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Abstract—In this paper, we consider the dynamic power con-
trol for delay-aware D2D communications. The stochastic opti-
mization problem is formulated as an infinite horizon average cost
Markov decision process. To deal with the curse of dimensionality,
we utilize the interference filtering property of the CSMA-l ike
MAC protocol and derive a closed-form approximate priority
function and the associated error bound using perturbation
analysis. Based on the closed-form approximate priority function,
we propose a low-complexity power control algorithm solving the
per-stage optimization problem. The proposed solution is further
shown to be asymptotically optimal for a sufficiently large carrier
sensing distance. Finally, the proposed power control scheme is
compared with various baselines through simulations, and it is
shown that significant performance gain can be achieved.

I. I NTRODUCTION

Future wireless cellular networks (e.g. IMT-advanced) are
expected to provide higher data rates and system capacity. One
potential technology to meet the demands is the infrastructure-
assisted device-to-device (D2D) communications [1]. Tak-
ing advantage of the physical proximity of communication
devices, the D2D technique enables direct communications
between devices, which results in high data rates, low delays
and low power consumption. Unlike conventional ad hoc
networks, the cellular base station (BS) plays an important
role for D2D communications in helping the D2D nodes on
both peer discovery and resource allocation [2]. There are
several existing works on D2D communications in cellular
networks. In [3] and [4], the D2D nodes share the spectrum
with cellular users using an underlay approach, in which the
throughput of D2D communications is maximized while the
QoS of the cellular users is guaranteed. In [5] and [6], the
maximum sum-rate of the network is achieved by dynamically
selecting one of the transmission modes, including D2D mode
with shared channels, D2D mode with dedicated channels and
cellular transmission mode. In [7], the multi-antenna cellular
BS acts as a cooperative relay, helping the D2D nodes forward
packets so as to improve the throughput of the network. Power
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control is important for interference coordination among the
nodes in wireless networks. The transmit power is adjusted
to meet the users’ required signal to interference plus noise
ratios (SINR) [8], satisfy the received signal power level [9]
or achieve a higher data rate [10]. In [11], the transmit power
is minimized for D2D communications subject to a sum-rate
constraint. However, these existing works have all focused
on the physical layer performance without consideration of
the bursty data arrivals at the transmitters as well as the
delay requirement of the information flows. Since real-life
applications (such as video streaming, web browsing or VoIP)
are delay-sensitive, it is important to optimize the delay
performance for D2D communications.

To take the queueing delay into consideration, the radio re-
source control policy should be a function of both the channel
state information (CSI) and the queue state information (QSI).
This is because the CSI reveals the instantaneous transmission
opportunities at the physical layer and the QSI reveals the
urgency of the data flows. However, the associated optimiza-
tion problem is very challenging. A systematic approach to
the delay-aware optimization problem is through the Markov
Decision Process (MDP). In general, the optimal control policy
can be obtained by solving the well-knownBellman equa-
tion. Conventional solutions to the Bellman equation, such as
brute-force value iteration or policy iteration [12], havehuge
complexity (i.e., the curse of dimensionality), because solving
the Bellman equation involves solving an exponentially large
system of non-linear equations. There are some existing works
that use thestochastic approximationapproach with distributed
online learning algorithm [13], which has linear complexity.
However, the stochastic learning approach can only give a
numerical solution to the Bellman equation and may suffer
from slow convergence and lack of insight. We treat this issue
and provide some preliminary results on cross-layer design
with closed-form solution in [14].

In this paper, we investigate the dynamic power control for
D2D communications systems. We focus on minimizing the
average transmit power and the average delay of the D2D data
flows. There are several technical challenges associated with
the dynamic power control optimization problem.

• Challenges due to the Average Delay Consideration:
Unlike other papers which optimize the physical layer
throughput of the D2D systems, the optimization involv-
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Fig. 1. Topology of an infrastructure-assisted D2D communications system.

ing delay constraints is fundamentally challenging. This
is because the associated problem belongs to the class
of stochastic optimization[15], which embraces bothin-
formation theory(to model the physical layer dynamics)
and queueing theory(to model the queue dynamics). A
key obstacle to solving the associated Bellman equation
is to obtain the priority function, and there is no easy and
systematic solution in general [12].

• Challenges due to the Coupled Queue Dynamics:The
interference among the D2D nodes [16], [17] fundamen-
tally induces coupled queue dynamics among the D2D
flows. For instance, the service rate of the queue for
each D2D flow depends on the transmit power of all the
other active D2D flows due to the mutual interference.
The associated stochastic optimization problem is aK-
dimensional MDP, whereK is the number of D2D
flows. This K-dimensional MDP leads to the curse of
dimensionality with complexity exponential toK for
solving the associated Bellman equation. It is highly
nontrivial to obtain a low complexity solution for the
dynamic resource control of the D2D systems.

• Challenges due to the Non-Convexity Nature:Despite
the complexity issue involved in obtaining the priority
function for the stochastic optimization problem, the per-
stage control optimization in the Bellman equation is
also non-convex due to the mutual interference term in
the mutual information. This poses a great challenge in
solving the delay-constrained optimization in the D2D
systems.

In this paper, we first establish the PHY, MAC and bursty
data source models as well as the queue dynamics in Section
II. We formally formulate the associated stochastic optimiza-
tion problem of the dynamic power control for delay-aware
D2D communications asan infinite horizon average cost
MDP. To overcome the aforementioned technical challenges,
we exploit specific problem structures in D2D communi-
cations. Specifically, 1) the CSMA-like MAC protocol is
adopted to coordinate the transmissions of the D2D nodes
in a distributive way and this induces aweak interference
topology among the simultaneously transmitting D2D nodes,
and 2) the assistance of the BS substantially simplifies the
signaling mechanism of control information exchange. We
derive asimplified optimality conditionfor solving the MDP in
Section III. Compared with the conventionalBellman equation

[12], the derived optimality condition involves solving aK-
dimensional partial differential equation (PDE) only. Utilizing
the interference filtering propertyof the MAC protocol, we
obtain a closed-form approximate priority function and the
associated error bound usingperturbation analysis. Based on
that, we obtain a delay-aware low complexity dynamic power
control algorithm for the D2D communications in Section
IV. The solution is shown to be asymptotically optimal for a
sufficiently large carrier sensing distance in the MAC protocol.
Furthermore, in Section V, we show that the proposed solution
achieves significant performance gain over various baseline
schemes.

II. SYSTEM MODEL

In this section, we introduce the system model for the
infrastructure-assisted D2D communications, including the
D2D system topology, the physical layer model, the MAC
layer model and the bursty data source model. We first list the
important notations in this paper in Table 1.

TABLE I
L IST OF IMPORTANT NOTATIONS

Symbol Meaning
K number of D2D pairs
P = {Pk} transmit power
H = {Hkj} global CSI
L = {Lkj} large-scale path gain
σ = {σk} MAC output
ν = {νk} probability of accessing the channel
A = {Ak} bit/packet arrival
λ = {λk} average arrival rate
Q = {Qk} global QSI
χ = {σ,H,Q} global system state
Ω(χ) = {Ωk(χ)} power control policy
τ duration of a time slot
Ck(H,P) achievable data rate of thek-th D2D pair
δ carrier sensing distance
Lδ worst-case cross-channel path gain
V ∗(Q) priority function

A. D2D System Topology

We consider an infrastructure-assisted D2D communications
system, as shown in Fig. 1. Specifically, the D2D system
consists of two tiers, namely thecellular tier and theD2D tier.
In the D2D tier, there areK transmitter-receiver (Tx-Rx) pairs
located randomly in the area of a cell. Transmitterk transmits
data to receiverk, and the Tx-Rx pair is associated by the D2D
peer discovery procedure [2]. All D2D pairs share a common
channel, which is orthogonal to the channels used in the
cellular tier1. Hence, there is no cross-tier interference between
the cellular and D2D tiers. In the cellular tier, the BS playsthe
role of the centralized controller for the D2D communications.
Each D2D pair communicates directly on a single-hop link
in a distributed ad-hoc manner with the assistance of the
cellular BS. The time is slotted, and the duration of each time
slot is τ . The cellular BS collects necessary information and
broadcasts the resource allocation actions (calculated based on

1The channel for D2D communications could be a dedicated partof the
licensed spectrum allocated by the BS, or another spectrum band, e.g., Wifi
D2D transmission on the ISM band.
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the collected information) periodically to the D2D nodes atthe
beginning of each time slot.

B. Physical Layer Model

Let sk denote the information symbol for thek-th D2D pair.
The received signal at receiverk is

yk = hkk

√
Pksk︸ ︷︷ ︸

desired signal

+
∑

j 6=k

hkj

√
Pjsj

︸ ︷︷ ︸
interference

+ zk︸︷︷︸
noise

(1)

wherehkj is the complex channel fading coefficient between
transmitterj and receiverk, andzk ∼ CN (0, N0) is the i.i.d.
complex Gaussian channel noise with powerN0. Pk is the
transmitter power forsk. Let H(t) = {Hkj(t) : ∀j, k} be
the global CSI, whereHkj(t) = |hkj(t)|2 is the instantaneous
channel path gain from transmitterj to receiverk at thet-th
time slot. We consider the CSI according to the block fading
channel model [18], [19] and have the following assumption
on H:

Assumption 1 (Short-Term CSI Model):The CSIH(t) re-
mains constant within a time slot and is i.i.d. over time slots.
Hkj(t) follows a negative exponential distribution2 with mean
Lkj . Furthermore,Hkj(t) is independent w.r.t. the D2D pair
indicesk, j.

Note thatLkj is the large-scale path gain from transmitter
j to receiverk. Let L = {Lkj : ∀j, k}, and we have the
following assumption onL.

Assumption 2 (Long-Term Path Gain Model):The long-
term large-scale path gainL is constant for the duration of
the communication session. Specifically, for any transmitter j
and receiverk, the relationship between the path gainLkj and

the distancedkj is3 Lkj =
Gr

kG
t
jλ

2

(4πdkj)
2 (∀k, j), whereGr

k and

Gt
j are the receive and transmit antenna gains respectively,

andλ is the carrier wavelength.
Let P(t) = {Pk(t) : ∀k} be the collection of the transmit

power of all the D2D transmitters at thet-th time slot. For
given CSIH(t) and power actionsP(t), the achievable data
rate of thek-th Tx-Rx pair depends on the SINR by treating
interference as noise, which is calculated as

Ck(H(t),P(t)) = log2

(
1 +

1

Γ

Hkk(t)Pk(t)

N0 +
∑

j 6=k Hkj(t)Pj(t)

)

(2)
where Γ is the SINR gap [21] to measure the practical
reduction of the SINR with respect to the capacity.Γ depends
on the error probability requirement as well as the modulation
scheme.

2Rayleigh fading is adopted as an example here for algebraic simplicity. The
proposed optimization framework is general to cover various channel fading
models as well. With other fading models, the difference is in integrating
with different fading distributions when calculating the expectation overH
to estimate the expected future cost.

3Here we adopt the Friis free space path loss model [20]. Note that the
results of this paper can be extended easily for other path loss models.

C. MAC Layer Model

The D2D nodes utilize a CSMA-like protocol to arbitrate
the random channel access in a distributed manner. The basic
principle of the CSMA is listen-before-talk[22], which is
used to avoid collision between simultaneous transmissions of
neighboring nodes. As a result, the MAC protocol determines
the subset of the D2D nodes in which the transmitters can
transmit data simultaneously without causing excessive inter-
ference. For simplicity, we consider the following idealized
MAC protocol model, which has been widely adopted in
justifying thehardcore point process[23].

Assumption 3 (Hardcore Point Process Model):The D2D
nodes adopt a CSMA-like MAC protocol with thecarrier sens-
ing distance4 δ. The output of the MAC protocol is captured
by the MAC output processσ(t) = (σ1(t), · · · , σK(t)) ∈
{0, 1}K, where σk(t) = 1 means that thek-th D2D node
accesses the channel at thet-th time slot. The MAC output
processσ(t) has the following properties:

• σk(t) is i.i.d. over time slots according to the Bernoulli
distribution with meanE[σk(t)] = νk (δ).

• all transmit nodes have equal opportunity to access the
channel, i.e.,νk (δ) = 1

|Nk(δ)|+1 , whereNk (δ) is the set
of transmit nodes within the carrier sensing distanceδ
from transmitterk and |Nk (δ)| is the associated cardi-
nality.

• during each time slott, a feasibleσ(t) satisfies the
following carrier sensing constraint: ifσk(t) = 1, then
σj(t) = 0 for all j ∈ Nk.

The first condition corresponds to the memoryless property
of the MAC protocol with respect to the channel access.
The second condition corresponds to the fairness among the
D2D nodes in the neighbour set, and the third condition
corresponds to the carrier sensing requirement in the MAC
protocol. Note thatνk(δ) corresponds to thespatial reuse
factor for transmitterk in the D2D network for a given carrier
sensing distanceδ. Furthermore,νk (δ) andNk (δ) depend on
the topology of the D2D nodes.

D. Bursty Data Source and Queue Dynamics

There is a bursty data source at each D2D transmitter.
Let A(t) = (A1(t)τ, · · · , AK(t)τ) be the random arrivals
(number of bits) from the application layers to theK D2D
transmitters at the end of thet-th time slot5. We have the
following assumption onA(t).

Assumption 4 (Bursty Source Model):Assume thatAk (t)
is i.i.d. over decision slots according to a general distribution
Pr[Ak]. The moment generating function ofAk exists with
E[Ak] = λk. Ak (t) is independent w.r.t.k. Furthermore, the
arrival rates(λ1, . . . , λK) lie within the stability region [24]
of the system.

Each D2D transmitter has a data queue for the bursty traffic
flows towards the associated receiver. LetQk(t) ∈ [0,∞)

4Carrier sensing distance refers to the carrier sensing range of the associated
CSMA protocol. Two nodes within the carrier sensing distance will not
transmit simultaneously.

5We assume that the transmitters are causal so that the packets arrived at
the time slot are not observed when the control actions of this time slot are
performed.
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be the queue length (number of bits) at transmitterk at the
beginning of thet-th slot. LetQ(t) = (Q1(t), · · · , QK(t)) ∈
Q , [0,∞)K be the global QSI. The queue dynamics of
transmitterk is

Qk(t+1) = max {Qk(t)− σk(t)Ck(H(t),P(t))τ, 0}+Ak(t)τ
(3)

Remark 1 (Weak Coupling Property of Queue Dynamics):
The K queue dynamics in the D2D system are coupled
together due to the interference term in (2). Specifically,
the departure of the queue at each transmitter depends
on the power actions of all theK D2D transmitters.
Furthermore, the CSMA-like mechanism in the MAC
protocol model in Assumption 3 contributes to filtering the
strong interference between the active D2D transmitters.
Let Lδ = max{Lkj : ∀k 6= j, dkj > δ} be the worst-case
cross-channel path gain for a given sensing thresholdδ. Due
to the interference filtering property of the MAC protocol,
there is only weak queue coupling in the D2D network, and
Lδ measures thecoupling intensity. We will leverage this
weak coupling property to derive low complexity closed-form
approximate solutions in Section IV.

III. D ELAY-AWARE CROSS-LAYER CONTROL

FRAMEWORK

In this section, we formally formulate the delay-aware cross-
layer radio resource control framework for D2D communica-
tions. We first define the control policy and the optimization
objective. We then formulate the design as a Markov Deci-
sion Process (MDP) and derive the optimality conditions for
solving the problem.

A. Power Control Policy

For delay-sensitive applications, it is important to dynam-
ically adapt the transmit power of the D2D nodes based on
the instantaneous realizations of the CSI (captures the instan-
taneous transmission opportunities) and the QSI (capturesthe
urgency of theK data flows). Letχ = (σ,H,Q) denote the
global system state. We define the stationary power control
policy below.

Definition 1 (Stationary Power Control Policy):A station-
ary control policy for thek-th D2D transmitterΩk is a
mapping from the system stateχ to the power control ac-
tion of transmitterk. Specifically,Ωk(χ) = Pk ≥ 0. Let
Ω = {Ωk : ∀k} denote the aggregation of the control policies
for all theK D2D transmitters.

Since the D2D nodes access the channel randomly, the
MAC output σ is i.i.d. over time slots. The CSIH is i.i.d.
over time slots based on the block fading channel model in
Assumption 1. Furthermore, from the queue evolution equation
in (3),Q(t+1) depends only onQ(t) and the data rate. Given
a control policyΩ, the data rate at thet-th time slot depends
on σk(t), H(t) andΩ(χ(t)). Hence, the global system state
χ(t) is a controlled Markov chain [12] with the transition
probability

Pr[χ(t+ 1)|χ(t),Ω(χ(t))] (4)

=Pr[σ(t+ 1)] Pr[H(t+ 1)] Pr[Q(t+ 1)|χ(t),Ω(χ(t))]

where the queue transition probability is given by

Pr[Q(t+ 1)|χ(t),Ω(χ(t))]

=






∏

k

Pr
[
Ak (t)

]
, if Qk (t+ 1) is given by (3), ∀k

0, otherwise
(5)

For technical reasons, we consider theadmissible control
policy defined below.

Definition 2 (Admissible Control Policy):A policy Ω is
admissible if the following requirements are satisfied:

• Ω is a unichain policy, i.e., the controlled Markov chain
{χ (t)} underΩ has a single recurrent class (and possibly
some transient states) [12].

• The queueing system underΩ is third-order stable in the
sense thatlimt→∞ EΩ[

∑K
k=1 Q

3
k(t)] < ∞, whereEΩ

means taking expectation w.r.t. the probability measure
induced by the control policyΩ.

B. Problem Formulation

As a result, under an admissible control policyΩ, the
average delay cost for thek-th D2D pair is given by

Dk(Ω) = lim sup
T→∞

1

T

T−1∑

t=0

E
Ω

[
Qk (t)

λk

]
, ∀k (6)

Similarly, under an admissible control policyΩ, the average
power cost of thek-th D2D transmitter is given by

P k(Ω) = lim sup
T→∞

1

T

T−1∑

t=0

E
Ω
[
Pk(t)

]
, ∀k (7)

We formulate the dynamic power control problem for the
delay-aware D2D system as follows:

Problem 1 (Power Control for Delay-Aware D2D Systems):
The power control problem for the delay-aware D2D
communications is formulated as

min
Ω

L(Ω) (8)

=

K∑

k=1

(
βk Dk(Ω)︸ ︷︷ ︸

average
delay

+γk P (Ω)︸ ︷︷ ︸
average
power

)

= lim sup
T→∞

1

T

T−1∑

t=0

E
Ω [c (Q (t) ,Ω (χ (t)))]

where c (Q,P) =
∑K

k=1

(
βk

Qk

λk
+ γkPk

)
. β = {βk > 0 :

∀k} andγ = {γk > 0 : ∀k} are positive weights for the delay
cost and the power cost respectively.

Problem 1 embraces various optimization formulations such
as minimizing the average delay subject to the average power
constraint or minimizing the average transmit power subject
to the average delay constraint. This is because these “con-
strained optimization problems” have the sameLagrangian
function, which is given by (8) in Problem 1. The weights
β and γ are equivalent to the Lagrangian multipliers of the
associated constraints. Also note that Problem 1 is an infinite
horizon average cost MDP, which is known as a very difficult
problem.
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C. Optimality Conditions for Power Control Problem

Problem 1 is an MDP, and the associatedBellman equa-
tion [12] involves the entire system stateχ = (σ,H,Q).
Exploiting the i.i.d. properties ofH(t) andσ(t), we obtain
the following equivalent Bellman equation.

Theorem 1 (Sufficient Conditions for Optimality):For any
given weightsβ andγ, assume there exists a(θ∗, {V ∗(Q)})
that solves the followingequivalent Bellman equation:

θ∗τ + V ∗(Q) ∀Q ∈ Q (9)

=E

[
min
Ω(χ)

[
c
(
Q,Ω

(
χ
))
τ +

∑

Q′

Pr
[
Q′
∣∣χ,Ω

(
χ
)]
V ∗(Q′)

]∣∣∣∣Q
]

Furthermore, for all admissible control policyΩ, V ∗ satisfies
the following transversality condition:

lim
T→∞

1

T
E
Ω [V ∗ (Q (T ))] = 0 (10)

Thenθ∗ = min
Ω

L(Ω) is the optimal average cost, andV ∗ (Q)

is thepriority function of theK data flows. IfΩ∗ (χ) attains
the minimum of the R.H.S. of (9) for allQ ∈ Q, thenΩ∗ is
the optimal control policy for Problem 1.

Proof: Please refer to Appendix A.
Remark 2 (Interpretation of Theorem 1):At each stage

when the queue length isQ(t), the optimal action has to
strike a balance between the current cost and the future cost
because the action taken will affect the future evolution of
Q(t+1). Furthermore, based on the unichain property of the
admission control policy, the solution obtained from Theorem
1 is unique [12].

IV. L OW-COMPLEXITY POWER CONTROL SOLUTION

One key obstacle in deriving the optimal power control
policy Ω∗ is to obtain the priority function for the Bellman
equation in (9). Conventional brute force value iteration or
policy iteration algorithms can only give numerical solutions
and have exponential complexity inK, which is highly
undesirable. In this section, we shall exploit the interference
filtering property of the MAC protocol and adopt perturbation
theory to obtain a closed-form approximation of the priority
functionV ∗(Q) and derive the associated error bound. Based
on that, we obtain a low complexity dynamic power control
algorithm for the delay-aware D2D communications.

A. Closed-Form Approximate Priority Function via Perturba-
tion Analysis

We adopt a calculus approach to obtain a closed-form
approximate priority function. We first have the following
theorem for solving the Bellman equation in (9).

Theorem 2 (Calculus Approach for Solving (9)):Assume
there existc∞ andJ

(
Q;Lδ

)
of classC2(RK

+ ) that satisfy

• the following partial differential equation (PDE):

E

[
min
Ω(χ)

[ K∑

k=1

(
βk

Qk

λk
+ γkPk

)
− c∞ ∀Q ∈ R

K
+

+

K∑

k=1

(
∂J
(
Q;Lδ

)

∂Qk

(
λk − σkCk

(
H,P

)))]
∣∣∣∣∣Q
]
= 0

(11)

with boundary conditionJ
(
0;Lδ

)
= 0.

•

{
∂J(Q;Lδ)

∂Qk
: ∀k

}
are increasing functions of allQk.

• J
(
Q;Lδ

)
= O

(
‖Q‖3

)
.

Then, we have

θ∗ = c∞ + o(1), V ∗ (Q) = J
(
Q;Lδ

)
+ o(1), ∀Q ∈ Q (12)

where the error termo(1) asymptotically goes to zero for
sufficiently smallτ .

Proof: please refer to Appendix B.
Theorem 2 suggests that if we can solve for the PDE in (11),

then the solution(J
(
Q;Lδ

)
, c∞) is only o(1) away from

the solution of the Bellman equation(V ∗(Q), θ∗). Before we
solve theK-dimensional PDE in (11), we first recognize that
due to the interference filtering property of the MAC protocol
in Assumption 3, the cross-channel path gain of all the active
D2D flows are quite weak and the worst-case interfering path
gain is Lδ. Note that the solution of (11) depends on the
worst-case cross-channel path gainLδ and, hence, theK-
dimensional PDE in (11) can be regarded as a perturbation
of a base systemdefined below.

Definition 3 (Base System):A base system is characterized
by the PDE in (11) withLδ = 0.

We then study the base system and useJ(Q; 0) to obtain a
closed-form approximation ofJ(Q;Lδ). We have the follow-
ing lemma summarizing the priority functionJ(Q; 0) of the
base system.

Lemma 1 (Decomposable Structure ofJ(Q; 0)): The solu-
tion J(Q; 0) for the base system has the following decompos-
able structure:

J (Q; 0) =
K∑

k=1

Jk (Qk) (13)

whereJk (Qk) is the per-flow priority functionfor the k-th
data flow given by





Qk(y) =
λk

βk

(
ak

(|Nk(δ)|+ 1) ln 2
E1

(
ak
y

)
− λky

−
y

(|Nk(δ)|+ 1) ln 2

(
e−

ak
y − E1

(
ak
y

))
+ c∞k

)

Jk(y) =
λk

βk

(
1

4(|Nk(δ)|+ 1) ln 2
E1

(
ak
y

)(
2y2 − a2k

)

−
y(y − ak)

4(|Nk(δ)|+ 1) ln 2
e−

ak
y −

λky
2

2

)
+ bk

(14)
where ak ,

N0Γγk ln 2
Lkk

. c∞k =
1

(|Nk(δ)|+1) ln 2

(
dke

−
ak
dk − akE1

(
ak

dk

))
, where dk satisfies

1
(|Nk(δ)|+1) ln 2E1

(
ak

dk

)
= λk. E1(z) ,

∫∞

1
e−tz

t dt =
∫∞

z
e−t

t dt. bk is chosen to satisfy6 the boundary condition
Jk(0) = 0.

6To find bk, firstly solve Qk(y
0
k
) = 0 using one-dimensional search

techniques (e.g., bisection method). Thenbk is chosen such thatJk(y0k) = 0.
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Proof: please refer to Appendix C.
Note that whenLδ = 0, the interference network has

Lkj = 0 for all k 6= j with dkj > δ and, hence, there is no
interference between the active D2D ndoes. As a result, theK
D2D flows are totally decoupled and the system is equivalent
to a decoupled system withK independent D2D flows. That
is why the priority functionJ (Q; 0) in the base system has
the decomposable structure in Lemma 1.

We then analyze the asymptotic property of the per-flow
priority functionJk (Qk) in Corollary 1.

Corollary 1 (Asymptotic Property ofJk (Qk)):

Jk (Qk) =
βk(|Nk(δ)|+ 1)

2λk

Q2
k

log2 (Qk)
+ o

(
Q2

k

log2 (Qk)

)
,

asQk → ∞ (15)

Proof: Please refer to Appendix D.
Next, we study the PDE in (11) for largeδ. Note that large

δ corresponds to small cross-channel path gains within the set
of active D2D nodes. Hence,J(Q;Lδ) can be considered as a
perturbation of the solution of the base systemJ(Q; 0). Using
perturbation analysis, we establish the following theoremon
the approximation ofJ(Q;Lδ):

Theorem 3 (First Order Approximation ofJ
(
Q;Lδ

)
):

J
(
Q;Lδ

)
can be approximated byJ (Q; 0), and the first

order perturbation term is given by

J
(
Q;Lδ

)
=J (Q; 0) +

K∑

k=1

∑

j 6=k
j/∈Nk(δ)

( DkjLkjQ
2
kQj

(log2 Qk)2 log2 Qj

+ o

(
DkjLkjQ

2
kQj

(log2 Qk)2 log2 Qj

))
+O

(
1

δ4

)
(16)

whereDkj =
βkβj(|Nk(δ)|+1)
2(ln 2)λkλjγjN0

.
Proof: Please refer to Appendix E.

The priority functionV (Q) is decomposed into the fol-
lowing three terms: 1) the base term

∑
k Jk(Qk) obtained by

solving a base system without coupling, 2) the perturbation
term accounting for the first orderinterference couplingdue
to simultaneously transmitting D2D nodes after MAC filtering,
and 3) the residual error term. As a result, we adopt the
following closed-form approximation ofV (Q):

Ṽ (Q) ,
K∑

k=1

Jk (Qk)+
K∑

k=1

∑

j 6=k
j/∈Nk(δ)

DkjLkjQ
2
kQj

(log2 Qk)2 log2 Qj
(17)

Remark 3 (Approximation Error w.r.t. System Parameters):
• Approximation Error w.r.t. Traffic Loading: the ap-

proximation error is a decreasing function of the average
arrival rateλk.

• Approximation Error w.r.t. SNR: the approximation
error is an increasing function of the SNR (which is a
decreasing function ofγk).

• Approximation Error w.r.t. Sensing Distance: the ap-
proximation error is a decreasing function of the carrier
sensing distance at the order7 at leastO

(
1
δ2

)
.

7For any k, j 6= k and j /∈ Nk(δ), we havedkj > δ. Therefore,
according to the long term path gain model in Assumption 2, wehave

Lkj =
Gr

kGt
jλ

2

(4πdkj)
2 = O

(

1
δ2

)

.

From Corollary 1 and (17), thepriority function Ṽ (Q) =

O(
Q2

k

logQk
) for largeQk, ∀k. As a result, the longer queue will

get higher priority in the order of Qk

logQk
. Based on Theorem 1

and Theorem 3, the approximation error between the optimal
priority function V ∗ (Q) in Theorem 1 and the closed-form
approximate priority functioñV (Q) in (17) isO( 1

δ2 ) + o(1).
In other words, the error terms are asymptotically small w.r.t.
the carrier sensing distanceδ and the slot duration.

B. Asymptotically Delay-Optimal Power Control Algorithm

In this section, we use the closed-form approximate priority
function in (17) to capture the urgency information of the
K D2D pairs and obtain low complexity delay-aware power
control. Using the approximate priority function in (17) and
Lemma 2, the per-stage control problem (for each state real-
izationχ) is given by8

max
P

K∑

k=1

( ∂Ṽ (Q)

∂Qk︸ ︷︷ ︸
flow weight

σk Ck (H,P)︸ ︷︷ ︸
data rate

−γkPk

)
(18)

where ∂Ṽ (Q)
∂Qk

can be calculated from (17) which is given by

∂Ṽ (Q)

∂Qk
= J ′

k (Qk) (19)

+
∑

j 6=k
j/∈Nk(δ)

Qj(lnQk − 1)

(ln 2) log22 Qk log2 Qj

(
2DkjLkjQk

log2 Qk
+

DjkLjkQj

log2 Qj

)

The per-stage problem in (18) is similar to the weighted
sum-rate (WSR) optimization subject to the power constraint,
which has been widely studied in [25] and [26]. However,
unlike conventional WSR problems where the weights are
static, the weights here in (18) are dynamic and are determined
by the QSI via the priority function∂Ṽ (Q)

∂Qk
. As such, the role

of the QSI is to dynamically adjust the weight (priority) of the
individual flows, whereas the role of the CSI is to adjust the
priority of the flow based on the transmission opportunity in
the rate functionCk(H,P). Note that the per-stage problem
in (18) is challenging due to the non-convexity ofCk (H,P)
w.r.t. P. We shall first derive a low complexity iterative
solution that converges to the stationary point of (18). We then
show that the converged solution is asymptotically optimalfor
sufficiently smallLδ.

Algorithm 1 (Delay-Aware Dynamic Power Control):

• Step 1 [Initialization]: Let n = 0. Initialize a feasible
P(0).

• Step 2 [Iteration]: In the(n+1)-th iteration, the transmit
power of each D2D transmitter is updated based on the
power results of then-th iteration according to

Pk(n+ 1) =

(
∂Ṽ (Q)

∂Qk

1

(ln 2)(γk + ζk(n))
−

ΓIk(n)

Hkk

)+

(20)

8Note thatJ ′
k
(Qk) =

(

dJk(y)
dy

/

dQk(y)
dy

)
∣

∣

∣

y=y(Qk)
= y (Qk), where

y (Qk) satisfiesQk (y (Qk)) = Qk.
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where Ik(n) = N0 +
∑

j 6=k,j /∈Nk(δ)
HkjPj(n) and

ζk(n) =
∑

j 6=k,j /∈Nk(δ)
1

ln 2
∂Ṽ (Q)
∂Qj

HjjPj(n)Hkj

Ij(n)(Ij(n)+HjjPj(n))
.

• Step 3 [Termination]: Setn = n + 1 and go to Step 2
until a certain termination condition is satisfied.

Although the problem in (18) is non-convex in general, we
show below that Algorithm 1 converges to the global optimal
solution asymptotically for sufficiently largeδ.

Corollary 2 (Asymptotic Optimality of Algorithm 1):
Algorithm 1 converges to the unique global optimal point of
the problem in (18) for sufficiently largeδ.

Proof: Please refer to Appendix F.

C. Summary of the Overall Solution and Implementation Con-
siderations

We give a summary of the overall dynamic power con-
trol solution and discuss some implementation considerations
(computational complexity) in the context of LTE-Advanced
systems [1]. Specifically, we consider the scenario offully
controlled D2D communications[28] in LTE-Advanced in
which the eNodeB takes control of the radio resource for
the D2D nodes inside its coverage. A frame is divided into
a contention phase, a reporting phase, a decision phaseand a
data transmission phase, which are described as follows:

1) Contention Phase: D2D nodes access the channels
distributively according to a CSMA-like MAC protocol.
At the end of the contention phase, each D2D transmitter
gets its corresponding MAC outputσk(t). Also, during
this phase, the CSIH(t) could be estimated by the D2D
receivers9.

2) Reporting Phase: Each of the active transmitters
(A(t) = {k : σk(t) = 1}) report their local CSI
{Hkj(t) : ∀j} and local QSIQk(t) to the eNodeB via
Physical Uplink Control Channel (PUCCH) and Physical
Uplink Shared Channel (PUSCH) [29], respectively.

3) Decision Phase:After receiving the CSI and QSI re-
ports, the eNodeB calculates the optimal power for the
active D2D nodes according to the proposed Algorithm
1, and broadcasts the power control actions to the active
D2D nodes via Physical Downlink Control Channel
(PDCCH) [29].

4) Data Transfer Phase: The active D2D transmitters
adjust their transmit power according to the power
control broadcasted from the eNodeB and transmit data
during the data transmission phase in the current frame.

Remark 4 (Computational Complexity Consideration):
The computational complexity of the proposed solution
is very low. Specifically, most of complexity comes from
computing the priority function in (17) and computing the
power control actions using Algorithm 1. The complexity
of computing the priority function is very low (due to the
closed form characterization) compared with conventional
brute-force value iterations algorithms [12], which have
exponential complexity inK. Computing the power control

9Each active D2D transmitter has to send the control signaling for MAC
contention. The CSI can be estimated if the signaling is sentwith a given
power, i.e., as the reference signal.

actions using Algorithm 1 is similar to those conventional
iterative water-filling solutions for solving WSR optimization
in [25]. We shall quantify the complexity comparison in
Section V.

Remark 5 (Extension for OFDMA and General Fading):
The solution framework in Theorem 2 and Theorem 3 can be
extended easily to multi-channel systems (such as OFDMA
[30]) as well as general fading distributions. For OFDMA
systems, the modification required is the rate equation in (2).
Each channel can be treated independently since orthogonal
parallel channels do not introduce additional coupling. For
general fading distributions, the modification required isthe
solution of the per-flow PDE in the base systemJk (Qk) in
Lemma 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
low-complexity power control scheme for D2D communica-
tions. The following four baseline schemes are adopted for
performance comparison.

• Baseline 1 [Cellular Mode]: The Tx-Rx pairs transmit
their data via the cellular BS in a conventional way [5].
TheK pairs share the channel using TDMA in a Round-
Robin way.

• Baseline 2 [D2D with Fixed Power]: The transmitters
always transmit with the maximum power for D2D com-
munications [5].

• Baseline 3 [D2D with CSI-based Power Control]:
Large deviation [31] is an approach to bypass the com-
plex delay minimization by converting the delay con-
straint into an equivalent rate constraint. The CSI-based
power control scheme determines the transmit power for
maximizing the total data rate without considering the
queueing information [32].

• Baseline 4 [D2D with Queue-weighted Power Control]:
Lyapunov drift approach [24] considers queue stabiliza-
tion instead of delay minimization. The queue-weighted
power control scheme exploits both CSI and QSI, and
solves the per-stage problem (18) replacing∂Ṽ (Q)

∂Qk
with

Qk. It is similar to the Modified Largest Weighted Delay
First algorithm in [33] but with a modified objective
function.

In the simulations, 10 D2D pairs are considered in a single
cell with radius 500m. The transmitters are located randomly
in the cell and the receivers appear within the D2D communi-
cation range of their corresponding transmitters, which isset
to 50m. The carrier sensing distanceδ is 100m. Poisson data
arrival is considered with a uniform distributed average arrival
rate, which has mean 5Mbps. The path gain is calculated as
Lkj = 15.3 + 37.6 log10 dkj [34] with the fading coefficient
distributed asCN (0, 1). The average transmit power is 23dBm
and the noise power spectrum density is -174dBm/Hz. The
system bandwidth is 10MHz. The duration of the time slot is
1ms. The SINR gapΓ is set to 1 in the simulation. The weights
γk are the same andβk = 1 for all k. For comparison, the
delay performances of different schemes are evaluated withthe
same average transmit power by adjustingγk. For obtaining
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the average performance, we consider 100 random topologies,
each of which has 1000 time slots.

Fig. 2 shows the average delay versus the average arrival
rate. For large traffic load, the transmission via D2D com-
munication has significant performance gain compared with
the conventional cellular transmission. This is mainly because
of the short distance between D2D transmitters and receivers
and their efficient spatial reuse. It can also be observed that
the proposed power control algorithm outperforms all the
baselines, which verifies the accuracy of the priority function
approximation in the proposed power control scheme. It is
noticed that the delay of the proposed scheme with small
arrival rate is not 0 but a small value, because the transmitters
could not transmit data in all time slots.

Fig. 3 shows the average delay versus the average transmit
power. The proposed power control scheme also achieves
better performance than other baseline schemes. A larger trans-
mit power could increase the received power of the desired
signal, but, meanwhile, would cause more serious interference
to other D2D pairs. Because of the two-fold effect of the
transmit power, the change of the average delay performanceis
relatively small with adjustment of the average transmit power.

Fig. 4 indicates the average delay versus the D2D commu-
nication range. Unlike the average transmit power, the D2D
communication range affects the received power of the desired
signal without increasing the interference directly, so the
average delay changes a lot with different D2D communication
ranges. It can be found that the proposed power control scheme
outperforms the baselines when the D2D communication range
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is small. For large D2D communication ranges (i.e., 100m
and 125m), all schemes achieve quite poor delay performance.
Note that since the carrier sensing distanceδ is set to 100m
here, MAC could not filter the large interference well. Thus,
the performance of the proposed power scheme degrades
because the weak coupling property of the queue dynamics
does not hold when the D2D communication range is too large
compared to the carrier sensing distance.

Fig. 5 shows the effect of carrier sensing distanceδ of the
proposed power control scheme. As discussed before, a very
small sensing distance cannot filter the large interferenceor
guarantee the weak coupling property of the queue dynamics.
However, a very large sensing distance leads to inefficient
spatial reuse. An appropriate carrier sensing distance should
be selected to balance the tradeoff between the above two
aspects. From Fig. 5, we observe that the proposed scheme
could achieve good delay performance with a large regime of
carrier sensing distance.

Table II illustrates the comparison of the MATLAB com-
putational time of the proposed solution, the baselines and
the brute-force value iteration algorithm [12] in one time slot.
Note that the computation time of Baseline 2 is the smallest
in all differentK scenarios but it has the worst performance.
In addition, the computational time of our proposed scheme is
close to those of Baselines 3 & 4 and the difference is due to
the computation of the approximate priority function. There-
fore, our proposed scheme achieves significant performance
gain compared to all the baselines, with small computational
complexity cost.
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TABLE II
COMPARISON OF THEMATLAB COMPUTATIONAL TIME

K = 5 K = 10 K = 15
Baseline 2 < 1ms < 1ms < 1ms

Baseline 3 & 4 0.007s 0.015s 0.029s
Proposed Scheme 0.046s 0.091s 0.143s

Brute-Force Value Iteration > 105s > 105s > 105s

VI. CONCLUSION

In this paper, we consider the dynamic power control for
delay-aware D2D communications by formulating the asso-
ciated stochastic optimization problem as an infinite horizon
average cost MDP. To deal with the curse of dimensionality,
a closed-form approximate priority function is derived using
perturbation analysis. Both the analysis and the numerical
results show that the approximation error is small and will
vanish if the cross-channel path gain goes to 0. Based on
the closed-form approximation, we propose a low complexity
iterative power control algorithm and discuss some imple-
mentation issues for practical systems. Finally, simulation
results show that the proposed power control algorithm has
significant performance gains in delay performance compared
with various state-of-the-art baselines.

APPENDIX A: PROOF OFTHEOREM 1

Following Prop. 4.6.1of [12], the sufficient conditions for
the optimality ofProblem 1are that assume (θ∗, {V ∗ (Q)})
solves the following Bellman equation:

θ∗τ + V ∗ (χ)

= min
Ω(χ)

[
c
(
Q,Ω

(
χ
))
τ +

∑

χ′

Pr
[
χ′
∣∣χ,Ω

(
χ
)]
V ∗ (χ′)

]

= min
Ω(χ)

[
c
(
Q,Ω

(
χ
))
τ +

∑

Q′

∑

H′

∑

σ′

Pr
[
Q′
∣∣χ,Ω

(
χ
)]

Pr
[
H′
]
Pr
[
σ′
]
V ∗ (χ′)

]
(21)

andV ∗ satisfies the condition in (10) for all admissible policies
Ω. Thenθ∗ = min

Ω
L(Ω). Taking expectation w.r.t.H andσ

on both sizes of (21) and denotingV ∗ (Q) = E
[
V ∗ (χ)

∣∣Q
]
,

we obtain the equivalent Bellman equation in (10) in Theorem
1.

APPENDIX B: PROOF OFTHEOREM 2

In the proof, we shall first establish the relationship between
the equivalent Bellman equation in (9) in Theorem 2 and the
approximate Bellman equation in (22) in the following Lemma
2. Then, we establish the relationship between the approximate
Bellman equation in (22) in the Lemma 2 and the PDE in (11)
in Theorem 2.

1. Relationship between the Equivalent Bellman and the
Approximate Bellman Equation:We establish the following
lemma on the approximate Bellman equation to simplify the
equivalent Bellman equation in (9):

Lemma 2 (Approximate Bellman Equation):For any given
weightsβ andγ, if

• there is a unique (θ∗, {V ∗ (Q)}) that satisfies the Bellman
equation and transversality condition in Theorem 1.

• there existθ andV (Q) of class10 C2(RK
+ ) that solve the

following approximate Bellman equation:

θ = E

[
min
Ω(χ)

[
c
(
Q,Ω

(
χ
))

∀Q ∈ Q (22)

+

K∑

k=1

∂V (Q)

∂Qk

[
λk − σkCk

(
H,Ω(χ)

)]]∣∣∣∣Q
]

and for all admissible control policyΩ, the transversality
condition in (10) is satisfied forV ,

then, we have

θ∗ = θ + o(1), V ∗ (Q) = V (Q) + o(1), ∀Q ∈ Q (23)

where the error termo(1) asymptotically goes to zero for
sufficiently small slot durationτ .

Proof of Lemma 2:Let Q′ = (Q′
1, · · · , Q

′
k) = Q(t+1)

and Q = (Q1, · · · , Qk) = Q(t). For the queue dynamics
in (3) and sufficiently smallτ , we have Q′

k = Qk −
σkCk (H,P) + Akτ , (∀k). Therefore, ifV (Q) is of class
C2(RK

+ ), we have the following Taylor expansion onV (Q′):

E
[
V (Q′)

∣∣Q
]

(24)

=V (Q) +

K∑

k=1

∂V (Q)

∂Qk

[
λk − E

[
σkCk

(
H,Ω(χ)

)∣∣∣Q
]
τ + o(τ)

For notation convenience, letFχ(θ, V,Ω(χ)) denote the
Bellman operator:

Fχ(θ, V,Ω(χ)) =
K∑

k=1

∂V (Q)

∂Qk

[
λk − σkCk

(
H,Ω(χ)

)]

− θ + c (Q,Ω (χ)) + νGχ(V,Ω(χ))
(25)

for some smooth functionGχ and ν = o(1) (w.r.t.
τ ). DenoteFχ(θ, V ) = minΩ(Q) Fχ(θ, V,Ω(χ)). Suppose
(θ∗, V ∗) satisfies the Bellman equation in (9), we have
E
[
Fχ (θ∗, V ∗)

∣∣Q
]

= 0, ∀Q ∈ Q. Similarly, if (θ, V )
satisfies the approximate Bellman equation in (22), we have

E
[
F †
χ
(θ, V )

∣∣Q
]
= 0, ∀Q ∈ Q (26)

where F †
χ
(θ, V ) = minΩ(Q) F

†
χ
(θ, V,Ω(χ)) and

F †
χ
(θ, V,Ω(χ)) = Fχ(θ, V,Ω(χ)) − νGχ(V,Ω(χ)).

We then establish the following lemma.
Lemma 3: If (θ, V ) satisfies the approximate Bellman equa-

tion in (22), then
∣∣E
[
Fχ(θ, V )

∣∣Q
]∣∣ = o(1) for anyQ ∈ Q.

Proof of Lemma 3: For any χ, we have
Fχ(θ, V ) = minΩ(χ)

[
F †
χ
(θ, V,Ω(χ)) + νGχ(V,Ω(χ))

]
≥

minΩ(χ) F
†
χ
(θ, V,Ω(χ))+ νminΩ(χ)Gχ(V,Ω(χ)). Besieds,

Fχ(θ, V ) ≤ minΩ(χ) F
†
χ
(θ, V,Ω(χ)) + νGχ(V,Ω

†(χ)),
where Ω† = argminΩ(χ) F

†
χ
(θ, V,Ω(χ)). Since

E
[
minΩ(χ) F

†
χ
(θ, V,Ω(χ))

∣∣Q
]

= 0 according to (26),
and F †

χ
and Gχ are all smooth and bounded functions, we

have
∣∣E
[
Fχ(θ, V )

∣∣Q
]∣∣ = o(1) (w.r.t. τ ).

We establish the following lemma to prove Lemma 2.

10f(x) (x is aK-dimensional vector) is of classC2(RK
+ ), if the first and

second order partial derivatives off(x) w.r.t. each element ofx are continuous
whenx ∈ RK

+ .
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Lemma 4:SupposeE
[
Fχ(θ

∗, V ∗)
∣∣Q
]
= 0 for all Q to-

gether with the transversality condition in (10) has a unique
solution(θ∗, V ∗). If (θ, V ) satisfies the approximate Bellman
equation in (22) and the transversality condition in (10), then
θ = θ∗+o (1), V (Q) = V ∗ (Q)+o (1) for all Q, whereo(1)
asymptotically goes to zero asτ goes to zero.

Proof of Lemma 4: Suppose for someQ′, V (Q′) =
V ∗ (Q′) + O (1) (w.r.t. τ ). From Lemma 3, we have∣∣E
[
Fχ(θ, V )

∣∣Q
]∣∣ = o(1) (w.r.t. τ ). Letting τ → 0, we

have E
[
Fχ(θ, V )

∣∣Q
]

= 0 for all Q and the transversal-
ity condition in (10). However,V (Q′) 6= V ∗ (Q′) due to
V (Q′) = V ∗ (Q′) + O (1). This contradicts the condition
that (θ∗, V ∗) is a unique solution ofFχ(θ

∗, V ∗) = 0 for all
Q and the transversality condition in (10). Hence, we must
haveV (Q) = V ∗ (Q) + o (1) for all Q. Similarly, we can
establishθ = θ∗ + o(1).

2. Relationship between the Approximate Bellman Equation
and the PDE:For notation convenience, we writeJ (Q) in
place ofJ

(
Q;Lδ

)
. It can be observed that if (c∞, {J (Q)})

satisfies (11), it also satisfies (22). Furthermore, sinceJ (Q) =
O(
∑K

k=1 Q
3
k), then limt→∞ EΩ [J (Q(t))] < ∞ for any

admissible policyΩ. Hence,J (Q) = O(
∑K

k=1 Q
3
k) satisfies

the transversality condition in (10). Next, we show that the
optimal policyΩJ∗ obtained from (11) is an admissible control
policy according to Definition 2.

Define a Lyapunov function as L(Q) = J (Q).
We define the conditional queue drift as ∆(Q) =

EΩJ∗[∑K
k=1 (Qk(t+ 1)−Qk(t))

∣∣Q(t) = Q
]

and condi-
tional Lyapunov drift as ∆L(Q) = EΩJ∗[

L(Q(t + 1)) −
L(Q(t))

∣∣Q(t) = Q
]
. We first have the following relationship

between∆(Q) and∆L(Q):

∆L(Q) ≥ E
Ω

J∗

[
K∑

k=1

∂L(Q)

∂Qk
(Qk(t+ 1)−Qk(t))

∣∣∣∣Q(t) = Q

]

(a)

≥ ∆(Q) (27)

if at least one of{Qk : ∀k} is sufficiently large, where(a)

is due to the condition that
{

∂J(Q;ǫ)
∂Qk

: ∀k
}

are increasing
functions of allQk.

Since(λ1, . . . , λK) is strictly interior to the stability region
Λ, there existsλ = (λ1 + κ1, . . . , λK + κK) ∈ Λ for some
positiveκ = {κk : ∀k} [24]. From Corollary 1 of [35], there
exists a stationary randomized QSI-independent policyΩ̃ such
that

K∑

k=1

E
Ω̃
[
γkPk

∣∣Q(t) = Q
]
= P (κ)

E
Ω̃
[
σkCk(H,P)

∣∣Q(t) = Q
]
≥ λk + κk, ∀k (28)

whereP (κ) is the minimum average power for the system
stability when the arrival rate isλ. The Lyapunov drift∆L(Q)
is given by

∆L(Q) + E
ΩJ∗

[
K∑

k=1

γkPkτ

∣∣∣∣Q(t) = Q

]

≈
K∑

k=1

∂L(Q)

∂Qk
λkτ

+ E
ΩJ∗

[
K∑

k=1

(
γkPkτ −

∂L(Q)

∂Qk
σkCk(H,P)τ

) ∣∣∣∣Q(t) = Q

]

(b)

≤
K∑

k=1

∂L(Q)

∂Qk
λkτ

+ E
Ω̃

[
K∑

k=1

(
γkPkτ −

∂L(Q)

∂Qk
σkCk(H,P)τ

) ∣∣∣∣Q(t) = Q

]

(c)

≤ −
K∑

k=1

∂L(Q)

∂Qk
κkτ + P (κ)τ (29)

if at least one of{Qk : ∀k} is sufficiently large, where
(b) is due to ΩJ∗ achieves the minimum of (11) and
(c) is due to (28). Combining (29) with (27), we have
∆(Q) ≤ ∆L(Q) ≤ −

∑K
k=1

∂L(Q)
∂Qk

κτ + P (κ)τ < 0 if
at least one of{Qk : ∀k} is sufficiently large. Therefore,
E
[
Ak − Gk(H,ΩJ∗(χ))

∣∣Q
]
< 0 whenQk > Qk for some

large Qk. Let φk(r,Q) = ln
(
E
[
e(Ak−Gk(H,ΩJ∗(χ)))r∣∣Q

])

be thesemi-invariant moment generating functionof Ak −
Gk

(
H,ΩJ∗(χ)

)
. Then,φk(r,Q) will have a unique positive

root r∗k(Q) (φk(r
∗
k(Q),Q) = 0) [36]. Let r∗k = r∗k(Q), where

Q = (Q1, . . . , QK). Using the Kingman bound [36] result
thatFk(x) , Pr

[
Qk ≥ x

]
≤ e−r∗kx, if x ≥ xk for sufficiently

largexk, we have

E
ΩJ∗

[J (Q)]

≤C

K∑

k=1

E
ΩJ∗ [

Q3
k

]
= C

K∑

k=1

[∫ ∞

0

Pr
[
Q3

k > s
]
ds

]

≤C
K∑

k=1

[∫ x3
k

0

Fk(s
1/3)ds+

∫ ∞

x3
k

Fk(s
1/3)ds

]

≤C

K∑

k=1

[
x3
k +

∫ ∞

x3
k

e−r∗ks
1/3

ds

]
< ∞ (30)

for some constantC. Therefore,ΩJ∗ is an admissible control
policy and we haveV (Q) = J (Q) andθ = c∞.

Combining Corollary 2, we haveV ∗ (Q) = J (Q) + o(1)
andθ∗ = c∞ + o(1) for sufficiently smallτ .

APPENDIX C: PROOF OFLEMMA 1

We first prove thatJ (Q; 0) =
∑K

k=1 Jk (Qk). The PDE in
(11) for the base system is

E

[
min
Ω(χ)

[ K∑

k=1

(
βk

Qk

λk
+ γkPk (31)

+
∂J (Q; 0)

∂Qk

(
λk − σkCk

(
H,P

)))]∣∣∣∣Q
]
− c∞ = 0

We have the following lemma to prove the decomposable
structures ofJ (Q; 0) andc∞ in (31).

Lemma 5 (Decomposed Optimality Equation):Suppose
there exist c∞k and Jk (Qk) ∈ C2 (R+) that solve the
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following per-flow optimality equation (PFOE):

E

[
min
Pk≥0

[
βk

Qk

λk
+ γkPk (32)

+ J ′
k(Qk)

(
λk − σkC

0
k

(
Hkk, Pk

))]∣∣∣∣Qk

]
− c∞k = 0

whereC0
k

(
Hkk, Pk

)
= log2

(
1 + 1

Γ
HkkPk

N0

)
. Then,J (Q; 0) =∑K

k=1 Jk (Qk) andc∞ =
∑K

k=1 c
∞
k satisfy (31).

Lemma 5 can be proved using the fact that the dynamics of
theK queues at the transmitters are decoupled whenLδ = 0.
The details are omitted for conciseness.

Next, we solve the PFOE in (32). The optimal transmit
power from (32) is given by

P ∗
k =

(
J ′
k (Qk)σk

γk ln 2
−

ΓN0

Hkk

)+

(33)

Substituting the optimal transmit powerP ∗
k to (32), and using

the fact thatσ follows a Bernoulli distribution with mean
1

|Nk|+1 (from Assumption 3) andHkk follows a negative
exponential distribution with meanLkk (from Assumption 1),
we calculate the expectations in (32) as follows:

E
[
γkP

∗
k

∣∣Qk

]

=
1

(|Nk|+ 1)Lkk

∫ ∞

N0Γγk ln 2

J′
k(Qk)

(
J ′
k (Qk)

ln 2
−

N0Γγk
x

)
e−x/Lkkdx

=
1

|Nk|+ 1

(
J ′
k (Qk)

ln 2
e
−

N0Γγk ln 2

J′
k(Qk)Lkk

−
γkN0Γ

Lkk
E1

(
N0Γγk ln 2

J ′
k (Qk)Lkk

))
(34)

Using the same integration region, we have

E
[
σk log2

(
1 + P ∗

kHkk/(ΓN0)
)∣∣Qk

]

=
1

(|Nk|+ 1) ln 2
E1

(
N0Γγk ln 2

J ′
k (Qk)Lkk

)
(35)

whereE1(z) ,
∫∞

z
e−t

t dt is the exponential integral func-
tion. We then calculatec∞k . Since (32) should hold when
Qk = 0, we have c∞k = E

[
γkP

∗
k

∣∣Qk = 0
]

and
E
[
σk log2

(
1 + P ∗

kHkk/(ΓN0)
)∣∣Qk = 0

]
= λk. Substituting

these into (34), we can calculatec∞k as shown in Lemma 1.
Substituting (34), (35), andc∞k into (32) and lettingak ,
N0γk ln 2

Lkk
, we have the following ODE:

βk
Qk

λk
+

1

|Nk|+ 1

(
J ′
k (Qk)

ln 2
e
−

N0Γγk ln 2

J′
k(Qk)Lkk

−
γkN0Γ

Lkk
E1

(
N0Γγk ln 2

J ′
k (Qk)Lkk

))
− c∞k + J ′

k (Qk)λk

− J ′
k (Qk)

1

(|Nk|+ 1) ln 2
E1

(
N0Γγk ln 2

J ′
k (Qk)Lkk

)
= 0 (36)

According to Section 0.1.7.3 of [37], we can obtain the
parametric solution of (36) as shown in (14) in Lemma 1.

APPENDIX D: PROOF OFCOROLLARY 1

First, we obtain the highest order term ofJk (Qk). The
series expansions ofE1(x) andex are given by

E1(x) = −γeu − lnx−
∞∑

n=1

(−x)
n

n!n
, ex =

∞∑

n=0

xn

n!
(37)

Using (37), (14) induces thatQk(y) = O(y ln y) andJk(y) =
O(y2 ln y) as y → ∞. In other words, we haveδ1y ln y ≤
Qk(y) ≤ δ′1y ln y when y → ∞ for some constantsδ1 and
δ′1, andδ2y2 ln y ≤ Jk(y) ≤ δ′2y

2 ln y wheny → ∞ for some
constantsδ2 andδ′2 .Therefore,

δ2

(
Qk/δ

′
1

W (Qk/δ′1)

)2

ln

(
Qk/δ

′
1

W (Qk/δ′1)

)
≤ Jk(y)

≤ δ′2

(
Qk/δ1

W (Qk/δ1)

)2

ln

(
Qk/δ1

W (Qk/δ1)

)
(38)

whereW is theLambertfunction [38]. SinceW (x) = O(ln x)
for sufficiently largex [38], we conclude thatJk (Qk) =

O
(

Q2
k

lnQk

)
asQk → ∞.

Next, we obtain the coefficient of the highest order term
Q2

k

lnQk
. Using (37), the PFOE equation in (36) implies

J ′
k (Qk) ln

(
J ′
k (Qk)

)
=

βk(|Nk|+ 1) ln 2

λk
Qk + o(Qk) (39)

SinceJk (Qk) = O
(

Q2
k

ln(Qk)

)
, there exist constantsδ and δ′

such that

δ
Q2

k

ln (Qk)
≤ Jk (Qk) ≤ δ′

Q2
k

ln (Qk)

⇒∆
Qk

ln (Qk)
≤ J ′

k (Qk) ≤ ∆′ Qk

ln (Qk)

⇒ ln (∆) + ln (Qk)− ln ln (Qk) ≤ ln (J ′
k (Qk))

≤ ln (∆′) + ln (Qk)− ln ln (Qk)

⇒∆Qk + o (Qk) ≤ J ′
k (Qk) ln (J

′
k (Qk)) ≤ ∆′Qk + o (Qk)

(40)

where ∆ and ∆′ are some constants that are independent
of the system parameters. Comparing it with (39), we have
∆,∆′ ∝ βk(|Nk|+1) ln 2

λk
⇒ δ, δ′ ∝ βk(|Nk|+1) ln 2

2λk
, where

x ∝ y means thatx is proportional to y. Finally, we
conclude thatJk (Qk) = βk(|Nk|+1)

2λk

Q2
k

log2(Qk)
+ o

(
Q2

k

log2(Qk)

)

andJ ′
k (Qk) =

βk(|Nk|+1)
λk

Qk

log2(Qk)
+ o

(
Qk

log2(Qk)

)
.

APPENDIX E: PROOF OFTHEOREM 3

We first writeHkj = LkjH̃kj , whereH̃kj is the short-term
fading path gain. Taking the first order Taylor expansion of
the L.H.S. of the PFOE in (11) atLkj = 0 (∀k 6= j, dkj > δ),
Pk = P ∗

k (whereP ∗
k minimize the L.H.S. of (32)), and using

parametric optimization analysis [39], we have the following
result regarding the approximation error:

J
(
Q;Lδ

)
− J (Q; 0) =

K∑

i=1

∑

j 6=i,
j /∈Ni(δ)

Lij J̃ij(Q) +O((Lδ)2)

(41)
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where we haveLδ = O( 1
δ2 ) according to Assumption 2.

J̃ij(Q) captures the coupling terms inJ (Q) satisfying:

K∑

k=1

(
λk − E

[
σk log2

(
1 +

PkLkkH̃kk

ΓN0

)∣∣∣∣∣Q
])

∂J̃ij (Q)

∂Qk

+E

[
J ′
i (Qi)

ln 2

σiP
∗
i LiiH̃iiH̃ij

ΓN2
0 +N0P ∗

i LiiH̃ii

P
∗
j

∣∣∣∣∣Q
]
= θ̃ij (42)

with boundary condition J̃ij (Q)
∣∣
Qi=0

= 0 or

J̃ij (Q)
∣∣
Qj=0

= 0, and θ̃kj = ∂θ(L)
∂Lkj

is constant (where
we treatθ as a function of{Lij : ∀i 6= j}). According to (34)
and (35), we have

E

[
σk log2

(
1 +

PkLkkH̃kk

N0

)∣∣∣∣∣Q
]
=

1

(|Nk(δ)|+ 1) ln 2
O (lnQk)

E

[
J ′
i (Qi)

ln 2

σiP
∗
i LiiH̃iiH̃ij

ΓN2
0 +N0P ∗

i LiiH̃ii

P
∗
j

∣∣∣∣∣Q
]

=
O
(
J ′
i(Qi)J

′
j(Qj)

)

(|Ni(δ)|+ 1)(|Nj(δ)|+ 1)(ln 2)2γjN0

=
βiβj

(ln 2)2λiλjγjN0
O

(
QiQj

log2 Qi log2 Qj

)

Substituting these calculation results into (42), using3.8.4.7
of [40] and taking into account the boundary conditions,
we obtain thatJ̃ij (Q) = DijO

(
Q2

iQj

(log2(Qi))2 log2(Qj)

)
, where

Dij =
βiβj(|Ni(δ)|+1)
2(ln 2)λiλjγjN0

. Substituting it to (41), we obtain the
approximation error in Theorem 3.

APPENDIX F: PROOF OFCOROLLARY 2

According to the definition ofσk, the problem in (18) is
equivalent to

min
P

∑

k∈A(δ)

(
γkσkPk −

∂Ṽ (Q)

∂Qk
Ck (H, {σkPk : k ∈ A(δ)})

)

(43)

where A(δ) = {k : σk = 1} is the set of active
transmitters for a givenδ, Ck (H, {σkPk : k ∈ A(δ)}) =

log2

(
1 + 1

Γ
HkkσkPk

N0+
∑

j 6=k,j∈A(δ) HkjσjPj

)
. Denote the objective

function in (43) asf
(
P, Lδ

)
. We have the following lemma

on the convexity forf
(
P, Lδ

)
.

Lemma 6 (Convexity off
(
P, Lδ

)
for Sufficiently SmallLδ):

f
(
P, Lδ

)
is a convex function ofP = {Pk : k ∈ A(δ)}

whenLδ is sufficiently small.
Proof: We adopt the following argument to prove the

convexity [41]: given two feasible pointsx1 and x2, define
g(t) = f(tx1 + (1 − t)x2), 0 ≤ t ≤ 1, thenf(x) is a convex
function of x if and only if g(t) is a convex function oft,
which is equivalent tod

2g(t)
dt2 ≥ 0 for 0 ≤ t ≤ 1.

Consider the convex combination of two feasible solutions
P(1) =

{
P

(1)
k : k ∈ A(δ)

}
andP(2) =

{
P

(2)
k : k ∈ A(δ)

}

as follows:Pc =
{
P c
k = tP

(1)
k + (1 − t)P

(2)
k : k ∈ A(δ)

}

and 0 ≤ t ≤ 1. We write Hkj = LkjH̃kj , where H̃kj is
the short-term fading path gain. DenoteP−k = {Pj : ∀j 6=
k, j ∈ A(δ)}, Rk(P−k) = N0 +

∑
j 6=k,j∈A(δ) LkjH̃kjPj and

ak = 1
ln 2

∂Ṽ (Q)
∂Qk

≥ 0, then the second order derivative of
f
(
Pc, Lδ

)
is calculated as:

d2f
(
Pc, Lδ

)

dt2
=

∑

k∈A(δ)

[
ak

((
Rk(P

c
−k) +

1

Γ
LkkH̃kkσkP

c
k

)−2

(
dRk(P

c
−k)

dt
+

1

Γ
LkkLkkH̃kkσk

(
P

(1)
k − P

(2)
k

))2

−R
−2
k (Pc

−k)

(
dRk(P

c
−k)

dt

)2
)]

(44)

where
dRk(P

c
−k)

dt =
∑

j 6=k,j∈A(δ) LkjH̃kj

(
P 1
j − P 2

j

)
does

not depend ont.
As Lδ becomes sufficiently small,

dRk(P
c
−k)

dt is proportional

to Lδ and
dRk(P

c
−k)

dt + 1
ΓLkkH̃kkσk

(
P

(1)
k −P

(2)
k

)
is dominate

by 1
ΓLkkH̃kkσk

(
P

(1)
k −P

(2)
k

)
. R−2

k (Pc
−k)
(dRk(P

c
−k)

dt

)2
is pro-

portional to(Lδ)2, and hence it has little impact and can be
ignored. Therefore, we have

d2f
(
Pc, Lδ

)

dt2
≈

∑

k∈A(δ)

(
ak

(
Rk(P

c
−k) +

1

Γ
LkkH̃kkσkP

c
k

)−2

(
dRk(P

c
−k)

dt
+

1

Γ
LkkH̃kkσk

(
P

(1)
k − P

(2)
k

))2
)

≥ 0 (45)

for sufficiently smallLδ. Therefore,f
(
P, Lδ

)
is convex for

sufficiently smallLδ.
For sufficiently largeδ, Lδ is sufficiently small, so the

problem in (43) is convex, and hence (18) is convex according
to Lemma 6. Furthermore, since the limiting pointP(∞) of
algorithm 1 is a stationary point of the problem (18), it is also
the unique global optimal point of (18).
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