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Bargaining-based Mobile Data Offloading
Lin Gao, George Iosifidis, Jianwei Huang, Leandros Tassiulas, and Duozhe Li

Abstract—The unprecedented growth of mobile data traffic
challenges the performance and economic viability of today’s
cellular networks, and calls for novel network architectures and
communication solutions. Data offloading through third-party
WiFi or femtocell access points (APs) can effectively alleviate the
cellular network congestion in a low operational and capital ex-
penditure. This solution requires the cooperation and agreement
of mobile cellular network operators (MNOs) and AP owners
(APOs). In this paper, we model and analyze the interaction
among one MNO and multiple APOs (for the amount of MNO’s
offloading data and the respective APOs’ compensations) by using
the Nash bargaining theory. Specifically, we introduce a one-to-
many bargaining game among the MNO and APOs, and analyze
the bargaining solution (game equilibrium) systematically under
two different bargaining protocols: (i) sequential bargaining,
where the MNO bargains with APOs sequentially, with one APO
at a time, in a given order, and (ii) concurrent bargaining, where
the MNO bargains with all APOs concurrently. We quantify the
benefits for APOs when bargaining sequentially and earlier with
the MNO, and the losses for APOs when bargaining concurrently
with the MNO. We further study the group bargaining scenario
where multiple APOs form a group bargaining with the MNO
jointly, and quantify the benefits for APOs when forming such a
group. Interesting, our analysis indicates that grouping of APOs
not only benefits the APOs in the group, but may also benefit
some APOs not in the group. Our results shed light on the
economic aspects and the possible outcomes of the MNO/APOs
interactions, and can be used as a roadmap for designing policies
for this promising data offloading solution.

Index Terms—Mobile Data Offloading, Nash Bargaining Solu-
tion, Group Bargaining

I. INTRODUCTION

A. Background and Motivations

The global mobile data traffic is growing explosively, and it
is expected that by 2018, it will reach 15.9 exabytes per month,
nearly an 11-fold increase over 2013 [1]. To cope with this
unprecedented traffic load, mobile network operators (MNOs)
need to significantly increase their cellular network capacities.
However, traditional methods such as acquiring more spectrum
licenses, deploying new cells of small size, and upgrading
technologies (e.g., from WCDMA to LTE/LTE-A) are costly,
time-consuming, and may not catch up the pace of the traffic
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increase. Clearly, MNOs must find novel methods to address
this problem, and mobile data offloading appears as one of the
most attractive solutions.

Simply speaking, mobile data offloading is the use of com-
plementary network technologies (such as WiFi and femtocell)
for delivering the mobile data traffic originally targeted for
cellular networks. The performance benefit of data offloading
through WiFi and femtocell networks has been extensively
studied in the existing literature (see, e.g., [9]–[15]). Thus, it
is not surprising that MNOs want more initiative in determin-
ing whether, when, and how much to offload their cellular
traffic.1 This network-initiated offloading approach is greatly
facilitated by technological advances such as the Hotspot 2.0
protocol [5], and the 3GPP Access Network Discovery and
Selection Function (ANDSF) standard. In order to fully reap
these benefits, it is essential to ensure that MNOs are able
to offload their traffic whenever needed. To achieve this goal,
a high coverage of WiFi or femtocell networks is necessary.
Unfortunately, the densely or ubiquitous deployment of WiFi
or femtocell access points (APs) by the MNOs themselves is
costly and often impractical due to the limitations of additional
site spaces and backhauls.

An alternative option for the MNOs is to employ existing
WiFi and femtocell APs already deployed by third-parties (as
O2 did with BT [3]), instead of deploying their own offloading
networks. This novel network outsourcing method is attractive
due to the high population of WiFi or femtocell users [6]
as well as the technology innovations (e.g., Hotspot 2.0
protocol and 3GPP ANDSF standard) enabling such a cellular-
WiFi inter-networking. With this approach, MNOs can handle
data offloading with a reduced capital expenditure (CAPEX)
and operational expenditure (OPEX). Moreover, MNOs can
make the offloading decisions more flexibly and efficiently,
by employing APs on-demand taking into consideration the
traffic dynamics. Nevertheless, without proper incentives, the
APs’ owners (APOs) are expected to be reluctant to admit the
cellular traffic, since offloading cellular traffic will consume
their limited network capacities and increase various costs
such as the energy expenditure and the backhaul cost. This
important economic incentive issue, however, is still quite
under-explored in the existing literature.

B. Contributions

In this paper, we study the mobile data offloading via third-
party WiFi and femtocell APs, and focus on the necessary eco-
nomic incentives that MNOs need to provide for APOs in order
to achieve flexible on-demand data offloading. Specifically, we
consider such an offloading scenario, where one MNO offloads

1As demonstrations, MNOs have already deployed their own WiFi networks
(e.g. AT&T [2]), or initiated collaborations with existing WiFi networks (as
O2 did with BT [3]), to complement their cellular networks. Some MNOs
have also started offering transparent cellular-WiFi services [4].
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Fig. 1. An instance of mobile data offloading. The MNO can either serve an
MU by its macrocell base stations (BSs) directly, e.g., MUs 3-6, or offload
an MU’s traffic to nearby APs, e.g., MUs 1-2 to AP 1 and MU 7 to AP 5.

its cellular traffic to a set of third-party WiFi or femtocell APs.
The MNO serves its subscribed mobile users (MUs) in one
or multiple macrocells. Each AP can only offload the traffic
generated by (cellular) MUs within its coverage. Figure 1
illustrates such a network scenario, where the hexagons denote
the coverage areas of the MNO’s macrocells, and the blue
circles denote the much smaller (non-overlapping) coverage
areas of APs. In this example, the traffic of MUs 1 and 2 can be
offloaded to AP 1, and the traffic of MU 7 can be offloaded to
AP 5, while the rest MUs cannot take advantage of offloading,
as they are not within the coverage area of any AP. In such an
offloading model, we are interested in the following technical
and economical issues:
• Technical issue: How to offload traffic efficiently (i.e.,

maximizing the social welfare)?
• Economical issue: How to share the offloading benefit

among the MNO and APOs fairly?
Note that the second (economical) issue is particularly impor-
tant as it is closely related to the incentives of APOs. More
specifically, to address these issues, we need to answer the
following offloading and reimbursing problem explicitly: (i)
For the MNO, how much traffic should it offload to each AP
and how much pay each APO? and (ii) For each APO, how
much cellular traffic should it offload for the MNO and how
much charge to the MNO? Clearly, the successful deployment
of such a cooperative offloading architecture requires the MNO
and APOs to agree on both the offloading amount and the
payment. One proper theoretic framework to achieve this goal
is the cooperative game theory.2

In this work, we model and analyze the data offloading
problem by using the Nash bargaining theory [24], a special
branch of the cooperative game theory, which is expected to
yield a Pareto-efficient and fair outcome, hence self-enforcing
and satisfactory for all entities. In this bargaining model, the

2Game theory [34] is widely used in wireless networks to model interactions
of multiple network entities, where the actions of one entity (player) affect the
payoffs of the other entities (see, e.g., [35]–[39]). Cooperative game theory is
usually used in situations when players have conflicting/competing interests
but have the means (and also incentives) to coordinate and negotiate with
each other to achieve a mutually beneficial outcome. In our model, it is
natural to assume that the MNO and APOs can get in touch and coordinate
regarding offloading and reimbursing decisions. It is then natural to study the
data offloading problem using the cooperative game theory.

MNO negotiates with each APO for the amount of offloading
data and the respective payment. We formulate the entire
negotiation processes between the MNO and all APOs as a
one-to-many bargaining game, and study the game outcome
(bargaining solution) systematically. There are many challeng-
ing issues arising in a one-to-many bargaining.

Bargaining Protocol. An important issue arising naturally
in a one-to-many bargaining is the bargaining dynamics (called
bargaining protocol), namely, how the MNO bargaining with
multiple APOs, e.g., sequentially or concurrently? In this
work, we will study two different bargaining protocols system-
atically: (i) sequential bargaining, where the MNO bargains
with all APOs sequentially in a predefined order, and (ii)
concurrent bargaining, where the MNO bargains with all
APOs concurrently. There are many interesting open questions
associated with this bargaining protocol. For example, will an
APO gain certain benefit if it bargains with the MNO ahead
of other APOs (in the sequential bargaining)? How would
the MNO choose between sequential or concurrent bargaining
with multiple APOs? Although the study of bargaining theory
is an active research area in economics, there is not much work
analyzing this protocol comprehensively.

Grouping Effect. Another important issue in a one-to-many
bargaining is the possibility that APOs may form groups (or
larger communities) and bargain jointly with the MNO. This
allows individual APOs, who initially have less bargaining
power than the MNO and may only have limited choices (e.g.,
accept or reject the terms of the MNO), to gain more market
power from the larger collective coverage. Such groups can be
created within WiFi sharing communities such as FON [7], or
in the context of community networks [8]. Motivated by this,
we would like to understand the impacts of the size and the
structure of APO groups on the bargaining outcome.

The main contributions are are summarized as follows.
• To the best of our knowledge, this is the first paper mod-

eling and studying mobile data offloading using a one-to-
many bargaining framework, which yields a fair, Pareto-
efficient, and self-enforcing offloading solution.

• We characterize the outcome of the one-to-many bar-
gaining under different bargaining protocols and grouping
structures, which has not yet been considered completely
in the existing literature of Nash bargaining.

• We study the impact of the bargaining protocol on the
bargaining outcome comprehensively. We quantify the
benefits for APOs when bargaining sequentially and
earlier with the MNO (early-mover advantage), and the
losses of APOs when bargaining concurrently with the
MNO (concurrent moving tragedy).

• We study the grouping effect on the bargaining solution
systematically. Interesting, our analysis indicates that
grouping APOs not only benefits the APOs in the group
(intra-grouping benefit), but may also benefit some APOs
not in the group (inter-grouping benefit).

The rest of this paper is organized as follows. In Section II,
we review the literature. In Section III, we present the system
model. In Sections IV and V, we study the data offloading bar-
gaining systematically. We provide the simulations in Section
VI, and finally conclude in Section VII.
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II. LITERATURE REVIEW

A. Mobile Data Offloading

The performance benefit of mobile data offloading through
WiFi networks has been studied in [9]–[13], which showed that
in urban environments, WiFi can offload about 65% of mobile
data, and save 55% of MUs’ battery energy. These benefits
can be further enlarged if users are willing to delay their
traffic [14]. Another promising option for data offloading is
femtocell [15]. The problem of incentivizing femtocell owners
to admit macrocell traffic has been recently studied in [16]–
[20]. However, these works studied the incentive issues using
the non-cooperative game framework, which cannot capture
the potential of coordination among mobile operators and fem-
tocell owners (which calls for a cooperative game approach).
In [21], Zhang et. al. studied the economic incentive issue
by using the cooperative game framework (Nash bargaining)
as we did in this work. However, the bargaining model in
[21] is the simple one-to-one bargaining (between one mobile
operator and one fixed-line operator), while the bargaining
model in our work is a more general one-to-many bargaining
(between one MNO and many APOs).

In our previous works, we have studied the economic in-
centive issue in mobile data offloading via third-party APs, by
using either the non-cooperative Stackelberg game framework
[22] or the auction framework [23]. However, these works
can neither capture the potential of coordination among the
MNOs and APOs, nor the effect of market dynamics (e.g., the
bargaining protocol in our model) or user collusions (e.g., the
grouping of APOs in our model).

B. Nash Bargaining Theory

Nash in [24] established a basic two-person bargaining
framework between two rational players, and proposed an
axiomatic solution concept—Nash Bargaining Solution (NBS),
which is characterized by a set of pre-defined axioms (see
Section IV-A), and does not rely on the detailed bargaining
process of players. In the follow up work, Nash [25] and
Rubinstein [26] provided strategic foundations for the NBS,
by analyzing specific dynamic non-cooperative bargaining
processes (games) and showing that the equilibria of the
bargaining games converges to the NBS.

Since Nash’s pioneering work, researchers have extended
the bargaining analysis to the case of more than two players.
In the multi-player scenario, some players may form groups
and bargain jointly in order to improve their payoff (hence
the group bargaining [27]). In most cases, the grouping im-
proves the payoff of the group members (see [28]–[30]), as it
increases their collective bargaining power. Interestingly, the
opposite is also possible as shown by the Harsanyi bargaining
paradox [31]. However, the above works did not consider
the bargaining dynamics (bargaining protocol) among multiple
bargainers, which arises naturally in a multi-player bargaining.
Regarding the bargaining protocol, the most relevant models
are those in [32], [33]. However, both papers focused only on
the sequential bargaining, using either an axiomatic approach
[32] or a strategic approach [33], and neither considered the
concurrent bargaining, nor the grouping effect.

III. SYSTEM MODEL

A. System Description

We consider one mobile network operator (MNO), operating
one or multiple macrocells, wants to offload its cellular traffic
to a setN , {1, ..., N} of third-party WiFi or femtocell access
points (APs).3 We assume that the coverage areas of any two
APs are non-overlapping. This assumption is reasonable as
the transmission range of AP is much smaller than that of
the macrocell base station (BS).4 Figure 1 illustrates such a
network with 8 non-overlapping APs and 3 macrocell BS.

The MNO serves a set of macrocell mobile users (MUs)
who are randomly distributed in geography. The traffic gen-
erated by an MU can be offloaded to an AP, if the following
conditions are all satisfied:
• The MU is located within the coverage area of the AP

(hence attainable for the AP),
• The MU is equipped with the same radio frequency

interface and wireless communication protocol as the AP
(hence compatible with the AP),

• The MU is enabled to offload its traffic (e.g., WiFi is
turned on for offloading to a WiFi AP).

Let Mn denote the set of MUs whose traffic can be of-
floaded to AP n, andM0 denote the set of MUs whose traffic
cannot be offloaded to any AP. As the APs’ coverage areas
are non-overlapping, we have: Mn

⋂Mm = ∅,∀m,n ∈ N
with m 6= n. In the example of Figure 1, the traffic of MUs 1
and 2 can be offloaded to AP 1 and the traffic of MU 7 can be
offloaded to AP 5 (supposing these MUs are compatible with
APs and enable WiFi), while the traffic of MUs 3-6 cannot be
offloaded to any AP.

Let Sn denote the total cellular traffic that can be offloaded
to AP n (i.e., the total traffic generated by MUs in Mn), and
S0 denote the total cellular traffic that cannot be offloaded to
any AP (i.e., the total traffic generated by MUs in M0). The
traffic profile of the MNO is denoted by

S , (S0, S1, ..., SN ).

Due to the uncertainty of MUs’ mobility and data usage, the
value of Sn for each n changes randomly over time. We
consider a quasi-static network scenario, where the values of
Sn for all n remain unchanged within every data offloading
period (e.g., one minute in our simulation).5

We define the transmission efficiency of a communication
link (between an MU and its attached macrocell BS, or
between an MU and an AP) as the average amount of data
traffic (in bits) that can be delivered by one unit of spectrum
resource (in Hz) per time unit (in second). Obviously, the
transmission efficiency is closely related to the path loss
and shadow fading of a link. As a concrete example, we
can compute it based on the Shannon channel capacity. But

3In this work, we do not distinguish WiFi APs and femtocell APs, as we
will model APs using generic objective (cost) functions. This renders our
analysis appropriate for a variety of systems with various assumptions.

4In our online technical report [40], we also discuss how to extend the
current model to a more general model with overlapping APOs.

5Note that when considering the large times-scale bargaining period (e.g.,
when the bargaining is performed every hour or every day), Sn and S0 will
correspond to the estimations of the average traffic.
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our discussions are general for any choice of transmission
efficiencies in different communication systems.

Let θn denote the average transmission efficiency (in
bits/Hz/s) between MUs inMn (in AP n’s coverage area) and
their corresponding macrocell BS, and θ0 denote the average
transmission efficiency between MUs inM0 (not in any AP’s
coverage area) and their corresponding macrocell BS. That is,
delivering one unit of traffic generated byMn (orM0) within
a single time unit, on average, consumes 1

θn
(or 1

θ0
) units of

the MNO’s resource. The transmission efficiency profile of the
MNO is denoted by

θ , (θ0, θ1, ..., θN ).

Let φn denote the average transmission efficiency between
MUs inMn and AP n. That is, offloading one unit of cellular
traffic generated byMn within a single time unit, on average,
consumes 1

φn
units of AP n’s resource. The transmission

efficiency profile of APs is denoted by
φ , (φ1, ..., φN ).

We similarly assume that θ and φ remain unchanged within
every offloading period, but may changes across periods. Our
analysis focus on the offloading solution in a single period.

B. MNO Modeling
We focus on the direct benefit for the MNO from data

offloading, i.e., the serving cost reduction due to the reduced
resource consumption.6 Such a serving cost may include the
energy cost, operational cost, coordinating cost, etc. Let C(b)
denote the MNO’s serving cost for b units of resource con-
sumption. We will consider a generic cost function C(b) that
is continuous, differentiable, strictly increasing, and convex,
i.e., C′(b) > 0 and C′′(b) ≥ 0.

Let xn ∈ [0, Sn] denote the traffic offloaded to AP n, and
zn ≥ 0 denote the MNO’s payment to the owner of AP
n (denoted by APO n). The traffic offloading profile and
payment profile are, respectively,

x , (x1, ..., xN ), and z , (z1, ..., zN ).

Given x and z, the MNO’s total resource consumption for
delivering remaining un-offloaded traffic is

b(x) = S0

θ0
+
∑N
n=1

Sn−xn

θn
, (1)

and the MNO’s total cost, including both the serving cost and
the payment to APOs, is

CTOT(x; z) = C(b(x)) +
∑N
n=1 zn. (2)

The MNO’s payoff is defined as the total cost reduction
achieved from data offloading, denoted by

U(x; z) = CTOT(0;0)− CTOT(x; z)

, R(x)−∑N
n=1 zn,

(3)

where 0 , (0, ..., 0), and R(x) = C(b(0)) − C(b(x)) is the
MNO’s serving cost reduction. We refer to the MNO’s payoff
without data offloading as its reservation payoff, denoted by
U0 , U(0;0) = 0. As we will show later, this reservation
payoff serves as the disagreement point of the MNO, and plays
an important role in the bargaining.

6Some indirect benefits include (i) the improvement of MUs’ QoS and thus
the increase of the average revenue per user (ARPU), (ii) the increased number
of active MUs and thus the increased total revenue, and (iii) the reduction of
the network congestion and thus the saving of the MNO’s reputation.

C. APO Modeling

Each AP is owned by a private owner (APO), whose primary
goal is to serve its own users. Thus, each APO, when deciding
whether (and how, if so) to offload traffic for the MNO, must
take into consideration the demand of its own users.

Let ξn denote the APO n’s own resource demand (from its
own users). Due to the uncertainty of AP users’ mobility and
data usage, we define ξn as a random variable, falling within a
certain interval [ξ

n
, ξn] and following a probability distribution

function (PDF) fn(ξ) and a cumulative distribution function
(CDF) Fn(ξ). We assume that ξn,∀n ∈ N , are independent of
each other, but not necessarily identically distributed. Let Bn
denote the total resource owned by APO n. Let wn denote the
average revenue achieved from one unit of its own resource
demand, and cn denote the cost for one unit of its resource
consumption. Then, APO n’s expected profit (from serving its
own demand) is

WAP
n (Bn) = (wn − cn) ·Eξn min{Bn, ξn}

=(wn − cn) ·
( ∫ Bn

ξ
n

ξfn(ξ)dξ +
∫ ξn
Bn

Bnfn(ξ)dξ
)
.

(4)

Recall that the average transmission efficiency between AP
n and MUs in Mn is φn. If AP n admits xn units of
cellular traffic (generated by MUs in Mn), the total resource
consumption for the offloaded cellular traffic is xn

φn
, and thus

the resource left for serving its own demand is Bn − xn

φn
.

Obviously, a feasible xn must satisfy: xn ≤ φn · Bn. Given
feasible xn and zn, the APO n’s total profit, including both
the profit from serving its own demand and the profit from
offloading for the MNO, is

WTOT
n (xn; zn) = WAP

n (Bn − xn

φn
) + zn − cn · xn

φn
, (5)

where (zn − cn · xn

φn
) is the profit from helping the MNO,

consisting of the service income (i.e., the MNO’s payment)
and the serving cost.

The APO n’s payoff is the profit improvement when of-
floading traffic for the MNO, denoted by

Vn(xn; zn) = WTOT
n (xn; zn)−WTOT

n (0; 0)

, Qn(xn) + zn,
(6)

where Qn(xn) = WAP
n (Bn − xn

φn
)−WAP

n (Bn)− cn · xn

φn
is the

APO n’s profit loss induced by data offloading. Similarly, we
refer to the APO n’s payoff when not offloading traffic for the
MNO as its reservation payoff, denoted by V0

n , Vn(0; 0) =
0. This reservation payoff serves as the disagreement point of
APO n in the bargaining.

D. Social Welfare

The social welfare is defined as the aggregate payoff of the
MNO and all APOs, denoted by

Ψ(x; z) =U(x; z) +
∑N
n=1 Vn(xn; zn)

=R(x) +
∑N
n=1 Qn(xn) , Ψ(x).

(7)

That is, the social welfare is equivalent to the sum of the
MNO’s serving cost reduction and the APOs’ profit loss, as
the payments will be canceled out. Thus, we will also write
the social welfare as Ψ(x).
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IV. A SIMPLE ONE-TO-ONE BARGAINING

In this section, we first review the Nash bargaining theory.
Then we consider a simple model with one APO, and formu-
late the problem as a basic two-person one-to-one bargaining.
We use this simple example to illustrate how to formulate
and analyze a data offloading problem by using the Nash
bargaining framework. This can help us to better understand
the bargaining formulation and analysis for general models
with multiple APOs in Section V.

A. Nash Bargaining Theory

In [24], Nash established the following two-person bargain-
ing framework. There is a set N = {1, 2} of two players.
The players either reach an agreement in a set A, or fail
to reach agreement, in which case the disagreement event D
occurs. Each Player i ∈ N has a preference ordering over
the set A⋃{D}, represented by a utility function Ui over the
domain of A⋃{D}. We denote such a bargaining problem
by G , 〈N ,A, D, {Ui}〉. A bargaining solution assigns every
bargaining problem G an outcome, which can be either an
agreement or the disagreement event. Note that an agreement
outcome can be either a specific agreement in the set A, or a
lottery over a set of possible agreements.

Nash proposed four axioms that should be satisfied by a
reasonable bargaining solution [24]: Pareto efficiency, symme-
try, invariance to affine transformations, and independence of
irrelevant alternatives. Nash proved that under mild technical
conditions, there is a unique bargaining solution (called Nash
bargaining solution, NBS) satisfying the four axioms above.
Moreover, the NBS has a very simple form: it corresponds to
an outcome that maximizes the product of both players’ utility
gains upon the disagreement outcome.

Specifically, let di , Ui(D) denote the utility of player
i ∈ {1, 2} over the disagreement outcome D (i.e., the
reservation utility or disagreement point of player i), and
U , {(U1(a), U2(a))}a∈A denote the set of utility pairs over
all possible agreements (i.e., the feasible set). Suppose that (i)
U is compact (i.e. closed and bounded) and convex, and (ii)
there exists an (u1, u2) ∈ U such that ui ≥ di, i = 1, 2.

Definition 1 (Nash Bargaining Solution – NBS [24]). A pair
of utilities (u∗1, u

∗
2) ∈ U (or the associated agreement a∗ ∈ A)

is an NBS (i.e., satisfying Nash’s four axioms), if it solves the
following problem:

max
(u1,u2)∈U

(u1 − d1) · (u2 − d2)

s.t. u1 ≥ d1, u2 ≥ d2.
(8)

It is easy to see that the disagreement points d1 and d2 play
an important role in the Nash bargaining framework. With
a higher disagreement point di, player i can obtain a larger
utility under the NBS.

B. One-to-One Bargaining

Now we consider a simple network scenario with one AP.
In this case, the bargaining problem is a one-to-one bargaining
(one MNO and one APO). For notational consistence, we still
denote the APO by n, i.e., N = {n}.

Let Xn , [0,min{Sn, φnBn}] and Zn , [0,+∞) denote
the sets of feasible xn and zn, respectively. An agreement
is a feasible tuple (xn, zn). The agreement set is A ,
{(xn, zn) | xn ∈ Xn, zn ∈ Zn}. The NBS is an agreement
(x∗n, z

∗
n) ∈ A that solves the following problem:

max
(xn,zn)∈A

U(xn; zn) · Vn(xn; zn)

s.t. U(xn; zn) ≥ 0, Vn(xn; zn) ≥ 0.
(9)

Note that in (9), both the MNO and APO n have a zero
disagreement point, i.e., U0 = V0

n = 0.
For notational convenience, we introduce a new variable πn

to denote the APO n’s payoff (gain), i.e.,

πn , Vn(xn; zn) = Qn(xn) + zn.

Then, the MNO’s payoff (gain) can be written as U(xn; zn) =
Ψ(xn)−πn where Ψ(xn) is the social welfare defined in (7).
Substituting the above formulas to (9), we can rewrite (9) as
a new optimization problem of xn and πn, i.e.,

max
(xn,πn)

(
Ψ(xn)− πn

)
· πn

s.t. xn ∈ Xn, Ψ(xn)− πn ≥ 0, πn ≥ 0.
(10)

Note that problems (9) and (10) are equivalent. This implies
that the bargaining for (xn, zn) is equivalent to the bargain-
ing for (xn, πn). Intuitively, for any bargaining solution on
(xn, πn), we can compute an equivalent solution on (xn, zn)
in the following way: zn = πn − Qn(xn).

It is easy to check that (10) is a convex optimization
problem. Thus, we have the following NBS for this simple
one-to-one bargaining problem.7

Lemma 1 (One-to-One NBS). The NBS (x∗n, π
∗
n) for the one-

to-one bargaining is

x∗n = xon, and π∗n = 1
2 ·Ψ(xon).

where xon = arg maxxn∈Xn Ψ(xn) is the social welfare
maximization offloading solution.

The above lemma implies that the NBS maximizes the
social welfare. Intuitively, this is because the total gener-
ated social welfare can be freely transferred between players
(through the payment zn), and thus maximizing the product
of their individual payoff gains can only be achieved when
maximizing the overall social welfare. This is a key property
the bargaining problem with transferable utility. Note that this
phenomena not only exists in a one-to-one bargaining, but also
exists in the general one-to-many bargaining studied later.

V. ONE-TO-MANY BARGAINING

In this section, we consider a general model with multiple
APOs N = {1, ..., N}. In this case, the MNO needs to bargain
with every APO n ∈ N for (xn, zn) (hence a one-to-one
bargaining), and thus the entire bargaining problem becomes
a one-to-many bargaining, consisting of N coupled one-to-one
bargainings. Accordingly, the one-to-many bargaining solution
contains N agreement or disagreement outcomes, each associ-
ated with a one-to-one bargaining (between the MNO and one

7We leave all of the detailed proofs in the online technical report [40].
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APO). Clearly, there are two important factors that will affect
the outcome of a one-to-many bargaining:

1) Bargaining Protocol: The MNO can either bargain with
all APOs sequentially, in a predefined order, or bargain
with all APOs concurrently (see Figure 2). We refer to
the former one as the sequential bargaining, and the
latter one as the concurrent bargaining.

2) APO Grouping Structure: APOs can either bargain indi-
vidually with the MNO, or form one or multiple groups
bargaining with the MNO jointly. An APO group can be
exogenously given (e.g., all customers of FON belong
to the same group), or endogenously formed based on
their instant willingnesses.

In what follows, we will study the bargaining solution of
the one-to-many bargaining systematically. We will call it the
one-to-many NBS, or just NBS for short. For convenience,
we denote the bargaining solution between the MNO and
APO n as (x∗n, z

∗
n), and the one-to-many NBS as {x∗, z∗} ,

{(x∗n, z∗n)}n∈N which consists of the bargaining solutions
between the MNO and all APOs.

A. Traffic Offloading Profile under the NBS
We first study the traffic offloading profile x under the NBS.

Similar to that in the aforementioned one-to-one bargaining,
we show that in a general one-to-many bargaining, it still max-
imizes the social welfare, regardless of the detailed bargaining
protocol and the APO grouping structure. Formally,

Lemma 2 (Traffic Offloading Profile). The traffic offloading
profile x∗ , (x∗1, ..., x

∗
N ) under the NBS is equivalent to the

socially optimal traffic offloading profile xo , (xo1, ..., x
o
N ).

We present the detailed proof in [40]. Intuitively, our bar-
gaining model is a transferable utility model, and thus the NBS
(specifying both the payment transferring and traffic offloading
between the MNO and all APOs) always maximizes the social
welfare. Besides, the payment transferring z is internal and
does not affect the social welfare. Therefore, the traffic offload-
ing profile x under the NBS must maximize the social welfare.
We skip the derivation of the social welfare maximization
solution xo, as it is a standard convex optimization. Readers
can refer to the online technical report [40] for details.

B. Payment Profile under the NBS

Now we study the payment profile z under the NBS. As
discussed in (9) and (10), the bargaining for z (the payments
to APOs) is equivalent to the bargaining for π = {πn}n∈N
(the payoffs of APOs). For the convenience in describing, we
will present the NBS in terms of π.

In this subsection, we will show that the payment profile z
or the APO payoff profile π greatly depends on the bargaining
protocol, and in the next subsection (Section V-C) we will
further show that it is also affected by the APO grouping
structure. In what follows, we derive the NBS under sequential
bargaining (in Section V-B.1) and under concurrent bargaining
(in Section V-B.2) systematically.8

8For better understanding of the analytical bargaining solution, we also
provide illustrative examples in the online technical report [40].

Completed Bargaining On-going Bargaining Future Bargaining

MNO

AP 2
AP 1

AP 3 AP 4
AP 5

(a) Sequential Bargaining

MNO

AP 2
AP 1

AP 3 AP 4
AP 5

(b) Concurrent Bargaining

Fig. 2. Illustration of bargaining protocols.

B.1) Sequential Bargaining

We first study the NBS under the sequential bargaining,
where the MNO bargains with APOs sequentially, in a pre-
defined order (see Figure 2 (a)). Without loss of generality,
we assume that the MNO bargains with APOs in the order of
1, 2, ..., N . This implies that there is no APO group, i.e., each
APO bargains with the MNO individually. The impact of APO
grouping will be studied in Section V-C.

Since the underlying one-to-one bargaining problems (be-
tween the MNO and each APO) are coupled with each other,
we solve the sequential bargaining by backward induction. For
the convenience in writing, we introduce notations:

xn , (x1, x2, ..., xn),

Πn , π1 + π2 + ...+ πn,

for the analysis of the sequential bargaining.

Step N .
Suppose that the MNO has finished bargaining with APOs 1

to N−1, and reached bargaining solutions {π∗n}n∈{1,...,N−1}.
Now it bargains with APO N for πN .
1. Disagreement: If the MNO and APO N do not reach any
agreement, the APO N ’s disagreement point is 0, and the
MNO’s disagreement point is its payoff achieved from all prior
APOs, i.e.,9

V0
N = 0, U0

[N ] = Ψ(x∗N−1, 0)−ΠN−1.

2. Agreement: If they reach an agreement πN = v (and xN =
x∗N ), the payoffs of APO N and the MNO are, respectively,

VN = v, U[N ] = Ψ(x∗N−1, x
∗
N )−ΠN−1 − v.

3. Payoff gain: Under an agreement πN = v (and xN = x∗N ),
the payoff gains of APO N and the MNO are, respectively,

VN − V0
N = v, U[N ] − U0

[N ] = ∆N − v,
where ∆N , Ψ(x∗N−1, x

∗
N ) − Ψ(x∗N−1, 0) denotes the

marginal social welfare (i.e., the increase of social welfare)
generated by involving APO N in the offloading.
4. Bargaining solution: By Definition 1, the NBS between the
MNO and the APO N is given by

max
v

(
∆N − v

)
· v, s.t. ∆N − v ≥ 0, v ≥ 0. (11)

Solving the above problem, we have the following NBS for
the bargaining between the MNO and APO N .

9Here Ψ(x∗
N−1, 0) means Ψ

(
x
)

with x = (x∗
N−1, 0), and the subscript

[N ] in U0
[N ]

is used to indicate the stage of bargaining. Later on we will use
the same form for notational convenience.
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Lemma 3 (NBS in Step N ). The NBS between the MNO and
APO N in Step N is

π∗N = v∗ = ∆N

2 . (12)

In addition, under the NBS, the MNO’s payoff is

U∗[N ] = U0
[N ] + ∆N

2 = ΩN

2 −ΠN−1, (13)

where ΩN = Ψ(x∗N−1, x
∗
N ) + Ψ(x∗N−1, 0).

The key insight of Lemma 3 is that the MNO and APO N
equally share the marginal social welfare ∆N generated by
involving APO N in the offloading.

Step N − 1.
Suppose that the MNO has reached bargaining solutions

{π∗n}n∈{1,...,N−2} with all APOs 1 to N − 2. Now it bargains
with APO N − 1 for πN−1.
1. Disagreement: If the MNO and APO N − 1 do not reach
an agreement, the APO’s disagreement point is 0, and the
MNO’s disagreement point is its potential payoff after having
dealt with all APOs, i.e., V0

N−1 = 0 and

U0
[N−1] =

Ψ(x∗N−2,0,x
∗
N )

2 +
Ψ(x∗N−2,0,0)

2 −ΠN−2,

which is derived from (13) directly, by replacing x∗N−1 and
π∗N−1 with 0 (i.e., not reaching agreement).
2. Agreement: If they reach an agreement πN−1 = v (and
xN−1 = x∗N−1), the APO’s payoff is v, and the MNO’s payoff
is its potential payoff after having dealt with all APOs, which
is exactly given by (13), i.e., VN−1 = v and

U[N−1] =
Ψ(x∗N−2,x

∗
N−1,x

∗
N )

2 +
Ψ(x∗N−2,x

∗
N−1,0)

2 −ΠN−2 − v.
3. Payoff gain: Under an agreement πN−1 = v (and xN−1 =
x∗N−1), the payoff gains of APO N − 1 and the MNO are,
respectively, VN−1 − V0

N−1 = v and

U[N−1] − U0
[N−1] = ∆̄N−1 − v,

where ∆̄N−1 = ∆N−1(IN=1)+∆N−1(IN=0)
2 , and ∆N−1(IN ) ,

Ψ(x∗N−2, x
∗
N−1, INx

∗
N )−Ψ(x∗N−2, 0, INx

∗
N ).

Notice that ∆N−1(IN ) denotes the marginal social welfare
generated by involving APO N − 1 in the offloading under a
particular indicator IN , where IN ∈ {0, 1} indicates the virtual
possibility of whether the MNO will reach agreement with
APO N . Thus, ∆̄N−1 can be viewed as the expected marginal
social welfare generated by involving APO N − 1 in the
offloading, assuming that the MNO has reached agreements
with APOs 1 to N − 2, and will reach an agreement with
APO N with a probability of 0.5. We call ∆̄N−1 as the
virtual marginal social welfare generated by APO N − 1.
For a better understanding, we illustrate the structure of the
virtual marginal social welfare ∆̄n in [40].
4. Bargaining solution: By Definition 1, the NBS between the
MNO and the APO N − 1 is given by

max
v

(
∆̄N−1 − v

)
· v, s.t. ∆̄N−1 − v ≥ 0, v ≥ 0. (14)

Similarly, solving the above problem, we have the following
NBS for the bargaining between the MNO and APO N−1.

Lemma 4 (NBS in Step N − 1). The NBS between the MNO
and APO N − 1 in Step N − 1 is

π∗N−1 = v∗ = ∆̄N−1

2 = ∆N−1(IN=1)+∆N−1(IN=0)
4 . (15)

In addition, under the NBS, the MNO’s payoff is

U∗[N−1] = U0
[N−1] + ∆̄N−1

2

= ΩN−1(IN=1)+ΩN−1(IN=0)
4 −ΠN−2,

(16)

where ΩN−1(IN )=Ψ(x∗N−2, x
∗
N−1, INx

∗
N )+Ψ(x∗N−2, 0, INx

∗
N ).

Similarly, the MNO and APO N−1 equally share the virtual
marginal social welfare ∆̄N−1 generated by involving APO
N − 1 in the offloading.

Step n, ∀n ∈ {1, ..., N − 2}.
Now we consider the bargaining between the MNO and

APO n in a generic Step n, where the MNO has reached
bargaining solutions {π∗1 , ..., π∗n−1} with all APOs 1 to n− 1.
By induction, we have the following NBS for the bargaining
between the MNO and an arbitrary APO n.

Lemma 5 (NBS in Step n). The NBS between the MNO and
APO n in Step n is

π∗n = ∆̄n

2 =
∑1
In+1=0 ...

∑1
IN=0

∆n(In+1;...;IN )
2N−n+1 , (17)

where ∆n(In+1; ...; IN )=Ψ(x∗n−1, x
∗
n, In+1x

∗
n+1, ..., INx

∗
N )−

Ψ(x∗n−1, 0, In+1x
∗
n+1, ..., INx

∗
N ).

In addition, under the NBS, the MNO’s payoff is

U∗[n] =
∑1
In+1=0 ...

∑1
IN=0

Ωn(In+1;...;IN )
2N−n+1 −Πn−1, (18)

where Ωn(In+1; ...; IN )=Ψ(x∗n−1, x
∗
n, In+1x

∗
n+1, ..., INx

∗
N )+

Ψ(x∗n−1, 0, In+1x
∗
n+1, ..., INx

∗
N ).

Similarly, ∆n(In+1; ...; IN ) denotes the marginal social
welfare generated by involving APO n in the offloading, under
a set of indicators In+1, ..., IN , each associated with an APO
in {n + 1, ..., N}. Thus, ∆̄n can be viewed as the virtual
marginal social welfare generated by involving APO n in the
offloading, assuming that the MNO has reached agreements
with APOs 1 to n − 1, and will reach agreement with each
APO i ∈ {n+ 1, ..., N} with a probability of 0.5. Obviously,
the MNO and APO n equally share the virtual marginal social
welfare ∆̄n generated by APO n.

By the above analysis, we can obtain the following NBS
for the sequential bargaining (denoted by S-NBS).

Theorem 1 (Sequential Bargaining Solution - S-NBS). The
NBS {x∗,π∗} under the sequential bargaining is

(a) x∗n = xon, ∀n ∈ N ;
(b) π∗n =

∑1
In+1=0 ...

∑1
IN=0

∆n(In+1;...;IN )
2N−n+1 , ∀n ∈ N .

Next we provide some useful properties for the S-NBS. For
more detailed discussions, please refer to [40].

Property 1 (Early-Mover Advantage). Under the sequential
bargaining, an APO will obtain a higher payoff, if it bargains
with the MNO earlier.

Property 2 (Invariance to APO-order Changing). Under the
sequential bargaining, the bargaining order of APOs does not
affect the MNO’s payoff.

B.2) Concurrent Bargaining

We now study the NBS under concurrent bargaining, where
the MNO bargains with APOs concurrently (see Figure 2 (b)).
Namely, N one-to-one bargainings happen simultaneously.
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Without loss of generality, we consider the bargaining
between the MNO and an APO n for πn (or zn, equivalently).
For the convenience in writing, we introduce notations:

x−n , (x1, ..., xn−1, xn+1, ..., xN ),

π−n , (π1, ..., πn−1, πn+1, ..., πN ),

Π−n ,
∑
i∈N ,i6=n πi.

for the analysis of the concurrent bargaining.

1. Disagreement: If the MNO and APO n do not reach an
agreement, then APO n’s disagreement point is 0, and the
MNO’s disagreement point is its payoff after finishing all N−1
concurrent one-to-one bargainings with other APOs, i.e.,

V0
N = 0, U0

[n] = Ψ(x∗−n, 0)−Π−n.

2. Agreement: If they reach an agreement πn = v (and xn =
x∗n), then APO n’s payoff is v, and the MNO’s payoff is its
payoff after finishing all concurrent one-to-one bargainings
with all APOs, i.e.,

Vn = v, U[n] = Ψ(x∗−n, x
∗
n)−Π−n − v.

3. Payoff gain: Under an agreement πn = v (and xn = x∗n),
the payoff gains for the MNO and APO n are, respectively,

Vn − V0
n = v, U[n] − U0

[n] = ∆̃n − v,
where ∆̃n , Ψ(x∗−n, x

∗
n) − Ψ(x∗−n, 0) denotes the marginal

social welfare generated by involving APO n into the of-
floading, assuming that the MNO has reached (or will reach)
agreements with all other APOs.
4. Bargaining solution: Similar to the analysis for the sequen-
tial bargaining, the agreement that the MNO and AP n will
reach is v∗ = ∆̃n

2 . Thus, the NBS between the MNO and APO
n is the following.

Lemma 6 (NBS with APO n). The NBS between the MNO
and APO n under concurrent bargaining is

π∗n = v∗ = ∆̃n

2 =
Ψ(x∗−n,x

∗
n)−Ψ(x∗−n,0)

2 . (19)

In addition, under the NBS, the MNO’s payoff is

U∗[n] = U0
[n] + ∆̃n

2 =
Ψ(x∗−n,x

∗
n)+Ψ(x∗−n,0)

2 −Π−n. (20)

Similarly, we can obtain the following NBS for the concur-
rent bargaining (denoted by C-NBS).

Theorem 2 (Concurrent Bargaining Solution - C-NBS). The
NBS {x∗,π∗} under the concurrent bargaining is

(a) x∗n = xon, ∀n = 1, ..., N ;
(b) π∗n = ∆̃n

2 =
Ψ(x∗−n,x

∗
n)−Ψ(x∗−n,0)

2 , ∀n = 1, ..., N .

Next we provide some useful properties for the C-NBS. For
more detailed discussions, please refer to [40].

Property 3 (Invariance to AP-index Changing). The APO-
index has no impact on the APO’s payoff under the concurrent
bargaining.10

Property 4 (Concurrently Moving Tragedy). The payoff of
APO under the concurrent bargaining equals to the worst-case
payoff that it can achieve under the sequential bargaining.

10Since there is no concept of “order” under the concurrent bargaining,
we use the term “index” to distinguish APOs. Note that under the sequential
bargaining, the term “index” is equivalent to the term “order”.

C. Grouping Effect
So far, we have assumed that each APO bargains with

the MNO individually. In practice, however, APOs may form
groups and bargain with the MNO jointly. Now we study the
impact of APO grouping on the bargaining solution.11

It is important to note that if multiple APOs form a group,
they will bargain with the MNO as a single player. Namely, the
marginal social welfare generated by this “player” is the total
marginal social welfare generated by all APOs in the group
together; the disagreement point is the sum of all associated
APOs’ disagreement points. Thus, once the group is fixed, we
can apply the results in Theorems 1 and 2 directly, by viewing
each APO group as a single virtual player.

C.1) Grouping Effect in the Sequential Bargaining
We consider a simple, yet representative grouping scenario

where two successive APOs (say n− 1 and n) form a group.
For notational convenience, we denote the new player (i.e., the
group {n− 1, n}) by 〈n〉. To keep the indexes of other APOs
consistent, we introduce a dummy APO 〈n− 1〉 before 〈n〉,
who offloads zero traffic, and receives zero payment.

By Theorem 1, the payoff of new player 〈n〉 (i.e., the group
of APOs n and n−1) under the sequential bargaining is

π∗〈n〉 =
∆̄〈n〉

2 =
∑1
In+1=0 ...

∑1
IN=0

∆〈n〉(In+1;...;IN )

2N−n+1 , (21)

where ∆〈n〉(In+1; ...; IN ) ,

Ψ(x∗n−2, x
∗
〈n−1〉, {x∗n−1, x

∗
n}, In+1x

∗
n+1, ..., INx

∗
N )

−Ψ(x∗n−2, x
∗
〈n−1〉, {0, 0}, In+1x

∗
n+1, ..., INx

∗
N )

is the marginal social welfare generated by APOs n−1 and n
together. Notice that x∗〈n−1〉 = 0 for the dummy APO 〈n− 1〉.
Thus, we can rewrite the above marginal social welfare as
∆〈n〉(In+1; ...; IN ) =Ψ(x∗n−2, x

∗
n−1, x

∗
n, In+1x

∗
n+1, ..., INx

∗
N )

−Ψ(x∗n−2, 0, 0, In+1x
∗
n+1, ..., INx

∗
N ).

Comparing π∗〈n〉 in (21) with π∗n−1 and π∗n in (19), we can
easily see that APOs n−1 and n achieve a larger total payoff
when forming a group. We can further show that this result
holds generally in our data offloading problem. Formally,

Property 5 (Intra-Grouping Benefit). Under the sequential
bargaining, grouping of APOs always improves the payoffs of
the group members.

By checking the payoffs of APOs other than n−1 and n, we
can further find that grouping of APOs benefits not only the
group members, but also the preceding APOs, i.e., those APOs
bargaining before the group. This means that the grouping of
APOs has the positive externality in sequential bargaining.

Property 6 (Inter-Grouping Benefit). Under the sequential
bargaining, grouping of APOs improves the payoffs of all
APOs bargaining before the group, while does not affect the
APOs bargaining after the group.

Based on the above analysis, we can find that grouping of
APOs will not hurt any APO. Since the achieved maximum
social welfare does not change, the MNO will achieve a
reduced payoff when APOs form groups.

11For better understanding of this grouping effect, we also provide illustra-
tive examples in the online technical report [40].
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Fig. 3. Traffic Offloading Profile vs Transmission Efficiency θn.
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Fig. 4. Traffic Offloading Profile vs AP Serving Cost cn.

C.2) Grouping Effect under the Concurrent Bargaining

With a similar analysis, we can obtain the following results
regarding the grouping effect under the concurrent bargaining.

Property 7 (Intra-Grouping Benefit). Under the concurrent
bargaining, grouping of APOs always improves the payoffs of
the group members.

Property 8 (No Inter-Group Benefit). Under the concurrent
bargaining, grouping of APOs does not affect the APOs not
in the group.

We can similarly find that under the concurrent bargaining, the
MNO will achieve a reduced payoff when APOs form groups.

VI. SIMULATIONS

In these simulations, we assume a typical 3G/4G macrocell
with a transmission range of 500m, and N = 50 WiFi APs
(each operated by an APO) with a transmission range of 50m
each. The APs are located at the hot spots, i.e., those areas
with high MU densities. The macrocell’s bandwidth (resource)
is 20MHz, and every AP’s effective bandwidth (resource) is
randomly and uniformly chosen from {1, 2, 5.5, 11}MHz
(fixed within every data offloading period), depending on the
interference it experiences. Every APO’s own demand follows
a uniform distribution in [0, 10] (Mbps).

The total MU density in hot spots is 4 times higher than
that in other areas. There are totally 250 MUs randomly
distributed within the macrocell; and thus on average there
are 200 MUs in the hot spots (covered by APs), and 50 MUs
in areas only covered by the macrocell. Every MU’s traffic
is a randomly and uniformly selected from {0, 32, 64, 128,
256, 512}Kbps, reflecting different types of applications. The
MU traffic and AP resource remains unchanged within the
period of data offloading (one minute in simulations), while
can change across periods.

Traffic Offloading Profile. We first illustrate the traffic
offloading profile under the NBS. It is natural to compare the
NBS with other non-cooperative game based solutions such
as the Nash equilibrium (NE). To derive this benchmark, we
formulate the problem as a Stackelberg game, where the MNO
(game leader) proposes the reimbursements first, and then
APOs (game followers) respond with the traffic they are will-
ing to offload (see [40] for details).

Figures 3 and 4 show the traffic offloading profiles in the
NBS and the NE under different system parameters. Notice
that the traffic offloading profiles under the NBS is also the
socially optimal solution (see Lemma 2). In both figures, the

x-axis denotes the indices of APOs, and the y-axis denotes the
traffic offloading to each APO. The bar chart denote the input
system parameter, representing the transmission efficiency
between each AP and the macrocell BS (in Figures 3), and
the serving cost of every AP (in Figures 4), respectively. From
these figures we can see that the non-cooperative game solu-
tion (NE) significantly deviates from the cooperative bargain-
ing solution (NBS) in both cases. In Figures 3, the weighted
average difference, i.e.,

∑N
n=1 |xo

n−x∗n|∑N
n=1 x

o
n

, is 6.7%. In Figures
4, the weighted average difference is 13.4%. This implies
that users’ non-cooperative choices as in the NE will lead to
certain social welfare loss, which motivates our study of the
cooperative bargaining framework.

Figure 3 shows that xon under the NBS decreases with the
transmission efficiency θn, which implies that the MNO will
offload more traffic to those APs farther away (as the MUs
covered by such APs have a small transmission efficiency
with the macrocell BS, and thus will consume more macrocell
resource if not being offloaded). Similarly, Figure 4 shows that
xon decreases with the APO’s serving cost cn, which implies
that the APO with lower cost is more likely to offload traffic
for the MNO.

Payoff Division and Grouping Effect. Now we illustrate
the payoff division under the NBS. In order to clearly show the
APOs’ payoff difference, we consider a simple scenario with
N = 10 identical APOs. Namely, they have the same cost,
resource constraint, demand distribution, and transmission
efficiency. Besides, the cellular traffic volumes in these APOs
are also identical.

Figure 5 illustrates the payoff of every APO (group) in
different grouping structures under the sequential and the
concurrent bargaining. Each bar denotes the payoffs of APOs
under a particular grouping structure. For example, the 6th bar
in both sub-figures denotes such a grouping structure: APOs
1–4 remain single, while APOs 5–10 merge into a group 〈5〉.
Notice that the MNO’s payoff equals to the maximum social
welfare minus all APOs’ payoffs, and later we will show that
the maximum social welfare is twice the value of the last bar
(i.e., twice of the total payoff of all APOs when they merge
into a single group).

Figure 5 not only shows the payoff division among APOs,
but also shows how grouping benefits the group members or
non-group members. From the left sub-figure (corresponding
to the sequential bargaining), we have the following obser-
vations. First, the first bar column (gropu structure 1) shows
the early-mover advantage: an earlier APO (represented by a
lower block, say the dark blue one) can achieve a higher payoff
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Fig. 5. The payoffs of APOs under different grouping structures: (a) Sequential Bargaining, (b) Concurrent Bargaining.

than a later APO (represented by a higher block, say the brown
one). Second, APOs can achieve a higher total payoff as they
merge into a group (e.g., the brown block in the last column
is larger than the sum of all blocks in the first column). Third,
group merging benefits all APOs bargaining before the group,
e.g., APO 1’s payoff increases as more APOs merge together
in later columns). Finally, the first column corresponds to the
one-to-many sequentially bargaining without any group, and
the payoff division corresponds to the one-to-many S-NBS
given in Theorem 1; the last column is essentially equivalent
to a one-to-one bargaining (with all APOs forming one group),
and the payoff division corresponds to the one-to-one NBS
given in Lemma 1, from which we can easily find that the
maximum social welfare Ψ(xo) is twice the value of this bar
(as the group gets half of the maximum social welfare).

The insights from the right sub-figure (corresponding to
the concurrent bargaining) are different. First, from the first
column there is no early-mover advantage, as all APOs
bargaining concurrently with the MNO. In the first column, we
can see that all APOs achieve the same payoff when all of them
bargain with the MNO individually. Second, group merging
will only benefit APOs in the group, and has no impact on
other APOs’ payoff. Third, notice that the last all brown
column is the same as that in the left sub-figure, both rep-
resenting the bargaining between the MNO and the group of
all APOs. Finally, comparing the corresponding blocks in both
sub-figures, we can observe the concurrently moving tragedy
for APOs: all APOs achieve a lower or equal payoff under
the concurrent bargaining than under the sequential bargaining
with the same grouping structure.

More specifically, Figure 5 shows that the generated max-
imum social welfare is Ψ(xo) = 31.8, and the MNO obtains
around 68% (75%, respectively) of the generated social wel-
fare under the sequential (concurrent, respectively) bargaining
with the grouping structure 1 (all APOs bargain individually).
This percentage decreases as more APOs form a group. For
example, under the grouping structure 8 (where 8 APOs form
a group), the MNO’s payoff ratio decreases to 62% (67%,
respectively). Obviously, when all APOs form a single group
(grouping structure 10), the MNO can only obtain 50% of the
total social welfare under both bargaining protocols.

VII. CONCLUSIONS

In this paper, we studied the economic interaction between
MNO and APOs in mobile data offloading. We considered a

monopoly setting which may correspond to a scenario where
a MNO negotiates with its clients that have already installed
femtocell APs (for their own needs), or an ISP with its clients
that have installed WiFi APs. We used Nash bargaining theory
to explain how the generated benefit should be distributed
among the MNO and the involved APOs, so as to ensure
that all the interacting parties are satisfied and hence willing
to cooperate. In this process, the bargaining protocol, i.e. the
process according to which the APOs negotiate with the MNO,
is of crucial importance and affects the outcome. This is the
first time that this aspect is explicitly taken into account in
networking problems.

This paper opens many new interesting research directions.
First, it is important to study an oligopoly market where many
different MNOs compete to lease the APOs. The monopoly
scenario presented here is a prerequisite and serves as a build-
ing block for this more general analysis. Equally interesting
is the analysis of highly dynamic systems, where MUs have
to change their AP associations while offloading their data.
More importantly, our work opens the road for a more detailed
analysis of the relation between the bargaining protocol and
the market outcome. For example, it is challenging to study
the sequential bargaining scheme under imperfect knowledge
about the number of the APOs or their parameters (e.g. their
capacity). Similarly, one can explore the impact of competition
among different APO groups.
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APPENDIX

Technical Report
Title: Bargaining-Based Mobile Data Offloading
Authors: Lin Gao, George Iosifidis, Jianwei Huang, Leandros
Tassiulas, and Duozhe Li

Note: The original version is published in IEEE Journal on Selected
Areas in Communications (JSAC) Special Issue in 5G Communica-
tion Systems, 2014.

Outline of This Technical Report
(I) Model Discussion
• A. Model Extension

(II) Illustration and Example
• B. Illustration of Virtual Marginal Social Welfare ∆̄n

• C. Examples of Nash Bargaining Solutions
• D. Examples of Grouping Effect

(III) Proofs
• E. Proof for Lemma 1 in Section IV
• F. Proof for Lemma 2 in Section V-A
• G. Proof for Lemma 3 in Section V-B
• H. Proof for Lemma 4 in Section V-B
• I. Proof for Lemma 5 in Section V-B
• J. Proof for Theorem 1 in Section V-B
• K. Proofs for Properties 1 and 2 in Section V-B
• L. Proof for Lemma 6 in Section V-B
• M. Proof for Theorem 2 in Section V-B
• N. Proofs for Properties 3 and 4 in Section V-B
• O. Proof for Property 5 in Section V-C
• P. Proof for Property 6 in Section V-C
• Q. Proof for Property 7 in Section V-C
• R. Proof for Property 8 in Section V-C

(IV) An Alternative Modeling Approach
• S. Non-cooperative Game Formulation and Analysis

(I) Model Discussion
A. Model Extension

Now we discuss how to extend the current model (with
non-overlapping APOs) to a new model with overlapping
APOs. Specifically, we first show that in the new model (with
overlapping APOs), the key challenges include (i) modeling
the overlap relationship of APOs, and (ii) solving the optimal
offloading solution (even in the centralized manner). Then we
propose a different modeling method, which can model the
data offloading problem more effectively. It is important to
note that as long as the optimal offloading solution is obtained,
all of the bargaining analysis (regarding the welfare division)
in this paper can be directly applied to the new model.

We first discuss the challenges in modeling and solving the
offloading problem with overlapping APOs.
1) Modeling the overlap relationship of APOs:

To characterize the overlap relationship of APOs, we need to
define the overlapping area of any 2 APOs (hence a maximum
of N ·(N−1)

2·1 areas), the overlapping area of any 3 APOs (hence
a maximum of N ·(N−1)·(N−2)

3·2·1 areas), ..., the overlapping area

of any N − 1 APOs (hence a maximum of N ·(N−1)·...·2
(N−1)·...·2·1 = N

areas), and finally, the overlapping area of all APOs. Thus, for
a network of N APOs, we need to define a maximum of K
areas, where

K = K1 +K2 + ...+KN =
∑N
n=1

N ·...·(N−n+1)
n·...·1 ,

and K1 = N is the number of areas covered by a single APO,
Kn = N ·...·(N−n+1)

n·...·1 , n ≥ 2, is the number of overlapping
areas covered by n APOs jointly. Accordingly, we need to
define the MNO’s traffic distribution in a maximum of K + 1
areas (including the above K areas and the blank area not
covered by any APO). Obviously, it is challenging to model
the offloading problem using the above method as K increases
exponentially with N .
2) Solving the optimal offloading solution:

Note that even if we model the problem in the above way
(i.e., dividing the whole area into K + 1 parts), finding the
optimal offloading solution (even in the centralized manner) is
still challenging, as it requires us to solve a matching problem
which is usually NP-hard. Specifically, for any traffic within
any area covered by multiple APOs, we need to determine
which APOs are actually scheduled to offload it. Therefore,
the whole data offloading problem is essentially a matching
problem (between the traffic in K areas and N APOs). Solving
a matching problem is usually time consuming, especially
when the matching size K or N is large.

Now we propose a different modeling method to model the
data offloading problem more effectively. The key idea is as
follows. First, we divide the whole area into I small areas,
and each can be a square or hexagon, with a small size (e.g.,
10 meters). Let Si denote the traffic within the ith small areas,
i = 1, ..., I . Let an,i ∈ {0, 1} denote whether the ith area is
covered by APO n. Then, the traffic Si can be offloaded to
an APO n with an,i = 1 (and there can be multiple of such
APOs, each offloading a fraction of Si). It is easy to check
that the model under this new modeling method is equivalent
to the original model (based on the overlapping areas among
APOs), but it can avoid the complicated characterization of
overlap relationships among APOs.

Certainly, with this new modeling method, solving the
optimal offloading problem is a matching problem (between
the traffic in I areas and N APOs) and hence is still chal-
lenging. Nevertheless, many classic algorithms or approximate
algorithms can be used to solve a matching problem (Interested
readers can refer to the book “Algorithm Design (Pearson Edu-
cation, 2006)” by Eva Tardos and Jon Kleinberg). Notice that
in the original modeling method, K increases exponentially
with the number of APOs N , while in the new modeling
method, I is independent of N . Therefore, the new modeling
method is more efficient, especially in the scenarios with a
large number of APOs.

(II) Illustration and Example

B. Illustration of Virtual Marginal Social Welfare ∆̄n

Lemma 5 shows that under the sequential bargaining solu-
tion (S-NBS), every APO n (bargaining in Step n) achieves
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Fig. 6. Illustration of the virtual marginal social welfare ∆̄n generated by APO n.

half of the virtual marginal social welfare ∆̄n it generates. In
addition, the virtual marginal social welfare ∆̄n is given by

∆̄n =
∑1
In+1=0 ...

∑1
IN=0

∆n(In+1;...;IN )
2N−n ,

where ∆n(In+1; ...; IN )=Ψ(x∗n−1, x
∗
n, In+1x

∗
n+1, ..., INx

∗
N )−

Ψ(x∗n−1, 0, In+1x
∗
n+1, ..., INx

∗
N ).

For a better understanding, we illustrate the structure of the
virtual marginal social welfare ∆̄n in Figure 6. Intuitively, it
equals to the average of the marginal social welfares generated
by APO n, under the conditions that the MNO has reached
agreements with each APO in {1, ..., n− 1} (before APO n),
and will reach agreements with each APO in {n + 1, ..., N}
(after APO n) with a probability of 0.5.

C. Examples of Nash Bargaining Solutions

Now we provide examples to illustrate the NBS under both
the sequential bargaining and the concurrent bargaining.

Consider the following example: (i) N = 4 APOs, (ii)
the socially optimal offloading solution is xon = 1, n ∈
{1, 2, 3, 4}, and (iii) the social welfare function Ψ(x) is a
concave function ψ(·) of the total offloaded amount, i.e.,
Ψ(x) , ψ(

∑4
n=1 xn).12 By Lemma 2, the traffic offloading

profiles under both sequential and concurrent bargainings are
x∗n = xon = 1, n ∈ {1, 2, 3, 4}. Next, we illustrate the payoff
profiles under different bargaining protocols.

Example: Sequential Bargaining
In Step 4, the disagreement points (D) of APO 4 and the

MNO, and their payoffs (A) and payoff gains (G) if they reach
an agreement π4 = v (and x4 = x∗4 = 1) are

(D) V0
4 = 0, U0

[4] = ψ(3)−Π3,

(A) V4 = v, U[4] = ψ(4)−Π3 − v,
(G) V4 − V0

4 = v, U[4] − U0
[4] = ψ(4)− ψ(3)− v.

Then, the NBS in Step 4 (i.e., the APO 4’s payoff), and the
MNO’s payoff under the NBS are, respectively,

π∗4 = ∆4

2 = ψ(4)−ψ(3)
2 ,

U∗[4] = U0
[4] + ∆4

2 = ψ(4)+ψ(3)
2 −Π3,

(22)

12This implies that, from the social perspective, offloading one unit of traffic
by an APO n1 is totally same as by another APO n2. This social welfare
function may correspond to such a network scenario where all APOs are
symmetric.

where ψ(4)− ψ(3) , ∆4 is the marginal social generated by
APO 4. Obviously, both the APO 4 and the MNO get half of
the marginal social ∆4 generated by APO 4.

In Step 3, the disagreement points (D) of APO 3 and the
MNO, and their payoffs (A) and payoff gains (G) if they reach
an agreement π3 = v (and x3 = x∗3 = 1) are

(D) V0
3 = 0, U0

[3] = ψ(3)+ψ(2)
2 −Π2,

(A) V3 = v, U[3] = ψ(4)+ψ(3)
2 −Π2 − v,

(G) V3 − V0
3 = v, U[3] − U0

[3] = ψ(4)−ψ(2)
2 − v,

where U0
[3] and U[3] are derived from U∗[4] in Step 4, denoting

the MNO’s potential payoff after having dealt with all APOs.
Thus, the NBS in Step 3 (i.e., the APO 3’s payoff), and the

MNO’s payoff under the NBS are, respectively,

π∗3 = ∆̄3

2 = ψ(4)−ψ(3)
4 + ψ(3)−ψ(2)

4 ,

U∗[3] = ψ(4)+ψ(3)
4 + ψ(3)+ψ(2)

4 −Π2,
(23)

where (i) ψ(4) − ψ(3) , ∆3(I4 = 1) is the marginal
social welfare generated by APO 3, assuming that the MNO
will reach an agreement with APO 4, (ii) ψ(3) − ψ(2) ,
∆3(I4 = 0) is the marginal social welfare generated by APO
3, assuming that the MNO will not reach an agreement with

APO 4, (iii) ∆̄3 =
∑1

I4=0 ∆3(I4)

2 is the virtual marginal social
welfare generated by APO 3, assuming that the MNO will
reach an agreement with APO 3 with a probability of 0.5.
Both the APO 3 and the MNO get half of the virtual marginal
social ∆̄3 generated by APO 3.

In Step 2, the disagreement point for the MNO is U0
[2] =

ψ(3)+ψ(2)
4 + ψ(2)+ψ(1)

4 −Π1, which is directly obtained from
U∗[3] in (23). Then, with a similar analysis, we can derive the
NBS in Step 2 (i.e., the APO 2’s payoff) and the MNO’s payoff
under this NBS as follows.
π∗2 = ∆̄2

2 = ψ(4)−ψ(3)
8 + ψ(3)−ψ(2)

8 · 2 + ψ(2)−ψ(1)
8 ,

U∗[2] = ψ(4)+ψ(3)
8 + ψ(3)+ψ(2)

8 · 2 + ψ(2)+ψ(1)
8 −Π1,

(24)

where (i) ψ(4) − ψ(3) , ∆2(I3 = I4 = 1) is the marginal
social welfare generated by APO 2, assuming that the MNO
will reach agreements with both APOs 3 and 4, (ii) ψ(3) −
ψ(2) , ∆2(I3 = 0, I4 = 1) , ∆2(I3 = 1, I4 = 0) is the
marginal social welfare generated by APO 2, assuming that
the MNO will reach an agreement with one of APOs 3 and
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4, (iii) ψ(2) − ψ(1) , ∆2(I3 = I4 = 0) is the marginal
social welfare generated by APO 2, assuming that the MNO
will not reach an agreement with any of APOs 3 and 4, and

(iv) ∆̄2 =
∑1

I3=0

∑1
I4=0 ∆2(I3,I4)

4 is the virtual marginal social
welfare generated by APO 2 assuming that the MNO will
reach an agreement with each APO in {3, 4} with a probability
of 0.5. Both the APO 2 and the MNO get half of the virtual
marginal social welfare ∆̄2 generated by APO 2.

In Step 1, we can similarly derive the NBS, and the MNO’s
payoff under this NBS as follows.

π∗1 = ∆̄1

2 = ψ(4)−ψ(3)
16 + ψ(3)−ψ(2)

16 · 3 + ψ(2)−ψ(1)
16 · 3+

ψ(1)−ψ(0)
16 ,

U∗[1] = ψ(4)+ψ(3)
16 + ψ(3)+ψ(2)

16 · 3 + ψ(2)+ψ(1)
16 · 3 + ψ(1)+ψ(0)

16 ,
(25)

where ∆̄1 ,
∑1

I2=0

∑1
I3=0

∑1
I4=0 ∆1(I2,I3,I4)

8 is the virtual
marginal social welfare generated by APO 1, assuming that
the MNO will reach an agreement with each APO in {2, 3, 4}
with a probability of 0.5. Both the APO 1 and the MNO get
half of the virtual marginal social welfare ∆̄1 generated by
APO 1.

We summarize the APOs’ payoffs (i.e., π∗n, n = 1, 2, 3, 4)
under the above sequential bargaining solution in Figure 7,
where wn ,

ψ(n+1)−ψ(n)
2 , denoting a half of the marginal

social welfare generated by a new APO when there are n other
APOs reaching agreements with the MNO, and w3 < w2 <
w1 < w0 by the concavity of ψ(·). These results can be easily
extended to a more general case with N APOs.

Verification of Property 1 (Early-Mover Advantage): From
Eqs. (22)-(25) or from Figure 7 we can easily find that

π∗1 > π∗2 > π∗3 > π∗4 ,

as w3 < w2 < w1 < w0 by the concavity of ψ(·).
Verification of Property 2 (Invariance to APO-order Chang-

ing): Notice that the MNO’s payoff given in (25) can
be rewritten as U∗[1] = ψ(4)+4ψ(3)+6ψ(2)+4ψ(1)+ψ(0)

16 =∑1
I1=0

∑1
I2=0

∑1
I3=0

∑1
I4=0 Ψ(I1,I2,I3,I4)

16 , which is exactly the
expected social welfare when the MNO reaches agreement
with each APO with a probability of 0.5. Obviously, changing
the order of APOs does not affect the MNO’s payoff. �

Example: Concurrent Bargaining.
Consider the bargaining between the MNO and an arbitrary

APO n ∈ {1, 2, 3, 4}. The disagreement points (D) of APO n
and the MNO, and their payoffs (A) and payoff gains (G) if

they reach an agreement πn = v (and xn = x∗n = 1) are
(D) V0

n = 0, U0
[n] = ψ(3)−Π−n,

(A) Vn = v, U[n] = ψ(4)−Π−n − v,
(G) Vn − V0

n = v, U[n] − U0
[n] = ψ(4)− ψ(3)− v,

where U0
[n] and U[n] are based on the expectation that the

MNO will reach agreements with all other APOs bargaining
concurrently. Then, the NBS with APO n (i.e., the APO n’s
payoff), and the MNO’s payoff under this NBS are

π∗n = ∆̃n

2 = ψ(4)−ψ(3)
2 ,

U∗[n] = ψ(4)+ψ(3)
2 −Π−n,

(26)

where ψ(4)− ψ(3) , ∆̃n is the marginal social welfare gen-
erated by APO n (assuming the MNO will reach agreements
with all other APOs).

Verification of Property 3 (Invariance to AP-index Chang-
ing): Due to the symmetry of APOs in this example, we have:

π∗n = ψ(4)−ψ(3)
2 , ∀n ∈ {1, 2, 3, 4}.

That is, the APO’s payoff is independent of its index.
Verification of Property 4 (Concurrently Moving Tragedy):

It is easy to see that each APO n’s payoff in (26) is equal to
the worst APO’s payoff under the sequential bargaining (i.e.,
the payoff of the last bargainer at Step 4).

By Property 3, we further have: Π−n =
∑
i 6=n π

∗
i = 3 ·

ψ(4)−ψ(3)
2 . Thus, the MNO’s payoff can be written as: U∗[n] =

2 · ψ(3) − ψ(4). Comparing it with (25), we can easily find
that the MNO can achieve a higher payoff under the concurrent
bargaining. �

D. Examples of Grouping Effect

Now we use the example in Appendix C to illustrate the
grouping effect. For a better illustration, we consider that
APOs 2 and 3 form a new group, denoted by 〈3〉 , {2, 3},
while APOs 1 and 4 bargain individually. A dummy APO 〈2〉
is introduced for the notational consistence. With this APO
grouping structure, the bargaining order under the sequential
bargaining is {1}, {2, 3}, {4}. By Lemma 2, the traffic
offloading profiles are still x∗n = xon = 1, n ∈ {1, 2, 3, 4} with
this APO grouping structure. Next, we illustrate the payoff
profiles under this APO grouping structure.

Example: Grouping Effect in Sequential Bargaining.
In Step 4, the MNO has reached agreements with APO 1 and

APO group {2, 3}, and now is bargaining with APO 4. With
a similar analysis in Appendix C, we can obtain the NBS in
Step 4 (i.e., the APO 4’s payoff) and the MNO’s payoff under
the NBS as follows.

π∗4 = ∆4

2 = ψ(4)−ψ(3)
2 ,

U∗[4] = ψ(4)+ψ(3)
2 −Π3.

(27)

In Step 3, the MNO has reached agreements with APO
1, and now is bargaining with the APO group {2, 3}). The
disagreement points (D) of APO group {2, 3} and the MNO,
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and their payoffs (A) and payoff gains (G) if they reach an
agreement π2 + π3 = v (and x2 = x∗2 = 1, x3 = x∗3 = 1) are

(D) V0
〈3〉 = 0, U0

[3] = ψ(2)+ψ(1)
2 −Π1,

(A) V〈3〉 = v, U[3] = ψ(4)+ψ(3)
2 −Π1 − v,

(G) V〈3〉 − V0
〈3〉 = v, U[3] − U0

[3] = ψ(4)−ψ(2)+ψ(3)−ψ(1)
2 − v,

where U0
[3] and U[3] are derived from U∗[4] in Step 4. Note that

U0
[3] here is different from that in Appendix C, as in this new

grouping structure, the MNO will not reach an agreement with
any APO in {2, 3} under the disagreement outcome. Then, the
NBS in Step 3 (i.e., the total payoff of APOs 2 and 3), and
the MNO’s payoff under this NBS are

π∗〈3〉 =
∆̄〈3〉

2 = ψ(4)−ψ(2)
4 + ψ(3)−ψ(1)

4 ,

U∗[3] = ψ(4)+ψ(2)
4 + ψ(3)+ψ(1)

4 −Π1,
(28)

where ∆̄〈3〉 ,
∑1

I4=0 ∆〈3〉(I4)

2 is the virtual marginal social
welfare generated by APOs {2, 3}, assuming that the MNO
will reach agreement with APO 4 with a probability of 0.5.

In Step 2, the MNO bargains with the dummy APO 〈2〉),
and thus the bargaining result is straightforward:

π∗〈2〉 = 0,

U∗[2] = U∗[3] = ψ(4)+ψ(2)
4 + ψ(3)+ψ(1)

4 −Π1.
(29)

In Step 1, the MNO bargains with APO 1. with a similar
analysis in Appendix C, we can obtain the NBS in Step 1 (i.e.,
the APO 1’s payoff) and the MNO’s payoff under this NBS
as follows.
π∗1 = ∆̄1

2 = ψ(4)−ψ(3)
8 + ψ(2)−ψ(1)

8 + ψ(3)−ψ(2)
8 + ψ(1)−ψ(0)

8

U∗[1] = ψ(4)+ψ(3)
8 + ψ(2)+ψ(1)

8 + ψ(3)+ψ(2)
8 + ψ(1)+ψ(0)

8 .
(30)

Verification of Property 5 (Intra-Grouping Benefit): Com-
paring (28) with (23) and (24), we can find that the total payoff
of APOs 2 and 3 increases if they form a group.

Verification of Property 6 (Inter-Grouping Benefit (Positive
Externality)): Comparing (30) with (25), we can find that the
payoff of APO 1 also increases if APOs 2 and 3 form a group.
Furthermore, comparing (27) with (22), the payoff of APO 4
does not change. �

Example: Grouping Effect in Concurrent Bargaining.
Consider the bargaining between the MNO and an APO

n /∈ {2, 3} (i.e., those not in the group). With a similar analysis
in Appendix C, we can obtain the NBS and the MNO’s payoff
under this NBS as follows.

π∗n = ∆̃n

2 = ψ(4)−ψ(3)
2 ,

U∗[n] = ψ(4)+ψ(3)
2 −Π−n.

(31)

Consider the bargaining between the MNO and the APO
group 〈3〉 , {2, 3}. With a similar analysis, we can obtain the
NBS with the APO group 〈3〉 and the MNO’s payoff under
this NBS as follows.

π∗〈3〉 =
∆̃〈3〉

2 = ψ(4)−ψ(2)
2 ,

U∗[〈3〉] = ψ(4)+ψ(2)
2 −Π−〈3〉.

(32)

Verification of Property 7 (Intra-Grouping Benefit): Com-
paring (32) with (26), we can find that the total payoff of

APOs 2 and 3 increases if they form a group (as ψ(4)−ψ(2)
2 =

ψ(4)−ψ(3)
2 + ψ(3)−ψ(2)

2 > ψ(4)−ψ(3)
2 · 2).

Verification of Property 8 (No Inter-Group Benefit (Non-
Externality)): Comparing (31) with (26), we can find that the
payoff of each APO n /∈ {2, 3} does not change under the
new APO grouping structure. �

(III) Proofs

E. Proof for Lemma 1 in Section IV

Proof: To prove this lemma, we only need to prove that
the NBS {x∗n, z∗n} or {x∗n, π∗n} given in this lemma uniquely
solves the problem (9) or (10). Since (10) is a strictly convex
optimization problem, it must has a unique solution. Next
we solve (10) by sequential optimization on each variable.
Specifically, we divide the derivation into two sequential steps:
Step-I, finding the optimal π∗n under any feasible xn; and Step-
II, finding the optimal x∗n by substituting the optimal π∗n into
problem (10). The social optimality of the above sequential
optimization method is guaranteed by the facts that both sub-
problems in the above two steps are convex optimization.

Step-I: Finding the optimal π∗n. Given any feasible xn, the
optimal π∗n is given by the following optimization problem:

max
πn

[
Ψ(xn)− πn

]
· πn

s.t. Ψ(xn)− πn ≥ 0, πn ≥ 0.
(33)

The objective function of (33) is a quadratic function of πn,
and therefore the problem (33) is convex optimization. Thus,
we have the following optimal π∗n under any feasible xn:

π∗n = 1
2 ·Ψ(xn). (34)

Step-II: Finding the optimal x∗n. Substitute the above opti-
mal π∗n into (10), we can find that the optimal x∗n for problem
(10) solves the following problem

max
xn

1
4 ·Ψ(xn) ·Ψ(xn)

s.t. Ψ(xn) ≥ 0, xn ∈ [0, X̄n].
(35)

It is easy to see that x∗n equals to the social welfare maxi-
mization solution xon given by

xon , arg max
xn

Ψ(xn),

s.t. xn ∈ [0, X̄n].
(36)

F. Proof for Lemma 2 in Section V-A

Proof: We first show that for any one-to-one bargaining
with transferable utility, the disagreement points of bargainers
will not affect the achieved social welfare, but only affect
the welfare division among bargainers. Then, the bargaining
solution must maximize the social welfare, regardless of the
disagreement points of bargainers (this result is analytically
shown in Section IV.B).

Take the one-to-one bargaining between the MNO and APO
n as an example. Let U0 and V0

n denote the disagreement
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points of the MNO and the APO n, respectively. Then, the
NBS (x∗n, z

∗
n) between the MNO and APO n is given by

max
(xn,zn)∈A

(
U(xn,x

∗
−n; zn, z

∗
−n)− U0

)
·
(
Vn(xn; zn)− V0

n

)
s.t. U(xn,x

∗
−n; zn, z

∗
−n)− U0 ≥ 0,

Vn(xn; zn)− V0
n ≥ 0,

(37)
where x∗−n = {x∗i ,∀i 6= n}, z∗−n = {z∗i ,∀i 6= n}, and
(x∗i , z

∗
i ) is the NBS between the MNO and other APO i 6= n.

We further notice that
U(xn,x

∗
−n; zn, z

∗
−n) = R(xn,x

∗
−n)−∑i 6=n z

∗
i − zn,

Vn(xn; zn) = Qn(xn) + zn.

Then, the above optimization problem can be rewritten as

max
(xn,zn)∈A

(
A(xn)− zn

)
·
(
B(xn) + zn

)
s.t. A(xn)− zn ≥ 0, B(xn) + zn ≥ 0,

(38)

where A(xn) = R(xn,x
∗
−n)−∑i6=n z

∗
i − U0, and B(xn) =

Qn(xn)− V0
n.

It is easy to obtain the following optimal solution for the
above problem: (i) z∗n =

A(x∗n)−B(x∗n)
2 , and (ii) x∗n is the

solution of the following optimization problem

max
xn∈Xn

A(xn) +B(xn). (39)

Notice that A(xn) + B(xn) = R(xn,x
∗
−n) − ∑i 6=n z

∗
i −

U0 + Qn(xn) − V0
n. We further notice that the terms U0,

V0, and
∑
i 6=n z

∗
i are independent of xn. Thus, the above

optimization problem is equivalent to the following social
welfare maximization problem

max
xn∈Xn

R(xn,x
∗
−n) + Qn(xn) , Ψ(xn,x

∗
−n). (40)

That is, the NBS (or x∗n in the NBS) between the MNO
and APO n always maximizes the conditional social welfare,
regardless of their disagreement points. Besides, the disagree-
ment points will affect the payment z∗n =

A(x∗n)−B(x∗n)
2 in

the NBS, as both A(x∗n) and B(x∗n) rely on the disagreement
points.

Based on the above discussion, we have the following
important proposition.

Proposition 1. Given the NBS (x∗i , z
∗
i ) between the MNO and

every APO i 6= n, the NBS (x∗n, z
∗
n) between the MNO and

the APO n always maximizes the social welfare Ψ(xn,x
∗
−n),

regardless of the disagreement points of the MNO and the
APO n. That is,

x∗n = arg max
xn∈Xn

Ψ(xn,x
∗
−n). (41)

Next we show that under mild conditions, there is a unique
bargaining solution for the entire one-to-many bargaining, and
such a solution maximizes the overall social welfare.

Notice that the one-to-many bargaining consists of N one-
to-one bargaining, each corresponding to the bargaining be-
tween the MNO and a particular APO. Let (x∗n, z

∗
n) denote the

NBS between the MNO and every APO n ∈ N , and (x∗, z∗)
denote the NBS of the entire one-to-many bargaining, where
x∗ = {x∗n,∀n ∈ N} and z∗ = {z∗n,∀n ∈ N}. Then, we need

to show that the NBS (x∗, z∗) is unique, and solves the social
welfare maximization problem

x∗ = arg max
x

Ψ(x),

s.t. xn ∈ Xn, ∀n ∈ N .
(42)

Consider the bargaining between the MNO and a particular
APO n ∈ N . By Proposition 1, the NBS (or x∗n in the NBS)
between the MNO and the APO n satisfies:

x∗n = arg max
xn∈Xn

Ψ(xn,x
∗
−n). (43)

Thus, the NBS (or x∗ in the NBS) of the entire one-to-many
bargaining satisfies:

x∗1 = arg max
x1∈X1

Ψ(x1,x
∗
−1)

x∗2 = arg max
x2∈X2

Ψ(x2,x
∗
−2)

......

x∗N = arg max
xN∈XN

Ψ(xN ,x
∗
−N )

(44)

Obviously, the social welfare maximization solution xo

must be a solution of the above equations, since xon =
arg maxxn∈Xn

Ψ(xn,x
o
−n) for every n ∈ N . Thus, if there is

a unique solution for (44), then it must be xo.
In general, however, there may have multiple solutions for

(44), depending on the form of Ψ(x). To avoid this (multi-
solution) situation, we introduce the following assumption:

Assumption 1. The MNO’s serving cost C(·) is an additive
function. That is, C(x+ y) = C(x) + C(y).

Let bn denote the MNO’s resource consumption for deliv-
ering the traffic within the coverage area of AP n, and b0
denote the MNO’s resource consumption for delivering the
traffic not within the coverage area of any AP. Obviously, the
total resource consumption is b = b0 +

∑
n∈N bn. The above

assumption implies that
C(b) = C(b0) +

∑
n∈N C(bn). (45)

That is, the total serving cost is the summation of the serving
costs in all different areas. Notice that in cellular networks,
the total serving area is divided into small areas (called cells),
and each cell is usually served by a particular base station.
Thus, the actual total serving cost of the MNO can be viewed
as the summation of the serving costs in all cells. Therefore,
the above additive serving cost can be a good approximation
to the actual serving cost when the cell size is small enough
(hence each cell will not cover many APs), which will become
more and more common given the current trend of reducing
the cell size to increase the cellular capacity.

Based on this assumption, the MNO’s total serving cost
without data offloading is

C(b(0)) = C
(
S0

θ0

)
+
∑
n∈N C

(
Sn

θn

)
. (46)

With data offloading, the MNO’s total serving cost under the
offloading profile x is

C(b(x)) = C
(
S0

θ0

)
+
∑
n∈N C

(
Sn−xn

θn

)
. (47)

Thus, the serving cost reduction can be written as
R(x) = C(b(0))− C(b(x))

=
∑
n∈N

(
C
(
Sn−xn

θn

)
− C

(
Sn

θn

))
,
∑
n∈N Rn(xn),

(48)
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where Rn(xn) = C
(
Sn−xn

θn

)
− C

(
Sn

θn

)
. That is, R(x) is

also an additive function. Based on the above, we can further
rewrite the social welfare Ψ(x) as

Ψ(x) =
∑
n∈N Rn(xn) +

∑
n∈N Qn(xn)

,
∑
n∈N Ψn(xn),

(49)

where Ψn(xn) = Rn(xn) + Qn(xn). That is, Ψ(x) is also an
additive function.

Notice that Ψn(xn) depends only on xn, while not on xi,
∀i 6= n. Thus, we can rewrite the function set (44) as the
following equivalent function set.

x∗1 = arg max
x1∈X1

Ψ1(x1)

......

x∗N = arg max
xN∈XN

ΨN (xN )

(50)

Obviously, the above function set has a unique solution, since
all functions in (50) are decoupled, each having a unique
solution (as it is a strictly convex optimization problem).

Denote x∗ = (x∗n)n=1,...,N as the solution of (50). Then,

Ψn(x∗n) ≥ Ψn(xn), ∀xn 6= x∗n, ∀n ∈ N .
Thus, we have: for any x 6= x∗,∑

n∈N Ψn(x∗n) , Ψ(x∗) ≥ Ψn(xn) ,
∑
n∈N Ψ(x).

That is, the solution x∗ of (50) maximizes the social welfare.
Based on the above analysis, we can easily obtain the result

in Lemma 2. That is, if the MNO’s serving cost C(·) is an
additive function, then the NBS (x∗, z∗) of the one-to-many
bargaining is unique and maximizes the social welfare Ψ(x).

�

G. Proof for Lemma 3 in Section V-B

Proof: We first notice that the objective function of (11)
is a quadratic function of πN . Thus, we have the following
optimal solution for (11) when there is no constraint in (11):

π∗N = ∆N

2 .

We next show that the above optimal π∗N is located in the
feasible set of (11), that is, it satisfies the constraints of (11).
Recall that x∗ is equivalent to the social welfare maximization
solution. Thus, we have:

Ψ(x∗N−1, x
∗
N ) ≥ Ψ(x∗N−1, xN ), ∀xN 6= x∗N .

This implies that ∆N = Ψ(x∗N−1, x
∗
N ) − Ψ(x∗N−1, 0) ≥ 0,

and thus both constraints of (11) are satisfied under the optimal
π∗N . By independence of irrelevant alternatives (IIA), the above
π∗N is also the optimal solution of (11) with constraints.

H. Proof for Lemma 4 in Section V-B

Proof: Similar to Lemma 3, we have the following opti-
mal solution for (14) when there is no constraint in (14):

π∗N−1 = ∆̄N−1

2 .

Thus, we only need to prove that the above optimal π∗N−1

satisfies the constraints of (14). Similarly, we first have:

∆N−1(IN=1) = Ψ(x∗N−2, x
∗
N−1, x

∗
N )−Ψ(x∗N−2, 0, x

∗
N ) ≥ 0,

since x∗ is the social welfare maximization solution. We
further notice that

∂(
∂Ψ(x)
∂xn

)

∂xm
= ∂2Ψ(x)

∂xm∂xn
= −C′′(B(x))

θmθn
≤ 0, ∀m 6= n, (51)

which implies that the more traffic offloaded to other APs, the
less marginal welfare generated by an AP n (with the same
traffic offloading volume xn). By (51), we have:

∆N−1(IN=0) = Ψ(x∗N−2, x
∗
N−1, 0)−Ψ(x∗N−2, 0, 0)

≥ Ψ(x∗N−2, x
∗
N−1, x

∗
N )−Ψ(x∗N−2, 0, x

∗
N ) ≥ 0.

Based on above, we immediately have:

∆̄N−1 = 1
2 ·∆N−1(IN=1) + 1

2 ·∆N−1(IN=0) ≥ 0.

Thus, both constraints of (14) are satisfied under the optimal
π∗N−1 given above.

I. Proof for Lemma 5 in Section V-B

Proof: We prove the lemma by induction. Namely, we can
prove the lemma by proving the following two statements:
• Statement 1: The NBS π∗N in the last Step N (for APO
N ) is characterized by (17);

• Statement 2: If the NBS {π∗i }i=k,k+1,...,N after Step k−1
(i.e., for APOs k, k + 1, ..., N ) are all characterized by
(17), then the NBS π∗k−1 in Step k − 1 (i.e., for APO
k − 1) is also characterized by (17).

Proof for Statement 1: By Lemma 3, we can easily find
that π∗N = ∆N

2 , which is characterized by (17). Besides, the
MNO’s payoff is U∗[N ] = ΩN

2 −ΠN−1, which is characterized
by (18).

Proof for Statement 2: Suppose that the NBS
{π∗i }i=k,k+1...,N after Step k−1 (i.e., for APOs k, k+1, ..., N )
are all characterized by (17). Accordingly, the MNO’s payoff
after Step k − 1 can be characterize by (18). Now we prove
that the NBS π∗k−1 in Step k− 1 (i.e., for APO k− 1) is also
characterized by (17).

Since the MNO’s payoff in Step k can be characterize by
(18), we can easily find that when bargaining with APO k−1
in Step k − 1, the MNO’s disagreement point is

U0
[k−1] =

∑1
Ik+1=0 ...

∑1
IN=0

(
Ψ(x∗k−2,0,x

∗
k,Ik+1x

∗
k+1,...,INx

∗
N )

2N−k+1

+
Ψ(x∗k−2,0,0,Ik+1x

∗
k+1,...,INx

∗
N )

2N−k+1

)
−Πk−2,

and the MNO’s payoff, if reaching an agreement πk−1 = v
with APO k − 1, is

U[k−1] =
∑1
Ik+1=0 ...

∑1
IN=0

(
Ψ(x∗k−2,x

∗
k−1,x

∗
k,Ik+1x

∗
k+1,...,INx

∗
N )

2N−k+1

+
Ψ(x∗k−2,x

∗
k−1,0,Ik+1x

∗
k+1,...,INx

∗
N )

2N−k+1

)
−Πk−2 − v.

Thus, the NBS π∗k−1 between the MNO and APO k − 1 is
given by the following optimization problem

max
v

[
∆̄k−1 − v

]
· v

s.t. ∆̄k−1 − v ≥ 0, v ≥ 0,
(52)

where ∆̄k−1 = U[k−1] − U0
[k−1].

Solving the above problem, we can obtain the NBS π∗k−1

in Step k − 1, i.e.,

π∗k−1 = ∆̄k−1

2 =
∑1
Ik=0 ...

∑1
IN=0

(
Ψ(x∗k−2,x

∗
k−1,Ikx

∗
k,...,INx

∗
N )

2·2N−k+1

+
Ψ(x∗k−2,0,Ikx

∗
k,...,INx

∗
N )

2·2N−k+1

)
−Πk−2,
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which is exactly characterized by (17). Accordingly, we can
easily check that the MNO’s payoff in Step k − 1 is also
characterized by (18).

J. Proof for Theorem 1 in Section V-B

Proof: By Lemma 2 and Lemma 5, we can prove the
theorem directly.

K. Proofs for Properties 1 and 2 in Section V-B

Proof: We first prove Property 2 (Invariance to AP-order
Changing). By (18), the MNO’s payoff can be written as

U∗[1] =
∑
I2
...
∑
IN

Ω1(I2;...;IN )
2N−1·2 −Π0

=
∑
I1

∑
I2
...
∑
IN

Ω0(I1;...;IN )
2N−1·2 ,

(53)

where Ω0(I1; ...; IN ) , Ψ(I1x
∗
1, I2x

∗
2, ..., INx

∗
N ). The second

line follows because Ω1(I2; ...; IN ) = Ω0(I1=1; I2; ...; IN ) +
Ω0(I1=0; I2; ...; IN ) and Π0 = 0.

Intuitively, the above MNO’s payoff (53) can be viewed
as the average social welfare under such a situation that the
MNO and every APO will reach agreement with a probability
of 0.5. By (53), we can easily find that the AP-order does not
affect the MNO’s payoff in the S-NBS.

We then prove Property 1 (Early-Mover Advantage). Take
an arbitrary APO n as an example. By Lemma 5, its payoff
is

π∗n = ∆̄n

2 =
∑
In+1

...
∑
IN

∆n(In+1;...;IN )
2N−n·2

=
∑
In+2

...
∑
IN

∆n(In+1=0;In+2;...;IN )+∆n(In+1=1;In+2;...;IN )
2N−n·2 ,

where
∆n(In+1; ...; IN ) =Ψ(x∗n−1, x

∗
n, In+1x

∗
n+1, ..., INx

∗
N )

−Ψ(x∗n−1, 0, In+1x
∗
n+1, ..., INx

∗
N ).

Now suppose APO n moves backward by one step. That is,
APO n becomes n+1 (denoted by 〈n+1〉 to avoid confusion),
and the original APO n+1 becomes n (denoted by 〈n〉) in the
new bargaining sequence. Then, by Lemma 5, the APO n’s
payoff in the new bargaining sequence is

π∗〈n+1〉 =
∆̄〈n+1〉

2 =
∑
In+2

...
∑
IN

∆〈n+1〉(In+2;...;IN )

2N−n−1·2 ,

where ∆〈n+1〉(In+2; ...; IN )

=Ψ(x∗n−1, x
∗
〈n〉, x

∗
〈n+1〉, In+2x

∗
n+2, ..., INx

∗
N )

−Ψ(x∗n−1, x
∗
〈n〉, 0, In+2x

∗
n+2, ..., INx

∗
N )

=Ψ(x∗n−1, x
∗
n, x
∗
n+1, In+2x

∗
n+2, ..., INx

∗
N )

−Ψ(x∗n−1, 0, x
∗
n+1, In+2x

∗
n+2, ..., INx

∗
N ).

The last line follows because x∗〈n〉 = x∗n+1 and x∗〈n+1〉 = x∗n.
Here we impliedly use the fact that the social optimal traffic
offload profile xo are identical under any bargaining sequence.

Based on above, we can easily find that

∆n(In+1=1; In+2; ...; IN ) = ∆〈n+1〉(In+2; ...; IN ).

By the concavity of Ψ(·), we further have:

∆n(In+1=0; In+2; ...; IN ) ≥ ∆〈n+1〉(In+2; ...; IN ).

Therefore, we have π∗n ≥ π∗〈n+1〉, that is, APO n can achieve
a higher payoff when bargaining earlier with the BS.

Intuitively, from (17) we can view the APO n’s payoff
as (half of) the average marginal social welfare generated

by APO n under such a situation that all APOs prior to n
always reach agreements with the MNO while every posterior
APO reaches agreement with the MNO or disagrees with a
probability of 0.5. Furthermore, the concavity of Ψ(·) implies
that the more APOs accept the bargaining solution, the less
marginal social welfare generated by an additional APO (under
the same traffic offloading volume). Thus, we can immediately
find that the APOs bargaining earlier with the MNO is more
likely to generate larger average marginal social welfare, and
therefore get higher payoff.

L. Proof for Lemma 6 in Section V-B

Proof: By definition, we can easily find that the NBS
between the MNO and the APO n is given by

max
πn

(
∆̃n − πn

)
· πn

s.t. ∆̃n − πn ≥ 0, πn ≥ 0,
(54)

where ∆̃n , Ψ(x∗−n, x
∗
n)−Ψ(x∗−n, 0).

Similar to (11), the objective function of (54) is a quadratic
function of πn. Thus, we have the following optimal solution
for (54) when there is no constraint in (54):

π∗n = ∆̃n

2 .

Thus, we only need to prove that the above optimal π∗n satisfies
the constraints of (54). We can easily obtain that

Ψ(x∗−n, x
∗
n)−Ψ(x∗−n, 0) ≥ 0,

since x∗ is the social welfare maximization solution. This
implies that ∆̃n = Ψ(x∗−n, x

∗
n) − Ψ(x∗−n, 0) ≥ 0, and thus

both constraints of (54) are satisfied under the optimal π∗n.

M. Proof for Theorem 2 in Section V-B

Proof: By Lemma 2 and Lemma 6, we can prove the
theorem directly.

N. Proofs for Properties 3 and 4 in Section V-B

Proof: By (19), we can easily prove Properties 3 (Invari-
ance to AP-index Changing). Intuitively, this is because all
APOs are symmetric (in terms of the bargaining order) in the
concurrent bargaining, and thus the AP-index has no impact
on the APO’s payoff.

Compare (19) and (17), we can further find that in the
concurrent bargaining, every APO n achieves a payoff equal
to its payoff in the sequential bargaining when it bargains with
the MNO in the last step. By Property 1, this is exactly the
worst payoff that it would achieve in the sequential bargaining.

O. Proof for Property 5 in Section V-C

Proof: For convenience, we focus only on the merge of
two successive APOs, say n and n+1.13 Later we will show
that such a discussion is sufficient, since it leads to the unique
outcome where all APOs form a single group.

13Note that when studying the merge of two non-successive APs, say n
and n+2, we have to consider the bargaining order of the merged group
{n, n+2} and the APO between the APOs in the merged group, i.e., n+1.
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For notation convenience, we denote the new player (i.e.,
the merged group {n, n+1}) by 〈n〉. To keep the indexes of
APOs n+2, ..., N , we introduce a dummy APO 〈n+1〉, that
is, APO 〈n+1〉 offers zero resource for data offloading, and
receives zero payoff from the MNO. By Lemma 5, the payoff
of the new player 〈n〉, i.e., the total payoff of APOs n and
n+1, is

π∗〈n〉 =
∆̄〈n〉

2 =
∑
In+1

...
∑
IN

∆〈n〉(In+1;...;IN )

2N−n·2 ,

where ∆〈n〉(In+1; ...; IN ) =

Ψ(x∗n−1, {x∗n, x∗n+1}, In+1x
∗
〈n+1〉, In+2x

∗
n+2, ..., INx

∗
N )

−Ψ(x∗n−1, {0, 0}, In+1x
∗
〈n+1〉, In+2x

∗
n+2, ..., INx

∗
N ).

Notice that x∗〈n+1〉 = 0 for dummy AP. Thus, we further have:

∆〈n〉(In+1; ...; IN ) =Ψ(x∗n−1, x
∗
n, x
∗
n+1, In+2x

∗
n+2, ..., INx

∗
N )

−Ψ(x∗n−1, 0, 0, In+2x
∗
n+2, ..., INx

∗
N ).

Intuitively, ∆〈n〉(In+1; ...; IN ) is the marginal welfare gener-
ated by both APOs n and n+1 in the group together, suppose
the MNO will (Ii = 1) or will not (Ii = 0) reach an
agreement with every posterior APO i, i = n+2, ..., N . Since
∆〈n〉(In+1; ...; IN ) is independent of In+1, the total payoff of
APOs n and n+1 (when merging together) can be written as

π∗〈n〉 =
∑
In+2

...
∑
IN

φ3−φ0+φ3−φ0

2N−n·2 ,

where
φ3 , Ψ(x∗n−1, x

∗
n, x
∗
n+1, In+2x

∗
n+2, ..., INx

∗
N ),

φ0 , Ψ(x∗n−1, 0, 0, In+2x
∗
n+2, ..., INx

∗
N ).

Now we compute the payoffs of APOs n, n+1 when they
bargain independently with the MNO. By Lemma 5, we have

π∗n = ∆̄n

2 =
∑
In+1

...
∑
IN

∆n(In+1;...;IN )
2N−n·2 ,

π∗n+1 = ∆̄n+1

2 =
∑
In+2

...
∑
IN

∆n+1(In+2;...;IN )
2N−n−1·2 ,

where
∆n(In+1; ...; IN ) =Ψ(x∗n−1, x

∗
n, In+1x

∗
n+1, ..., INx

∗
N )

−Ψ(x∗n−1, 0, In+1x
∗
n+1, ..., INx

∗
N ),

∆n+1(In+2; ...; IN ) =Ψ(x∗n, x
∗
n+1, In+2x

∗
n+2, ..., INx

∗
N )

−Ψ(x∗n, 0, In+2x
∗
n+2, ..., INx

∗
N ).

Thus, the total payoff of APOs n and n+1 (when not merging
together) can be written as
π∗n + π∗n+1 =

∑
In+2

...
∑
IN

[
∆n(In+1=0; In+2; ...; IN )

+∆n(In+1=1;In+2; ...; IN ) + 2 ·∆n+1(In+2; ...; IN )
]
· 1

2N−n·2
=
∑
In+2

...
∑
IN

φ2−φ0+φ3−φ1+φ3−φ2+φ3−φ2

2N−n·2
=
∑
In+2

...
∑
IN

φ3−φ0+φ3−φ1+φ3−φ2

2N−n·2 ,

where
φ2 , Ψ(x∗n−1, x

∗
n, 0, In+2x

∗
n+2, ..., INx

∗
N ),

φ1 , Ψ(x∗n−1, 0, x
∗
n+1, In+2x

∗
n+2, ..., INx

∗
N ).

By the concavity of Ψ(·), we can easily find that

φ3 − φ1 ≤ φ2 − φ0.

This implies that

φ3 − φ1 + φ3 − φ2 ≤ φ3 − φ0,

and therefore π∗〈n〉 ≥ π∗n + π∗n+1. That is, APOs n and n+1
can achieve a higher total payoff when they merge into a group
and bargain with the MNO together.

P. Proof for Property 6 in Section V-C

Proof: We first study the impact of the merge of APOs n
and n+1 on the payoffs of prior APOs (i.e., those bargaining
before APOs n and n+ 1). Consider an arbitrary APO i with
i < n. By Lemma 5, its payoff is

π∗i = ∆̄i

2 =
∑
Ii+1

...
∑
IN

∆i(Ii+1;...;IN )
2N−i·2 ,

where ∆i(Ii+1; ...; IN ) = Ψ(x∗i−1, x
∗
i , Ii+1x

∗
i+1, ..., INx

∗
N )−

Ψ(x∗i−1, 0, Ii+1x
∗
i+1, ..., INx

∗
N ).

Now suppose APOs n and n+1 merge together. For notation
convenience, we denote the merged group {n, n+1} by 〈n〉,
and introduce a dummy APO 〈n+1〉 to keep the indexes of
APOs n+2, ..., N consistently. Then, the APO i’s payoff under
the new group structure is

π∗i,NEW = ∆̄i

2 =
∑
Ii+1

...
∑
IN

∆i(Ii+1;...;IN )
2N−i·2 ,

where ∆i(Ii+1; ...; IN )

=Ψ(x∗i−1, x
∗
i , Ii+1x

∗
i+1, ..., Inx

∗
〈n〉, In+1x

∗
〈n+1〉, ..., INx

∗
N )

−Ψ(x∗i−1, 0, Ii+1x
∗
i+1, ..., Inx

∗
〈n〉, In+1x

∗
〈n+1〉, ..., INx

∗
N )

=Ψ(x∗i−1, x
∗
i , Ii+1x

∗
i+1, ..., Inx

∗
n, Inx

∗
n+1, ..., INx

∗
N )

−Ψ(x∗i−1, 0, Ii+1x
∗
i+1, ..., Inx

∗
n, Inx

∗
n+1, ..., INx

∗
N )

The last line is because x∗〈n〉 = {x∗n, x∗n+1} and x∗〈n+1〉 = 0.
For convenience, we introduce the following notations:

δ0 = Ψ(x∗i−1, x
∗
i , Ii+1x

∗
i+1, ..., 0, 0, ..., INx

∗
N )

−Ψ(x∗i−1, 0, Ii+1x
∗
i+1, ..., 0, 0, ..., INx

∗
N ),

δ1 = Ψ(x∗i−1, x
∗
i , Ii+1x

∗
i+1, ..., 0, x

∗
n+1, ..., INx

∗
N )

−Ψ(x∗i−1, 0, Ii+1x
∗
i+1, ..., 0, x

∗
n+1, ..., INx

∗
N ),

δ2 = Ψ(x∗i−1, x
∗
i , Ii+1x

∗
i+1, ..., x

∗
n, 0, ..., INx

∗
N )

−Ψ(x∗i−1, 0, Ii+1x
∗
i+1, ..., x

∗
n, 0, ..., INx

∗
N ),

δ3 = Ψ(x∗i−1, x
∗
i , Ii+1x

∗
i+1, ..., x

∗
n, x
∗
n+1, ..., INx

∗
N )

−Ψ(x∗i−1, 0, Ii+1x
∗
i+1, ..., x

∗
n, x
∗
n+1, ..., INx

∗
N ).

Then, we can write the APO i’s payoff as follows:
π∗i =

∑
Ii+1

...
∑
In−1

∑
In+2

...
∑
IN

δ0+δ1+δ2+δ3
2N−i·2

π∗i,NEW =
∑
Ii+1

...
∑
In−1

∑
In+2

...
∑
IN

δ0·2+δ3·2
2N−i·2

By the concavity of Ψ(·), we further have: δ3− δ2 ≤ δ1− δ0.
Therefore, we have: π∗i ≤ π∗i,NEW, that is, APO i can achieve
a higher payoff when APOs n and n+1 merge together.

By similar analysis, we can show that the merge of APOs n
and n+1 and has no impact on the payoff os posterior APOs,
i.e., those bargaining after APOs n and n+ 1.

Q. Proof for Property 7 in Section V-C

Proof: With a similar proof for Property 5 (Appendix O),
we can prove this property directly.

R. Proof for Property 8 in Section V-C

Proof: With a similar proof for Property 6 (Appendix P),
we can prove this property directly.
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(IV) An Alternative Modeling Approach
S. Non-cooperative Game Formulation and Analysis

In this section, we formulate the data offload problem
as a Stackelberg game based on the non-cooperative game
theory, where the MNO acts as the game leader specifying
the payments to APOs first, and then every APO acts as a
game follower determining the traffic volume it is willing to
deliver for the MNO.

We consider a simple linear payment. That is, the payment
zn to an APO n is simply defined as a linear function of xn
(i.e., the traffic offload volume to APO n), and denoted by

zn(xn) , pn · xn, (55)

where pn is the unit payment to APO n for one unit of
traffic offload volume. Notice that the transmission efficiency
between an APO and its covered MUs is normalized to θ = 1.
Thus, xn also denotes the amount of APO n’s spectrum
resource dedicate to data offload (i.e., to deliver the traffic
offloaded from the MNO). In this sense, pn can also be viewed
as the unit price of APO n’s spectrum resource.

With the linear payment, the game process is as follows.
In the first stage, the MNO (leader) specifies a price pro-
file p , (p1, ..., pN ), each intending for one APO. In the
second stage, every APO n responses with xn, the amount
of its resource for data offloading, based on the price pn
and the stochastic distribution of its own traffic demand. An
Nash equilibrium (NE) is defined as such a strategy profile
{p∗n, x∗n}∀n∈N such that none of th player can improve its
payoff by unilitery deviating. We solve the NE of this game
by backward induction.

1) The APO’s Decision – x∗n: First, we study the APO’s
optimal decision in the second stage, given the price pn
specified by the MNO in the first stage. Formally, the decision
problem for APO n is

max
xn

Vn(xn; pnxn)

s.t. xn ∈ [0, Bn],
(56)

where Vn(·, ·) is APO n’s payoff defined in (6).
The first- and second-order derivatives of Vn(xn; pnxn) to

xn are, respectively,{ ∂Vn

∂xn
= −(wn − cn) ·

[
1− Fn(Bn − xn)

]
+ (pn − cn),

∂2Vn

∂x2
n

= −(wn − cn) · fn(Bn − xn).

It is easy to see that ∂2Vn

∂x2
n
< 0 (since wn > cn and fn(.) >

0). Thus, the problem (56) is a convex optimization, and the
optimal solution can be solved using KKT analysis.

Next we present the optimal solution x∗n analytically using
the FOC analysis. The key idea is that if the FOC condition is
achievable, then the optimal x∗n is given by the FOC condition
in (57). Otherwise, the optimal x∗n is the lower-bound or upper-
bound of xn depending on the sign of the first-order derivative.

FOC: ∂Vn

∂xn
= 0. (57)

For convenience, we further introduce the concept of critical
price of APO n, denoted by

c̃n , cn + (wn − cn) ·
[
1− Fn(Bn)

]
. (58)

It is important to note that the FOC in (57) is only achievable
when pn ∈ [c̃n, wn]. When pn < c̃n (or pn > wn), however,
the first-order derivative ∂Vn

∂xn
is always smaller (or larger) than

0 and never equals to 0, and thus the optimal solution is the
lower-bound (or upper-bound) of the feasible range of xn, i.e.,
x∗n = 0 (or x∗n = Bn). Formally,

Lemma 7 (APO’s Optimal Decision). Given the price pn,
every APO n’s optimal decision is

x∗n(pn) =


0 if pn < c̃n

Bn − F (−1)
n

(
wn−pn
wn−cn

)
if pn ∈ [c̃n, wn]

Bn if pn > wn

where F (−1)
n (·) is the inverse function of Fn(·).

The first and third cases can be referred to the previous
discussion, and the second case is derived from the FOC (57)
directly. When the price pn falls in [c̃n, wn], we further have

∂x∗n
∂pn

= 1

fn

(
F

(−1)
n

(
wn−pn
wn−cn

)) · 1
wn−cn ,

∂2x∗n
∂p2

n
=

f ′n

(
F (−1)

n

(
wn−pn
wn−cn

))[
fn

(
F

(−1)
n

(
wn−pn
wn−cn

))]3 · 1
(wn−cn)2 .

The above formula follows because f (−1)′(·) = 1
f ′(f(−1)(·)) .

Based on above, we have the following properties for x∗n.

Property 9. For any pn ∈ [c̃n, wn], the optimal x∗n satisfies:

(a) ∂x∗n
∂pn

> 0, that is, x∗n increases with pn;

(b) ∂2x∗n
∂p2

n
≤ 0, if f ′n(·) ≤ 0, and vice versa.

The first condition implies that the higher price the MNO
offers, the more resource the APO dedicates to data offload.
The second condition implies that x∗n is an increasing con-
cave (or convex) function of pn, if ξn has a decreasing (or
increasing) PDF fn(·). For later derivational convenience, we
will assume that f ′n(·) ≤ 0, and therefore ∂2x∗n

∂p2
n
≤ 0.14

2) The MNO’s Decision – p∗: Now we study the MNO’s
best decision in the first stage, based on its prediction of every
APO n’s optimal response x∗n in the second stage (given in
Lemma 7).

Denote p , (p1, ..., pN ) as the price profile for all APOs,
and x∗ , (x∗1(p1), ..., x∗N (pN )) as the APOs’ optimal re-
sponses. The decision problem for the MNO is

max
p

U(x∗;p× x∗)

s.t. pn ≥ 0, ∀n = 1, ..., N,

x∗n(pn) ≤ Sn, ∀n = 1, ..., N,

(59)

where U(·, ·) is the MNO’s payoff defined in (3), and p×x∗
is the pointwise product of vectors p and x∗. The element in
p× x∗ denotes the payment to every APO.

We first capture some useful information from the first-order
partial derivative. Notice that x∗n is a function of pn. The first-
order partial derivative of U(x∗;p× x∗) to pn is

∂U
∂pn

= C′(B(x∗)) · ∂x
∗
n

∂pn
· 1
θn
− pn · ∂x

∗
n

∂pn
− x∗n. (60)

14Note that many common distributions satisfy the condition of decreasing
(non-increasing) PDF. Typical examples include uniform distributions, expo-
nential distributions, and power distributions with negative factors, etc.
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By Lemma 7, we have: ∂x∗n
∂pn
≡ 0, if pn < c̃n or pn > wn.

It directly follows that: (i) ∂U
∂pn

= 0 if pn < c̃n, and (ii)
∂U
∂pn

= −Bn < 0 if pn > wn. The first observation implies
that any price pn lower than c̃n is indifferent to the MNO,
and the second observation implies that any price pn higher
than wn is dominated by wn.15 Therefore, we can focus on
the price below wn. Formally,

Lemma 8. For any optimal price profile p∗, the following
necessary condition holds:

p∗n ≤ wn, ∀n = 1, ..., N,

and in addition, any price p∗n below c̃n is indifferent.

From (60), we can further find that the optimal price p∗n
cannot be larger than C′(B(x∗))· 1

θn
(since ∂U

∂pn
≥ 0 by Lemma

8); otherwise, we will have ∂U
∂pn

< 0, which implies that there
must exist a price pn = p∗n − δ with which the MNO can
achieve a higher payoff.16 Therefore, we can focus on the
price below C′(B(x∗)) · 1

θn
. Formally,

Lemma 9. For any optimal price profile p∗, the following
necessary condition holds:

p∗n ≤ C′(B(x∗)) · 1
θn
, ∀n = 1, ..., N.

Note that if C′(B(x∗)) · 1
θn
≤ c̃n, then we can directly set

p∗n as any price lower than C′(B(x∗)) · 1
θn

, since any price
below c̃n is indifferent to the MNO.

Then, we study the convexity of the optimization problem
(59) by the second-partial partial derivative. Notice that x∗n is
related to pn only, while independent of pm, ∀m 6= n. The
second-order partial derivatives of U(x∗,p× x∗) are

∂2U
∂p2

n
= −C′′(B(x∗)) ·

(
∂x∗n
∂pn
· 1
θn

)2

− 2 · ∂x
∗
n

∂pn

+
(

C′(B(x∗)) · 1
θn
− pn

)
· ∂

2x∗n
∂p2

n
, ∀n,

∂2U
∂pm∂pn

= −C′′(B(x∗)) · ∂x
∗
n

∂pn
· ∂x

∗
m

∂pm
· 1
θnθm

, ∀n 6= m.

It is easy to see that (i) ∂2U
∂pm∂pn

≤ 0, since C′′(b) ≥ 0 and
∂x∗n
∂pn
≥ 0; and (ii) ∂2U

∂p2
n
≤ 0, since C′(B(x∗)) · 1

θn
≥ pn (by

Lemma 9) and ∂2x∗n
∂p2

n
≥ 0 (by the assumption of f ′n(·) ≤ 0).

Thus, U is concave in p. Furthermore, the constraint set of
problem (59) is obviously a convex set. Therefore,

Lemma 10. The problem (59) is a convex optimization.

By the convexity of problem (59), we can solve the problem
using classic KKT analysis. Similar to Section V-A, we capture
some useful properties of the optimal price profile p∗ using
the FOC analysis. Suppose all constraints of (59) are strictly
satisfied under the optimal solution. Then, the optimal p∗ must
satisfy the FOC condition:

FOC: ∂U
∂pn

= 0, ∀n = 1, ..., N, (61)

which leads to the following optimality condition immediately,

15Intuitively, if pn < c̃n, APO n always returns a zero amount of its
resource for data offloading, and thus any price pn < c̃n is indifferent to
the MNO. If pn > wn, APO n always returns all of its resource for data
offloading, and thus a higher price (above wn) cannot bring more resource
(from APO n) for the MNO, but will definitely lead to a higher payment.

16Here δ is an arbitrarily small positive number.

Theorem 3 (Optimality). Suppose all constraints of (59) are
not binding. The optimal price profile p∗ for the MNO satisfies
the following conditions: ∀n ∈ N ,

C′(B(x∗)) = x∗n · θn · ∂pn∂x∗n
+ pn · θn. (62)

Now we capture some insight behind the above optimal p∗

given in Theorem 3. One one hand, the left hand side of (62)
is the marginal cost (MCBS) of the MNO. On the other hand,
the right hand side of (62) is the marginal payment (MPn) to
APO n, i.e., the increase of the MNO’s payment induced by
offloading θn additional units of traffic to APO n. Specifically,
to increase the traffic offload volume by θn, the MNO has to
increase the price pn by ∆pn , θn · ∂pn∂x∗n

, which will introduce
an additional payment x∗n · ∆pn for the existing x∗n units of
offloaded traffic volume, and a new payment pn · θn for the
coming θn units of offloaded traffic volume. The equation (62)
suggests that in an optimal solution p∗, the MCBS equals
to the MPn to every APO n. Intuitively, if the MCBS is
larger (or smaller) than the MPn to APO n, then the MNO
can immediately improve its payoff by offloading more (or
less) traffic to APO n through increasing (or decreasing) pn.

By (62), we further have the following property.

Property 10. Suppose all constraints of (42) are not binding.
The optimal price profile p∗ satisfies:

MPm = MPn, ∀m,n ∈ N , (63)

where MPn = x∗n · θn · ∂pn∂x∗n
+ pn · θn, ∀n ∈ N .

Property 10 states that under the optimal p∗, the MPs to all
APOs would be the same. Intuitively, if the MPn < MPm, then
the MNO can immediately increase its payoff by increasing the
traffic volume offloaded to APO n and decreasing the traffic
volume offloaded to APO m.
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