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A Stochastic Model for Electron Transfer
in Bacterial Cables

Nicolò Michelusi, Sahand Pirbadian, Mohamed Y. El-Naggar and Urbashi Mitra

Abstract—Biological systems are known to communicate by
diffusing chemical signals in the surrounding medium. However,
most of the recent literature has neglected the electron transfer
mechanism occurring amongst living cells, and its role in cell-
cell communication. Each cell relies on a continuous flow of
electrons from its electron donor to its electron acceptor through
the electron transport chain to produce energy in the form of
the molecule adenosine triphosphate, and to sustain the cell’s
vital operations and functions. While the importance of biological
electron transfer is well-known for individual cells, the past
decade has also brought about remarkable discoveries of multi-
cellular microbial communities that transfer electrons between
cells and across centimeter length scales, e.g., biofilms and multi-
cellular bacterial cables. These experimental observations open
up new frontiers in the design of electron-based communications
networks in microbial communities, which may coexist with the
more well-known communication strategies based on molecular
diffusion, while benefiting from a much shorter communication
delay. This paper develops a stochastic model that links the
electron transfer mechanism to the energetic state of the cell.
The model is also extensible to larger communities, by allowing
for electron exchange between neighboring cells. Moreover, the
parameters of the stochastic model are fit to experimental data
available in the literature, and are shown to provide a good fit.

I. INTRODUCTION

Biological systems are known to communicate by diffusing
chemical signals in the surrounding medium. One example is
quorum sensing [2]–[4], where the concentration of certain sig-
nature chemical compounds emitted by the bacteria is used to
estimate the bacterial population size, so as to simultaneously
activate a certain collective behavior. More recently, molecular
communication has been proposed as a viable communication
scheme for nanodevices and nanonetworks, and is under
IEEE standards consideration [5]. The performance evaluation,
optimization and design of molecular communications systems
opens up new challenges in the information theory [6]–[9]. The
achievable capacity of the chemical channel using molecular
communication is investigated in [10], [11], under Brownian
motion, and in [12], under a diffusion channel. In [13], a new
architecture for networks of bacteria to form a data collecting
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network is described, and aspects such as reliability and speed
of convergence of consensus are investigated. In [14], [15], a
new molecular modulation scheme for nanonetworks is pro-
posed and analyzed, based on the idea of time-sharing between
different types of molecules in order to effectively suppress
the interference. In [16], an in-vitro molecular communication
system is designed and, in [17], an energy model is proposed,
based on molecular diffusion.

While communication via chemical signals has been the fo-
cus of most prior investigations, experimental evidence on the
microbial emission and response to three physical signals, i.e.,
sound waves, electromagnetic radiation and electric currents,
suggests that physical modes of microbial communication
could be widespread in nature [18]. In particular, commu-
nication exploiting electron transfer in a bacterial network
has previously been observed in nature [19] and in bacterial
colonies in lab [20]. This multi-cellular communication is
usually triggered by extreme environmental conditions, e.g.,
lack of electron donor (ED) or electron acceptor (EA), in turn
resulting in various gene expression levels and functions in
different cells within the community, and enables the entire
community to survive under harsh conditions. Electron transfer
is fundamental to cellular respiration: each cell relies on a
continuous flow of electrons from an ED to an EA through
the cell’s electron transport chain (ETC) to produce energy in
the form of the molecule adenosine triphosphate (ATP), and to
sustain its vital operations and functions. This strategy, known
as oxidative phosphorylation, is employed by all respiratory
microorganisms. In this regard, we can view the flow of one
electron from the ED to the EA as an energy unit which is har-
vested from the surrounding medium to power the operations
of the cell, and stored in an internal ”rechargeable battery”
(energy queue, e.g., see the literature on energy harvesting for
wireless communications and references therein [21]–[23]).

While the importance of biological electron transfer and
oxidative phosphorylation is well-known for individual cells,
the past decade has also brought about remarkable discov-
eries of multi-cellular microbial communities that transfer
electrons between cells and across much larger length scales
than previously thought [24]. Within the span of only a few
years, observations of microbial electron transfer have jumped
from nanometer to centimeter length scales, and the structural
basis of this remarkably long-range transfer has evolved from
recently discovered molecular assemblies known as bacterial
nanowires [24]–[26], to entire macroscopic architectures, in-
cluding biofilms and multi-cellular bacterial cables, consisting
of thousands of cells lined up end-to-end in marine sediments
[19], [27] (see Fig. 1). Therein, the cells in the deeper regions
of the sediment where the ED is located extract more electrons,
while the cells in the upper layers, where Oxygen (an EA) is
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Figure 1. Fluorescent image of filamentous Desulfobulbaceae. Bacterial cells
are aligned to form the cable, which couples Oxygen reduction at the marine
sediment surface to sulphide reduction in deeper anoxic layers by transferring
electrons along its length. From [19].

more abundant, have a heightened transfer of electrons to the
EA. The survival of the whole system relies on this division
of labor, with the intermediate cells operating as ”relays” of
electrons to coordinate this collective response to the spatial
separation of ED and EA. It is worth noticing that other
biological cable-like mechanisms exist in nature, enabling cell-
cell communication: tunneling nanotubes connect two animal
cells for transport of organelles and membrane vesicles and
create complex networks of interconnected cells [28]; in the
bacterial world, Myxococcus xanthus cells form membrane
tubes that connect cells to one another in order to transfer
outer membrane content [29].

These experimental observations raise the possibility of an
electron-based communications network in microbial commu-
nities, which may coexist with the more well-known communi-
cation strategies based on molecular diffusion [14], [18], [24].
For microbes, the advantage of electron-based communications
is clear: in contrast to the relatively slow diffusion of whole
molecules via Brownian motion, electron transfer is a rapid
process that enables cells to quickly sense and respond to their
environment. As an example of a communications architecture
based on electron transfer, consider a system composed of an
ED terminal (transmitter, or electron source) which operates as
the signal encoder, an EA terminal (receiver, or electron sink)
and the network of bacteria; the electron signal, encoded by
the ED terminal and input into the network, is then relayed
in a multi-hop fashion, following the natural laws of electron
transfer within each cell and across neighboring cells, which
this paper aims at modeling; the flow of electrons is finally
collected at the EA terminal. Such an electron signal, coupled
with the energetic state of each cell, can be ”decoded” by the
individual cells to activate a certain desired gene expression.
For instance, in a biofilm formed on a surface, bacteria interact
with each other and with a solid phase terminal EA via
electron transfer, which serves both as a respiratory advantage
and a communications scheme for bacteria to adapt to their
environment. Additionally, electron transfer can be employed
in place of molecular diffusion for quickly transporting in-
formation in nanonetworks. In particular, information can be
encoded in the concentration of electrons released by the
encoder into the bacterial cable, using a technique termed
concentration shift keying [14], [30]. The additional challenge

with respect to molecular diffusion is that the electron is both
an energy carrier involved in the energy production for the cell
to sustain its functionalities, and an information carrier, which
enables the transport of information between nanodevices, thus
introducing additional constraints in the encoded signal.

Electron-based communication presents significant advan-
tages, as discussed above, but this phenomenon also raises new
intriguing questions. While a single cell can extract enough
free energy to power life’s reactions by exploiting the redox
potential difference between ED oxidation and EA reduction,
how can the same potential difference be used to power an
entire multicellular assembly such as the Desulfobulbaceae
bacterial cables [19]? Specifically, can intermediate cells sur-
vive without access to chemical ED or EA, by exploiting
the potential difference between cells in the deeper sediment
(sulfide oxidizers) and cells in the oxic zone (oxygen reduc-
ers)? For a cable consisting of thousands of cells this appears
unlikely, since the free energy available for an intermediate
cell is inversely proportional to the total number of cells. Are
additional, yet unknown, electron sources and sinks necessary
to maintain the whole community? These questions necessitate
flexible models that analyze emerging experimental data in or-
der to elucidate the energetics of individual cells, as presented
here, and, eventually, whole bacterial cables or biofilms.

In order to enable the modeling and control of such micro-
bial communications network and guide future experiments, in
this paper we set out to develop a stochastic queuing theoretic
model that links electron transfer to the energetic state of
the cell (e.g., ATP concentration or energy charge potential).
We show how the proposed model can be extended to larger
communities (e.g., cables, biofilms), by allowing for electron
transfer between neighboring cells. In particular, we analyze
the stochastic model for an isolated cell, which is the building
block of multi-cellular networks, and provide an example of
the application of the proposed framework to the computation
of the cell’s lifetime. Finally, we design a parameter estimation
framework and fit the parameters of the model to experimental
data available in the literature. The prediction curves are
compared to experimental ones, showing a good fit. This paper
represents a preliminary essential modeling step towards the
design and analysis of bacterial communications networks, and
provides the ground to model and control bacterial interactions
(e.g., gene expressions) induced by the electron transfer signal,
and to analyze information theoretic aspects, such as the
interplay between information capacity and lifetime of the
cells, as well as communication reliability and delay.

This paper is organized as follows. In Sec. II, we present
a stochastic model for the cell, and for the interconnection
of cells via electron transfer. In Sec. III, we specialize the
model to the case of an isolated cell. In Sec. IV, we present
an application of the proposed framework to compute the
lifetime of an isolated cell. In Sec. V, we present a parameter
estimation framework and fit the parameters of the model to
experimental data. Finally, Sec. VI presents some future work
and Sec. VII concludes the paper.
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Figure 2. Stochastic model of electron transfer within a bacterial cable.

II. STOCHASTIC CELL MODEL

In this section, we describe a continuous time stochastic
model for the dynamics of electron flow and ATP production
and consumption within a single cell, represented in Fig. 2.
This is the building block of more complex multi-cellular
systems, e.g., a bacterial cable, also represented in Fig. 2.
The cell is modeled as a system with an input electron flow
coming either from the ED via molecular diffusion, or from
a neighboring cell via electron transfer, and an output flow of
electrons leaving either toward the EA via molecular diffusion,
or toward the next cell in the cable via electron transfer.
We first review these well known biological and physical
mechanisms and then provide our new stochastic model. Inside
the cell, the conventional pathway of electron flow, enabled
by the presence of the ED and the EA, is as follows (see the
numbers in Fig. 2):

1) ED molecules permeate inside the cell via molecular
diffusion;

2) The presence of these ED molecules inside the cell
results in reactions that produce electron-containing car-
riers (e.g., NADH). These are collected in the internal
electron carrier pool (IECP, Fig. 2). The electron car-
riers diffusively transfer electrons to the ETC, which is
partially localized in the cell inner membrane;

3) The electrons originating from the electron carriers flow
through the ETC and are discarded by either a soluble
and internalized EA (e.g., molecular Oxygen) or are
transferred through the periplasm to the outer membrane
and deposited on an extracellular EA;

4) The electron flow through the ETC results in the produc-
tion of a proton concentration gradient (proton motive
force [31]) across the inner membrane of the cell;

5) The proton motive force is utilized by an inner mem-
brane protein called ATP synthase to produce ATP as
an energy reserve that will later be used for various
functions in the cell. The ATP produced in this way
is collected in the ATP pool in Fig. 2, and used by the
cell to sustain its vital operations and functions.

Alternatively, when the cells are organized in multi-cellular
structures, e.g., bacterial cables, an additional pathway of
electron flow may exist, termed intercellular electron transfer
(IET), which involves only a transfer of electrons between
neighboring cells, as opposed to molecules (ED and EA)
diffusing through the cell membrane. In this regime, one or
both of the ED and the EA are replaced by neighboring cells
in a network of interconnected cells. In other words, IET can

be substituted for the ED or the EA, enabling cells to survive
even in the absence of the ED or the EA. In this case, the
pathway for the electrons is as follows:

6) High-energy1 electrons localized in the outer-membrane
of a neighboring cell are transported to the host cell,
and utilized in its ETC to produce ATP. Therefore,
the electrons creating the proton motive force are not
originating from the chemical carriers such as NADH,
but instead are entering directly from the neighboring
cell;

7) The electrons subsequently leave the ETC and move to
the outer-membrane of the host cell, and are transferred
to another neighboring cell that, in turn, uses these
electrons to produce ATP.

As a result, this cooperative strategy creates a multi-cellular
ETC that utilizes IET to distribute electrons throughout an
entire bacterial network. These electrons originate from the ED
localized on one end of the network to the locally available EA
on the other end. The collective electron transport through this
network provides energy for all cells involved to maintain their
vital operations. The conventional ED-EA and IET processes
may coexist, depending on the availability of both ED and
EA in the medium where the cell is operating and on the
connectivity of the cell to neighboring ones. For instance, if
the concentration of ED and EA is sufficiently large, only the
conventional pathway is used by the cell for ATP production.
In contrast, if such concentration is too small to support ATP
production, only IET from/to neighboring cells may be active.
In accordance with the steps outlined above, we propose the
following stochastic model for the cell, as depicted in Fig. 2.
This model incorporates four pools:

1) The IECP, containing the electron carrier molecules
(e.g., NADH) produced as a result of ED diffusion across
the cell membrane and chemical processes occurring
inside the cell;

2) The ATP pool, containing all the ATP molecules pro-
duced as a result of electron flow from the electron
carriers through the ETC to the EA;

3) The external membrane pool, which involves the extra-
cellular respiratory pathway of the cell in the outer mem-
brane. This part of the ETC typically includes heme-
containing c-type cytochromes that facilitate electron
transfer outside of the inner membrane and into the
terminal EA. In fact, the accumulation of these c-type
cytochromes in the outer membrane forms the external
membrane pool. In order to incorporate the case of IET
into this model, we assume that the external membrane
pool is further divided into two parts:

a) High energy external membrane (HEEM), which
contains high energy electrons coming from previ-
ous cells in the cable;

b) Low energy external membrane (LEEM), which
collects low energy electrons that have been used

1Note that the terms high and low referred to the energy of electrons are
used here only in relative terms, i.e., relative to the redox potential at the cell
surface. In bacterial cables, the redox potential slowly decreases along the
cable, thus inducing a net flow of electrons from one end to the opposite one.
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to synthesize ATP, before they are transferred to a
neighboring cell.

Each pool in this model has a corresponding inflow and
outflow of electrons that connect that pool to the others, and
one cell to the next in the cable:

1) The IECP gains electrons from ED molecules diffusing
into the cell and transforming into electron carriers
through a series of reactions; we model this as a flow
with rate λCH joining the IECP in Fig. 2. The electrons
leave this pool to the ETC (cell inner membrane) to
produce ATP, modeled as another flow with rate µCH
leaving the IECP in Fig. 2;

2) Alternatively, electrons are transferred from neighboring
cells into the HEEM, corresponding to the flow with rate
λ

(H)
EXT in Fig. 2. These electrons leave this pool to the

ETC (cell inner membrane) to produce ATP, modeled as
another flow with rate µ(H)

EXT leaving the IECP in Fig. 2;
3) The electron flow out of the first pool (either the IECP

or the HEEM) directly causes the synthesis of ATP, so
that the overall flow into the ATP pool is µCH +µ

(H)
EXT .

On the other hand, ATP consumption via ATP hydrolysis
within the cell through various functions is responsible
for the ATP molecules leaving the ATP pool, with rate
µATP ;

4) As a simplification, we assume that there are two major
pathways for the electron output of the ETC: internalized
molecular Oxygen in aerobic conditions and transport
to the external membrane in anaerobic conditions. The
former case, modeled as a flow with rate µOUT leaving
the cell to the EA in Fig. 2, does not involve the
external membrane pool but only the EA. In contrast,
the latter involves the extracellular respiration pathway,
which includes the external membrane. The electrons in
this case are collected in the LEEM, i.e., the flow with
rate λ(L)

EXT in Fig. 2. The electrons in this pool can, in
turn, be transferred to neighboring cells, modeled as a
flow with rate µ(L)

EXT leaving the LEEM of cell 1 to the
HEEM of cell 2 in Fig. 2, or to solid phase terminal
EAs, not represented in Fig. 2.

In addition, because typical values for transfer rates between
electron carriers (e.g., outer-membrane cytochromes) on the
cell exterior are relatively high [26], one can assume that the
external membranes of neighboring cells have high transfer
rates between one another, i.e., when IET is active, we have
µ

(L)
EXT = λ

(H)
EXT = ∞, so that any electron collected in the

LEEM is instantaneously transferred to the HEEM of the
neighboring cell in the cable. Under these assumptions, we
can simplify the model by combining the LEEM and HEEM
pools of Fig. 2 together, so that any pair of neighboring cells
share a single pool for IET. On the other hand, if the cell is
isolated, no IET occurs, hence µ(L)

EXT = 0 and/or λ(H)
EXT = 0.

This latter case will be studied in more detail in Sec. III.
We model the cell as a finite state machine, and characterize

the state of the cell and its stochastic evolution. The internal
state of a given cell at time t is defined as

sI(t) =
(
mCH(t), nATP (t), q

(L)
EXT (t), q

(H)
EXT (t)

)
, (1)

where:
• mCH(t) is the number of electrons in the IECP that will

participate in the synthesis of ATP; these electrons are
carried by ED units which diffuse through the membrane
into the cell (e.g., lactate), and are bonded to electron
carriers within the cell (e.g., NADH); mCH(t) takes value
in the set MCH ≡ {0, 1, . . . ,MCH}, where MCH is the
electro-chemical storage capacity of the cell;

• nATP (t) is the number of ATP molecules within the
cell, taking value in the set NAXP ≡ {0, 1, . . . , NAXP },
where NAXP is the overall number of ATP plus ADP
molecules in the cell, which is assumed to be constant
over time; NAXP also represents the maximum number
of ATP molecules which can be present within the cell
at any time (when no ADP is present);

• q
(H)
EXT (t) is the number of electrons in the HEEM, taking

value in the set Q(H)
EXT ≡ {0, 1, . . . , Q

(H)
EXT }, where

Q
(H)
EXT is the electron ”storage capacity” of the HEEM;

• q
(L)
EXT (t) is the number of electrons in the LEEM, taking

value in the set Q(L)
EXT ≡ {0, 1, . . . , Q

(L)
EXT }, where

Q
(L)
EXT is the electron ”storage capacity” of the LEEM.

Remark 1 For simplicity, we assume that all the quantities
related to the state of the cell and to the flows of elec-
trons/molecules are in terms of equivalent number of electrons
involved, rather than molecular units. Hence, for instance, the
ATP level in the ATP pool, nATP (t), actually represents the
equivalent number of electrons involved in the synthesis of the
corresponding quantity of ATP available in the cell. Similarly,
the level of NADH in the IECP, mCH(t), is expressed in terms
of the equivalent number of electrons carried by the electron
carriers, which actively synthesize ATP. A similar interpreta-
tion holds for the flows (of electrons, rather than molecules or
mM, where M stands for ”1 molar”). Transition from one
representation (electrons) to the other (molecules or mM) is
possible by appropriate scaling.

Moreover, while in the following analysis we assume that
one ”unit” corresponds to one electron, this can be gen-
eralized to the case where one ”unit” corresponds to NE
electrons, so that, e.g., nATP units in the ATP pool correspond
to NEnATP electrons.

Note that, if the cell is connected to other cells in a larger
community, the low (respectively, high) energy external mem-
brane is shared with the high (low) energy external membrane
of the neighboring cell, owing to the high transfer rate
approximation, as explained above. Additionally, we denote
the state of death of the cell as DEAD (to be specified later).
The state space of the cell is denoted as

SI ≡
(
MCH ×NAXP ×Q(L)

EXT ×Q
(H)
EXT

)
∪ {DEAD}.

Note that the behavior of the cell is influenced by the
concentration of the ED and the EA in the surrounding
medium. Therefore, we also define the external state of the
cell as sE(t) = (σD(t), σA(t)), where σD(t) and σA(t) are,
respectively, the external concentration of the ED and the EA.
For simplicity, we assume that sE(t) is an exogenous process,
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(a) ED diffusion: One electron is
transported by the ED through the
cell membrane and is collected in the
IECP

(b) IET: One electron is collected in
the HEEM via IET from a neighboring
cell

(c) Conventional aerobic ATP synthe-
sis: One electron is taken from the
IECP to synthesize ATP, and is then
captured by an EA, leaving the cell

(d) Conventional anaerobic ATP syn-
thesis: One electron is taken from the
IECP to synthesize ATP, and is then
collected in the LEEM

(e) Unconventional aerobic ATP syn-
thesis: One electron is taken from the
HEEM to synthesize ATP, and is then
captured by an EA

(f) Unconventional anaerobic ATP
synthesis: One electron is taken from
the HEEM to synthesize ATP, and is
then collected in the LEEM

(g) ATP consumption: One ATP
molecule is consumed to produce en-
ergy for the cell

Figure 3. Markov chain and transitions from state sI(t) = (2, 3, 1, 3), i.e., two electrons are in the IECP, three ATP units are in the ATP pool, one electron
is in the LEEM, and three electrons are in the HEEM, respectively (see Fig. 2)

not influenced by the cell dynamics, i.e., the consumption
of the ED and the EA by the cell does not influence their
concentration in the surrounding medium. This requires that
the medium in which cells are suspended is continuously being
replaced by fresh medium containing a constant amount of the
ED and the EA. Otherwise a high cell concentration would use
up all the resources in the time-scales relevant to this model.
This aspect will be considered in future work, and is beyond
the scope of the current paper.

The internal state process of cell i, s
(i)
I (t) ∈ SI (see

Eq. 1), is time-varying and stochastic; s
(i)
I (t) evolves as a

consequence of electro/chemical reactions occurring within
the cell, chemical diffusion through the cell membrane, and
IET from the neighboring cell i − 1 to the neighboring cell
i+1. The evolution of s(i)

I (t) is also influenced by the external
state s

(i)
E (t) experienced by the cell. We define the following

processes affecting the evolution of s
(i)
I (t), all of which, for

analytical tractability, are modeled as Poisson processes with
state-dependent rates; these processes are represented in Fig. 2
and the corresponding state transitions are depicted in Fig. 3:

• ED diffusion through the membrane: ED molecules carry
electrons to synthesize ATP, which are stored in the IECP;
this process occurs with rate λCH(s

(i)
I (t); s

(i)
E (t)) [elec-

trons/s]. Whenever an ED diffuses through the membrane
within the cell (say, at time t), the state m(i)

CH(t) increases
by one unit (Fig. 3.a), so that the internal state moves
from s

(i)
I (t) = (mCH , nATP , q

(L)
EXT , q

(H)
EXT ) at time t

to s
(i)
I (t+) = (mCH + 1, nATP , qEXT , qEXT ) at time

instant t+;
• IET from the neighboring cell i − 1: the electron

is collected in the HEEM, so that the correspond-
ing state increases by one unit and s

(i)
I (t+) =

(mCH , nATP , q
(L)
EXT , q

(H)
EXT + 1) (Fig. 3.b); note that this

process is coupled with the anaerobic ATP synthesis (see
definition below) process of the neighboring cell i − 1
from which the electron is transferred; in fact, owing
to the high transfer rate approximation, the LEEM of
cell i − 1 is shared with the HEEM of cell i, so that
the rate of electron flow into the HEEM of cell i is
λ

(L)
EXT (s

(i−1)
I (t); s

(i−1)
E (t));

• Conventional ATP synthesis: this process involves the
transfer of one electron from the IECP to the
internal membrane to synthesize ATP, with rate
µCH(s

(i)
I (t), s

(i)
E (t)) [electrons/s]. Correspondingly, one

molecule of ATP is generated; the electron then leaves the
internal membrane and follows either the aerobic pathway
(i.e., it is captured by an internalized EA, such as Oxygen,
see Fig. 3.c), with overall rate µOUT (s

(i)
I (t); s

(i)
E (t)),

or the anaerobic one (Fig. 3.d) and is collected in the
LEEM, with overall rate λEXT (s

(i)
I (t); s

(i)
E (t)) (note that

this is also the HEEM of cell i + 1). If the aerobic
pathway is followed, the new state becomes s

(i)
I (t+) =

(mCH−1, nATP +1, q
(L)
EXT , q

(H)
EXT ) (Fig. 3.c). Otherwise

(anaerobic pathway), the new state becomes s
(i)
I (t+) =

(mCH − 1, nATP + 1, q
(L)
EXT + 1, q

(H)
EXT ) (Fig. 3.d);

• Unconventional ATP synthesis: this process involves
the transfer of one electron from the HEEM to
the internal membrane to synthesize ATP, with rate
µ

(H)
EXT (s

(i)
I (t), s

(i)
E (t)) [electrons/s]. Afterwards, the

electron follows a similar path as in the conventional
ATP synthesis, i.e., either it is captured by an
internalized EA (aerobic pathway), with overall
rate µOUT (s

(i)
I (t); s

(i)
E (t)), or it is collected in the

LEEM of the cell (anaerobic pathway), with overall rate
λ

(L)
EXT (s

(i)
I (t); s

(i)
E (t)). In the former case, the new state

becomes s
(i)
I (t+)=(mCH , nATP+1, q

(L)
EXT , q

(H)
EXT−1)
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(Fig. 3.e); in the latter,
s

(i)
I (t+)=(mCH , nATP+1, q

(L)
EXT+1, q

(H)
EXT − 1)

(Fig. 3.f);
• ATP consumption: this process provides energy for cellu-

lar functions, and occurs with rate µATP (s
(i)
I (t); s

(i)
E (t))

[electrons/s]; when one molecule of ATP is consumed, the
state n(i)

ATP (t) decreases by one unit, so that s(i)
I (t+) =

(mCH , nATP − 1, q
(L)
EXT , q

(H)
EXT ) (Fig. 3.g);

• Death process, with rate δ(s
(i)
I (t); s

(i)
E (t)): if death

occurs, the new state becomes s
(i)
I (t+) = DEAD,

from which the cell cannot recover any longer, i.e.,
s

(i)
I (τ) = DEAD, ∀τ > t.

A. Flow Constraints

Note that the rates of the different flows involved need
to satisfy some constraints, induced by the queuing model
employed. In particular, if some queue is empty (respectively,
saturated), the rate of the corresponding outbound (respec-
tively, inbound) flow must be zero, so that, for instance, for
the flows out of and into the ATP pool, the following condition
must hold:

µATP (mCH , 0, q
(L)
EXT , q

(H)
EXT ; sE) = 0, (outbound flow),

µCH(mCH , NAXP , q
(L)
EXT , q

(H)
EXT ; sE)

+ µ
(H)
EXT (mCH , NAXP , q

(L)
EXT , q

(H)
EXT ; sE)=0, (inbound flow).

A similar consideration holds for the other queues and the
corresponding flows. Moreover,

µ
(H)
EXT (sI ; sE)+µCH(sI ; sE)=λ

(L)
EXT (sI ; sE)+µOUT (sI ; sE),

since each electron leaving either the IECP or the HEEM to
synthesize ATP either follows the aerobic pathway to the EA
or the anaerobic one to the LEEM.

We further assume that

λCH(sI ;σD, σA) = σDλCH(sI ; 1, σA), (2)
µOUT (sI ;σD, σA) = σAµOUT (sI ;σD, 1), (3)

thus capturing the fact that the molecular diffusion rate is
proportional to the ED (respectively, EA) concentration. This
assumption is supported by Fick’s law of diffusion [32], which
states that the diffusion rate is linearly dependent on the con-
centration differential between inside and outside. It follows
that, if no ED is present (σD = 0), then λCH(sI ; 0, σA) = 0
and no ED diffusion may occur. Similarly, if no EA is
present (σA = 0), then µOUT (sI ;σD, 0) = 0 and no EA
diffusion may occur. In Sec. V-A, a parametric model for
these flows is presented, based on which the model is fit to
experimental data.

III. ISOLATED CELL MODEL

In the most general case, electron transport in a series
of interconnected single-cell organisms is represented by the
proposed stochastic model. However, this model can also
explain the electron transport behavior of a single cell, which

Figure 4. Stochastic model for an isolated cell, after the transient phase
during which the HEEM gets depleted and the LEEM gets charged (left), and
Markov chain with the corresponding transitions (right), for the case where
MCH = 4, NAXP = 4. The transition rates from state (2, 2) are also
depicted.

is the building block of the general multi-cell system. The ex-
perimental investigation of a multi-cellular network of bacteria
is very challenging, in fact:

1) In order to build a chain of interconnected cells, single-
cell organisms have to be placed in each other’s proxim-
ity. Placing multiple cells next or close to each other in
a controlled way that maintains the intercellular contact
is very difficult in practice and requires cellular ma-
nipulation techniques such as optical tweezers [33], as
well as nanofabricated micron-scaled chambers designed
specifically to hold these communities in place;

2) In vivo characterization of the energetic and electron
transfer properties of an individual cell within this chain
independently from the other cells requires complex
chemical and optical assays that have never been used
in such complicated systems.

Therefore, instead of the most general case of the model
(multi-cell system), we start by investigating the properties
of single, isolated cells. Using a few simplifying assumptions,
the general model can be reduced to a single cell model which
can be more easily matched against experimental results. In
addition, the single-cell experiments are not hindered by the
practical issues mentioned above, which makes them easier to
perform. In this way, we can characterize the properties of the
individual components, which will help us better understand
the electron transport in multi-cellular systems.

In the case of an isolated cell, the IET process is not active,
and λ

(H)
EXT (t) = µ

(L)
EXT (t) = 0. As a result, the HEEM gets

depleted, and the LEEM gets filled. Therefore, after a transient
phase, the cell reaches the configuration depicted in Fig. 4,
where the HEEM is empty, and the LEEM is fully charged.
In the following treatment, we assume that the transient phase
is concluded, hence q(L)

EXT (t) = Q
(L)
EXT and q(H)

EXT (t) = 0, ∀t,
so that the state (q

(L)
EXT (t), q

(H)
EXT (t)) = (Q

(L)
EXT , 0) of the

external membrane can be neglected. Assuming that the cell
operates in this configuration, we thus redefine its internal state
as sI(t) = (mCH(t), nATP (t)).

The corresponding Markov chain and state transitions are
depicted in Fig. 4. From the continuous-time process described
in Sec. II, we now generate a discrete-time process, as detailed
below. Initially, we assume that the external state sE(t) is
fixed, i.e., σD(t) = σD, ∀t and σA(t) = σA, ∀t. The case
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where sE(t) is piecewise constant will be considered in Sec.
III-D. The discretization is obtained by sampling the state pro-
cess sI(t) at specific times, corresponding to one of the events
described in Sec. II, specialized to the case of an isolated
cell: molecular diffusion; conventional aerobic ATP synthesis;
ATP consumption; death. Starting from time t = 0 in state
sI(0) ∈ SI , we define Tk as the time instant corresponding
to the occurrence of the kth event since time 0, and Sk as
the corresponding state at time instant T+

k (i.e., right after the
corresponding transition occurs). In particular, T0 = 0 and
S0 = sI(0). Note that, by sampling, we have transformed the
continuous-time stochastic process into a discrete-time Markov
chain, with finite state space SI . However, the duration of the
kth time-slot, Tk+1−Tk, is not fixed but is a random variable
which depends on the inter-arrival time of the events described
in Sec. III-D. In the subsequent sections, we first derive the
transition probabilities of the underlying discrete time Markov
chain and the inter-arrival times of the events, thus leading to
a full-characterization of the stochastic dynamics of sI(t). We
then provide an example of applicability of this framework to
the computation of the lifetime of the cell. Finally, in Sec. V,
we present a parameter estimation framework and match the
model to experimental data available in [34].

A. Transition Probabilities and inter-arrival times
In this section, we compute the transition probability of the

underlying discrete-time Markov chain, and the distribution
of the inter-arrival times in the corresponding continuous time
system. To this end, let Sk = i2 ∈ SI \ {DEAD} be the state
of the cell at time T+

k . We compute the transition probability

P(Sk+1 = j, Tk+1 > τ |Sk = i, Tk = t), (4)

for some j ∈ SI , τ ≥ t (note that, due to the memoryless
property of Poisson processes, the event Sk+1 = j, Tk+1 > τ
conditioned on Sk = i, Tk = t is independent of the realization
of {(Sj , Tj), 0 ≤ j < k}). Let λi,j be the transition rate
from state i to state j, which depends on the specific event
which triggers the transition. For instance, if i corresponds to
(mCH , nATP ) and j to (mCH , nATP − 1), then a transition
from state i to state j occurs if the ATP consumption event
occurs, with rate λi,j = µATP (sI ; sE). The transition from
state i to state j can be interpreted as follows. Let Ei,s
be the event which triggers the transition from i to s, and
t + Wi,s be the time when such event occurs (with respect
to the reference time-position t). From the properties of
Poisson processes, we have that Wi,s is an exponential random
variable, with pdf fWi,s

(w) = λi,se
−λi,sw, and that {Wi,s,∀s}

are mutually independent. Then, the system moves to state j
if t+Wi,j < t+Wi,s, ∀s 6= j, i.e., the event Ei,j is the first
one to occur, which thus triggers the transition. Therefore, the
probability (4) is equivalent to

P(Sk+1 = j, Tk+1 > τ |Sk = i, Tk = t) (5)
= P(t+Wi,j > τ,Wi,j < Wi,s, ∀s 6= j|Sk = i, Tk = t)

=

∫ ∞
τ−t

λi,je
−λi,jw

∏
s6=j

P(Wi,s > w)dw =
λi,j
Ri

e−Ri(τ−t),

2In this section, i is an index corresponding to a specific state in SI .

where we have defined the total flow from state i, Ri =∑
s λi,s, we have marginalized with respect to Wi,j , we have

used the independence among {Wi,s,∀s} and P(Wi,s > w) =
e−λi,sw. From (5), we thus obtain the transition probability
P(Sk+1 = j|Sk = i) by letting τ = t in (5) and by noticing
that the resulting expression is independent of t, i.e.,

P(Sk+1 = j|Sk = i, Tk = t) =
λi,j
Ri

= P(Sk+1 = j|Sk = i).

We now compute the distribution of the inter-arrival time
Tk+1 − Tk as

P(Tk+1 − Tk > τ − t|Sk = i,Sk+1 = j, Tk = t)

=
P(Sk+1 = j, Tk+1 > τ |Sk = i, Tk = t)

P(Sk+1 = j|Sk = i, Tk = t)
= e−Ri(τ−t).

Note that the resulting expression is independent of Sk+1 and
of time t, since the process is stationary. We can thus write

P(Tk+1 − Tk > τ − t|Sk = i) = e−Ri(τ−t). (6)

We define the (|SI | − 1)× (|SI | − 1) transition probability
matrix T of the underlying discrete-time Markov chain within
SI \ {DEAD}, with entries T(i, j) = P(Sk+1 = j|Sk =
i), i, j ∈ SI \ {DEAD} (we do not consider transitions from
DEAD, since this is absorbing). The transition probability
from i ∈ SI \ {DEAD} to DEAD is then given by 1− eTi T1,
where 1 is the column vector of all ones, and ei equals 1 in
the position corresponding to state i, and zero otherwise.

B. State distribution of the system at time t > 0

Given the analysis of the underlying discrete-time Markov
chain and of the inter-arrival times in the previous section, we
are now able to compute the state distribution of the system
at a generic time t, given that SI(0) = i. We define

Pt(j|i) = P(SI(t) = j|SI(0) = i), j ∈ SI \ {DEAD}. (7)

In order to compute it, let 0 < h < t. By the memoryless
property of Poisson processes,

Pt(j|i) =
∑

s∈SI\{DEAD}

P(SI(t) = j,SI(t− h) = s|SI(0) = i)

=
∑

s∈SI\{DEAD}

Ph(j|s)Pt−h(s|i). (8)

It follows that, ∀i, j ∈ SI \ {DEAD},

Pt(j|i)− Pt−h(j|i) =
∑

s∈SI\{DEAD}

(Ph(j|s)− δj,s)Pt−h(s|i).

Then, dividing by h and taking the limit for h→ 0, we obtain

dPt(j|i)
dt

=
∑

s∈SI\{DEAD}

lim
h→0

Ph(j|s)− δj,s
h

Pt(s|i). (9)

Note that lim
h→0

Ph(j|s)−δj,s
h =λs,j , and lim

h→0

Ph(s|s)−δs,s
h =−Rs.

Substituting in (9), we obtain the system of differential equa-
tions

dPt(j|i)
dt

=
∑

s∈SI\{DEAD,j}

λs,jPt(s|i)−RjPt(j|i), ∀i, j. (10)
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Letting Pt be the (|SI |−1)×(|SI |−1) matrix with components
Pt(i, j) = Pt(j|i), i, j ∈ SI \ {DEAD}, we can rewrite the
system of differential equations (10) as

P′t = PtA, (11)

where we have defined the flow matrix A with components
A(s, j) = λs,j for j 6= s and A(j, j) = −Rj , and P′t
represents the first-order derivative of Pt with respect to
time. Note that A = R(T − I), where T is the transition
matrix of the underlying discrete-time Markov chain within
SI \ {DEAD}, derived in the previous section, R is the
rate matrix, a diagonal matrix with entries R(i, i) = Ri,
and I is the unit matrix. Moreover, by Gershgorin’s circle
Theorem [35], all eigenvalues of A are non-positive. The
general solution to (11) subject to P0 = I is

Pt = exp{At}, (12)

where we have defined the matrix exponential exp{At} =∑∞
k=0

tk

k!A
k. Note that such solution guarantees a feasi-

ble transition probability matrix, i.e., [Pt]i,j ≥ 0 and∑
j [Pt]i,j ≤ 1.

C. Numerical evaluation of Pt
Unfortunately, from our numerical evaluations, we have

verified that A can seldom be diagonalized. Therefore, we
employ an alternative solution to efficiently compute Pt. Let
∆ � 1 and n = dt/∆e. Then, the general solution can be
approximated as

Pt=[exp{A∆}]nexp{A(t−∆n)}' [exp{A∆}]n=Pn∆, (13)

where we have used the approximation exp{A(t−∆n)} ' I,
which holds for ∆� 1. Moreover, since we assume ∆� 1,
we approximate the matrix exponential P∆ = exp{A∆} with
the first order Taylor approximation

P∆ ' I + ∆A = I−∆R(I−T) , P̃∆. (14)

Note that the approximation P̃∆ of P∆ is a feasible transition
matrix with non-negative entries, if ∆ < mini{1/Ri}.

D. Extension to sE(t) piecewise constant

In this section, we extend the previous analysis to the case
where the external ambient state is piecewise constant, i.e.,
sE(t) = sE,n, ∀n ∈ [τn, τn+1), ∀n ≥ 0, where 0 = τ0
and τn < τn+1, ∀n ≥ 0. This analysis is of interest for
the following experimental evaluation: the ED concentration is
varied in order to measure the response in terms of fluctuations
in the ATP level within the cell.

For this case, it is straightforward to derive the probability
of the cell being in state sI(t) = j ∈ SI \{DEAD} at time t ∈
[τn, τn+1), for some n ≥ 0, given sI(0) = i ∈ SI \ {DEAD}.
To this end, let Tn be the transition probability matrix within
SI \{DEAD}, Rn be the rate matrix, and An = Rn(Tn− I)
be the flow matrix when sE(t) = sE,n. Then, ∀t ∈ [τn, τn+1)
we have

Pt =

[
n−1∏
m=0

exp{Am(τm+1 − τm)}

]
× exp{An(t− τn)}.

where we have defined
∏n−1
m=0 Cm = C0×C1× · · ·×Cn−1,

and we have used the fact that, from the Markov property,

P(sI(t) = j|sI(0) = i) =
∑

s0,s1,...,sn∈SI\{DEAD}

P(sI(t) = j|sI(τn) = sn)

×
n−1∏
m=0

P(sI(τm+1) = sm+1|sI(τm) = sm),

and, since sE(τ) is constant in the time interval [τm, τm+1),
the probability P(sI(τm+1) = sm+1|sI(τm) = sm) can be
computed as in Sec. III-A.

IV. APPLICATION TO CELL-LIFETIME COMPUTATION,
ISOLATED CELL

For every cell in the bacterial chain, it is possible that, at
some point in time, due to variations in the energetic state of
the cell and changes to the supply of the ED and the EA, the
cell reaches a state where its ATP consumption rate reaches a
minimum value (e.g., zero). Once a cell enters this state, it is
considered dead and its ATP consumption rate may not restore
to normal values, thus jeopardizing the overall functionality
of the cable. Accordingly, the time it takes for a cell to
reach this irreversible state is defined as the lifetime of the
cell. This quantity can be measured experimentally by using
indicators of cellular respiratory activity. In an experimental
setup where cells in a bacterial chain can be characterized
on an individual basis, cellular lifetime is one of the easiest
measurable quantities that contains a significant amount of
information regarding the specific properties of the target cell.
In this section, we apply the stochastic model presented in
Sec. III to the computation of the lifetime of an isolated cell,
defined as follows.

Definition 1 The lifetime of the cell, L, is defined as

L = min{t > 0 : SI(t) = DEAD}. (15)

Equivalently, letting k∗ = min{k > 0 : Sk = DEAD}, we
have L = Tk∗ .

In this section, we compute the probability density function
(pdf) of the lifetime, fL(t;π0), as well as the expected lifetime
E[L|π0], given some initial state distribution π0(i), i ∈ SI \
{DEAD}. fL(t;π0) is given by (we use P to denote also a pdf)

fL(t;π0) = P(L = t|π0) (16)

=

∞∑
k=0

P(L = t,Death occurs at the (k + 1)th event|π0).

Note that the event (L = t,Death occurs at the (k+1)th event)
is equivalent to

Sk ∈ SI \ {DEAD},Sk+1 = DEAD, Tk+1 = t, (17)

i.e., the cell is alive upon occurrence of the kth event, and dies
upon occurrence of the (k + 1)th event. Therefore, we obtain

fL(t;π0) =

∞∑
k=0

∑
i∈SI\{DEAD}

gk(i, t), (18)
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where we have defined gk(i, t) , P(Sk = i,Sk+1 =
DEAD, Tk+1 = t|π0). In order to compute gk(i, t), we first
determine, for k ≥ 0 and s ∈ SI \ {DEAD},

hk(s, t) , P(Sk = s, Tk = t|π0). (19)

For k = 0, this is given by h0(s, t) = π0(s)δ(t), where δ(t)
is the Kronecker delta function. For k > 0, we have

hk(s, t)=
∑
j

∫ t

0

P(Sk = s, Tk = t,Sk−1 =j, Tk−1 = τ |π0)dτ

=
∑
j

∫ t

0

P(Tk − Tk−1 = t− τ |Sk−1 = j)

× P(Sk = s|Sk−1 = j, Tk−1 = τ)hk−1(j, τ)dτ

=
∑
j

∫ t

0

Rje
−Rj(t−τ)T(j, s)hk−1(j, τ)dτ. (20)

It follows that

gk(s, t) = P(Sk = s,Sk+1 = DEAD, Tk+1 = t)

=

∫ t

0

P(Sk = s,Sk+1 = DEAD, Tk+1 = t, Tk = τ)dτ

=

∫ t

0

Rse
−Rs(t−τ)

1−
∑
j

T(s, j)

hk(s, τ)dτ, (21)

where 1 −
∑
j T(s, j) is the transition probability to state

DEAD, from state s. Substituting in (18), we obtain

fL(t;π0)=
∑
s

∫ t

0

Rse
−Rs(t−τ)

1−
∑
j

T(s, j)

H(s, τ)dτ,

where we have defined

H(s, t) ,
∞∑
k=0

fk(s, t) (22)

= h0(s, t) +
∑
j

∫ t

0

Rje
−Rj(t−τ)T(j, s)H(j, τ)dτ

= π0(s)δ(t) +
∑
j

∫ t

0

Rje
−Rj(t−τ)T(j, s)H(j, τ)dτ.

Then, we obtain

E[L]=

∫ ∞
0

t
∑
s

∫ t

0

Rse
−Rs(t−τ)

1−∑
j

T(s, j)

H(s, τ)dτdt

=
∑
s

∫ ∞
0

Rse
Rsτ

1−
∑
j

T(s, j)

H(s, τ)

∫ ∞
τ

te−Rstdtdτ.

Using the fact that
∫∞
τ
te−Rstdt= e−Rsτ

Rs

(
τ+ 1

Rs

)
, we obtain

E[L] =
∑
s

1−
∑
j

T(s, j)

∫ ∞
0

τH(s, τ)dτ

+
1

Rs

∑
s

1−
∑
j

T(s, j)

∫ ∞
0

H(s, τ)dτ

=
∑
s

1−
∑
j

T(s, j)

Q(s)

+
∑
s

1−
∑
j T(s, j)

Rs

∞∑
k=0

P(Sk = s|π0), (23)

where we have defined Q(s) ,
∫∞

0
τH(s, τ)dτ . This term

can be computed as

Q(s) =

∫ ∞
0

tH(s, t)dt

=
∑
j

RjT(j, s)

∫ ∞
0

eRjτH(j, τ)

∫ ∞
τ

te−Rjtdtdτ

=
∑
j

T(j, s)

∫ ∞
0

H(j, τ)

(
τ +

1

Rj

)
dτ

=
∑
j

T(j, s)Q(j) +
∑
j

T(j, s)

Rj

∞∑
k=0

P(Sk = j|π0). (24)

Let Q be a row vector with elements Q(j), and x=(I−T)1 be
the column vector associated to transitions from the transient
states to the DEAD state. We obtain

Q(s) = Qes = QTes + πT0 (I−T)−1R−1Tes, (25)

where we have used the fact that
∑∞
k=0 P(Sk = s|π0) =

πT0 (I−T)−1es. Therefore, we obtain

Q = πT0 (I−T)−1R−1T(I−T)−1. (26)

Substituting in the expression of the expected lifetime, we
obtain

E[L] = πT0 (I−T)−1R−1(I−T)−1x. (27)

Finally, we use the fact that x = (I − T)1, yielding the
expression of the expected lifetime

E[L] = πT0 (I−T)−1R−11. (28)

V. PARAMETER ESTIMATION AND EXPERIMENTAL
VALIDATION

As an example of experiments related to our stochastic
model, Ozalp et al. [34] have measured in vivo levels of
ATP and NADH in the yeast Saccharomyces cerevisiae, as
they abruptly add ED to a suspension of starved yeast cells.
Since we have theoretically investigated the single cell system,
this work, which is performed on a culture of mutually-
independent yeast cells, can be used as a test for our stochastic
model.

Although the ETC in yeast is not exactly identical to the
bacterial counterpart, the principles on which the model is



10

based upon are conserved between yeast and bacteria. These
include the involvement of an ED, electron carriers such
as NADH, ETC and an EA, which in the case of yeast is
molecular Oxygen.

We have extracted the measured quantities from [34] in the
form of ATP and NADH concentrations as a function of time.
In accordance with [34], we have assumed that yeast cells are
initially starved and, at some point in time, the ED is added
to the cell suspension. This triggers an increase in ATP and
NADH production as well as ATP consumption. In extracting
the data, we have averaged out the small oscillations in NADH
and ATP concentrations in time, since these are mainly caused
by an enzyme involved in the metabolic pathway that is
specific to yeast and does not exist in the bacterial strain that
we are interested in, Shewanella oneidensis MR-1. Therefore,
in matching the experimental data from yeast to our model,
we have only taken into account the large scale variations of
the levels of ATP and NADH over time.

Let {(siI,k, tk), k = 0, 1, . . . , N} be the time-series of the
state of cell i at times tk, where 0 = t0 < t1 < · · · < tN . Let
sE(t) be the known profile of the concentration of the external
ED and EA, which we assume to be piecewise constant, as in
Sec. III-D, and the same for all cells. In particular, we assume
that sE(t) = sE,k, ∀t ∈ [tk, tk+1), ∀k = 0, 1, . . . , N − 1, so
that the external state is constant in the time interval between
two consecutive measurements. The measurement collected in
[34] at time tk is

NADHk = αNADH
1

M

M∑
i=1

mi
CH(tk) + w̃

(NADH)
k ,

ATPk = αATP
1

M

M∑
i=1

niATP (tk) + w̃
(ATP )
k , (29)

where NADHk is the measurement of NADH (typically,
fluorescence level [34]), whereas ATPk is the measurement
of ATP (typically, in mM [34]); the constants αNADH and
αATP account for the conversion in the unit of measurements
of NADH and ATP, respectively, from the stochastic model
presented in this paper (electron units) to the experimen-
tal setup (fluorescence level and mM, respectively); and
w̃

(NADH)
k and w̃

(ATP )
k are zero mean Gaussian noise sam-

ples, each i.i.d. over time, with variance σ2
NADH and σ2

ATP ,
respectively. A practical assumption is that M � 1, so that
1
M

∑M
i=1m

i
CH(tk) ' E[mCH(tk)] and 1

M

∑M
i=1 n

i
ATP (tk) '

E[nATP (tk)], where the expectation is computed with
respect to the state distribution at time tk, given by
πT0 Ptk . Letting yk = [α−1

NADHNADHk, α−1
ATPATPk], wk =

[α−1
NADHw̃

(NADH)
k , α−1

ATP w̃
(ATP )
k ] and Z ∈ R(|SI |−1)×2 with

jth row [Z]j,: = [mCH(j), nATP (j)], where mCH(j) and
nATP (j) are the NADH and ATP levels in the state corre-
sponding to index j, we thus obtain

yk = πT0 PtkZ + wk ' πT0

k∏
j=1

P
nj−nj−1

∆,j−1 Z + wk, (30)

where
∏k
j=1 P

nj−nj−1

∆,j−1 = Pn1

∆,0 ×Pn2−n1

∆,1 × · · · ×P
nk−nk−1

∆ ,
nj = dtj/∆e, with n0 = 0, and P∆,j−1 is the transition
matrix with time-step size ∆, when the external state takes

value sE,j−1. In the last step, we have used the approxima-
tion (13). Herein, we assume that wk ∼ N (0, σ2

wI2), i.e.,
α−2
NADHσ

2
NADH = α−2

ATPσ
2
ATP = σ2

w.

A. Parametric model

The statistics of the system, defined by the transition prob-
ability matrix Pt, is determined by the rates λCH , µCH and
µATP . In this section, we present a parametric model for these
rates, based on biological constraints. Specifically, we let

λCH(sI(t); sE(t)) = γσD(t) + ρ
(

1− mCH(t)
MCH

)
σD(t),

µCH(sI(t); sE(t)) = ζ
(

1− nATP (t)
NAXP

)
,

µATP (sI(t); sE(t)) = βσD(t),

(31)

where γ, ρ, ζ, β ∈ R+ are parameters, that we want to
estimate, and R+ is the set of non-negative reals. The NADH
generation rate λCH primarily depends on the concentration
of available ED, as explained in Sec. II-A. Additionally, it
depends on the number of available NAD molecules in the
cell, since the ED reacts with NAD to form NADH. The
more NAD molecules are available, the higher the rate of the
NADH-producing reaction. Moreover, the larger the ATP level,
the smaller the ATP generation rate µCH(sI(t); sE(t)). This
is true because the ATP synthase, the protein responsible for
ATP production, transforms ADP into ATP. Since the sum of
ATP and ADP molecules in the cell is conserved, a higher
ATP level corresponds to a lower ADP level. Therefore, as
there is more ATP available in the cell, there are less ADP
molecules available for ATP synthase to produce additional
ATP molecules, which, in turn, results in a smaller ATP
production rate. Finally, the larger the ED concentration, the
larger the ATP consumption rate µATP (sI(t); sE(t)). This is
shown to be true experimentally, for instance in [34]. The
reason behind this correlation is that cellular operations that
consume ATP (e.g., ATP-ases) are directly regulated by the ED
concentration. Note that λCH , µCH and µATP further need
to satisfy the constraints listed in Sec. II-A. We assume that
all the cells are alive throughout the experiment, and set the
death rate δ(sI(t); sE(t)) = 0.

We define the parameter vector x = [γ, ρ, ζ, β], which is
estimated via maximum likelihood (ML) in the next section.
Therefore, the flow matrix A, defined in (11), is a linear
function of the entries of x. We write such a dependence
as A(x, sE). Similarly, from (14), we write P∆(x, sE) =
I + ∆A(x, sE).

B. Maximum Likelihood estimate of x

For a given time series {(yk, tk), k = 0, 1, . . . , N}, and
the piecewise constant profile of the external state sE(t), in
this section we design a ML estimator of x. Since the initial
distribution π0 is unknown, we also estimate it jointly with x.
Note that, since the death rate is zero, the entries of π0 need to
sum to one, i.e., 1Tπ0 = 1. Moreover, we further enforce the
constraints πT0 Z = y0, i.e., the expected values of the NADH
and ATP pools at time t0 equal the measurement y0. There-
fore, we have the linear equality constraint πT0 [Z,1] = [y0, 1],
and the inequality constraint π0 ≥ 0 (component-wise). We
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denote the constraint set as P , so that π0 ∈ P . Due to the
Gaussian observation model (30), the ML estimate of (x,π0)
is given by

(x̂, π̂0) = arg min
x≥0,π0∈P

f(x,π0), (32)

where we have defined the negative log-likelihood cost func-
tion

f(x,π0) ,
1

2

N∑
k=0

∥∥∥∥∥∥yk − πT0

k∏
j=1

P∆(x, sE,j−1)nj−nj−1Z

∥∥∥∥∥∥
2

F

.

For a fixed x, the optimization over π0 is a quadratic pro-
gramming problem, which can be solved efficiently using, e.g.,
interior-point methods [36], [37]. On the other hand, for fixed
π0, the optimization over x is a non-convex optimization prob-
lem. Therefore, we resort to a gradient descent (GD) algorithm
to optimize over x, which only guarantees convergence to a
local optimum. Finally, we employ an iterative method to solve
(32), i.e., we optimize over π0 for the current estimate of x,
then we optimize over x for the current estimate of π0, and so
on. The derivative of f(x,π0) with respect to xj is given by

[∇xf(x,π0)]j =
d

dxj
f(x,π0)

= −
N∑
k=0

πT0

d
[∏k

j=1 P∆(x, sE,j−1)nj−nj−1

]
dxj

Z

×

yk − πT0

k∏
j=1

P∆(x, sE,j−1)nj−nj−1Z

T

. (33)

We further assume that the intervals satisfy tk+1−tk = T, ∀k,
so that nk = kn, ∀k, and we enforce n = 2b, for some integer
b > 0. This can be accomplished by appropriately choosing

∆ � 1. Then, the derivative
d[

∏k
j=1 P∆(x,sE,j−1)n]

dxj
can be

efficiently computed recursively as

d

[
k∏
j=1

P∆(x, sE,j−1)n

]
dxj

=

d

[
k−1∏
j=1

P∆(x, sE,j−1)n

]
dxj

P∆(x, sE,k−1)n

+

k−1∏
j=1

P∆(x, sE,j−1)n
dP∆(x, sE,k−1)n

dxj
,

where the derivative dP∆(x,sE)n

dxj
can be efficiently computed

recursively as

dP∆(x, sE)2b

dxj
=

dP∆(x, sE)2b−1

dxj
P∆(x, sE)2b−1

+ P∆(x, sE)2b−1 dP∆(x, sE)2b−1

dxj
. (34)

Finally, let x̂p be the estimate of x at the pth iteration of
the GD algorithm. Then, the GD algorithm updates the ML
estimate of x as

x̂p+1 = (x̂p − µp∇xf(x̂p, êp))
+, (35)

where 0 < µk � 1 is the (possibly, time-varying) step size and
we have defined (v)+ = max{v, 0}, applied to each entry, so

that a non-negativity constraint is enforced (in fact, the entries
of x need to be non-negative).

C. Results

We use the algorithm outlined above to fit the parameter
vector x to the experimental data. While, in principle, the
capacities of both the IECP (MCH ) and the ATP pool (NAXP )
need to be estimated, we found that MCH = NAXP = 20
provides a good fit, and good trade-off between convergence
of the estimation algorithm and fitting. Note that the ATP
capacity of the cell culture is 3.6 mM and the concentration of
cells is 1012 cells/liter (see [34]). It follows that the capacity
of the ATP pool of each cell is 2.16 × 109 molecules/cell.
Since, approximately, 2.5 ATP molecules are created by the
flow of 2 electrons in the ETC (see [38, Sec. 18.6]), the
ATP pool may carry 1.728 × 109 electrons/cell. Therefore,
one ”unit” in the stochastic model corresponds to NE =
0.864× 108 electrons, or 1.08× 108 ATP molecules. Simi-
larly, since each NADH molecule carries 2 electrons which
actively participate in the ETC, we have that one ”unit”
corresponds to 0.432 × 108 NADH molecules. The time-
series {(ATPk,NADHk, tk)} is first extracted from [34], where
ATPk is in mM (stars in Fig. 5.a), NADHk is a fluorescence
level (×10−6, stars in Fig. 5.a), which we assume to be
linearly proportional to the NADH level. The time-series is
then converted to feasible values in the stochastic model.
In particular, since the ATP capacity of the cell culture is
3.6 mM, and assuming that the IECP capacity of the cell
culture is maxk NADHk = 12.985 [fluorescence ×10−6], i.e.,
the maximum level reached in the NADH measurements, the
time-series is

y
(NADH)
k =

NADHk [fluorescence x 10−6]

12.985 [fluorescence x 10−6]
MCH ,

y
(ATP )
k =

ATPk [mM]

3.6 [mM]
NAXP , (36)

so that, from (29), αNADH ' 0.650 [fluorescence x 10−6]

and αATP = 0.18 [mM]. Note that both y
(NADH)
k

and y
(ATP )
k are dimensionless quantities. The time-series

{(yk, tk)}, where yk = [y
(NADH)
k , y

(ATP )
k ], is then fed into

the estimation algorithm. The EA concentration (molecular
Oxygen) is assumed to be constant throughout the experiment,
and sufficient to sustain reduction. On the other hand, the ED
concentration profile, extrapolated from [34], is zero at time
t < 80 s, when cells are starved, 30 mM at t = 80 s, when
glucose is added to the starved cells, and constantly decreases
until it becomes zero at time t ' 1300 s, when cells become
starved again.

Remark 2 In the parameter estimation, the samples after t '
1300 s are discarded, since cells are starved after that time,
which, in turn, results in increased cell lysis occurring in the
cell suspension. The cellular material released by lysis can be
used by other intact cells as ED or EA. For this reason, and
since the extent of cell lysis in unpredictable in the cell culture,
the concentrations of the ED and the EA cannot be accurately
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(b) Prediction of expected NADH level over time (equivalent fluorescence
level) and experimental time-series.
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Figure 5.

determined after t ' 1300 s, rendering the corresponding
experimental data useless.

With this approach, the estimated parameters, used in (31)
to compute the corresponding flow rates, are given by

γ̂ = 0 units/mM/s,
ρ̂ = 2.31× 10−3 units/mM/s,

ζ̂ = 4.866× 10−3 units/s,

β̂ = 0.850× 10−3 units/mM/s,

(37)

where ”units”, equivalent to 0.864 × 108 electrons, refers
to the number of slots being occupied/emptied in the re-
spective queue of the stochastic model, and mM refers
to the glucose ED concentration. In particular, the ”units”
can be converted back into the original scale (36), which is
related to the overall cell culture. The corresponding quantity
related to a single cell is then obtained by converting one
”unit” to the corresponding molecular quantity (1 unit=1.08×
108 ATP molecules=0.432× 108 NADH molecules).

Figs. 5.a and 5.b plot, respectively, the ATP and NADH
time-series, related to the cell culture, and the predicted

values based on our proposed stochastic model. We ob-
serve a good fit in the time-interval t ∈ [0 s, 1300 s].
The corresponding standard deviation of the error between
the prediction and experimental curves is 0.1325[mM] and
1.7736[Fluorescence×10−6], respectively. The prediction er-
ror observed in the two figures can be explained by both cell
lysis occurring in the bacterial population and the resulting
distortion in the ATP and NADH levels, as explained in
Remark 2, and by the bias introduced by our specific choice
of the parametric model (31), which may not be sufficiently
accurate to capture higher order fluctuations. The investigation
of other parametric models to improve the prediction accuracy
is left for future work. Figs. 5.c and 5.d plot, respectively,
the expected ATP and NADH generation and consumption
rates over time, related to a single cell. These biophysical
parameters were not directly measured in the experiments by
[34], but can be predicted by our proposed model. We notice
that the ATP generation/consumption rate is of the order of
5× 105/3× 106, whereas the NADH generation/consumption
rate is of the order of 2× 106/2× 105 (molecules per cell per
second). These values are indeed physical, and consistent with
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known metabolic rates in yeast [39], which further motivates
the development of this stochastic model as a predictive tool
for microbial energetics.

VI. FUTURE WORK

Our current experimental work involves measuring ATP
and NADH levels in isolated single cells of bacterium S.
oneidensis MR-1. This organism is capable of extracellular
electron transfer by utilizing its array of outer-membrane
multi-heme cytochromes and, due to its unique properties,
presents a great model organism for this study. Similarly to
the previous experiment done on the yeast Saccharomyces
cerevisiae [34], whose data have been used in our experimental
validation in Sec. V, the ED will be abruptly added to a culture
of starved bacterial cells, and, subsequently, the cellular ATP
and NADH levels will be measured over time. As opposed to
[34], we are developing an experimental setup in which the
amount of the ED and the EA can be maintained at any desired
level, therefore producing additional unprecedented data to be
compared with our theoretical model.

The next step in our experiments will be to assemble
bacterial cables, e.g., using similar techniques as in [40], and
perform ATP and NADH measurements in these cells as the
availability and the type of the ED and the EA is varied. In
order to control and stimulate the growth of bacterial cables,
a population of cells will be initially grown in an ED/EA
rich medium, and subsequently moved to an environment
with limited amounts of ED/EA, causing cell growth to stop.
Then, the cells will be placed in a microfluidic medium where
they can be moved, e.g., via optical tweezers [33], to form a
one-dimensional bacterial cable. Adjusting the environmental
parameters will then induce the production of electron transfer
components in the bacteria, thus enabling long-range electron
transfer in the cable. By keeping the concentration of ED/EA
along the cable small, the bacteria are forced to use the exter-
nally provided solid-state electrodes as the electron source/sink
and maintain the collective electron transfer through the cable.
The role of each cell in this collective behavior is in the form
of establishing direct cell-cell contact and facilitating electron
transfer to and from the adjacent cells, and cooperation of
every single cell in the system is necessary to provide enough
ED/EA to sustain the entire network. Solid-phase electrodes
poised to a desired electric potential can be used as the EA
for such a cable. The rate of electron transfer to such an
electrode can be controlled by adjusting its potential, and
this electron transfer rate to the electrode can be accurately
measured. Similar manipulations of the ED and the EA and
their availability and the subsequent measurements on the state
of the cells and the transfer rates within the chain will result
in a vast amount of quantitative data to validate our stochastic
model for IET.

VII. CONCLUSIONS

In this paper, we have presented a stochastic model for
electron transfer in bacterial cables. In particular, we have
specialized the stochastic model to the case of an isolated cell,
which is the building block of more complex bacterial cables,

and we have provided an example of the application to the
computation of the cell’s lifetime. Moreover, we have designed
a parameter estimation framework, based on a parametric
description of the model, guided by biological constraints.
The parameters were fit to experimental data available in
the literature, demonstrating the capability of the proposed
stochastic model to predict salient features related to the
energetic state of the cells, such as ATP generation and
consumption rates. This study is a first step towards addressing
questions of more communications theoretic relevance, such
as the interplay between information capacity of a microbial
community and lifetime of the cells, reliability and delay in
electron-based nanonetworks.
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