PU traffic period if all the estimated posterior probabilities defined as

p̂jn , πj

n
∏

i=1

fj(xi|Θ̂j)

[

M
∑

l=1

πl

(

n
∏

i=1

fl(xi|Θ̂l)

)]−1

, (31)

are less than or equal to the threshold. The complete algorithm for ETC-based MSPRTC is listed in

Algorithm 1.
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Algorithm 1 ETC-based MSPRTC
1: procedure CLASSIFIER(x, fj(x|Θj),M,Ω, γ)

2: i← 1

3: x← x1

4: Calculate Θ̂j using (29),∀j ∈ {1, 2, · · · ,M}
5: Calculate estimated posteriori probabilitŷpji using (31)

6: while p̂ji ≤ 1

1+γ
∀j ∈ {1, 2, · · · ,M} do

7: i← i+ 1

8: x← (x1, x2, · · · , xi)T

9: Calculate Θ̂j using (29),∀j ∈ {1, 2, · · · ,M}
10: Calculate estimated posteriori probabilitŷpji using (31)

11: end while

12: NA ← i ⊲ Stopping time

13: m← argmax
j
p̂jNA

14: ν ← Hm ⊲ Final decision

15: end procedure

C. Average Likelihood Function: Traffic Classification withPrior Knowledge on Distribution of PU

Traffic Parameters

We now consider a case when the PU traffic parametersβj are no longer constants, but instead follow

a certain distribution. When the distribution of the PU traffic parameter is known, such knowledge can

be exploited by averaging the conditional likelihood function with respect to the distribution of the PU

traffic parameter, which can better describe the behavior for each hypothesis. The proposed ALF under

Hj is defined as

hj(x) ,

∫ ∞

−∞
fj(x|Θj)qj(βj)dβj , (32)

whereqj(βj) is the PDF forβj . Hence the likelihood function in (2) for MLC and the posterior probability

in (10) for MSPRTC are modified by replacing likelihood function fj(x|Θj) with ALF hj(x). As an

example, assumingβj ∼ U(Lj , Uj) then (32) can be derived using (43) as

hj(x) =

∫ Uj

Lj

fj(x|Θj)qj(βj)dβj

=
xαj−1

(Uj − Lj)Γ(αj)

∫ Uj

Lj

β
αj

j e−βjxdβj

=
Γ(αj + 1, Ljx)− Γ(αj + 1, Ujx)

(Uj − Lj)Γ(αj)x2
. (33)
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Note that the average SH distance with ALF can be calculated by using (33) to replacefj(x|Θj) in (42).

Also note that for the average SH distance with ALF we were unable to find a closed-form expression

and it can only be computed through numerical integration.

VI. N UMERICAL RESULTS

We now present MATLAB-based numerical results for the performance of the proposed PU traffic

classification algorithms. We assumeM = 3, as in [17, Sec. VIII] in which two distributions are

considered as special cases, that is where: (i)α1 = 1, i.e., exponential distribution, and (ii)α2 = 2,

i.e., Erlang distribution. Furthermore, we design two testscenarios for the classifiers, i.e., Test I and Test

II, with a relatively large and small average distribution distance among hypotheses, respectively. The

average distance among hypotheses is evaluated through average SH distance,H2, which is calculated

in Appendix B. The PU traffic parameters for Test I and Test II are summarized in Table I for the PU

traffic with stable parameters and in Table II for PU traffic with fluctuating parameters, respectively. The

unit for βi is second−1. We assume that each hypothesis has the same prior probability, i.e.,πj = 1
M

, i.e.

a maximum entropy case. Observe that for Test II, all hypotheses have the same first moment in order to

have a small average distance among hypotheses, which is different from Test I. In our simulations, PU

traffic periods are generated randomly from three distributions in one realization. In case of PU sampled

process we generate it by adding two uniformly distributed random variables at the beginning and the end

of PU traffic process, following strictly the simplifying assumption from Section IV-A. Each simulation

point is obtained by method of batch means (unless otherwisestated) averaging 50 classification runs,

each having at least 2000 realizations for a confidence interval of 0.1.

A. Results Reproducibility and Open Code Access

In addition, for the reproducibility of results, the sourcecode used in generating all figures is (i)

available upon request or (ii) via this ArXiv submission. The code allows the reader to generate results

for a desired set of variables and experiment with the implementation and the accuracy of the developed

classifiers. Any future corrections and updates to the source code and the paper will be also available

therein.

B. Traffic Classification Performance with Perfectly Sampled PU Traffic Periods and Parameters

In Fig. 1 we present the classification performance under perfect knowledge of PU traffic parameters

and perfect sampling of traffic ON/OFF periods as a function of traffic periodsn. First, we observe that
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TABLE I

TRAFFIC PARAMETERS (STABLE )

Function Parameters (Test I) Parameters (Test II)

exponential α1 = 1, β1 = 0.4 α1 = 1, β1 = 0.4

Erlang α2 = 2, β2 = 0.3 α2 = 2, β2 = 0.8

gamma α3 = 0.8, β3 = 0.5 α3 = 0.5, β3 = 0.2

AverageH2 0.1799 0.0695

TABLE II

TRAFFIC PARAMETERS (FLUCTUATING)

Function Parameters (Test I) Parameters (Test II)

exponential α1 = 1, β1 ∼ U(0.4, 0.9) α1 = 1, β1 ∼ U(0.4, 0.9)

Erlang α2 = 2, β2 ∼ U(0.1, 0.3) α2 = 2, β2 ∼ U(1.2, 1.4)

gamma α3 = 0.2, β3 ∼ U(0.2, 0.5) α3 = 3, β3 ∼ U(1.1, 2.8)

AverageH2 0.4482 0.0379

under both tests the simulated MLC performance matches our derived analytical performance. Second,

the MSPRTC performs better than MLC since it can achieve the samePc using less number of PU traffic

periods. Finally, our results prove the intuitive observation that for a smaller average distance among

hypotheses, shown in Fig. 1(b), a higher number of PU traffic periods is needed to classify the correct

hypotheses3.

C. Traffic Classification Performance with PU Traffic Period Estimation and Perfect Knowledge of

Parameters

Fig. 2 shows the normalized performance lossL , Pc−P̃c

Pc
for MLC with the average number of

traffic samples4 E{N}, which are both functions ofTs. We consider two cases of PU traffic periods: (i)

K = 10 and (ii)K = 16. First, as the average number of PU traffic samplings increases, which means we

adopt a small sampling periodTs, L decreases. This is because we have higher resolution for sampling

to estimate the PU traffic periods, thus resulting in a more accurate classification. Second, we observe

3Note that in the MATLAB implementation we are constrained bythe numerical precision of 32 bit unsigned integers (due

to frequent exponentiations of very small numbers) thus theanalytical results are not realizable for large values ofn. Also, note

that while plotting the analytical results for the MLC classifier, we have used a simulation to generate statistics for mean and

variance fory(j,k)
i and ỹ(j,k)

i , to speed up figure generation. More details are provided in the code accompanying this paper.

4In this case we do not plot the confidence intervals as we plot the difference between the two means.



18

0 5 10 15 20 25
0.7

0.75

0.8

0.85

0.9

0.95

Average Number of Traffic Periods

P
ro

ba
bi

lit
y 

of
 C

or
re

ct
 C

la
ss

ifi
ca

tio
n

 

 

MLC (Sim.)
MLC (An.)
MSPRTC (Sim.)

(a) Test I
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Fig. 1. Probability of correct classification with the average number of PU traffic periods, under perfect knowledge of PU

traffic periods and parameters. MLC is compared with MSPRTC.PU traffic parameters used in simulations are presented in

Table I. Simulation results (Sim.) are plotted to verify analytical results (An.).
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that the performance for higher number of PU traffic periods is more sensitive to the PU traffic period

estimation error. Therefore more PU traffic samples for higher number of PU traffic periods are needed

to achieve the same performance as with a lower number of PU traffic periods. Finally, we show that

for a small average distance among hypotheses, the performance loss is large since in this case the PU

traffic classification is more sensitive to the period estimation errors.

In Fig. 3 we compare MLC and MSPRTC under sampling. First, as the sampling period increases,

the performance of both classifiers decreases. Naturally, alonger sampling period will result in a larger

estimation noise. Second, we observe that MSPRTC is as sensitive as MLC to the period estimation error.

This is because both MSPRTC and MLC adopt the same likelihoodfunction for classification, which

requires accurate knowledge of the true distributions. If the noise is added into the observation, it will

distort the original PDF even worse when the distance among hypotheses is small.

D. A Design Guideline Example for Traffic Classification using ML Classifier

We provide two examples for the design guideline shown in Section IV-E. First we consider the case

where, given observation timeT , we need to find the number of traffic samples and therefore sampling

periodTs, to achieve a certain probability of correct classification. In Fig. 4(a) we observe that as the

number of traffic samples increases the classification performance improves. This is because as the number

of traffic samples increases, the period estimation errors decrease, and at the same time, we can obtain

more PU traffic periods as the PU traffic period mis-detectionrate decreases which is shown in (26).

Furthermore, as the observation time increases, the classification performance also increase. Although in

this case the estimation error increases, the obtained traffic periods increases. This is because the latter

factor has more influence on the classification performance.In this traffic scenario, for example, given the

timing constraintT = 60 seconds we need at leastN = 350 traffic samples to achieve the performance

ǫ = 0.90. This means the constraint for the sampling rateTs to sample this traffic should be no less than

60
350−1 = 0.1719 seconds to achieve the classification performance ofǫ = 0.90.

Second we consider the case where, given the number of samples, we need to find the observation

time to achieve a certain classification performance. From Fig. 4(b), the performance is a concave curve

with respect to the observation time. This can be explained by the behavior of (26). In (26),E{K} versus

T has a similar shape as̃Pc versusT . However, to figure out the classification performance, not only

E{K} but also the sampling periodTs needs to be considered to determine the classification performance.

Initially, asT increases,E{K} increases, andTs increases. Since the effect ofE{K} is more significant,

the classification performance increases. AsT increases through the maximum point ofE{K}, E{K}
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Fig. 2. Normalized classification performance loss with average number of traffic samples using the minimum variance estimator

for the MLC under perfect knowledge of PU traffic parameters.The PU traffic parameters used are given in Table I. All results

were obtained by simulations.
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Fig. 3. Probability of correct classification with the average number of PU traffic periods using the minimum variance estimator,

under perfect knowledge of PU traffic parameters. MLC is compared with MSPRTC. The PU traffic parameters used are given

in Table I. All results were obtained by simulations.
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starts to decrease. In this regionTs also increases. Therefore the performance will decrease since we

obtain less traffic periods with higher estimation errors. In this traffic scenario, for example, given the

energy constraintN = 50, we can solve for the optimal observation timeT = 100 seconds to achieve the

maximal performanceǫ = 0.86. This means the optimal sampling rateTs to sample this traffic should

be set as 100
50−1 = 2.04 seconds to achieveǫ = 0.86. Larger and smallerTs than the optimalTs will both

degrade the classification performance.

Finally, we see that our proposed analytical approximationmatches the simulation results for small

values ofTs. But asTs increases, shown in Fig. 4(b), the analytical results startto deviate from the

simulation results, refer again to Section IV-C.

E. Traffic Classification with Perfect PU Periods and No Knowledge of Parameters

Fig. 5 presents the probability of correct classification with the average number of PU traffic periods

assuming no knowledge of PU traffic parametersβj . We compare MLC and MSPRTC with perfect

knowledge of PU traffic parameters and the ETC method with no knowledge of traffic parametersβj .

First, we note that ETC-based method performs worse than methods using perfect parameters. Second,

the ETC-based MSPRTC outperforms MLC as the distance among hypotheses is small, otherwise they

perform similarly. Third, the simulation results for ETC-based MLC matches our proposed analytical

results in (30), since the number of PU traffic periods is large enough for parameter estimation. Finally,

we can observe that ETC-based method will perform worse under Test I than Test II, compared with the

perfect classifiers. This is because in Test II the first moments for all hypotheses are set to be the same,

hence the estimated parameters will be close to the true parameters for all hypotheses. But this is not

the case for Test I since the first moments are more different for all hypotheses—which means a small

parameter estimation error will cause a large classification performance degradation.

F. Traffic Classification Performance with Perfect PU TrafficPeriods and Prior Knowledge of Traffic

Parameters

In Fig. 6 we present the classification performance comparisons assuming prior knowledge about the

distribution of PU traffic parametersβj . We note that ALF-based classifiers are better than ETC-based

classifiers under Test I, and the result is opposite under Test II. This is because of the fact that ALF

can capture most PU traffic parameter information if the distance among hypotheses is large, i.e., the

Test I case. If the distance among hypotheses is small, as in Test II, ETC-based method provides a more

accurate PU traffic parameter estimation.
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0 200 400 600 800 1000 1200
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Observation Time (s)

P
ro

ba
bi

lit
y 

of
 C

or
re

ct
 C

la
ss

ifi
ca

tio
n

 

 

N=20 (Sim.)
N=20 (An.)
N=50 (Sim.)
N=50 (An.)
N=80 (Sim.)
N=80 (An.)

(b) Sensing constraint on number of traffic samples

Fig. 4. Probability of correct classification with number oftraffic samples in Fig. 4(a) and observation time in Fig. 4(b)with

perfect knowledge of traffic parameters using MLC. The PU traffic parameters used are shown as Test I in Table I. Simulation

results (Sim.) are plotted to verify analytical results (An.).
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Fig. 5. Probability of correct classification with the average number of PU traffic periods, under no knowledge of PU traffic

parametersβj . MLC is compared with MSPRTC using ETC scheme. The PU traffic parameters used are shown in Table I.

Simulation results (Sim.) are plotted to verify analyticalresults (An.).
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Fig. 6. Probability of correct classification with the average number of PU traffic periods, with prior knowledge of PU traffic

parametersβj . MLC is compared with MSPRTC using ETC and ALF schemes. The PUtraffic parameters used are shown in

Table II.
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VII. C ONCLUSIONS

We propose novel primary user (PU) traffic classification algorithms which are based on the maximum

likelihood function and multi-hypothesis sequential probability ratio test classifiers, and we consider

cases where the PU traffic periods and PU traffic parameters need to be estimated. In addition, we

analyze a sampling technique to estimate PU traffic periods,and a minimum variance period estimator

is derived to design a traffic classifier given sensing constraints such as the number of traffic samples

or observation time. Furthermore, we propose two classifiers, estimate-then-classify (ETC) and average

likelihood function (ALF) classifiers to handle the cases when there is only no/partial knowledge of PU

traffic parameters.

To conclude, for PU traffic with constant and known parameters, MSPRTC, a more complicated

classifier than MLC is recommended in terms of classificationperformance both with and without period

estimation. For PU traffic with prior knowledge of parameters, the ALF-based classifier is suitable for

traffic classification when the average distance among hypotheses is large. If the average distance among

hypotheses is small, the ETC-based classifier is preferred to provide a good classification performance.

APPENDIX A

DERIVATION OF MEAN AND VARIANCE FOR THE DISTRIBUTION OFy
(j,k)
i

To derive the mean and variance fory(j,k)i , we need to derive its PDF first. Here we ignore the indexi

for convenience since ally(j,k)i have the same distribution. Since we know the PDF forx under hypothesis

Hj, we can apply the change of variable technique to derive the PDF for y(j,k) as

fY (j,k)(y(j,k)) =

∣

∣

∣

∣

∂

∂y(j,k)
h−1

(

y(j,k)
)

∣

∣

∣

∣

× fj
(

h−1
(

y(j,k)
)

|Θj

)

, (34)

where| · | is the absolute value function,h(x) = αj,k log x−βj,kx, andh−1 is the inverse function ofh.

To find h−1, we introduce first the following Lemma.

Lemma 1:The inverse function forh(x) = α log(x) − βx, ∀α 6= 0, β 6= 0, x > 0, is (i) when

α
β
< 0, h−1(y) = −α

β
W
(

0, e
y

α
+log(−β

α
)
)

, and (ii) when α
β
> 0 h−1(y) = −α

β
W
(

0, e
y

α
+log(−β

α
)
)

, if

h−1(y) ≤ α
β

, andh−1(y) = −α
β
W
(

−1, e y

α
+log(−β

α
)
)

, otherwise, whereW (k, y) is a Lambert W function

of branchk, wherek is an integer for complexy and k ∈ {0,−1} for real y (refer to MATLAB’s

lambertw function implementation description) [29, Eq. (1.5)].
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Proof: Consider the Wright omega function,ω(y) [30, Eq. (1)], which is defined as the unique

solution toy = log(x) + x, which can be also written recursively as

y = log(ω(y)) + ω(y), (35)

whereW (0, ey) = ω(y). Embeddingx = −α
β
ω
(

y
α
+ log

(

−β
α

))

to the expressionα log(x)−βx we can

show that

α log

(

−α
β
ω

(

y

α
+ log

(−β
α

)))

− β
(

−α
β
ω

(

y

α
+ log

(−β
α

)))

(36)

= α

(

log ω

(

y

α
+ log

(−β
α

))

+ ω

(

y

α
+ log

(−β
α

)))

+ α log

(−α
β

)

(37)

= α

(

y

α
+ log

(−β
α

))

+ α log

(−α
β

)

= y, (38)

where (38) stems directly from (35). Therefore we knowx is an inverse function.

Now, note that the functionh(x) is a concave function asα ≥ 0, and convex otherwise. Therefore,

for α ≥ 0, there are two possible real-value solutions forh(x) = y: (i) one is located on the left hand

side of the peak value forh(x), i.e.,x = α
β

, and (ii) another located on its right hand side. By definition

of a Lambert W function, these two solutions are shown to be located onk = 0 andk = −1 branches.

For α < 0, there is only one solution onk = 0 branch sinceh(x) is a decreasing function. Note also

that domain of y is (i)[−∞, a log(a/b) − a] for a, b > 0, (ii) [a log(a/b) − a,∞] for a, b < 0, and (iii)

[−∞,∞] otherwise.

By applying the derivative of the Lambert W function, i.e.,∂W (k,s)
∂s

= W (k,s)
s(1+W (k,s)) , and Lemma 1

to (34), we can derive the PDF fory(j,k) as

fY (j,k)(y(j,k)) =

∣

∣

∣

∣

∣

∣

W
(

0, eB
(j,k)
)

βj,k
(

1 +W
(

0, eB(j,k)
))

∣

∣

∣

∣

∣

∣

× fj
(

−αj,k

βj,k
W
(

0, eB
(j,k)
)

|Θj

)

+ I

(

αj,k

βj,k

)

∣

∣

∣

∣

∣

∣

W
(

−1, eB(j,k)
)

βj,k
(

1 +W
(

−1, eB(j,k)
))

∣

∣

∣

∣

∣

∣

× fj
(

−αj,k

βj,k
W
(

−1, eB(j,k)
)

|Θj

)

, (39)



28

whereB(j,k) ,
y(j,k)

αj,k
+ log

(

−βj,k

αj,k

)

(defined for presentation compactness), andI(a) = 1 if a ≥ 0 and

I(a) = 0 otherwise.

We can finally derive the mean and variance using (39) as

µj,k =

∫ ∞

−∞
y(j,k)fY (j,k)

(

y(j,k)
)

dy(j,k), (40)

σ2j,k =

∫ ∞

−∞

(

y(j,k)
)2
fY (j,k)

(

y(j,k)
)

dy(j,k)

− (µj,k)
2 , (41)

respectively, through numerical integration.

APPENDIX B

DERIVATION OF SQUARED HELLINGER DISTANCE BETWEENTWO GAMMA DISTRIBUTIONS

The SH distance for two probability distributions is definedas [26, Ch. 14.5, pp. 211]

H2(fj(x|Θj),fk(x|Θk))

, 1−
∫ ∞

−∞

√

fj(x|Θj)fk(x|Θk)dx, (42)

again, note that the 0.5 constant is omitted for convenienceas remarked in [27, Ch. 3.3, pp. 61]). Before

calculating the closed-form expression of SH distance for two gamma distributions we introduce the

following integral
∫ ∞

a

xρe−µxdx =
Γ(ρ+ 1, aµ)

µρ+1
, (43)

whereΓ(ρ+1, x) =
∫∞
x
tρe−tdt is the incomplete gamma function. Integral (43) can be derived through

calculating the incomplete gamma function by the change of variable technique.

From the definition of (42) the SH distance for two distributionsfj(x|Θj) andfk(x|Θk) can be derived

as

H2(fj(x|Θj), fk(x|Θk))

= 1− C(Θj ,Θk)

∫ ∞

0
x

αj+αk

2
−1e

−
(

βj+βk

2

)

x
dx, (44)
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whereC(Θj ,Θk) =

√

β
αj

j β
αk
k

Γ(αj)Γ(αk)
. Applying (43) with ρ = αj+αk

2 − 1 andµ = βj+βk

2 to (44) the SH

distance in (44) can be simplified to

H2(fj(x|Θj),fk(x|Θk))

= 1− C(Θj ,Θk)
Γ(αj+αk

2 )
(

βj+βk

2

)

αj+αk

2

. (45)

Note that the average SH distance with ALF, which is used to represent the average distance among

hypotheses in Table II, can be calculated by using (33) to replacefj(x|Θj) in (42). Also note that the

average SH distance with ALF has no closed-form expression and it can only be computed through

numerical methods.

APPENDIX C

DERIVATION OF EXPECTED NUMBER OF PU TRAFFIC SAMPLES UNDER SAMPLING

The expected average number of PU traffic samplings for one period Ton under hypothesisHj can be

calculated as

E{N |Hj} = E

{⌊

Ton

Ts

⌋}

+ 1, (46)

where ⌊·⌋ is the floor function. To calculate (46) we first need to derivethe following conditional

probability, i.e.,

Pr

{⌊

Ton

Ts

⌋

= k|Hj

}

= Pr

{

Ton

Ts
− 1 < k ≤ Ton

Ts
|Hj

}

= Pr{kTs ≤ Ton < (k + 1)Ts|Hj}

= G((k + 1)Ts|Θj)−G(kTs|Θj), (47)
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whereG(·|Θj) is the CDF function for gamma distribution with parametersαj andβj . Applying (47)

to (46) we have

E

{⌊

Ton

Ts

⌋}

=

∞
∑

k=1

kPr

{⌊

Ton

Ts

⌋

= k|Hj

}

= lim
L→∞

L
∑

k=1

k[G((k + 1)Ts|Θj)−G(kTs|Θj)]

= lim
L→∞

(L+ 1)G((L + 1)Ts|Θj)−
L+1
∑

k=1

G(kTs|Θj) (48)

= lim
L→∞

−LΓ(αj , (L+ 1)βjTs)

Γ(αj)
+

L
∑

k=1

Γ(αj, kβjTs)

Γ(αj)
(49)

=

∞
∑

k=1

Γ(αj , kβjTs)

Γ(αj)
, (50)

by applyingG(kTs|Θj) =
Γ(αj)−Γ(αj ,kβjTs)

Γ(αj)
, and the left hand part in (49) can be shown to be zero by

L’Hopital’s rule. Then we introduce the following Lemma as astep to prove (50) converges.

Lemma 2:
∫ ∞

0
Γ(αj , kβjTs)dk =

αjΓ(αj)

βjTs
. (51)

Proof: We can easily prove it by applying the change of variable technique.

SinceΓ(αj , kβjTs) is a decreasing function with respect tok by definition and
∫∞
0

Γ(αj ,kβjTs)
Γ(αj)

dk = αj

βjTs
,

from the integral test, we know (50) converges. Therefore, using (50) we can derive the average expected

number of PU traffic samples by taking the average for all possible hypotheses which results in (18).

APPENDIX D

PDF DERIVATION FOR SUM OF THE GAMMA AND TRIANGULAR DISTRIBUTED RANDOM VARIABLES

By directly convolving the PDF of gamma distributed random variablex, i.e., fX(x|Θ) whereΘ =

(α, β) with the PDF of triangular distributed random variableφ, i.e.,fΦ(φ), we have the PDF for̃x = x+φ
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as

fX̃(x̃) =

∫ ∞

−∞
fX(x̃− x|Θ)fΦ(x)dx

=















































































































































∫ 0
−Ts

βα

Γ(α) (x̃− x)α−1eβ(x̃−x)

×
(

1
T 2
s

x+ 1
Ts

)

dx

+
∫ Ts

0
βα

Γ(α) (x̃− x)α−1eβ(x̃−x)

×
(

−1
T 2
s

x+ 1
Ts

)

dx, if x̃ ≥ Ts,
∫ 0
−Ts

βα

Γ(α) (x̃− x)α−1eβ(x̃−x)

×
(

1
T 2
s

x+ 1
Ts

)

dx

+
∫ x̃

0
βα

Γ(α)(x̃− x)α−1eβ(x̃−x)

×
(

−1
T 2
s

x+ 1
Ts

)

dx, if 0 ≤ x̃ < Ts,

∫ x̃

−Ts

βα

Γ(α) (x̃− x)α−1eβ(x̃−x)

×
(

1
T 2
s

x+ 1
Ts

)

dx, if − Ts ≤ x̃ < 0,

0, otherwise.

(52)

We now introduce the following Lemma.

Lemma 3:
∫ b

a

βα

Γ(α)
(x̃− x)α−1e−β(x̃−x)

(

1

T 2
s

x+
1

Ts

)

dx

=
Γ(α+ 1, β(x̃− a))− Γ(α+ 1, β(x̃ − b))

Γ(α)βT 2
s

− (x̃+ Ts)(Γ(α, β(x̃ − a))− Γ(α, β(x̃ − b)))
Γ(α)T 2

s

, (53)

∫ b

a

βα

Γ(α)
(x̃− x)α−1e−β(x̃−x)

(

− 1

T 2
s

x+
1

Ts

)

dx

=
−Γ(α+ 1, β(x̃ − a)) + Γ(α+ 1, β(x̃− b))

Γ(α)βT 2
s

+
(x̃− Ts)(Γ(α, β(x̃ − a))− Γ(α, β(x̃ − b)))

Γ(α)T 2
s

. (54)

Proof: Expression (53) and (54) can be calculated directly from thedefinition of incomplete gamma

function and through the integration by parts technique.

Finally, applying Lemma 3 to (52) we obtain (25).
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APPENDIX E

DERIVATION OF VARIANCE FOR ỹ
(j,k)
i

We ignore the indexi for notation convenience and denotex̃ = x + φ. We would like to find the

variance of̃y(j,k) = αj,k log x̃−βj,kx̃, wherex ∼ fj(x|Θj), φ ∼ Λ(−Ts, Ts), andx̃ ∼ fj(x̃|Θj , Ts) given

in Theorem 2. Sincẽx can be negative,̃y(j,k) may be a complex number. Therefore we defineỹ(j,k) ,

ỹ
(j,k)
R +jỹ

(j,k)
I , whereỹ(j,k)R = αj,k log x̃−βj,kx̃ andỹ(j,k)I = 0, if x̃ ≥ 0, andỹ(j,k)R = αj,k log(−x̃)−βj,kx̃

andỹ(j,k)I = παj,k, otherwise. Note the PDF of̃y(j,k) can be represented asf (j,k)
Ỹ

(

ỹ(j,k)
)

= fR
(

ỹ(j,k)
)

+

jfI
(

ỹ(j,k)
)

, wherefR(·) andfI(·) are the PDFs with respect to the real part and imaginary part of ỹ(j,k).

Likewise, the variance for̃y(j,k), i.e., σ̃2j,k, is the sum of the variance of its real partσ̃2R,j,k and imaginary

part σ̃2I,j,k.

First we calculate the variance of the imaginary part. Noting that the first and the second moment

for ỹ(j,k)I , which areE
{

ỹ
(j,k)
I

}

= παj,kE {x̃ < 0} = παj,k

∫ 0
−∞ fj(x̃|Θj , Ts)dx̃ andE

{

(

ỹ
(j,k)
I

)2
}

=

π2α2
j,kE{x̃ < 0} = π2α2

j,k

∫ 0
−∞ fj(x̃|Θj , Ts)dx̃, respectively, we can derivẽσ2I,j,k. The variance for the

real part can be obtained throughfR(ỹ(j,k)). Using Lemma 1 and observing that there may be at most

three solutions tõy(j,k)R = h(x̃), we can derive the PDF for the real part ofỹ(j,k) as
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fR

(

ỹ(j,k)
)

= I(αj,k)I(βj,k)
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+ I(αj,k)I(−βj,k)
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whereB(j,k) is defined as in Appendix A replacingy(j,k) with ỹ(j,k), I(·) is defined in Appendix A,

C(j,k) ,
ỹ(j,k)

αj,k
− log

(

αj,k

βj,k

)

, η = αj,k log
(∣

∣

∣

αj,k

βj,k

∣

∣

∣

)

− αj,k. Therefore we can obtaiñσ2R,j,k by (55d).
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