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Revenue Sharing based Resource Allocation for
Dynamic Spectrum Access Networks

Yuan Wu, Qionghua Zhu, Jianwei Huang, Danny H.K. Tsang

Abstract—We propose a revenue sharing based resource al-
location scheme for dynamic spectrum access (DSA) networks.
In our scheme, based on a mutually agreed revenue sharing
scheme, a primary network operator (PNO) actively shares
its radio resource with a secondary network operator (SNO),
which provides access service to secondary users (SUs) for its
revenue maximization. To investigate the coupling effect between
the revenue sharing and resource allocation, we formulate the
interaction between PNO and SNO as a two-layered game, which
includes a top layer game to model their revenue sharing and
a bottom layer game to model their joint resource allocations.
Specifically, in the top layer, based on their joint resource
allocation decisions, the PNO and SNO form a Nash bargaining
game to determine the revenue sharing scheme such that both
of them can benefit from cooperation satisfactorily. Then, in
the bottom layer, under the given revenue sharing scheme, the
PNO and SNO form a Stackelberg game to determine their joint
resource allocation decisions, which also influence their respective
revenues. The two games work iteratively such that the PNO
and SNO reach a final equilibrium state at which neither PNO
nor SNO will change its decisions unilaterally in both layers.
We propose efficient algorithms to solve both the top layer and
bottom layer games and compute the final equilibrium of the
two-layered game. Specifically, despite the non-convexity of joint
resource allocation optimization problem in the bottom layer, we
identify its hidden monotonic structure and propose an efficient
algorithm, which is based on the polyblock approximation, to
achieve the optimal solutions. Moreover, in the top layer, to
tackle with the difficulty due to the lack of an analytical objective
function for the revenue sharing problem, we explore its hidden
unimodal property and propose a Brent’s method based algorithm
to achieve the optimal solution. Numerical results are presented
to verify the performance of our algorithms and show that our
revenue sharing based resource allocation scheme yields a win-
win situation for the PNO and SNO.

I. INTRODUCTION

Dynamic spectrum access (DSA) is a new paradigm that
can effectively improve spectrum utilization efficiency and
alleviate spectrum congestion for the increasingly crowded
wireless communication systems [1]–[5]. In DSA, the sec-
ondary unlicensed users (usually called the SUs) are allowed
to opportunistically exploit the spectrum resources currently
underutilized by the primary licensed users (usually called the
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PUs). The success of DSA requires the SUs to intelligently
exploit the underutilized spectrum and yield an unharmful (or
controllable) interference to the PUs. The prior literature on
resource allocation of DSA can be categorized by the roles
of PUs, namely, the passive PU model and the active PU
model. The passive model assumes that a PU is unaware of
the operations of SUs (who are usually obligated to perform
spectrum sensing to explore idle spectrum), and it does not
require any modification for the PU systems [6]–[8]. Despite
its advantage of being backward compatible with the legacy
communication systems nowadays, the passive model gains the
PU nothing. In contrast, in the active model, a PU is assumed
to know the existence of SUs and can benefit from DSA by
leasing its spectrum resources to the SUs, e.g., obtaining either
an improved transmission performance [9]–[11] or economic
compensations [12]–[17], [19]–[26]. Specifically, in this paper,
we consider the active PU model, in which the primary network
operator aims at obtaining an economic gain by leasing its
radio resource to the secondary network operator.

There are several different economic mechanisms that can
coordinate the interactions between the PUs and SUs in
the active PU model. Next we review two commonly used
approaches: pricing and auction. Pricing strategy is an ef-
fective strategy to motivate the resource leasing of primary
network [15]–[18]. Specifically, the authors of [15] analyzed
competitive and cooperative pricing of the PUs to lease their
temporarily idle bandwidth to the SUs. The authors of [16]
further investigated a multi-level marketed model, where the
PUs sold the idle bandwidth to the SUs, which again sold
the allocated bandwidth to tertiary and quaternary services.
Recent paper [17] proposed a model in which the PUs charged
the SUs for their time-slot leasing. Besides leasing the idle
resource to the SUs in an interference-free manner, the PUs can
also allow concurrent transmission of the SUs and then charge
the suffered interference from them. Related papers [19]–[22]
investigated the charging of SUs’ interference to optimize the
revenue of PU. Specifically, in [19], [20], the PU aimed at
maximizing its revenue by charging the SUs’ interference,
which was subject to a fixed interference-cap. In comparison,
in [21], [22], the PU’s interference-cap was considered to be
a tunable parameter, which worked together with the power
allocation to optimize the revenue of PU. Auction strategy
is also an effective strategy to motivate the resource leasing
of primary network [23]–[27]. Specifically, the authors of
[23] proposed a multi-auctioneer progressive auction to model
the spectrum sharing of multiple PUs. In [24], the authors
investigated a short term secondary spectrum trading between
one PU and multiple SUs in a hybrid spectrum market to
optimize the expected profit of PU. Recent paper [25] adopted
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the auction strategy to jointly maximize the total satisfaction of
all SUs as well as the revenue of PU. Different from [23]–[25]
which considered the interference-free model and treated the
idle spectrum as a tradable commodity, the authors of [26], [27]
considered the interference-cap as a commodity for trading in
auction.

Different from the approaches of pricing and auction, we
propose a revenue sharing based resource allocation scheme for
the primary network operator (PNO) and secondary network
operator (SNO). In our scheme, a PNO, which provides access
service to the PU, leases part of its spectrum resources to
a SNO, which again uses the leased resources to provide
access service to the SUs. The SNO then shares part of the
corresponding revenue with the PNO. The revenues achieved
by the PNO and SNO depend on both their revenue sharing
scheme and their joint resource allocation decisions, which
are coupled together. Intuitively, a revenue sharing scheme
which favors the SNO will discourage the PNO to lease its
spectrum resources to the SNO, which in turn reduces the
SNO’s revenue. However, a revenue sharing scheme which
favors the PNO will directly reduce the revenue of SNO.
Hence, it is important to achieve a proper balance between the
revenue sharing and the joint resource allocations to achieve a
win-win situation for both PNO and SNO.

There are several recent papers that investigated the band-
width sharing among network service providers by using a
revenue (or cost) sharing economic mechanism [28], [29].
Differing from the orthogonal bandwidth sharing in [28],
[29], the joint resource allocation decisions of PNO and SNO
in our model take account of the co-channel interferences
between them, which thus lead to non-convex resource al-
location problems in the bottom layer. Furthermore, due to
the fact that the optimal joint resource allocation decisions
cannot be derived analytically, the bargaining based revenue
sharing between PNO and SNO in the top layer again yields
a complicated optimization problem whose objective function
cannot be easily characterized. Solving these coupled and non-
convex optimization problems efficiently is a key contribution
of this paper. Our main contributions in this paper can be
summarized as follows.

∙ To investigate the proper tradeoff between revenue sharing
and resource allocation, we model the interaction between
PNO and SNO as a two-layered game. First, in the top
layer, based on the joint resource allocation decisions, the
PNO and SNO form a Nash bargaining game to reach
an agreement on their revenue sharing such that both of
them can benefit [44]. Second, in the bottom layer, under
a given revenue sharing scheme, the PNO and SNO form
a Stackelberg game, a two-stage dynamic game, to reach
an equilibrium in their joint resource allocation decisions
[45]. The two games work iteratively to reach the final
equilibrium, at which neither the PNO nor the SNO will
change its decisions unilaterally in both layers.

∙ We propose algorithms to compute the equilibrium of
the two-layered game. We first characterize the optimality
condition for the SNO’s revenue maximization problem.
Using this condition, we reveal the monotonic structure
of the PNO’s revenue maximization problem and propose

efficient algorithms to determine the optimal solutions,
which subsequently lead to the optimal joint resource
allocation decisions for the PNO and SNO in the bottom
layer. Based on this, we further propose an efficient
algorithm to derive the optimal revenue sharing scheme
between the PNO and SNO in the top layer.

∙ Extensive numerical results demonstrate the accuracy and
computational efficiency of our proposed algorithms. We
also show that our resource allocation scheme leads to
a win-win situation for the PNO and SNO and enables
them to positively benefit in a fair manner.

The rest of this paper is organized as follows. We discuss
the system model and problem formulation in Section II. We
derive the optimal joint resource allocation decisions in the
bottom layer in Section III and Section IV. We then derive the
optimal revenue sharing scheme in the top layer in Section V.
We present the numerical results in Section VI and conclude
this work in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first describe the system model in Subsection II-A.
Then, we present the mathematical problem formulations in
Subsection II-B and Subsection II-C.

A. System Model

PUPUPUPU

SUSUSUSU3333

SUSUSUSU4444

SUSUSUSU5555

SUSUSUSU6666

SUSUSUSU7777

SUSUSUSU8888

SUSUSUSU2222

SUSUSUSU9999

SUSUSUSU1111

PNPNPNPN----APAPAPAP1111

PNPNPNPN----APAPAPAP2222

PNPNPNPN----APAPAPAP3333

SNOSNOSNOSNO

PNOPNOPNOPNO

Fig. 1: An illustrative system model. A PNO uses three APs to provide
uplink access service to the PU. The PNO leases its APs to a SNO,
which provides access service to the SUs (by using the leased APs
from the PNO). Around each AP 𝑘, there is a group of SUs 𝒮𝑘, who,
under the control of SNO, access AP 𝑘 for their uplink transmission.

As illustrated in Figure 1, in our system model, the PNO uses
a set 𝒦 = {1, 2, ...,𝐾} of APs to provide uplink access service
to a representative PU. Each AP 𝑘 is allocated a licensed
bandwidth of 𝐵𝑘, and different APs operate in non-overlapping
bandwidths. In the rest of the paper, we treat AP 𝑘 and its
equipped spectrum (or channel) 𝑘 interchangeably. The PNO
can adjust the uplink transmission rates of PU on its different
APs (i.e., from the PU to the APs) with a guarantee of the
PU’s quality of service (QoS) requirements. Meanwhile, there
also exists a SNO that coexists with the PNO and provides
uplink access service to the SUs by renting the PNO’s APs.
Specifically, around each AP 𝑘, there exists a group of SUs,
who, under the control of SNO, access AP 𝑘 for their uplink
transmission (i.e., from the SUs to AP 𝑘). We denote this
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set of SUs by 𝒮𝑘 = {𝑆1, 𝑆2, ..., 𝑆𝑀𝑘
} with 𝑀𝑘 denoting the

total number of SUs belonging to set 𝒮𝑘
1. To lease its APs to

the SNO, the PNO controls the interference-cap 𝑄𝑘
0 at each

AP 𝑘, which represents the PNO’s tolerable interference level
measured at AP 𝑘. Subject to the PNO’s interference-caps,
the SNO then determines each SU’s bandwidth allocation and
transmit-power to maximize its revenue from providing the
access service. Meanwhile, as a compensation for its lease of
APs, the PNO is allowed to share part of the SNO’s revenue.
Let 𝜔 denote the sharing factor, which represents the portion
of SNO’s total revenue shared to the PNO. Specifically, 𝜔 = 1
means that the PNO gets all the SNO’s revenue and leaves the
SNO nothing. In contrast, 𝜔 = 0 means that the PNO gets
nothing from the SNO, implying that the PNO and SNO fail
to reach an agreement on their revenue sharing.

The revenues achieved by the PNO and SNO depend on both
their agreed revenue sharing scheme and their joint resource
allocation decisions. Therefore, to quantify their respective
revenues, we need to take account of the following two-layered
interaction (the details are shown in Figure 2):

∙ In the bottom layer, based on a given sharing factor 𝜔, the
PNO and SNO determine their joint resource allocation
decisions to maximize their respective revenues. Since the
PNO is dominant in leasing its APs, the PNO (as the
leader) first determines its interference-caps {𝑄𝑘

0} at its
APs and the PU’s transmit-power {𝑝𝑘0} (to meet the PU’s
QoS requirements). After knowing the PNO’s decisions,
the SNO (as the follower) determines each SU’s band-
width allocation and transmit-power. This leader-follower
interaction is modeled as a Stackelberg game, whose
equilibrium corresponds to the optimal joint resource
allocation decisions of PNO and SNO in the bottom layer.

∙ In the top layer, based on their joint resource allocation
decisions, the PNO and SNO determine the sharing factor
such that both of them can achieve satisfactory revenues.
This process is modeled as a Nash bargaining game,
whose equilibrium specifies the optimal sharing factor for
the PNO and SNO.

In the next two subsections, we will present the mathemat-
ical formulations for each layer of the game.

B. Stackelberg Game in Bottom Layer for Joint Resource
Allocations

In this subsection, we mathematically formulate the Stack-
elberg game in the bottom layer, which includes the game
leader PNO’s optimization problem and the game follower
SNO’s optimization problem. We will analyze the Stackelberg
game through a backward induction, starting from the SNO’s
optimization problem.

1) SNO’s Optimization Problem: Knowing the PNO’s deci-
sions on its interference-caps and the PU’s transmit-power, the
SNO determines each SU’s bandwidth allocation and transmit-
power to maximize its revenue.

1In this work, we assume that each SU has one radio interface and thus can
only access the nearest AP to it. Hence, we have 𝒮𝑘

∩𝒮𝑗 = ∅ when 𝑘 ∕= 𝑗
and 𝑘, 𝑗 ∈ 𝒦. Notice that related work [19] also adopted a similar model in
which the SNO can use the APs of PNO for access service.

Opt. of SNO (follower) 
in Sec. III Opt. of PNO (leader) 

in Sec. IV
0 0{ , }k kQ p

kk k ks ss SI g p
∈

= ∑

SU 1 SU 2 SU S

{ , }k ks sb p

ω

Revenue of PNO

Bargaining on the sharing 
factor  in Sec. V

Revenue of SNO 

Bottom Layer: Stackelberg Game for Joint Resource Allo.

Top Layer: Nash Bargaining Game for Revenue Sharing
(1 )ω−

Fig. 2: A two-layered interaction. The bottom block: the PNO
and SNO form a Stackelberg game to determine the joint resource
allocation decisions. The top block: the PNO and SNO form a Nash
bargaining game to determine the revenue sharing scheme.

Specifically, let 𝑏𝑘𝑠 and 𝑝𝑘𝑠 denote SU 𝑠’s allocated bandwidth
and transmit-power by the SNO on AP 𝑘, respectively. Then,
the uplink throughput of SU 𝑠 via AP 𝑘 is given by

𝑅𝑘
𝑠 = 𝑏𝑘𝑠 log2

(
1 +

𝑔𝑘𝑠𝑝
𝑘
𝑠

𝑏𝑘𝑠(𝑛0 + 𝑔𝑘0𝑝
𝑘
0/𝐵

𝑘)

)
. (1)

Here, 𝑛0 denotes the power density of the background noise.
𝑔𝑘𝑠 denotes the channel gain from SU 𝑠 to AP 𝑘, and 𝑔𝑘0 denotes
the channel gain from the PU to AP 𝑘. Recall that 𝑝𝑘0 denotes
the PU’s transmit-power on AP 𝑘. Since the PU’s transmission
(i.e., from the PU to each AP) occupies the entire bandwidth
of each AP 𝑘, the interference power density from the PU is
thus given by 𝑝𝑘

0𝑔
𝑘
0

𝐵𝑘 ,∀𝑠 ∈ 𝒮𝑘.
Using the access service controlled by SNO, the SUs make

the corresponding payments to the SNO. Let 𝜌 denote the
SNO’s price (e.g., with the unit of $/Mbps) charged to the
throughput of each SU. Then, given the sharing factor 𝜔, the
SNO’s revenue maximization problem is formulated as follows

(SNO-P): 𝑆(𝜔) =

max(1− 𝜔)𝜌
∑
𝑘∈𝒦

∑
𝑠∈𝒮𝑘

𝑏𝑘𝑠 log2
(
1 +

𝑔𝑘𝑠𝑝
𝑘
𝑠

𝑏𝑘𝑠(𝑛0 + 𝑔𝑘0𝑝
𝑘
0/𝐵

𝑘)

)
subject to:

∑
𝑠∈𝒮𝑘

𝑏𝑘𝑠 ≤ 𝐵𝑘,∀𝑘 ∈ 𝒦, (2)

𝐼𝑘 =
∑
𝑠∈𝒮𝑘

𝑔𝑘𝑠𝑝
𝑘
𝑠 ≤ 𝑄𝑘

0 ,∀𝑘 ∈ 𝒦, (3)

𝑝𝑘𝑠 ≤ 𝑃max
𝑠 ,∀𝑠 ∈ 𝒮𝑘,∀𝑘 ∈ 𝒦, (4)

variables: {𝑏𝑘𝑠 , 𝑝𝑘𝑠}∀𝑠∈𝒮𝑘,∀𝑘∈𝒦.

Constraint (2) means that for each AP 𝑘, the total bandwidth al-
located by the SNO should be no more than the total bandwidth
𝐵𝑘 of AP 𝑘. Constraint (3) means that for each AP 𝑘, the total
interference caused by the SUs, i.e., 𝐼𝑘 =

∑
𝑠∈𝒮𝑘

𝑔𝑘𝑠𝑝
𝑘
𝑠 , should

not violate the PNO’s interference-cap 𝑄𝑘
0 . Although different

SUs in 𝒮𝑘 use different portions of AP 𝑘’s bandwidth, they all
cause interference to the PU, because the PU’s transmission
occupies the entire bandwidth of AP 𝑘. In particular, we
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assume that the PU treats the aggregate interference at AP
𝑘, which is from all SUs in 𝒮𝑘, as a whole. Notice that such
interference-cap constraints also appeared in [41], [42]. Finally,
constraint (4) means that each SU 𝑠’s transmit-power is no
greater than its upper bound 𝑃max

𝑠 .
Our focuses in this work are to understand the collaboration

between PNO and SNO and to investigate their potential
benefits from it. To this end, in Problem (SNO-P), we assume
that each SU always has sufficient data to send, and thus it
will fully utilize the bandwidth allocation and transmit-power
determined by the SNO and pay the SNO accordingly. This
optimistic assumption corresponds to an upper bound of the
network revenue.

2) PNO’s Optimization Problem: Knowing the SNO’s op-
timal bandwidth allocation and power allocation (i.e., the op-
timal solutions of Problem (SNO-P)), the PNO will determine
its interference-caps {𝑄𝑘

0} and the PU’s transmit-power {𝑝𝑘0}
to maximize its revenue.

First, the PU’s transmit-power should meet its own QoS
requirements represented below

𝑅𝑘,min
0 ≤ 𝐵𝑘 log2(1 +

𝑔𝑘0𝑝
𝑘
0

𝑛0𝐵𝑘 + 𝐼𝑘
) ≤ 𝑅𝑘,max

0 ,∀𝑘 ∈ 𝒦, (5)∑
𝑘∈𝒦

𝐵𝑘 log2(1 +
𝑔𝑘0𝑝

𝑘
0

𝑛0𝐵𝑘 + 𝐼𝑘
) ≥ 𝑅req

0 . (6)

Here, 𝑅𝑘,min
0 and 𝑅𝑘,max

0 denote the minimum rate and the
maximum rate of PU at AP 𝑘, respectively, to guarantee
a successful transmission. Besides, 𝑅req

0 denotes the PU’s
total throughput requirement, which satisfies

∑
𝑘 𝑅

𝑘,min
0 ≤

𝑅req
0 ≤ ∑

𝑘 𝑅
𝑘,max
0 . Recall that the PNO treats the aggregate

interference from all SUs in 𝒮𝑘 as a whole, thus yielding
the PU’s uplink throughput on each AP 𝑘 as shown in
the above constraints (5) and (6). Due to this co-channel
interference, the PU needs to consume additional transmit-
power to guarantee its throughput requirements, compared to
the case without allowing any interference from the SUs (i.e.,
𝑄𝑘

0 = 0,∀𝑘). Let 𝛼 denote the PU’s marginal cost for its power
consumption. Thus, the PU’s additional power cost is given
by 𝛼(

∑
𝑘∈𝒦 𝑝𝑘0 − 𝑝0). Here, 𝑝0 denotes the PU’s minimum

transmit-power to guarantee its throughput requirements, and
its value can be given by

𝑝0 = min
{𝑝𝑘

0}𝑘∈𝒦

∑
𝑘∈𝒦

𝑝𝑘0 ,

subject to: 𝐼𝑘 = 0,∀𝑘 ∈ 𝒦, and constraints (5), (6).

We treat 𝑝0 as a constant in the rest of the paper. In this work,
we consider that the set of APs, which are owned by the PNO,
are connected with the controller (or central server) of PNO
via the wired networks (e.g., an optical fiber network). Thus,
the APs can measure the channel state information and then
send such information to the PNO for its subsequent radio
resource allocations. This is similar to the current practice
in base-station subsystems (BSS) of cellular networks, where
several neighboring base-transceiver stations (BTSs) are con-
nected with a common base station controller (BSC) via wired
lines. The BTSs report the required information (e.g., channel
information) to the BSC, and operate under the control of

BSC to provide radio access to mobile users. Similarly to the
PNO, we assume that the SNO is connected to the sets of APs
via a wired network to obtain the channel state information
between the APs and SUs. Furthermore, we consider a FDD
system in which the APs first measure the uplink channel
state information from the PU (or SUs) via some conventional
pilot-based channel estimation schemes, and then feedback the
consequent instructions on radio resource control to the PU (or
SUs) for transmission2.

Considering the share of SNO’s revenue, the PNO’s rev-
enue maximization problem, which takes account of the PU’s
additional power consumption cost, is as follows

(PNO-P): 𝐹0(𝜔) =

max𝜔𝜌
∑
𝑘∈𝒦

∑
𝑠∈𝒮𝑘

𝑏𝑘𝑠 log2
(
1 +

𝑔𝑘𝑠𝑝
𝑘
𝑠

𝑏𝑘𝑠(𝑛0 + 𝑔𝑘0𝑝
𝑘
0/𝐵

𝑘)

)−
𝛼(

∑
𝑘∈𝒦

𝑝𝑘0 − 𝑝0),

subject to: 𝐼𝑘 =
∑
𝑠∈𝑆𝑘

𝑔𝑘𝑠𝑝
𝑘
𝑠 ≤ 𝑄𝑘

0 ,∀𝑘 ∈ 𝒦

constraints (5) and (6),

variables: {𝑄𝑘
0 , 𝑝

𝑘
0}∀𝑘∈𝒦.

The objective function of Problem (PNO-P) represents the
PNO’s goal of maximizing its additional profit from resource
sharing, i.e., the difference between its shared revenue from
the SNO and the PU’s additional power consumption cost to
meet its throughput requirements. In other words, the larger the
shared revenue and the lower the cost the better. Hence, these
two terms are parts of the objective function. Meanwhile, the
PNO only needs to provide a required throughput for the PU to
meet its QoS, which motives us to adopt constraints (5) and (6).
Notice that in Problem (PNO-P), the PNO faces an intrinsic
tradeoff in setting its interference-caps. Specifically, setting
the interference-caps tightly will reduce the PU’s additional
power consumption cost, but this will also reduce the SNO’s
capability of collecting revenue, which in turn reduces the
PNO’s revenue.

The equilibrium of bottom layer game corresponds to the
joint resource allocation decisions, including i) the PNO’s
decisions on its interference-caps and the PU’s transmit-power,
which are the optimal solutions of Problem (PNO-P), and ii)
the SNO’s decisions on each SU’s bandwidth allocation and
transmit-power, which are the optimal solutions of Problem
(SNO-P).

C. Nash Bargaining in Top Layer for Revenue Sharing Scheme

In this subsection, we mathematically formulate the Nash
bargaining game in the top layer.

2As a first attempt to model and understand the intrinsic coupling effect
between the revenue sharing and cooperative radio resource allocation for the
primary and secondary networks, in this work, we focus on the scenario of
quasi-static channel environment, where the channel state keeps unchanged or
changes slowly during the time frame of interests (e.g., transmission duration
for one data frame). In practice, the channel information might be imperfect,
e.g. being inaccurate and outdated. Incorporating the impact of imperfect
channel information requires to formulate the optimization problem via the
robust optimization techniques as in [38]–[40], and it is an important future
direction to extend this work.
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Based on the optimal joint resource allocation decisions in
the bottom layer, the PNO knows its revenue 𝐹0(𝜔), which
is the optimal objective value of Problem (PNO-P), and the
SNO knows its revenue 𝑆(𝜔), which is the optimal objective
value of Problem (SNO-P). Based on 𝐹0(𝜔) and 𝑆(𝜔), the
PNO and SNO further negotiate about the sharing factor 𝜔 to
achieve a satisfactory win-win situation, as shown in the top
block in Figure 2. This negotiation process essentially matches
the practice that two agents of different interests bargain over
a social yet limited resource, which thus motivates us to model
it as a Nash bargaining problem as follows (the capital letters
“RS” stand for “Revenue Sharing”):

(RS-P): max
0≤𝜔≤1

𝑊 (𝜔) =
(
𝐹0(𝜔)− 𝐹0(0)

)(
𝑆(𝜔)− 𝑆(0)

)
.

Here, 𝐹0(0) and 𝑆(0) denote the respective benchmark rev-
enues of PNO and SNO, when they fail to reach an agreement.
Problem (RS-P) aims to ensure that both PNO and SNO can
positively benefit from cooperation beyond their benchmark
performance in a fair manner.

In the next Section III and Section IV, we solve Problem
(SNO-P) and Problem (PNO-P), respectively, thus reaching the
equilibrium in the bottom layer. Then, in Section V, we solve
Problem (RS-P) in the top layer.

III. SOLVING THE BOTTOM LAYER GAME:
THE SNO’S OPTIMIZATION

We use the backward induction to solve the Stackelberg
game in the bottom layer. In this section, we first solve the
SNO’s Problem (SNO-P), which is repeated below, under the
given PNO’s decisions {𝑄𝑘

0 , 𝑝
𝑘
0} and the sharing factor 𝜔:

(SNO-P):

max(1− 𝜔)𝜌
∑
𝑘∈𝒦

∑
𝑠∈𝒮𝑘

𝑏𝑘𝑠 log2
(
1 +

𝑔𝑘𝑠𝑝
𝑘
𝑠

𝑏𝑘𝑠(𝑛0 + 𝑔𝑘0𝑝
𝑘
0/𝐵

𝑘)

)
subject to: constraints (2), (3) and (4),

variables: {𝑏𝑘𝑠 , 𝑝𝑘𝑠}∀𝑠∈𝒮𝑘,∀𝑘∈𝒦.

We can characterize Problem (SNO-P) as follows.
Lemma 1: (Convexity of Problem (SNO-P)) Problem

(SNO-P) is a jointly convex optimization problem with respect
to {𝑏𝑘𝑠} and {𝑝𝑘𝑠}.

Proof: It is easy to show that the Hessian matrix of each
component, i.e., log2

(
1+

𝑔𝑘
𝑠 𝑝

𝑘
𝑠

𝑏𝑘𝑠 (𝑛0+𝑔𝑘
0𝑝

𝑘
0/𝐵

𝑘)

)
, is negatively defi-

nite with respect to {𝑏𝑘𝑠 , 𝑝𝑘𝑠} (the detailed calculation can be re-
ferred to [31] and is omitted here for space limitation). Further
because constraints (2)-(4) are all linear functions, Problem
(SNO-P) is a convex problem [43]. □

Let {𝑏𝑘∗𝑠 } and {𝑝𝑘∗𝑠 } denote the SNO’s optimal decisions
on the bandwidth allocations and transmit-power for Problem
(SNO-P), respectively. We have the following result.

Lemma 2: (Structural Property of SNO’s Optimal Resource
Allocation Decisions) The optimal solutions of Problem (SNO-
P) meet the following condition for each AP 𝑘,

𝑏𝑘∗𝑠 = 𝐵𝑘 𝑔
𝑘
𝑠𝑝

𝑘∗
𝑠

𝐼𝑘∗
,∀𝑠 ∈ 𝒮𝑘, (7)

where 𝐼𝑘∗ =
∑

𝑠∈𝒮𝑘
𝑔𝑘𝑠𝑝

𝑘∗
𝑠 denotes the aggregate interference

to AP 𝑘 under the SNO’s optimal power allocations.

Proof: Please refer to Appendix I. Notice that the above
result holds even when 𝑝𝑘∗𝑠 = 0 for some SU 𝑠. □

Lemma 2 means that the optimal bandwidth allocation to
each SU should be proportional to its interference incurred.
We further replace 𝑏𝑘𝑠 by using (7), and thus express SU 𝑠’s
throughput at AP 𝑘 as follows

𝑅𝑘
𝑠 =

𝑔𝑘𝑠𝑝
𝑘
𝑠

𝐼𝑘
𝐵𝑘 log2(1 +

𝐼𝑘

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘
0

)

=
𝑔𝑘𝑠𝑝

𝑘
𝑠∑

𝑠∈𝒮𝑘
𝑝𝑘𝑠𝑔

𝑘
𝑠

𝐵𝑘 log2(1 +

∑
𝑠∈𝒮𝑘

𝑝𝑘𝑠𝑔
𝑘
𝑠

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘
0

). (8)

Then, the original Problem (SNO-P) can be equivalently
transformed into the following problem, which only depends
on the SUs’ transmit-power (the capital letter “E” stands for
“Equivalence”)

(SNO-P-E): max(1− 𝜔)𝜌
∑
𝑘∈𝒦

𝐵𝑘 log2(1 +

∑
𝑠∈𝒮𝑘

𝑝𝑘𝑠𝑔
𝑘
𝑠

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘
0

) (9)

subject to:
∑
𝑠∈𝒮𝑘

𝑝𝑘𝑠𝑔
𝑘
𝑠 ≤ 𝑄𝑘

0 ,∀𝑘, (10)

𝑝𝑘𝑠 ≤ 𝑃max
𝑠 ,∀𝑠 ∈ 𝒮𝑘. (11)

variables: {𝑝𝑘𝑠}∀𝑠∈𝒮𝑘,∀𝑘∈𝒦

Remark 1: The objective function of Problem (SNO-P-E)
indicates that the SNO’s revenue increases in the total interfer-
ence at each AP (i.e., 𝐼𝑘 =

∑
𝑠∈𝒮𝑘

𝑝𝑘𝑠𝑔
𝑘
𝑠 ), which is consistent

with the intuitions. Suppose that
∑

𝑠∈𝒮𝑘
𝑃max
𝑠 𝑔𝑘𝑠 ≥ 𝑄𝑘

0 (which
is a reasonable assumption from a practical point of view,
since the PNO will gain no more revenue by setting its
interference-cap 𝑄𝑘

0 >
∑

𝑠∈𝒮𝑘
𝑃max
𝑠 𝑔𝑘𝑠 ). Then, we always have

𝐼𝑘 = 𝑄𝑘
0 ,∀𝑘 at the optimal solutions of Problem (SNO-P-E).

In other words, to maximize its revenue, the SNO should fully
utilize the interference-caps at all APs. □

Although we know the optimality condition of Problem
(SNO-P) in Lemma 2, the optimal bandwidth allocation and
transmit-power for each SU still need to be determined. For
this purpose, we propose the following fairness rule, which
does not affect the SNO’s maximum revenue but leads to a
fair resource allocation among all SUs accessing the same AP.
Specifically, let 𝛽𝑠 denote the weight associated with SU 𝑠
(notice that our analysis below applies to arbitrary choice of
positive weights {𝛽𝑠} of SUs). Then, the fairness rule requires
the following condition to hold

𝑅𝑘
𝑠

𝛽𝑠
=

𝑅𝑘
𝑗

𝛽𝑗
,∀𝑠 ∕= 𝑗 and 𝑠, 𝑗 ∈ 𝒮𝑘. (12)

Based on eq. (12) above, we have the following results.
Lemma 3: (SNO’s Optimal Decisions on Bandwidth Allo-

cation and Transmit-Power) Using the fairness rule in (12), the
SNO’s optimal decisions on the transit-power and bandwidth
allocation for Problem (SNO-P-E) (and also for Problem
(SNO-P) equivalently) are respectively given by

𝑝𝑘∗𝑠 =
𝛽𝑠∑
𝑗 𝛽𝑗

𝑄𝑘
0

𝑔𝑘𝑠
,∀𝑠 ∈ 𝒮𝑘,∀𝑘 ∈ 𝒦, (13)

𝑏𝑘∗𝑠 =
𝛽𝑠∑
𝑗 𝛽𝑗

𝐵𝑘,∀𝑠 ∈ 𝒮𝑘,∀𝑘 ∈ 𝒦. (14)
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Proof: Please refer to Appendix II. Notice that the resource
allocations given by eq. (13) and eq. (14) guarantee that the
SNO can fully exploit the PNO’s interference-caps at all APs.
Therefore, they will not yield any loss to the SNO’s maximum
revenue according to our previous discussion in Remark 1. □

IV. SOLVING THE BOTTOM LAYER GAME:
THE PNO’S OPTIMIZATION

After knowing the SNO’s optimal bandwidth allocation and
power allocation to each SU, in this section, we continue to
solve Problem (PNO-P). In particular, we will solve Problem
(PNO-P) via the following three procedures.

∙ Procedure-I: We first make a series of equivalent trans-
formations of Problem (PNO-P), and then identify the
hidden convexity of the subsequently obtained optimiza-
tion problem. Based on the hidden convexity, we obtain a
structural property of the PNO’s optimal power allocation
as a function of its rate allocation.

∙ Procedure-II: Using the structural property from
Procedure-I, we equivalently transform Problem (PNO-P)
into a PNO’s rate allocation problem. We further identify
the monotonic structure of this rate allocation problem.

∙ Procedure-III: Using the monotonic structure from
Procedure-II, we propose efficient algorithms to obtain
the PNO’s optimal rate allocation and the corresponding
optimal resource allocations.

Next, we illustrate the details of these three procedures.

A. Procedure-I: Equivalent Transformations of PNO’s Opti-
mization Problem and its Hidden Property

1) Equivalent Transformations of PNO’s Optimization:
Using the property that the SNO always makes 𝐼𝑘 = 𝑄𝑘

0 ,∀𝑘
(as described in Remark 1) and putting

∑
𝑠∈𝒮𝑘

𝑅𝑘
𝑠 in eq.

(8) into Problem (PNO-P), we obtain an equivalent form of
Problem (PNO-P) as follows (the capital letter “E” stands for
“Equivalence”)

(PNO-P-E):

max𝜔𝜌
∑
𝑘∈𝒦

𝐵𝑘 log2(1 +
𝑄𝑘

0

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘
0

)− 𝛼(
∑
𝑘∈𝒦

𝑝𝑘0 − 𝑝0)

subject to:

𝑅𝑘,min
0 ≤ 𝐵𝑘 log2(1 +

𝑔𝑘0𝑝
𝑘
0

𝑛0𝐵𝑘 +𝑄𝑘
0

) ≤ 𝑅𝑘,max
0 ,∀𝑘 ∈ 𝒦,(15)∑

𝑘∈𝒦
𝐵𝑘 log2(1 +

𝑔𝑘0𝑝
𝑘
0

𝑛0𝐵𝑘 +𝑄𝑘
0

) ≥ 𝑅req
0 , (16)

variables: {𝑝𝑘0 , 𝑄𝑘
0}∀𝑘∈𝒦.

Notice that Problem (PNO-P-E) is always feasible since the
PNO can set its interference-cap to be zero, i.e., completely
denying the SUs’ access. Thus, the PU’s QoS requirements
can be satisfied for sure. Recall that we impose

∑
𝑘 𝑅

𝑘,min
0 ≤

𝑅req
0 ≤ ∑

𝑘 𝑅
𝑘,max
0 , as stated in the paragraph after eq. (6).

Problem (PNO-P-E) is still a complicated and non-convex
optimization problem, since the objective function and its
constraint (16) are not jointly convex with respect to {𝑝𝑘0 , 𝑄𝑘

0}.
To solve it, we introduce the auxiliary variable 𝑅𝑘

0 =

𝐵𝑘 log2 (1 +
𝑔𝑘
0𝑝

𝑘
0

𝑛0𝐵𝑘+𝑄𝑘
0
),∀𝑘 ∈ 𝒦, which represents the PNO’s

rate allocation to the PU at AP 𝑘. Thus, the interference-cap
𝑄𝑘

0 can be expressed in the terms of the rate allocation and
transmit-power as follows

𝑄𝑘
0(𝑅

𝑘
0 , 𝑝

𝑘
0) =

𝑔𝑘0𝑝
𝑘
0

2𝑅
𝑘
0/𝐵

𝑘 − 1
− 𝑛0𝐵

𝑘,∀𝑘 ∈ 𝒦. (17)

By substituting the above result into Problem (PNO-P-E)
and further performing some manipulations, we obtain an
equivalent form of Problem (PNO-P-E) as follows

(PNO-P-E’) max
{𝑝𝑘

0 ,𝑅
𝑘
0}∀𝑘∈𝒦

𝜔𝜌
∑
𝑘∈𝒦

𝐵𝑘log2
2𝑅

𝑘
0/𝐵

𝑘

(2𝑅
𝑘
0/𝐵

𝑘 − 1)
+

𝜔𝜌
∑
𝑘∈𝒦

𝐵𝑘log2
( 𝑔𝑘0𝑝

𝑘
0

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘
0

)− 𝛼(
∑
𝑘∈𝒦

𝑝𝑘0 − 𝑝0)

subject to: 𝑔𝑘0𝑝
𝑘
0 ≥ (2𝑅

𝑘
0/𝐵

𝑘 − 1)𝑛0𝐵
𝑘,∀𝑘 ∈ 𝒦, (18)

𝑅𝑘,min
0 ≤ 𝑅𝑘

0 ≤ 𝑅𝑘,max
0 ,∀𝑘 ∈ 𝒦, (19)∑

𝑘∈𝒦
𝑅𝑘

0 ≥ 𝑅req
0 . (20)

The new constraint (18) guarantees that the original
interference-cap is nonnegative at each AP.

2) Hidden Convexity and Structural Property of PNO’s
Power Allocation: Problem (PNO-P-E’) is still non-convex in
{𝑅𝑘

0 , 𝑝
𝑘
0}, and thus is difficult to solve. A deeper investigation

on it shows the following property.
Lemma 4: (Hidden Convexity of Problem (PNO-P-E’))

Suppose that the rate allocation variables {𝑅𝑘
0}, which are

feasible to conditions (19) and (20), are fixed. Then, Problem
(PNO-P-E’) becomes an optimization problem with respect to
the transmit-power {𝑝𝑘0} only, and this problem is a strictly
convex optimization problem separable for each AP.

Proof: Please refer to Appendix III. □

Using Lemma 4, we first determine the optimal transmit-
power as a function of the feasible rate allocation. Specifically,
under a given {𝑅𝑘

0}, the PNO’s revenue maximization problem
with respect to {𝑝𝑘0} becomes

max
{𝑝𝑘

0}∀𝑘∈𝒦
𝜔𝜌

∑
𝑘∈𝒦

𝐵𝑘log2
𝑔𝑘0𝑝

𝑘
0

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘
0

− 𝛼(
∑
𝑘∈𝒦

𝑝𝑘0 − 𝑝0)

subject to: 𝑔𝑘0𝑝
𝑘
0 ≥ (2𝑅

𝑘
0/𝐵

𝑘 − 1)𝑛0𝐵
𝑘,∀𝑘 ∈ 𝒦. (21)

According to Lemma 4, the above problem has a unique
optimal solution, which can be characterized as follows.

Proposition 1: (Structural Property of Optimal Transmit-
Power) For each AP 𝑘, there exists a critical threshold, which
is denoted by 𝜂𝑘 and given by

𝜂𝑘 = 𝐵𝑘
(
log2(1 +

√
1 +

4𝜔𝜌𝑔𝑘0
𝛼𝑛0 ln 2

)− 1
)
. (22)

Knowing 𝜂𝑘 for each AP 𝑘, the PNO’s optimal decision on the
PU’s transmit-power, as a function of its rate allocation 𝑅𝑘

0 , is
given by

𝑝𝑘∗0 (𝑅𝑘
0) =

⎧⎨⎩
𝑛0𝐵

𝑘

2𝑔𝑘
0
(
√

1 +
4𝜔𝜌𝑔𝑘

0

𝛼𝑛0 ln 2 − 1), if 𝑅𝑘
0 ≤ 𝜂𝑘,

(2𝑅
𝑘
0/𝐵𝑘−1)𝑛0𝐵

𝑘

𝑔𝑘
0

, if 𝑅𝑘
0 > 𝜂𝑘.

(23)
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Further based on eq. (17), the PNO’s optimal interference-cap
at each AP 𝑘 is

𝑄𝑘∗
0 (𝑅𝑘

0) =

{
𝑔𝑘
0𝑝

𝑘∗
0 (𝑅𝑘

0 )

2𝑅
𝑘
0/𝐵𝑘−1

− 𝑛0𝐵
𝑘, if 𝑅𝑘

0 ≤ 𝜂𝑘,

0, if 𝑅𝑘
0 > 𝜂𝑘.

(24)

Proof: Please refer to Appendix IV. □

Remark 2: The optimal transmit-power in (23) can be inter-
preted as follows. For each AP 𝑘, there is a critical threshold
𝜂𝑘 associated with the PNO’s rate allocation. Based on 𝜂𝑘, we
have the following two cases.

∙ if 𝑅𝑘
0 ≤ 𝜂𝑘, then the PU’s optimal transmit-power 𝑝𝑘∗𝑠

is fixed at 𝑝𝑘∗𝑠 = 𝑛0𝐵
𝑘

2𝑔𝑘
0
(
√
1 +

4𝜔𝜌𝑔𝑘
0

𝛼𝑛0 ln 2 − 1), which is
independent of 𝑅𝑘

0 . In this case, the PNO allows to tolerate
the SUs’ interference, i.e., it sets its interference-cap at AP

𝑘 as 𝑄𝑘∗
0 (𝑅𝑘

0) =
𝑛0𝐵𝑘

2 (

√
1+

4𝜔𝜌𝑔𝑘0
𝛼𝑛0 ln 2−1)

2𝑅
𝑘
0/𝐵𝑘−1

− 𝑛0𝐵
𝑘, which is

positive.
∙ if 𝑅𝑘

0 > 𝜂𝑘, then the PU’s optimal transmit-power 𝑝𝑘∗𝑠 =
(2𝑅

𝑘
0/𝐵𝑘−1)𝑛0𝐵

𝑘

𝑔𝑘
0

, which grows exponentially in 𝑅𝑘
0 . In this

case, the PNO does not allow to tolerate any interference
from the SUs, i.e., it sets its interference-cap at AP 𝑘 as
𝑄𝑘∗

0 (𝑅𝑘
0) = 0. □

To verify Proposition 1, the top and bottom plots in Figure
3 show the transmit-power and interference-cap (in the y-
axis) as functions of the PU’s rate allocation (in the x-axis),
respectively. We plot the results under three different values
of 𝜔𝜌

𝛼 , which are marked by the circles, stars and triangles,
respectively. The results show that when the rate allocation
is below 𝜂𝑘, the corresponding transmit-power is constant,
and the interference-cap is positive. In contrast, as the rate
allocation is above 𝜂𝑘, the interference-cap decreases to zero,
and the corresponding transmit-power increases drastically.
Similar results also appear in Figure 4, in which we consider
three different channel gains.
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Fig. 3: The transmit-power and interference-cap as functions of 𝑅𝑘
0

under different values of 𝜔𝜌
𝛼

. Top plot: the optimal transmit-power.
Bottom plot: the optimal interference-cap. We set 𝐵𝑘 = 1MHz, 𝑔𝑘0 =
0.4813, and 𝐵𝑘𝑛0 = 0.001W.
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Fig. 4: The transmit-power and interference-cap as functions of 𝑅𝑘
0

under different 𝑔𝑘0 . Top plot: the PU’s optimal transmit-power. Bottom
plot: the PNO’s optimal interference-cap. We set 𝜔𝜌

𝛼
= 1.

B. Procedure-II: PNO’s Equivalent Rate Allocation Problem
and its Monotonic Structure

Based on Proposition 1, we define two different sets to
categorize different APs, namely, Ω1 = {𝑘∣𝑅𝑘,min

0 ≤ 𝑅𝑘
0 ≤

𝜂𝑘, and 𝑘 ∈ 𝒦} and Ω2 = {𝑘∣𝜂𝑘 ≤ 𝑅𝑘
0 ≤ 𝑅𝑘,max

0 , and 𝑘 ∈
𝒦}. Notice that, to solve the original Problem (PNO-P-E’), we
need to find the optimal combination of (Ω1,Ω2). In particular,
we first introduce a variable 𝐶, which depends on Ω1, as
follows

𝐶(Ω1) =
∑
𝑘∈Ω1

𝜔𝜌𝐵𝑘log2(

√
1 +

4𝜔𝜌𝑔𝑘
0

𝛼𝑛0 ln 2 − 1√
1 +

4𝜔𝜌𝑔𝑘
0

𝛼𝑛0 ln 2 + 1
)−

∑
𝑘∈Ω1

𝛼
𝑛0𝐵

𝑘

2𝑔𝑘0
(

√
1 +

4𝜔𝜌𝑔𝑘0
𝛼𝑛0 ln 2

− 1) + 𝛼𝑝0. (25)

Then, by substituting eq. (23) into the objective function of
Problem (PNO-P-E’), we obtain a rate allocation problem,
which is equivalent to Problem (PNO-P-E’), as follows

(PNO-P-Rate):

max
{𝑅𝑘

0}∀𝑘∈𝒦,Ω1,Ω2

𝜔𝜌
∑
𝑘∈Ω1

𝐵𝑘log2(1 +
1

2𝑅
𝑘
0/𝐵

𝑘 − 1
)−

𝛼
∑
𝑘∈Ω2

(2𝑅
𝑘
0/𝐵

𝑘 − 1)𝑛0𝐵
𝑘

𝑔𝑘0
+ 𝐶(Ω1)

subject to: 𝑅𝑘,min
0 ≤ 𝑅𝑘

0 ≤ 𝜂𝑘,∀𝑘 ∈ Ω1, (26)

𝜂𝑘 ≤ 𝑅𝑘
0 ≤ 𝑅𝑘,max

0 ,∀𝑘 ∈ Ω2, (27)∑
𝑘∈Ω1

𝑅𝑘
0 +

∑
𝑘∈Ω2

𝑅𝑘
0 ≥ 𝑅req

0 . (28)

In Problem (PNO-P-Rate), the decision variables include: (i)
the continuous rate allocation variables {𝑅𝑘

0}, and (ii) the
discrete sets of Ω1 and Ω2. We emphasize that Problem (PNO-
P-Rate) is essentially equivalent to the original PNO’s Problem
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(PNO-P), because we can determine the PU’s optimal transmit-
power via eq. (23) and the PNO’s optimal interference-caps via
eq. (24) after we obtain the optimal rate allocation decisions
for Problem (PNO-P-Rate).

Problem (PNO-P-Rate) is a mixed binary nonlinear program-
ming problem and is difficult to solve in general. Nevertheless,
we notice that under the given set Ω1 and set Ω2, the objective
function of Problem (PNO-P-Rate) is monotonically decreasing
in {𝑅𝑘

0}. Inspired by this observation, we first fix Ω1 and Ω2

and make the changes of variables of 𝑟𝑘0 = 𝜂𝑘 −𝑅𝑘
0 ,∀𝑘 ∈ Ω1

and 𝑟𝑘0 = 𝑅𝑘,max
0 − 𝑅𝑘

0 ,∀𝑘 ∈ Ω2. Then, Problem (PNO-P-
Rate) becomes the following problem, under the given set Ω1

and set Ω2,

(PNO-P-Rate’):

max
{𝑟𝑘0}𝑘∈𝒦

𝜔𝜌
∑
𝑘∈Ω1

𝐵𝑘log2(1 +
1

2(𝜂
𝑘−𝑟𝑘0 )/𝐵

𝑘 − 1
)−

𝛼
∑
𝑘∈Ω2

(2(𝑅
𝑘,max
0 −𝑟𝑘0 )/𝐵

𝑘 − 1)𝑛0𝐵
𝑘

𝑔𝑘0
+ 𝐶(Ω1)

subject to: 0 ≤ 𝑟𝑘0 ≤ 𝜂𝑘 −𝑅𝑘,min
0 ,∀𝑘 ∈ Ω1, (29)

0 ≤ 𝑟𝑘0 ≤ 𝑅𝑘,max
0 − 𝜂𝑘,∀𝑘 ∈ Ω2, (30)∑

𝑘∈Ω1

𝜂𝑘 +
∑
𝑘∈Ω2

𝑅𝑘,max
0 −

∑
𝑘∈Ω1+Ω2

𝑟𝑘0 ≥ 𝑅req
0 . (31)

Notice that Problem (PNO-P-Rate’) might be infeasible, if the
given sets Ω1 and Ω2 lead to 𝑅req

0 >
∑

𝑘∈Ω1

𝜂𝑘 +
∑

𝑘∈Ω2

𝑅𝑘,max
0 .

This infeasibility, fortunately, can be easily checked with.
Based on the above Problem (PNO-P-Rate’), we get the
following result.

Lemma 5: (Monotonic Structure of Problem (PNO-P-
Rate’)) Under the given set Ω1 and set Ω2 , Problem (PNO-
P-Rate’) is a monotonic optimization problem with respect to
the decision variables {𝑟𝑘0}.

Proof: Please refer to Appendix V. Notice that to prove
the monotonic structure, we make two different changes of
variables within set Ω1 and set Ω2, namely, 𝑟𝑘0 = 𝜂𝑘−𝑅𝑘

0 ,∀𝑘 ∈
Ω1, and 𝑟𝑘0 = 𝑅𝑘,max

0 − 𝑅𝑘
0 ,∀𝑘 ∈ Ω2. The purpose is to

ensure that the feasible range of new decision variables, i.e.,
{𝑟𝑘0}, starts from the origin, thus matching the convention of
monotonic optimization problem [34]. □

We first provide a brief introduction to the monotonic opti-
mization here (interested readers please refer to [34] for the de-
tails). Monotonic optimization refers to a type of mathematical
programming problems that aim at maximizing a monotonic
function subject to some monotonic constraints. Specifically,
the monotonic structure has an important property that any
level set of a monotonic function, usually called a normal set
(i.e., Definition 1 provided below), can be approximated by a
nested sequence of sets of polyblock (i.e., Definition 2 below).
Meanwhile, the maximum of an increasing function over a
polyblock is attained at a proper vertex of the polyblock (i.e.,
Definition 3). Exploiting the aforementioned two properties,
[35] proposed a Polyblock Approximation (PA) algorithm to
solve the monotonic optimization problem. Specifically, the PA
algorithm includes two key steps in each round of iteration:
(i) to construct a new polyblock (based on the previous one)
that approximates the feasible set closer from the outside,

and (ii) to find a best vertex that maximizes the objective
function under the newly constructed polyblock. The iteration
process continues until we find the best vertex that falls within
(or close enough to) the feasible region of the optimization
problem, and this best vertex can be considered as the optimal
solution. Although it is still an open question to quantify the
computational complexity of PA algorithm, the PA algorithm is
shown to be able to solve the monotonic optimization problems
efficiently [33], [34].

Definition 1: (Normal Set) A set 𝒢 ⊂ ℛ𝑛
+ is called normal

if for any two points 𝑥 and 𝑥′ ∈ ℛ𝑛
+ with 𝑥′ ≤ 𝑥, if 𝑥 ∈ 𝒢,

then 𝑥′ ∈ 𝒢 holds.
Definition 2: (Polyblock) A set 𝒫 ⊂ ℛ𝑛

+ is called a poly-
block in [𝑎, 𝑏] ⊂ ℛ𝑛

+ if it is the union of a finite number of
boxes [𝑎, 𝑧], 𝑧 ∈ 𝒯 ⊂ [𝑎, 𝑏]. The set 𝒯 is called the vertex set
of the polyblock. The polyblock 𝒫 is generated by 𝒯 exactly.
Intuitively, the polyblock can be roughly considered as a union
of hyper-rectangles.

Definition 3: (Proper Vertex of Polyblock) Let 𝒯 denote the
vertex set of a polyblock 𝑃 ⊂ 𝑅𝑛

+. A vertex 𝑣 ∈ 𝒯 is proper if
it is not dominated by any other 𝑣′ ∈ 𝒯 . A polyblock is fully
determined by its proper vertices.

The monotonic structure of Problem (PNO-P-Rate’) in
Lemma 5 enables us to adopt the PA algorithm to solve
Problem (PNO-P-Rate’) efficiently, under the given set Ω1 and
set Ω2. In the next subsection, by using the PA algorithm as
a subroutine, we further propose two algorithms to solve the
original Problem (PNO-P-Rate).

C. Procedure-III: Two Proposed Algorithms to Solve Problem
(PNO-P-Rate)

1) Algorithm to Solve Problem (PNO-P-Rate): We first
propose a Polyblock Approximation based Exhaustive Search
(PA-ES) Algorithm to solve Problem (PNO-P-Rate) effectively,
i.e., to obtain the optimal sets (Ω∗

1,Ω
∗
2) and the corresponding

optimal rate allocations {𝑅𝑘∗
0 }. The details of Algorithm (PA-

ES) are shown on page 9.
Specifically, Algorithm (PA-ES) enumerates all possible

combinations of (Ω1,Ω2) (i.e., the while-loop from line 2
to line 20). For each enumerated (Ω1,Ω2) which is feasible
to Problem (PNO-P-Rate’), we invoke the PA algorithm as
a subroutine to solve Problem (PNO-P-Rate’) in line 14 and
record the best result found so far in line 17. In summary,
Algorithm (PA-ES) finds the optimal solutions of Problem
(PNO-P-Rate), including (i) the optimal sets Ω∗

1 and Ω∗
2, and

(ii) the optimal rate allocations {𝑅𝑘∗
0 }.

After obtaining the optimal sets (Ω∗
1,Ω

∗
2) and the optimal

rate allocations {𝑅𝑘∗
0 }, the PNO can determine its optimal

interference-caps {𝑄𝑘∗
0 } via (24) and the optimal transmit-

power {𝑝𝑘∗0 } for the PU via eq. (23). We thus finish solving
Problem (PNO-P) completely.

2) Low-Complexity Algorithm to Solve Problem (PNO-P-
Rate): Algorithm (PA-ES) relies on enumerating all possible
combinations of (Ω1,Ω2), which requires a complexity of
O(2𝐾) (recall that 𝐾 denotes the total number of APs). To
further reduce this computational complexity, we propose a
low-complexity algorithm, called PA with Myopic Ordering
(PA-MO) Algorithm, to solve Problem (PNO-P-Rate). The
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Algorithm (PA-ES) to solve Problem (PNO-P-Rate)
Output: the optimal sets (Ω∗

1,Ω
∗
2) and the optimal rate

allocations {𝑅𝑘∗
0 }

1: Initialization: 𝑗 = 0, 𝑉 ES∗ = −∞;
2: while 𝑗 ≤ 2𝐾 − 1 do
3: Transform 𝑗 into a 𝐾-by-1 binary vector b =

(𝑏1, 𝑏2, ..., 𝑏𝐾);
4: for 𝑘 = 1 : 1 : 𝐾 do
5: if 𝑏𝑘 = 0 then
6: Put AP 𝑘 into Ω1;
7: else
8: Put AP 𝑘 into Ω2;
9: end if

10: end for
11: if (Ω1,Ω2) yields that 𝑅req

0 >
∑

𝑘∈Ω1

𝜂𝑘 +
∑

𝑘∈Ω2

𝑅𝑘,max
0

then
12: Set 𝑉 𝑗 = −∞;
13: else
14: Invoke the PA algorithm to solve Problem (PNO-P-

Rate’). Then, record the optimal solution as {𝑟𝑘0}, and
the corresponding objective function value as 𝑉 𝑗 ;

15: end if
16: if 𝑉 𝑗 > 𝑉 ES∗ then
17: 𝑉 ES∗ = 𝑉 𝑗 , {𝑟𝑘∗0 } = {𝑟𝑘0}, Ω∗

1 = Ω1, Ω∗
2 = Ω2;

18: end if
19: 𝑗 = 𝑗 + 1;
20: end while
21: Calculate 𝑅𝑘∗

0 = 𝜂𝑘−𝑟𝑘∗0 ,∀𝑘 ∈ Ω∗
1, and 𝑅𝑘∗

0 = 𝑅𝑘,max
0 −

𝑟𝑘∗0 ,∀𝑘 ∈ Ω∗
2.

details of Algorithm (PA-MO) are also shown on page 9.
Notice that we still use (Ω∗

1,Ω
∗
2) and {𝑅𝑘∗

0 } to denote the
output of Algorithm (PA-MO) for Problem (PNO-P-Rate).

The rationale behind Algorithm (PA-MO) is as follows.
Compared to using an AP with a smaller channel gain, it is
more beneficial for the PNO to use an AP with a greater chan-
nel gain to accommodate the PU’s throughput requirement,
because it reduces the PU’s need for increasing the transmit-
power. Motivated by this, in Algorithm (PA-MO), we first
reorder all the PNO’s APs in an ascending order according
to their channel gains. We then put all the APs in Ω2, which
means that we try to use all the APs to accommodate the PU’s
throughput requirements at the very beginning. Then, we move
the AP with the smallest channel gain from Ω2 to Ω1 (in line
4). Given the updated (Ω1,Ω2) which is feasible to Problem
(PNO-P-Rate’), we invoke the PA algorithm as a subroutine
to solve Problem (PNO-P-Rate’) (in line 8). Then, we record
the best result found so far (in line 11). This process continues
until we move all the APs from set Ω2 to set Ω1. Algorithm
(PA-MO) requires a complexity of O(𝐾), which is less than
that of Algorithm (PA-ES). As shown in the numerical results
in Section VI, Algorithm (PA-MO) is still able to achieve the
satisfactory results but with a further reduced computational
time compared to Algorithm (PA-ES).

Summary and Implementation of the Bottom Layer Equi-
librium: Till now, the PNO can use Algorithm (PA-ES) to

Algorithm (PA-MO) to solve Problem (PNO-P-Rate)
Output: sets (Ω∗

1,Ω
∗
2) and rate allocations {𝑅𝑘∗

0 }
1: Initialization: Ω2 = {1, 2, 3, ...,𝐾}, Ω1 = ∅, 𝑗 = 1,

𝑉 MO∗ = −∞.
2: Reorder all the APs in an ascending order according to

their channel gains, i.e., AP 1 with the smallest channel
gain and AP 𝐾 with the largest channel gain.

3: for 𝑗 = 1 : 1 : 𝐾 do
4: Set Ω2 = Ω2 − {𝑗}, and Ω1 = Ω1 + {𝑗};
5: if (Ω1,Ω2) yields that 𝑅req

0 >
∑

𝑘∈Ω1

𝜂𝑘 +
∑

𝑘∈Ω2

𝑅𝑘,max
0

then
6: Set 𝑉 𝑗 = −∞;
7: else
8: Invoke the PA algorithm to solve Problem (PNO-P-

Rate’). Record the corresponding solution as {𝑟𝑘0} and
the corresponding objective function value as 𝑉 𝑗 ;

9: end if
10: if 𝑉 𝑗 > 𝑉 MO∗ then
11: 𝑉 MO∗ = 𝑉 𝑗 , {𝑟𝑘∗0 } = {𝑟𝑘0}, Ω∗

1 = Ω1, Ω∗
2 = Ω2;

12: end if
13: end for
14: Calculate 𝑅𝑘∗

0 = 𝜂𝑘− 𝑟𝑘∗0 ,∀𝑘 ∈ Ω∗
1, and 𝑅𝑘∗

0 = 𝑅𝑘,max
0 −

𝑟𝑘∗0 ,∀𝑘 ∈ Ω∗
2.

solve Problem (PNO-P-Rate) and obtain the optimal rate
allocations {𝑅𝑘∗

0 }3. The PNO can further calculate its optimal
interference-caps {𝑄𝑘∗

0 } via eq. (24) and the PU’s optimal
transmit-power {𝑝𝑘∗0 } via eq. (23). Knowing the PNO’s optimal
decisions, the SNO can subsequently compute the optimal
bandwidth allocations {𝑏𝑘∗𝑠 } via eq. (14) and the transmit-
power {𝑝𝑘∗𝑠 } via eq. (13) for each SU. Therefore, under a
given sharing factor, the PNO and SNO eventually reach the
optimal joint resource allocation decisions, which correspond
to the bottom layer equilibrium.

V. REVENUE SHARING IN THE TOP LAYER VIA A NASH
BARGAINING GAME

Based on the joint resource allocation decisions at the
bottom layer, in this section, we continue to solve Problem
(RS-P) in the top layer to determine the optimal sharing factor.

We first repeat the problem formulation below for the sake
of clear presentation

(RS-P): max
0≤𝜔≤1

𝑊 (𝜔) = (𝐹0(𝜔)− 𝐹0(0))(𝑆(𝜔)− 𝑆(0)). (32)

Recall that the PNO’s revenue 𝐹0(𝜔) is the optimal objective
value of Problem (PNO-P), and the SNO’s revenue 𝑆(𝜔) is the
optimal objective value of Problem (SNO-P). Both of them
are functions of the sharing factor 𝜔, and their values can
be quantified based on the joint resource allocation decisions
derived in the previous two sections. Meanwhile, 𝐹0(0) and
𝑆(0) denote the respective benchmark revenues of the PNO
and SNO when they fail to reach an agreement on the sharing
factor (i.e., when 𝜔 = 0). Specifically, when 𝜔 = 0, the critical

3Alternatively, the PNO can also use Algorithm (PA-MO) to obtain the set
of low-complexity solutions for its rate allocations.

This is the Pre-Published Version 



10

rate threshold 𝜂𝑘 (which is characterized in Proposition 1) is
zero according to eq. (22). Correspondingly, the interference-
cap 𝑄𝑘

0 at each AP 𝑘 is also zero, meaning that the SUs’ access
is completely forbidden. Hence, we have the PNO’s benchmark
revenue as 𝐹0(0) = 0 and the SNO’s benchmark revenue as
𝑆(0) = 0. Problem (RP-S) means that both the PNO and SNO
expect to maximize their net benefits from cooperation in a
fair manner.

By substituting the joint optimal resource allocation deci-
sions into the PNO’s revenue function 𝐹0(𝑤) and the SNO’s
revenue function 𝑆(𝑤), we can further express Problem (RS-P)
in Problem (RS-P-E) as follows (the capital letter “E” stands
for “Equivalence”)

(RS-P-E): max
0≤𝜔≤1

𝑊 (𝜔) =

(1− 𝜔)𝜌
(∑

𝑘

𝐵𝑘 log2(1 +
𝑄𝑘∗

0

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘∗
0

)
)×

(
𝜔𝜌

∑
𝑘

𝐵𝑘 log2(1 +
𝑄𝑘∗

0

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘∗
0

)− 𝛼(
∑
𝑘

𝑝𝑘∗0 − 𝑝0)
)
.

However, solving Problem (RS-P-E) analytically is difficult,
because the optimal joint resource allocation decisions (includ-
ing {𝑝𝑘∗0 }, {𝑄𝑘∗

0 }, {𝑏𝑘∗𝑠 } and {𝑝𝑘∗𝑠 }) depend on the choice of
sharing factor. More importantly, these joint decisions cannot
be expressed in the closed-form expressions.
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Fig. 5: Net benefits under different sharing factors. Top plot: PNO’s
net benefit; Bottom plot: SNO’s net benefit

Before proposing an algorithmic solution for Problem (RS-
P), we first evaluate the effect of the sharing factor 𝜔
in Figures 5 and 6, where we assume that the PNO has
four APs, and the set of PU’s channel gains are {𝑔𝑘0} =
[0.0185, 0.4565, 0.7919, 0.8214] (which are randomly gener-
ated and will be described in detail in the numerical result
section). We set 𝛼 = 0.01$/Mbps. Figure 5 shows the PNO’s
net benefit (in the top plot) and the SNO’s net benefit (in the
bottom plot) under different sharing factors. The results show
that both PNO and SNO positively benefit from the cooperation
for all values of 𝜔 i.e., achieving 𝐹0(𝜔) − 𝐹0(0) ≥ 0 and

𝑆(𝜔)−𝑆(0) ≥ 0. In particular, the top plot of Figure 5 shows
that the PNO’s net benefit increases as the sharing factor 𝜔
increases. This result is reasonable since the PNO is the leader
of the joint resource allocations in the bottom layer, and it
can achieve a greater net benefit by appropriately adjusting its
decisions as the sharing factor increases. In contrast, the bottom
plot of Figure 5 shows that as the follower, the SNO’s net
benefit first increases as the sharing factor increases, and then
decreases as the sharing factor is larger than a certain threshold.
Intuitively, a too large sharing factor directly reduces the SNO’s
net benefit. While, a too small sharing factor also reduces the
SNO’s net benefit, since it discourages the PNO to lease its
APs (i.e., by setting the interference-caps very small). Hence,
to ensure that both the PNO and SNO can achieve satisfactory
benefits, we need to carefully choose this sharing factor. This
point is further reflected in Figure 6, which shows that the
objective function 𝑊 (𝜔) of Problem (RS-P) first increases
when 𝜔 increases from zero, and then decreases when 𝜔 is
above a certain threshold.
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Fig. 6: Illustration of 𝑊 (𝜔) under different throughput requirements

A keen observation from Figure 6 is that the objective
function 𝑊 (𝜔) is usually unimodal [36]4 (notice that it is
consistent with our understanding that a sharing factor that is
either too small or too large will be adverse to the cooperation
between PNO and SNO). This property facilitates the use of
the Brent’s method to find the optimal sharing factor. The
Brent’s method is an efficient numerical scheme to maximize
a single variable function (especially the unimodal function)
by combining the successive parabolic interpolation and the
golden section search [36], [37]. In particular, because the
Brent’s method does not need any information about the first-
order derivative of the objective function, it is well suited to
solving our Problem (RS-P) (and Problem (RS-P-E)), whose
objective functions cannot be expressed analytically. Thus, we
propose a Brent’s Method based algorithm, called Algorithm

4Suppose that a function 𝑓(.) is defined on the interval [𝑎, 𝑏], and there
exists a value 𝑐 within [𝑎, 𝑏] strictly. Function 𝑓(.) is considered to be unimodal
if it increases (or decreases) within [𝑎, 𝑐] and decreases (or increases) within
[𝑐, 𝑏].
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(BM-RS), to solve Problem (RS-P). The details of Algorithm
(BM-RS) are shown on page 11.

We briefly introduce the Brent’s method here. Interested
readers please find more details in [36], [37]. In each itera-
tion, the Brent’s method tracks six critical points denoted by
𝑎, 𝑏, 𝑥, 𝑤, 𝑣 and 𝑢. Here, 𝑎 and 𝑏 denote the boundary points of
the interval, within which we search for the optimal solution.
(𝑥,𝑤, 𝑣) is a triplet, where 𝑥 denotes the point achieving the
best result so far, 𝑤 denotes the point achieving the second
best result, and 𝑣 serves to record the previous value of 𝑤 (i.e.,
the value of 𝑤 in the previous round of iteration). Finally, 𝑢
denotes the next point to evaluate the objective function. The
iteration process in the Brent’s method includes two steps: (i)
generating the new point (to be evaluated) by the parabolic
interpolation (in line 11 of Algorithm (BM-RS)) or the golden
section method when the parabolic interpolation is infeasible
(in line 13 and line 16), and (ii) updating the boundary points
𝑎 and 𝑏 of the interval (from line 23 to line 27) and the triplet
(𝑥,𝑤, 𝑣) (in line 28) based on the newly evaluated point 𝑢. The
detailed formulas for the parabolic interpolation and the golden
section method can be found in [36], [37] and are omitted here
due to space limitation. The termination conditions (in line 5)
require that (i) the boundary points 𝑎 and 𝑏 are close enough,
and (ii) the midpoint of interval [𝑎, 𝑏] is close enough to 𝑥,
where 𝜖 denotes a small tolerance for computational error.

In particular, in lines 2, 19, and 21 of Algorithm (BM-RS),
to evaluate 𝑊 (𝑧) under a given 𝑧 (here 𝑧 could represent 𝑥,
𝑤, 𝑣 and 𝑢), we invoke Algorithm (PA-ES) as a subroutine
to obtain the PNO’s revenue 𝐹0(𝑧) as well as its optimal re-
source allocation decisions. Then, by using the PNO’s optimal
resource allocation decisions, we can get the SNO’s optimal
decisions via eq. (13) and eq. (14). Thus, we get the value of
SNO’s optimal revenue 𝑆(𝑧), which, together with the value
of 𝐹0(𝑧), yields the value of 𝑊 (𝑧). In line 11, if the parabolic
interpolation is feasible, we use the parabolic interpolation to
generate point 𝑢, which will be evaluated in line 19 and line 21
of Algorithm (BM-RS). Otherwise, we use the golden section
to generate point 𝑢 in line 13 and line 16. After evaluating
𝑊 (𝑢), we first update the boundary points 𝑎 and 𝑏 in line
24 and line 26 in order to shrink the search-interval, and then
we update the triplet (𝑥,𝑤, 𝑣) and the corresponding objective
function values associated with them in line 28.

Summary and Implementation of the Top Layer Equilibrium:
Using Algorithm (BM-RS), the PNO and SNO can solve
Problem (RS-P) and determine the optimal sharing factor,
which corresponds to the equilibrium of the bargaining game in
the top layer. More specifically, according to the computational
complexity analysis in [37], Algorithm (BM-RS) is guaranteed
to converge to the optimal sharing factor in an order of
𝑂
(
[log2(

𝜔−𝜔
𝜀 )]2

)
rounds of iterations, where 𝜀 denotes the

tolerance of computational error, and [𝜔, 𝜔] denotes the search
interval (which is [0, 1] for Problem (RS-P-E)). Further substi-
tuting the optimal sharing factor back into Problem (PNO-P)
and Problem (SNO-P) in the bottom layer, the PNO and SNO
can determine their optimal joint resource allocation decisions

Algorithm (BM-RS) to solve Problem (RS-P)

1: Set the golden ratio GOLD = 0.382, 𝑎 = 0 and 𝑏 = 1. Set
the tolerance 𝜖 as a positive small number. Set IterMax as
the maximum iteration number. Set 𝑒 = 0. Set the dummy
iteration index 𝑛 = 1.

2: Set 𝑥 = 𝑤 = 𝑣 = 1
2 (𝑎 + 𝑏). Invoke Algorithm (PA-ES)

(or Algorithm (PA-MO)) to calculate the corresponding
objective function values as 𝑓𝑥 = −𝑊 (𝑥), 𝑓𝑤 = −𝑊 (𝑤)
and 𝑓𝑣 = −𝑊 (𝑣).

3: for 𝑛 = 1 to IterMax do
4: Set 𝑥𝑛 = 1

2 (𝑎 + 𝑏).
/∗ Midpoint of the interval at the 𝑛th iteration ∗/

5: if ∣𝑥− 𝑥𝑛∣ < 2𝜖− 1
2 (𝑏− 𝑎) then

6: Break. /∗Termination condition∗/
7: end if
8: if ∣𝑒∣ > 𝜖 then
9: Set 𝑒′ = 𝑒, and 𝑒 = 𝑑.

/∗𝑒 is the moved distance from the last step∗/
10: if 𝑑 ≤ 1

2𝑒
′ and 𝑎 ≤ 𝑥+ 𝑑 ≤ 𝑏 then

11: Update step 𝑑 by parabolic interpolation method.
/∗Parabolic interpolation is feasible∗/

12: else
13: Update 𝑒 = (𝑎 − 𝑥)I(𝑥 > 𝑥𝑛) + (𝑏 − 𝑥)I(𝑥 ≤

𝑥𝑛), and update 𝑑 = GOLD ∗ 𝑒
according to the golden section.
/∗Parabolic interpolation method is infeasible∗/

14: end if
15: else
16: Update 𝑒 = (𝑎 − 𝑥)I(𝑥 > 𝑥𝑛) + (𝑏 −

𝑥)I(𝑥 ≤ 𝑥𝑛), and update 𝑑 = GOLD ∗ 𝑒
according to the golden section method.
/∗Parabolic interpolation method is infeasible∗/

17: end if
18: if ∣𝑑∣ > 𝜖 then
19: Set 𝑢 = 𝑥+𝑑, and evaluate 𝑓𝑢 = −𝑊 (𝑢) by invoking

Algorithm (PA-ES) (or Algorithm (PA-MO)).
20: else
21: Set 𝑢 = 𝑥 + sign(𝑑) ∗ 𝜖, and evaluate 𝑓𝑢 = −𝑊 (𝑢)

by Algorithm (PA-ES) (or Algorithm (PA-MO)).
22: end if
23: if 𝑓𝑢 ≤ 𝑓𝑥 then
24: Set 𝑎 = 𝑥 if 𝑢 ≥ 𝑥 or set 𝑏 = 𝑥 if 𝑢 < 𝑥.

/∗ Update the interval ∗/
25: else
26: Set 𝑎 = 𝑢 if 𝑢 < 𝑥 or set 𝑏 = 𝑢 if 𝑢 ≥ 𝑥.

/∗ Update the interval ∗/
27: end if
28: Update (𝑥,𝑓𝑥), (𝑤,𝑓𝑤) and (𝑣,𝑓𝑣) as follows: 𝑥 and

𝑤 denote the points found so far that yield the best
and the second best values of the objective function,
respectively; 𝑣 denotes the previous value of 𝑤.

29: end for
30: Output 𝜔∗ = 𝑥, which is the best point found, and output

𝑊 (𝜔∗) = −𝑓𝑥.
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(as described in the previous Section III and Section IV)5.
Thus, the PNO and SNO reach the optimal joint resource
allocation decisions under their optimal revenue sharing factor,
i.e., reaching the final equilibrium of the two-layered game.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the effectiveness of
our proposed algorithms and the performance of the revenue
sharing based resource allocation scheme. We assume that
each AP 𝑘 has a bandwidth 𝐵𝑘 = 1MHz. At each AP
𝑘, the PU’s minimum throughput is 𝑅𝑘,min

0 = 2Mbps, and
its maximum throughput is 𝑅𝑘,max

0 = 15Mbps. We use a
distance-based model, which is similar to [33], to determine
the channel gain from the PU (or each SU) to different APs.
Specifically, the channel gain from the PU to AP 𝑘 is quantified
by 𝑔𝑘0 =

∣∣𝑔𝑘
0 ∣∣2

(𝑑𝑘
0 )

3 , where 𝑑𝑘0 denotes the distance between the PU
and AP 𝑘, and the random parameter 𝑔𝑘0 follows the identical
and independent Gaussian distribution with zero mean and
unit variance. Besides, we set the PU’s marginal cost for its
transmit-power consumption as 𝛼 = 0.01 $/W and set {𝛽𝑠} as
an all-one vector.

A. Performance of Algorithm (PA-ES) and Algorithm (PA-MO)
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Fig. 7: Performance of Algorithm (PA-ES) and Algorithm (PA-MO)
under ten sets of differently and independently generated channel
gains. Top plot: PNO’s revenue; Bottom plot: Computational time.
We set 𝑅req

0 = 20Mbps.

Figure 7 shows the performance of Algorithm (PA-ES) and
Algorithm (PA-MO), both of which solve Problem (PNO-P-
Rate). We fix 𝜔 = 0.8 and 𝑅req

0 = 20Mbps. For the comparison
purpose, we use the globally exhaustive search method to
get the optimum of Problem (PNO-P-Rate). Notice that the
globally exhaustive search method requires a very high compu-
tational complexity. For instance, suppose that for each AP 𝑘,

5Recall that in the bottom layer, for each given sharing factor 𝜔, Algorithm
(PA-ES) (or Algorithm (PA-MO)) can compute {𝐹0(𝜔), 𝑆(𝜔)} and the
associated resource allocation decisions, which correspond to the Stackelberg
game equilibrium.

we quantify the PNO’s rate allocation into 𝑀 levels. Then, the
globally exhaustive search requires a complexity of 𝒪(𝑀𝐾).
Figure 7 shows the performance of Algorithm (PA-ES), Algo-
rithm (PA-MO), and the exhaustive search method, under ten
sets of randomly and independently generated channel gains.
The results show that Algorithm (PA-ES) achieves the results
close to the global optimum obtained by the exhaustive method,
but consuming a significantly reduced computational time.
Specifically, as marked in red in Figure 7, the computational
time of Algorithm (PA-ES) is less than 9% of that used by
the exhaustive search method, and its relative loss compared
to the exhaustive search is less than 2%. Meanwhile, Figure 7
also shows that the low-complexity Algorithm (PA-MO) can
further reduce the computational time compared to Algorithm
(PA-ES) but still with a slight yet acceptable loss of the
optimality. Specifically, the computational time of Algorithm
(PA-MO) further reduces to be less than 4% of that used by
the exhaustive search method, and its relative loss compared
to the exhaustive search method is less than 8%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

Sharing factor

P
N

O
’s

 r
ev

en
ue

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Sharing factor

S
N

O
’s

 r
ev

en
ue

PA−MO(R
0
req=12)

Heuristic (R
0
req=12)

Fig. 8: Comparison between Algorithm (PA-MO) and the heuristic
method under 𝑅req

0 = 12Mbps. Top plot: PNO’s revenue; Bottom
plot: SNO’s revenue.

In Figure 8 and Figure 9, we further compare the perfor-
mance of Algorithm (PA-MO) with that of a heuristic method,
which equally divides the PU’s total rate requirement 𝑅req

0 on
all APs. Specifically, Figure 8 shows the comparison results
under 𝑅req

0 = 12Mbps, and Figure 9 shows the results under
𝑅req

0 = 15Mbps. In Figure 8, the top plot shows that under each
sharing factor, Algorithm (PA-MO) achieves a larger PNO’s
revenue than the heuristic method. Meanwhile, the bottom
plot shows that Algorithm (PA-MO) achieves a larger SNO’s
revenue than the heuristic method. The similar results are
also reflected in Figure 9. Moreover, a comparison between
Figure 8 and Figure 9 shows that the performance gap between
Algorithm (PA-MO) and the heuristic algorithm grows when
the PU’s throughput requirement 𝑅req

0 increases. This result
implies that the joint optimization of resource allocations in
the bottom layer will play a more important role in improving
the revenues of PNO and SNO as the PU’s QoS requirement
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Fig. 9: Comparison between Algorithm (PA-MO) and the heuristic
method under 𝑅req

0 = 15Mbps. Top plot: PNO’s revenue; Bottom
plot: SNO’s revenue.

becomes more stringent. In other words, the joint resource
allocations without an appropriate planing could result in a
larger revenue loss as the PU’s QoS requirement grows.

B. Performance of Algorithm (BM-RS)
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Fig. 10: Performance of Algorithm (BM-RS) under ten sets of differ-
ent channel gains which are randomly and independently generated.
Top plot: Value of 𝑊 (𝜔∗); Bottom plot: Computational time.

We next show the performance of Algorithm (BM-RS),
which solves Problem (RS-P). In Figure 10, we fix 𝑅req

0 =
15Mbps and randomly and independently generate ten sets
of different channel gains for test. As a benchmark, we
use the exhaustive search method to solve Problem (RS-P)
and get the globally optimal result. The top plot shows that
Algorithm (BM-RS) achieves the results close to the global
optimum under all the tested cases. As marked in red in
the top plot, the relative loss is less than 1.5%. The bottom
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Fig. 11: Performance of Algorithm (BM-RS) under different 𝑅req

0 . Top
plot: Value of 𝑊 (𝜔∗); Bottom plot: Computational time.

plot shows that Algorithm (BM-RS) consumes a significantly
less computational time than the exhaustive search method.
Furthermore, Figure 11 shows the performance of Algorithm
(BM-RS) under different PU’s total throughput requirements,
ranging from 𝑅req

0 = 14Mbps to 𝑅req
0 = 30Mbps. The top plot

also shows that Algorithm (BM-RS) achieves the results close
to the global optimum under all the cases. As marked in red
in the top plot, the relative loss is less than 4.5%. Meanwhile,
the bottom plot shows that Algorithm (BM-RS) consumes a
significantly less computational time than the exhaustive search
method.

C. Net Benefits of PNO and SNO and Impact of PU’s Marginal
Power Cost

Finally, in Figure 12, we show the influence of the PU’s
marginal power consumption cost 𝛼 on the respective net
benefits of PNO and SNO. The top plot shows that the PNO
and SNO achieve positive yet almost equal net benefits, which
are decreasing in 𝛼. The almost equal net benefits of the PNO
and SNO stem from the property of Nash bargaining model,
which enables all agents engaged in the bargaining process to
achieve the net gains in a fair manner as much as possible,
depending on their respective bargaining power [32], [44]6.
Meanwhile, the bottom plot shows that the optimal sharing
factor increases in the PU’s marginal power consumption cost.
This result is consistent with our understanding that the PNO
expects to get a greater portion of the SNO’s revenue when it
faces a greater power consumption cost. For the same reason,
the optimal sharing factor also increases in the PU’s total
throughput requirement, which is reflected by the comparison
between the two cases of 𝑅req

0 = 8Mbps and 𝑅req
0 = 10Mbps.

6In the top layer Nash bargaining game, we consider that the PNO and SNO
have the same bargaining power, which yields the almost equal net benefits
achieved by the PNO and SNO.
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Fig. 12: Influence of the PU’s marginal power consumption cost.
Top plot: net benefits of the PNO and SNO; Bottom plot: the
optimal sharing factor. We consider two different PNO’s total rate
requirements, i.e., 𝑅req

0 = 8 and 𝑅req
0 = 10Mbps.

VII. CONCLUSION

In this paper, we propose a revenue sharing based resource
allocation scheme for dynamic spectrum access networks. The
intrinsic coupling effect between the joint resource allocations
of the PNO and SNO and their revenue sharing scheme
motivates us to model their interaction as a two-layered game,
including the Nash bargaining game in the top layer to address
their revenue sharing and the Stackelberg game in the bottom
layer to address their joint resource allocation decisions. De-
spite the non-convexity of the joint resource allocation problem
and the difficulty due to the lack of an analytical objective
function for the subsequent revenue sharing optimization prob-
lem, we propose efficient algorithms to solve both the top
layer and bottom layer problems, and thus obtain the optimal
revenue sharing scheme and the corresponding optimal joint
resource allocation decisions. Numerical results illustrate the
effectiveness of our proposed algorithms and show that the
revenue sharing based resource allocation scheme can enable
both the PNO and SNO to achieve net benefits in a fair manner
and reach a win-win situation eventually. One future direction
is to incorporate the imperfect channel state information by
using the robust optimization methodologies such that the
proposed revenue sharing based resource allocation scheme
will be robust to this imperfect information.

APPENDIX I: PROOF OF LEMMA 2

To solve Problem (SNO-P), we relax constraint (2) and put
it into the objective function by using the dual vector {𝜇𝑘}.
Notice that in Problem (SNO-P), the sharing factor 𝜔 and
the price 𝜌 are linear and fixed scalars, which can thus be
temporarily omitted in deriving the optimal solution. As a

result, we can obtain the Lagrangian function 𝐿1(𝑏
𝑘
𝑠 , 𝜇

𝑘) as

𝐿1(𝑏
𝑘
𝑠 , 𝜇

𝑘) =
∑
𝑘∈𝒦

∑
𝑠∈𝑆𝑘

𝑏𝑘𝑠 log2 (1 +
𝑔𝑘𝑠𝑝

𝑘
𝑠

𝑏𝑘𝑠(𝑛0 + 𝑔𝑘0𝑝
𝑘
0/𝐵

𝑘)
) +∑

𝑘∈𝒦
𝜇𝑘(𝐵𝑘 −

∑
𝑠∈𝑆𝑘

𝑏𝑘𝑠).

Let {𝑏𝑘∗𝑠 } denote the optimal bandwidth allocations of Problem
(SNO-P). Then, according to the Karush-Kuhn-Tucker (KKT)
conditions [43], we get a sufficient condition to quantify the
optimal bandwidth allocation as follows

log2(1 +
𝑔𝑘𝑠𝑝

𝑘
𝑠

𝑏𝑘𝑠(𝑛0 + 𝑔𝑘0𝑝
𝑘
0/𝐵

𝑘)
)− 1

ln 2

𝑔𝑘𝑠𝑝
𝑘
𝑠

𝑔𝑘𝑠𝑝
𝑘
𝑠 + 𝑏𝑘𝑠

∗
(𝑛0 + 𝑔𝑘0𝑝

𝑘
0/𝐵

𝑘)

−𝜇𝑘 = 0.

The above result can be re-expressed as

𝑓(
𝑔𝑘𝑠𝑝

𝑘
𝑠

𝑏𝑘𝑠
∗
(𝑛0 + 𝑔𝑘0𝑝

𝑘
0/𝐵

𝑘)
) = 𝜇𝑘,∀𝑠 ∈ 𝒮𝑘,

with function 𝑓(𝑥) = log2(1 + 𝑥) − 1
ln 2 (

𝑥
1+𝑥 ), which is a

monotonically increasing function. These results mean that for
two different SUs in 𝒮𝑘 (let us say SU 𝑖 and SU 𝑠), the optimal
bandwidth allocations to them should meet

𝑔𝑘𝑠𝑝
𝑘
𝑠

𝑏𝑘𝑠
∗
(𝑛0 + 𝑔𝑘0𝑝

𝑘
0/𝐵

𝑘)
=

𝑔𝑘𝑖 𝑝
𝑘
𝑖

𝑏𝑘𝑖
∗
(𝑛0 + 𝑔𝑘0𝑝

𝑘
0/𝐵

𝑘)
.

Also notice that constraint (2) should be binding at the opti-
mum, i.e.,

∑
𝑠∈𝒮𝑘

𝑏𝑘∗𝑠 = 𝐵𝑘. Thus, we can express the optimal
bandwidth allocation as a function of 𝑝𝑘𝑠 as

𝑏𝑘∗𝑠 = 𝐵𝑘 𝑔𝑘𝑠𝑝
𝑘
𝑠∑

𝑠∈𝒮𝑘
𝑔𝑘𝑠𝑝

𝑘
𝑠

,

which is proportional to its interference incurred to AP 𝑘.
Further let {𝑝𝑘∗𝑠 } denote the optimal power allocations of
SNO to the SUs, and let 𝐼𝑘∗ =

∑
𝑠∈𝒮𝑘

𝑔𝑘𝑠𝑝
𝑘∗
𝑠 denote the total

interference to AP 𝑘 under the optimal power allocations. Then,
the optimal bandwidth allocation to SU 𝑠 should satisfy

𝑏𝑘∗𝑠 = 𝐵𝑘 𝑔
𝑘
𝑠𝑝

𝑘∗
𝑠

𝐼𝑘∗
.

We thus finish the proof.

APPENDIX II: PROOF OF LEMMA 3

Based on the fairness rule, i.e. 𝑅𝑘
𝑠

𝛽𝑘
𝑠
=

𝑅𝑘
𝑗

𝛽𝑘
𝑗

,∀𝑠 ∕= 𝑗, 𝑠, 𝑗 ∈ 𝒮𝑘

and each SU 𝑠’s throughput given by eq. (8), we obtain that

𝑔𝑘𝑠𝑝
𝑘
𝑠

𝛽𝑘
𝑠

=
𝑔𝑘𝑗 𝑝

𝑘
𝑗

𝛽𝑘
𝑗

, 𝑠 and 𝑗 ∈ 𝒮𝑘,∀𝑘.

In addition, since 𝑝𝑘𝑠 needs to satisfy
∑

𝑠∈𝒮𝑘
𝑔𝑘𝑠𝑝

𝑘
𝑠 = 𝐼𝑘 and

𝐼𝑘 = 𝑄𝑘
0 to fully exploit the interference-cap, the power

allocation under the fairness rule can be expressed as

𝑔𝑘𝑠𝑝
𝑘
𝑠 =

𝛽𝑘
𝑠∑
𝑗 𝛽

𝑘
𝑗

𝑄𝑘
0 , 𝑠 ∈ 𝒮𝑘,∀𝑘.

The above result means that at AP 𝑘, each SU 𝑠 ∈ 𝒮𝑘 shares
the interference-cap in a proportional way. As a result, each
SU 𝑠’s optimal power allocation is given by

𝑝𝑘∗𝑠 =
𝛽𝑘
𝑠∑

𝑗∈𝒮𝑘
𝛽𝑘
𝑗

𝑄𝑘∗
0

𝑔𝑘𝑠
,∀𝑠 ∈ 𝒮𝑘,∀𝑘.
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Further combining the above result with eq. (7), the optimal
bandwidth allocation becomes

𝑏𝑘∗𝑠 =
𝛽𝑘
𝑠∑

𝑗∈𝒮𝑘
𝛽𝑘
𝑗

𝐵𝑘,∀𝑠 ∈ 𝒮𝑘,∀𝑘.

We thus finish the proof.

APPENDIX III: PROOF OF LEMMA 4

To verify that Problem (PNO-P-E’) is a strictly convex prob-
lem under the given {𝑅𝑘

0}, we need to verify that the objective
function is a concave function, and all the constraint functions
are also concave. Apparently, the constraint function associated
with each AP is linear, and thus is concave. According to [43],
the positively linear combination keeps the concavity. Thus, it
suffices to prove that each separable component of the objective
function, i.e.,

𝐹2(𝑝
𝑘
0) = 𝜔𝜌𝐵𝑘 log2

𝑔𝑘0𝑝
𝑘
0

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘
0

− 𝛼𝑝𝑘0

is a concave function. The concavity of function 𝐹2(.) can be
proved via verifying that its second-order derivative is negative,
i.e.,

𝑑2𝐹2

𝑑𝑝𝑘0
2 = −𝜔𝜌𝑛0(𝐵

𝑘)2

ln 2

(𝑛0𝐵
𝑘 + 2𝑔𝑘0𝑝

𝑘
0)

(𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘
0)

2(𝑝𝑘0)
2
< 0.

Based on the linear constraints and the concave objective
function, Problem (PNO-P-E’) is a strictly convex optimization
problem with respect to {𝑝𝑘0}. We thus finish the proof.

APPENDIX IV: PROOF OF PROPOSITION 1

We know that: (i) Problem (PNO-P-E’) is a strictly con-
vex optimization problem with respect to {𝑝𝑘0} (according to
Lemma 4), and (ii) Problem (PNO-P-E’) can be decomposed
into each individual AP. Thus, we introduce the Lagrange
multiplier 𝜆𝑘 to relax constraint (21) into the objective function
for each AP 𝑘. Accordingly, we obtain a Lagrangian function
𝐿2(𝑝

𝑘
0 , 𝜆

𝑘) associated with AP 𝑘 as follows

𝐿2(𝑝
𝑘
0 , 𝜆

𝑘) = 𝜔𝜌𝐵𝑘log2
𝑔𝑘0𝑝

𝑘
0

𝑛0𝐵𝑘 + 𝑔𝑘0𝑝
𝑘
0

− 𝛼𝑝𝑘0 +

𝜆𝑘
(
𝑔𝑘0𝑝

𝑘
0 − (2𝑅

𝑘
0/𝐵

𝑘 − 1)𝑛0𝐵
𝑘
)
.

According to the KKT conditions [43], the primal and dual
optimal solutions {𝑝𝑘∗0 , 𝜆𝑘∗} should meet

𝜆𝑘∗(𝑔𝑘0𝑝𝑘0∗ − (2𝑅
𝑘
0/𝐵

𝑘 − 1)𝑛0𝐵
𝑘
)
= 0, and

∂𝐿2

∂𝑝𝑘0 ∣𝑝𝑘
0=𝑝𝑘∗

0

= 0.

From the above equations, we can obtain the optimal power
allocation as follows

𝑝𝑘∗0 =
𝑛0𝐵

𝑘

2𝑔𝑘0
(

√
1 +

4𝜔𝜌𝑔𝑘0
(𝛼− 𝑔𝑘0𝜆

𝑘∗)𝑛0 ln 2
− 1).

Based on the above result, we consider the following two
different cases.
Case1: If 𝜆𝑘∗ = 0, then we have 𝑝𝑘∗0 = 𝑛0𝐵

𝑘

2𝑔𝑘
0
(
√
1 +

4𝜔𝑔𝑘
0

𝛼𝑛0 ln 2−
1), which means that the optimal solution occurs within the
feasible region strictly. Surprisingly, in this case, the optimal
power allocation becomes independent of the rate allocation.

Case2: If 𝜆𝑘∗ ∕= 0, then we have 𝑝𝑘∗0 = (2𝑅
𝑘
0/𝐵𝑘−1)𝑛0𝐵

𝑘

𝑔𝑘
0

according to the KKT conditions, which means the optimal
power allocation occurs on the boundary of the feasible region.

It is apparent that at each AP 𝑘, the PU’s transmit-power

𝑝𝑘0 should be lower bounded by (2𝑅
𝑘
0/𝐵𝑘−1)𝑛0𝐵

𝑘

𝑔𝑘
0

to guarantee
its throughput requirement. Hence, summarizing the above two
cases, we obtain the PNO’s optimal power allocation to the PU
as a function of its rate allocation as

𝑝𝑘∗0 (𝑅𝑘
0) = max

{𝑛0𝐵
𝑘

2𝑔𝑘0
(

√
1 +

4𝜔𝜌𝑔𝑘0
𝛼𝑛0 ln 2

−1),
(2𝑅

𝑘
0/𝐵

𝑘 − 1)𝑛0𝐵
𝑘

𝑔𝑘0

}
.

Furthermore, by setting 𝑛0𝐵
𝑘

2𝑔𝑘
0
(
√

1 +
4𝜔𝜌𝑔𝑘

0

𝛼𝑛0 ln 2 − 1) =

(2𝑅
𝑘
0/𝐵𝑘−1)𝑛0𝐵

𝑘

𝑔𝑘
0

, we obtain the critical threshold 𝜂𝑘 for the
PU’s rate allocation at AP 𝑘 as follows

𝜂𝑘 = 𝐵𝑘
(
log2(1 +

√
1 +

4𝜔𝜌𝑔𝑘0
𝛼𝑛0 ln 2

)− 1
)
.

Using 𝜂𝑘, we get the optimal power allocation to the PU at
AP 𝑘 as a function of its rate allocation as

𝑝𝑘∗𝑠 (𝑅𝑘
0) =

⎧⎨⎩
𝑛0𝐵

𝑘

2𝑔𝑘
0
(
√

1 +
4𝜔𝜌𝑔𝑘

0

𝛼𝑛0 ln 2 − 1), when 𝑅𝑘
0 ≤ 𝜂𝑘,

(2𝑅
𝑘
0/𝐵𝑘−1)𝑛0𝐵

𝑘

𝑔𝑘
0

, when 𝑅𝑘
0 > 𝜂𝑘.

Based on the above result, the PNO’s optimal interference-cap
at AP 𝑘 can be given by

𝑄𝑘∗
𝑠 (𝑅𝑘

0) =

{
𝑔𝑘
0𝑝

𝑘∗
0

2𝑅
𝑘
0/𝐵𝑘−1

− 𝑛0𝐵
𝑘, when 𝑅𝑘

0 ≤ 𝜂𝑘,

0, when 𝑅𝑘
0 > 𝜂𝑘,

according to eq. (17). We thus finish the proof.

APPENDIX V: PROOF OF LEMMA 5

Let us introduce the following two functions

𝐹3({𝑟𝑘0}) = 𝜔𝜌
∑
𝑘∈Ω1

𝐵𝑘log2(1 +
1

2(𝜂
𝑘−𝑟𝑘0 )/𝐵

𝑘 − 1
),

𝐹4({𝑟𝑘0}) = −𝛼
∑
𝑘∈Ω2

(2(𝑅
𝑘,max
0 −𝑟𝑘0 )/𝐵

𝑘 − 1)𝑛0𝐵
𝑘

𝑔𝑘0
.

We thus can show that Problem (PNO-P-Rate’) meets the
following two properties.
Property 1: Functions 𝐹3(𝑟

𝑘
0 ) and 𝐹4(𝑟

𝑘
0 ) are both monoton-

ically increasing, because their first-order derivatives are

𝑑𝐹3

𝑑𝑟𝑘0
=

𝜔𝜌

(2(𝜂
𝑘−𝑟𝑘0 )/𝐵

𝑘 − 1)
> 0,

𝑑𝐹4

𝑑𝑟𝑘0
=

𝛼𝑛0 ln 2

2(𝑅
𝑘,max
0 −𝑟𝑘0 )/𝐵

𝑘
> 0.

As a result, the objective function of Problem (PNO-P-Rate’) is
increasing, because a positive linear combination of two mono-
tonically increasing functions is still monotonically increasing.
Property 2: {𝑟𝑘0} satisfies that (i) 0 ≤ 𝑟𝑘0 ≤ 𝜂𝑘 −𝑅𝑘,min

0 ,∀𝑘 ∈
Ω1 and (ii) 0 ≤ 𝑟𝑘0 ≤ 𝑅𝑘,max

0 − 𝜂𝑘,∀𝑘 ∈ Ω2 which are both
compact and normal sets (please refer to Definition 1 provided
close to the end of Section IV.B). Meanwhile, {𝑟𝑘0} satisfies∑

𝑘∈Ω1
𝜂𝑘 +

∑
𝑘∈Ω2

𝑅𝑘,max
0 −∑

𝑘∈Ω1+Ω2
𝑟𝑘0 ≥ 𝑅req

0 , which is
also a normal set. Thus, the whole feasible set for {𝑟𝑘0} is a
normal set.
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According to [34], maximizing a monotonically increasing
function over a normal set falls within the scope of monotonic
optimization problem. Therefore, the above Property 1 and
Property 2 together show that Problem (PNO-P-Rate’) is a
monotonic optimization problem. This finishes the proof.
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