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Abstract

In this paper we define critical graphs as minimal graphs shiaport a given set of rates for the index coding
problem, and study them for both the one-shot and asympetigs. For the case of equal rates, we find the critical
graph with minimum number of edges for both one-shot and psytic cases. For the general case of possibly
distinct rates, we show that for one-shot and asymptotialiindex coding, as well as asymptotic non-linear index
coding, each critical graph is a union of disjoint strongbnoected subgraphs (USCS). On the other hand, we identify
a non-USCS critical graph for a one-shot non-linear indedirop problem. Next, we identify a few graph structures
that are critical. We also generalize some of our resultsheogroupcast problem. In addition, we show that the
capacity region of the index coding is additive for union ddjoint graphs.

I. INTRODUCTION

NTRODUCED by Birk and Kol in[[1], index coding is the problenf rtansmitting a set of messages to a

number of receivers via a public communication. Each regzaivay also have some side information consisting of
messages desired by some of the other receivers. This prditale been the subject of several recent studies (e.g. see
[2]-[9]) In the most general form of the problem, each messzan be desired by more than one destination. However
the special case of each message being desired by exacteosiger admits a graph theoretic representation in
terms of directed graphs and thus has received particulamtitn. More specifically, if there are receivers, we
can construct a graph withh vertices. We draw a directed edge from vertew vertex; if and only if receiver:
knows the desired message by receiyeFor the most part of this paper we work with this graph modelthe
index coding problem. Observe that in the most general aase has to work with hypergraphs to represent the
side information.

It is common to study the index coding problem in terms of ahi@@ble rate region based on the size of the
m messages to be decoded by thereceivers (see Sectidd Il for a formal definition). Here theerof a receiver
refers to the normalized amount of information transmittedt. The set of all achievable rates, i.e. the capacity
region, for index coding problem remains an open problemmedtlmeless, the problem has been solved in some
special cases, notably for the equal-rate case under cagtaph structures [9]. Iri_[6], the capacity region of an
index coding problem is related to some graph theoreticufes such as local chromatic number. A difference
between the performance of linear and non-linear codesasacterized in[[10].

A. Connections with Network Coding and Wireless Commuioicat

The index coding problem has significant connections wittwoek coding and wireless communications. It is
clear that every instance of index coding can be represezgeah instance of a network coding in which a single
node desires to send messages via a unit capacity channsbare channels with infinite capacity representing
side information. In[[8] it is shown that for both linear andmlinear case, for any instance of networking coding
problem, there exists an instance of index coding probleth Wie same capacity region. In addition, in [7] a
reduction from an instance of network coding problem to ataince of index coding problem is introduced. They
used this reduction to show that the capacity regions fa@alirand one-shot cases are not equal to capacity region
of asymptotic non-linear case.

In [17], the topological interference management problenmtroduced for both wired and wireless networks.
In the wireless set up, this problem refers to the analysidegfrees of freedom of an interference network with
the assumption that all weak interferences are zero. Thigalgroblem in the wireless networks has a significant
relation to the index coding problem. For example,lin| [17isitproved that the set of degrees of freedom which
are available through linear schemes in the topologicarietence management problem is equal to the linear
capacity region of an equivalent index coding problem. Mg, the non-linear degree of freedom region of the
interference management problem is related to the nomslioapacity region of the problem.
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B. Our contribution

Given a fixed set of rates, I€t denote the set of all graphs that support the rates. We aeested in minimal
members ofG (with respect to containment of the edge set). More spetifica graph is said to beritical (or
edge critica) if (1) it belongs toG and (2) deletion of any edge from the graph makes it to falkidetg. It is
useful to study critical graphs since it identifies the minimcost architectures of the networks supporting a given
set of rates.

To best of our knowledge, critical graphs for index codingehaot been studied before. We present several results
in this paper regarding critical graphs. When the rates hregaal, we identify the critical graph with minimum
number of edges (Theorelmh 1). Next we study the general casebifary rates via an additivity result that we
prove about index coding (Theordrh 2; here we basically ptbe¢ a simple time division strategy is optimal).
We use this result to show that critical graphs for one-simot asymptotic linear index coding as well as those
of non-linear asymptotic index coding are structured, byvprg that they have to be a union of disjoint strongly
connected subgraphs (USCS) (Theofdm 3). Equivalentlyy daected edge in the graph has to be on a cycle in
the graph. On the other hand, for non-linear one-shot indehing, we construct a counterexample by finding a
critical graph that is not USCS. In addition, using Theofgmv2 prove criticality of the union of two critical
graphs (Theorem] 5). Moreover, we show this result holdsformsetric criticality in both one-shot and asymptotic
linear case, as well as in asymptotic non-linear case (Eme@). In the next step, we provide a comprehensive
list of symmetric critical graphs for graphs with at most fivedes, and use this list identify two general classes
of critical graphs which explain many of the critical grapghat we had observed (Theorém 6). Finally, we have
generalized some of our results to the groupcast index gashitting (Theorernl 7).

A potential application of index coding problem is in thedtwf wireless broadcast networks. For example, in
[18] side information of nodes in a broadcast wireless nétvinas been employed to make the communication more
efficient. In such schemes, study of critical graphs can gftieas it identifies the side information that cannot make
the communication more efficient. For instance, as our tesllows, those side information whose corresponding
edge in the side information graph do not lie on any cycle| ndlt improve the efficiency of communication.
Hence, these side information can be eliminated. Accoldinige total storage resources of wireless nodes can be
decreased using our results.

Additionally, even though we are mostly interested in catigraphs in this work, our results address the “index
coding problem” itself. For instance, our result on the &ditly of the capacity region of index coding problem
(Theoreni2) finds the index coding capacity of a graph in tesfrthose of its subgraphs, if the graph has a certain
structure. Further we believe that by studying the charmtites of critical graphs, one can use the capacitiy region
of some critical subgraphs of the grahto find a lower bound for the index coding problem introducgdybaph
G.

This paper is organized as follows: in Sectloh I, we introgluhe basic notation and definitions used in this
paper. The results are provided in Secfion Ill. In SubsedlibA] some results that suggest structures for critical
graphs are given. In addition, In Subsection T1I-B, an exgiam of the former results for groupcast index coding
is presented. Appendix]A contains a few lemmas used in thefgréppendix{B contains the source file for a C
program needed to do an exhaustive search to complete tbéqfrone of the theorems, and Appenfik C contains
a list of all symmetric rate critical graphs on 5 vertices.

II. DEFINITIONS AND NOTATIONS

A (unicast) index coding problem comprisesmafnodes,{1,--- ,m}, and a set oin messageWy,--- ,W,,}
where node needs to decode the messadg, i = 1,--- ,m. The side information of nodgis assumed to be a
subset of W1y, --- , W;_1, Wii1, -+, Wi, }. We can illustrate this side information by a directed gréps (V, &),
whereV = {1,--- ,m} and node; has an edge to nodg(that is, (¢, j) € &) if node: knowsW;. For simplicity
in the rest of this paper, we use graph as a shorthand forteldt@paphs. Undirected graphs are referred to by the
term “bidirectional graph”.

Definition 1. A code for an index coding problem (or an index code) consibts
1) m alphabet setsV;, i = 1,2,--- ;m where the message intended by iké party, W;, belongs toV;;
2) An encoding functiorf from Wy x --- x W, to {1,2,--- , N} that compresses the messag8s,--- ,W,,)
into a symbol in{1,2,--- | N}. f(W1,--- ,W,,) is called the public message since it will be made available
to all the nodes;



3) A set ofm decoding functions at the nodes frof, 2,--- , N} x H(i_’j)eg W; to W, fori =1,2,--- ,m.
Every node should be able to decode its message using thie puddsage and its side information.

The rate vector associated with the code is a veéter- - -, r,,) where

1 i
. _ loa(Wi) W
log ()
We will user to indicate the rate vectofry, - - , 7).
Probability of error associated to the code is the probdbpithat node; fails to correctly decodéV’; for some
i=1,2,--- ,m, where rvsW; (i = 1,2,--- ,m) are assumed to be uniform on their alphabet set and mutually

independent of each other.
Linear codes form a subclass of codes, and are defined as/$ollo

Definition 2. A linear code for an index coding problem with finite fidlcconsists of

1) m positive integerd, - - - , l,, indicating that¥; € F% is a sequence of length of symbols inF. In other
words, the alphabet set for the random variablg is W; = F';
2) Alinear mapf from W, x --- x W, to F" that compresses the messag#&s,, - -- ,W,,) into a sequence

of lengthn of symbols inF;
3) A set ofm linear decoding functions frol™ x H(m)eg Wi toWw,; fori=1,2,--- ,m.

The rate vector associated with the code is a veeter (ry,--- ,r,,) where

— 2)

n
Now, we introduce two classifications for the index codinglpem.

Definition 3. Linear and Non-Linear Index Coding
In linear index coding we restrict ourselves to linear codeer an arbitrary finite field®. However in the non-linear
index coding we are allowed to use an arbitrary code.

Definition 4. One-Shot and Asymptotic Index Coding

In the one-shot problem, we have fixed message alphabets - , W,, and seek the code with the smallest alphabet
size for the public message that can result in a zero prolighof error. On the other hand, in the asymptotic
coding scheme we are only given rate veatot (r1,--- ,7y,). Then there should exist a sequence of codes with
zero error probability whose rate vectors convergerte: (r1,- -« ,7.m,)-

Remark 1. The asymptotic index coding is generally defined for a vamgsprobability of error rather than an
exactly zero probability of error. However it is shown [n_[1that the two definitions are equivalent.

Definition 5. Critical Graphs and Symmetric Rate Critical Gr aphs
Given an index coding problem (linear or non-linear/oneisbr asymptotic) on a graph, we say that the graph is
critical if removal of any edge from #trictly shrinks the rate region (capacity when we are looking at gstpiics)
associated to the graph.

The maximum symmetric rate supported by a graph is the swpreofr such that = (r,r,--- ,r) is achievable.
We say that the graph symmetric rate criticalf removal of any edge from dtrictly reduces the maximum symmetric
rate by the graph. Every symmetric rate critical graph igical, but the reverse is not necessarily true (see Theorem

[4).
Next we need the following definitions from graph theory:

Definition 6. Turan Graph
Turan Graph of orderm and k, denoted byT'(m, k), is a bidirectional completé-partite graph withb parts of
sizea + 1 and k — b parts of sizea, wherem = ak + b fora > 0,b € {0,1,2--- ,k — 1}. We denote the number
of edges ofl'(m, k) by e(m, k). In [15], Ex. 5.2.18], it is shown that
1 1, 5 bk—0)
e(m, k) = 5 (1 k)m T 3)
See also Lemnid 3 from Appendix A.
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Fig. 1. An example of a strongly connected graph.
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Fig. 2.  An example of a graph that is not strongly connected.

Definition 7. Strongly Connected Graphs
The graphG = (V, £) is strongly connected if there exists a directed path batwesery pair of distinct vertices.

It is easy to verify that a graph is strongly connected if anty éf every edge of the graphs lies on a (directed)
cycle.

Example 1. The graph shown in Fid.l1 is strongly connected. Howevergtla@h shown in Figl 2 is not strongly
connected since there is no directed path between nodes £2.aHdre the edge from nodeto node5 does not
lie on a directed cycle.

Definition 8. Union of Two Disjoint Graphs
The union ofG = (V,€) and G’ = (V',&’) is defined aG UG = (VU V', EUE).

Definition 9. USCS Graphs
GraphG is USCS(Union of Strongly Connected Subgraphs) if there exists afséisjoint graphs{Gy, Go, - -, G}
such that (1)G; is strongly connected and (&) = |JG;.

Example 2. Because the graph shown in Fg. 1 is strongly connected,SE€S, too. However, the graph shown
in Fig.[2 is not USCS. Next consider the graph shown in [Hgf3vd defineG; as the induced subgraph of the
set{1, 2,3}, Gg as the induced subgraph of the §&t5}, and G3 as the induced subgraph of the 4ét}, then we
haveG = G; U Gy U Gg. Therefore, due to the fact th&t, G,, and G3 are strongly connected; is USCS.

1. M AIN RESULTS
Theorem 1. Minimum Number of Edges for Equal Rates

F—0 ® @

Fig. 3. A USCS graph



Everym-vertex graph supporting a rate vector= (r,--- ,r) has at least:

glrvm) = mim 1) = 2 e(m. | ) @
r

edges, ifL < r <1 (g(r,m) is the number of edges in the complemerif'6f, | X |)). Moreover, there is a unique

graph, up to isomorphism, that has exagjly-, m) edges and supports the rate vectoe (r,--- ,r). This theorem

holds for all cases (linear or non-linear, one-shot or asyatic).

Remark 2. This theorem shows that there is a unique (up to isomorphisiti¢al graph with minimum number
of edges for both one-shot and asymptotic cases.

Remark 3. Theorent1l is valid for% < r < 1. For the caser > 1, there is no graph that supports the rate
vectorr = (r,--- ,r) since the rate of each node cannot be greater than one. Whenj;, it is possible to send
all messages as the public message, and as a result, theeenged to have any side information. Therefore, the
empty graph is sufficient in this case.

Theorem 2. Additivity of index coding capacity region

a) Given a graphG = (V, £), suppose tha&’ and G” are subgraphs of: induced on vertex sefg’ andV"”. In
addition, assume that’ and V" partition V and there exist no edge like= (u,v) in £ that starts fromu € V'’
and ends up irv € V”, i.e. no directed edge frors’ to G” exists. Then, elimination of all the directed edges
from G” to G’ will not change the rate region in the one-shot linear, andhie asymptotic non-linear index coding
problems.

b) [Optimality of a simple time-division strategy]. Take ardéx coding problem with grap = G’ |J G, such
that there is no edge betwe&h and G”. LetC, C’ andC” denote the capacity regions 6f G’ andG” respectively
(the three capacities are all either in the sense of asynptiotear, or all in the sense of asymptotic non-linear).
ThenC = ,¢jo,1) o€’ ® (1 — a)C" where® is the direct sum operator. Alternatively, the index codiegion for
G is of the formr = (af’, (1 — o)) for a € [0,1] and vector¥’ is in the region ofG’ andT” is in the region of
G”, and (ar’, (1 — a)T") is the concatenation of the vectors’ and (1 — o)T”.

Theorem 3. Critical graphs are USCS

a) Every critical graph for linear index coding (one-shot oryasptotic) and for asymptotic non-linear index
coding is USCS. In particular, removing edges that do notoliea directed cycle does not change the capacity
region in these cases.

b) There exists a critical graph for a one-shot non-linear irdmding problem which is not USCS.

The condition given in item (a) of Theorelh 3 are necessarynbtinecessarily sufficient, i.e. USCS does not
necessarily imply criticality. This follows from the fadbdt if we add an edge to a USCS graph that supports a
given set of rates, the resulting graph remains a USCS giathstill supports the given rates. However observe
that the resulting graph, with one more additional edge, maged support higher rates. This observation may
lead one to propose the following modified conjecture:

Conjecture 1. Take a USCS graph that supports a given set of rates for agjimpton-linear index coding. Let
e be an edge of the graph that lies on a single directed cyate ifi.is completing a cycle and its removal breaks
that cycle). Then removing the edgdrom the graph results in a graph that no longer supports theig set of
rates.

However the above conjecture is also false. Consider thehgira Fig.[4 withS = {0,1}. Using LemmdR of
the AppendiX’A, the sum of the rate of every subset of nodeshwbontains no cycle should be less or equal to
one. Therefore, for every rate vecodr= (1,72, r3) supported by this graph, we have:

rg+r3 <1, (5)
T1 S 1. (6)
The edge from node to node3 lies on a unique cyclé — 3 — 1 — 2. We show that if this edge is removed, all

rate vectors satisfying eqél (5) afd (6) will be still sugpdr It suffices to prove that any= (ry, 72, 73) satisfying
r1 =1 andry +r3 = 1 is supported by the new graph. If we assume ifiatis a binary string of lengtty; where



Fig. 4. A counterexample to Conjecture 1.

ly = Iy + I3, we can create (W, Wa, W3) as follows: we concatenatd’, and W5 to create a binary string of
lengthls + I3 = I; and then XOR it with the binary string d#;. Node1 knows both¥; and W5 and hence can
recoveriW,. And both nodeg and3 know ;. Hence they can both recover their desired message.

Remark 4. There has been some previous work on the effect of edge remaeawork coding([12]{14]. However
to best of our knowledge there is no previous work on edge vahio the context of index coding.

A. Structure of Critical Graphs

In this section we provide some results on the structure ititar graphs. The first class of critical graphs that
are easy to identify are bidirectional graphs:

Theorem 4. Any bidirectional graph is critical (by a bidirectional gpln we mean one in which a directed edge
from node; to j implies a directed edge from nogéo ¢). On the other hand this is not true of symmetric criticality
in particular a bidirectional cycle of size 4 is not symmetciitical.

To derive the main results for this section, we first produaltdymmetric rate critical graphs for graphs on 5
vertices. This list was compiled using the data availabléroang-Han Kim’s personal website [20], and is given
in Appendix[C. We then tried to formulate a few theorems thatild explain the structure of critical graphs that
we observed.

Theorem 5. Union of two critical graphs is critical

If G and H are two critical graphs, thenG U H is also a critical graph for any of linear/non-linear, one-
shot/asymptotic formulations. Further, @ and H are two symmetric rate critical graphs, thedU H is also
a symmetric rate critical in one-shot linear, asymptoticdar, and asymptotic non-linear index coding scenarios.

Theorem 6. Two structures that are critical
a) Supposes = (V, ) is a directed cycle of length, where

V:{1,~-~,m},
E={(,i+1):1<i<m}u{(m,1)}.

Now, construct a new grap@’ = (V',&’) so thatV' =VU{m+1} and&’ = EU{(m+1,1), (m+1,4), (j,m+
1), (k,m+1)}. Then, ifl <j <iandi <k <n, G’ is symmetric rate critical.

b) Supposec’ = (V',£’) is a graph that satisfies the condition of part (a). We corddtias new graphG” =
V", &") by replacing any vertexs € V' by a complete graph (different vertices can be replaced bwy-co
plete graphs of different sizes). The®! is critical. More specifically, we replace vertex with n, vertices
(u,1), (u,2),---,(u,n,) that are mutually connected to each other. We also draw actéck edge from(u, i)
to (v,7) in G” fori e [1:n,] andj € [1: n,] if there exists a directed edge fromto v in G'.

Remark 5. The criticallity of graphs Fig.14, Fif.15, Fig.19, FAig.P#ig[28, Figl30, Fid.3N, Fig.33, Fip.36, and
Fig[38 can be shown by Theorémh 6.

B. Extension to Groupcast

The index coding problem that we considered so far is callédast index coding problem. A generalization of
the unicast index coding is the groupcast index coding. tugcast index coding, the desired messages of receivers
are not necessarily disjoint, i.e. a group of receivers oesird the same message.



Definition 10. Groupcast Index Coding
Assuming a set ofn message§W-, W, - -, W,,}, a groupcast index coding problem can be modeled with a
directed hypergraph omn vertices with node representingiV;. Each receiver can be represented as a directed
hyperedge starting from its desired message and ending &ide information. In other words, if receivémwants
to know Wy, while having A4, C {Wy,Ws,--- , W,, \Wy, like A; as its side information, we add a directed
hyperedge fror{W,,} to A;. The number of receivers will be equal to the number of hyjg=e.

A hypergraph is said to be critical if eliminating any memloéithe side information set of any receiver strictly
reduces the set of rates supported by the hypergraph.

Definition 11. Underlying Digraph of a Directed Hypergraph
LetH = (V, &) be a directed hypergraph. Then we céll= (V, &) the underlying digraph (directed graph) 6f,
where:

Ec={(u,v) | IP,QCV: uePuveqQ, (PQ)et}

Remark 6. Since groupcast index coding problem is a generalizatiothef unicast index coding problem, we
can define the side information hypergraph for the unicadeincoding problem too. It can be easily verified that
the underlying digraph of this hypergraph is equal to theedied graph we used to model unicast index coding
problem.

Theorem 7. Groupcast Critical Graphs are USCS too

a) The underlying graph of every critical hypergraph for limegoupcast index coding (one-shot or asymptotic),
and for asymptotic non-linear groupcast is USCS.

b) There exists a critical hypergraph for a one-shot non-lingeoupcast index coding problem which is not
USCS.

IV. FUTURE WORK

Consider the index coding for a random graph where direddggé®exists between any two nodes with probability
p and independent of other edges. Computing index codinghiisr dlass of random graphs can be of interest.
Theorem B can be used to find a lower bound on the expected muwhleglges that we can remove from this
graph such that it does not affect the capacity region. A toaund is the expected value of number of edges
that do not lie on a directed cycle, which is equaIQt@) times the probability that a directed edge from ndde
to node2 exists which does not lie on a directed cycle. The expectasevaill be equal toz(g)p(l — q) where
q is the probability that there is a directed path from ndd® node2; we have multipliedp with 1 — ¢ as they
correspond to independent events. Computingair connectedness in directed random graphs, is a sttolgc
in percolation theory [19] but we were not able to find a clofmun formula for it.

V. PROOFS
A. Proof of Theorerhll

We begin by proving the given lower bound on the minimum nunmidfeedges. It suffices to prove it for the
non-linear asymptotic case since it implies that for allestbases. Suppose that a given gr&ph (V, £) supports
the rate vectof = (r,--- ,r) for non-linear asymptotic case. We aim to construct two neaplgs and with the
help of LemmdR anf]3 find some bounds on the number of edgesse tivo graphs. Then we use these bounds
to find a bound on the number of edgesGn Using LemmdR, every subset ®{G) whose size is bigger than
EJ has a directed cycle, because the sum of the rates of thieegeih this subset is greater than or equal to
rx (|1] +1) > 1. Then, we consider an arbitrary order for the verticesGo$uch asl, --- ,m and construct
two new graphs (called “forward” and “backward” graphs) abioivs: G/ = (V/,£f) andG? = (V?, £%) where
VI =Vt =V, and &/,£% is a partition of € into two sets as followsG/ contains those edges & whose
direction agrees with the mentioned order, thatéi§, = {(z,y) € £|z < y}. G® contains the following edges:
& = {(z,y) € €]z > y}. Now, because every cycle i@ should contain at least one edge from bGth and G,
every subset of size more thas | has at least one edge in bad4 and G’

Now let us construct a bidirectional graﬁﬂf on the same set of vertices as followsis connected tg, in G/
for  # y if an only if (min(z,y), max(z,y)) ¢ £/. Observe thaG/ is like the complement o6/ if we ignore
the edge arrows of/. Similarly, G’ is constructed as the complementGf if we ignore the direction of arrows



in it. Since every subset of size more thgh| has at least one edge in b8 and G?, we can conclude tha/
and G® do not have a clique of siz! | + 1. Using LemmdB, the number of edges of bGth and G? is at least

(¢) - 252

Hence,G itself has at leasy(r, m) edges.

Next, we will show that the complement @f(m { J) supports the rate. It suffices to show this for one-shot
linear coding and it |mpI|es that for all cases there existgaph which supports the rafe Let m = a [ J +b
for somea > 0,b € {0,1 ,|£] —1}. Then we construcE so that it consists ob cliques of sizen + 1, and
L;J — b cliques of smeaﬂ Then one can verify thak hasg(r, m) edges. In addition, if every node desires only
one bit and we transmit the XOR of the bits in every clique rgwertex can decode its message, and the rate of
every message equals tg—- > r. Furthermore, it is obvious that this is a one-shot lineatimg. Thus we have
shown that there exists a graph which supports thefate

Lastly, to show that no other graph with exactiyr, m) edges supports, consider a graple that hasg(r, m)
edges and supports the rate vedtoe (r,--- ,r) in non-linear asymptotic case (it suffices to show this far th
non-linear asymptotic case and it will imply other casekwé constructG/ and G’ as discussed before, each of
them should have exactl%@ edges and they should have the structure mentioned in LemrSa,3he only
remaining step is to show that the cliquesGh and G’ coincide on each other. Suppose this does not hold, that is,
there are two vertices where there is an edge between the,ibut not inG’. Let us call these two verticas
andv. Choose one vertex from each of the| components o/ such thatu is chosen and let us denote this set
by X. Then we claim thatX U {v} does not contain any cycle i&. Note that if a cycle exists, it should include
the edge between andv, because it is the only edge i U {v} in G/ and the cycle should have at least one
edge fromG/. Now the other edges in the cycle form a path frorto u in G* . As every component o’ is a
clique thenu andv should have an edge, which contradicts our assumption:tlaaid v are disconnected iG’. m

B. Proof of Theorerhl2
1) Proof of part (a):
Proof of part (a) for asymptotic non-linear index codingConsider an arbitrary code on the original graph
with zero probability of error. Let = f(Wy, Ws,--- ,W,,) be the public message. The rate of this code is
T =(r,r2, - ,mm) Where

. log((Wil)
" log(IK])
The union of G’ andG” corresponds to the grapgh after elimination of directed edges fro6f’ to G'. Take an
arbitrarye > 0. We create a code for the union 6f and G” that achieves the rate vectsr= (r{,75, -+ ,7.,)

wherer] > r; — ¢, with the probability of error being less thanThis concludes the proof (see Remalk 1 on index
coding with a vanishing probability of error).

We can conceive: i.i.d. repetitions of the given code witfV*, W3, --- /W) and public messag&™. The
rate of the i.i.d. code is the same as the original one since

log(|W;']) = nlog(IWil),  log(IK"|) = nlog(|K]).

Since the original code had zero error probability, thel.i.code has also a zero probability of error.
We definelV as a shorthand foW;,i € G, andW¢, as a shorthand fol;*,i € G'. We define a new code
that use§ K’, K') instead of K™ where K’ is used by nodes i&’ and K" is used by nodes i&":
« Size of the alphabet ok”, i.e.|K’|, is less than or equal t*(/(K;We)+9)  Furthermore, the nodes & can
use K’ and their side information (which is insid&) to recover their message with probability- e.
« Size of the alphabet ok, i.e. |[K”|, is less than or equal "7 (KIWe)+9)  Furthermore, the nodes i@
can useK"” and part of their side information of messages insileto recover their message with probability
1—e

1A clique is a graph where every vertex has a directed edgeery ether vertex.



This would finish the proof sinclg(|K’| - |K”]) is equal ton(log(|K]) + 26) and by choosing small enough we
can ensure that the rate of the new code is withof the original code.

Construction ofK";

We havemin,, H(K|We = we) < H(K|We ). Thus, it suffices to construdt” whose alphabet size is less
than or equal t@n(H (K [We =wg)+5) wherewg: is the one that minimize#l (K|We = wg).

Let us first assume in the original problem tH&%. = we has occurred and the nodes@ = G — G’ are
all aware of this (thus, if some of the nodes&{ had partial information about messages of node§’inwe
are giving all of them a full access ¢ and this should only help them in decoding their message)sThe
nodes inG” should be able to recover their intended messages usiagd their side information insidé” with
probability one, wheWVs = we is fixed. We can use the conditional joint ppfK, We |We = we/) as a joint
pmf ong(k,we) on K, W~ and think of it as an index code on nodesGfi (sinceWe is independent ofV/,
the marginal distribution o§(weg-) is uniform and coordinatewise mutually independent). Thblip message in
the index coding problem oG” would be produced according k) = p(k|We = we ) and it leads to zero
error probability.

If we haven i.i.d. copies of the pmfy (still a code with zero error probability), the correspamglipublic
message can be compressed using Shannon’s source codimgnthand sent to the parties, where node&n
can first decompress it and then use it to run their decodiggridhm. Compression can be achieved at a rate of
H,(K)+d=H(K|Wy =wg) + 9§ bits at the cost of a probability of error ef which is tolerated.

Note that the public messag€” is only meant for the use of subgra@; to construct the code fo&” we
have pretended th&tc;: = we has happened in each copy@f It is clear thatK”’ contains no useful information
aboutW¢, that has actually occurred, and nodesGincan ignoreiK”.

Construction ofK”:

Let p(k, we ) denote the joint distribution o and We: in the original code. The decoding function used by
nodei € G’ can be expressed as the conditional pitab; |k, (w;);.i,j)ee) whereV; is the reconstruction of node
i. Of courseW; = W; since perfect reconstruction is assumed. Therefore timé jonf

p(k, wer e ) = p(k, wer) [ p(ilk, (w)) .. ee)
icG

has the property that the marginal distribution dfe, and W¢' is equal to

P(Wer = wer, Wor = i) = H 1[w; = ). (8)
ieG’
We use the covering lemma (rate-distortion coding) to er@atode for nodes i6’. Let § > 0 be an arbitrary
small positive real.
Codebook generatiorAssume that the transmitter and the receivers initiallys@acodebook o™/ (K:We)+9)

sequences
K"(l), [(”(2)7 . 7[(n(271(1(1(;1/[/G,)+5))

each being an i.i.d. sequence according(b).

Encoding:Having W¢, at the transmitter, it finds an indgxsuch thatK™(j) is jointly typical with W¢, (i.e.
(K™(5),W¢g) € Ty (p(k, we))), where we use the notion of typicality given in [16, 2.4]n& the number of
generateds”(-) sequences is larger thai!(K:We)+9) py the covering lemma[16, Lemma 3.3], this can be done
with high probability. The transmitter then sends the indeas K’ to the receiver (the cardinality of the alphabet
of K’ allows it to send the inde).

Decoding:Having receivedk’ = j, nodesi € G’ createWi" as a function ofK™(j) and their side information
(they use the same decoding functions of the original cadeye precisely, if we denote the joint pmf df”(j)
and W¢Z by aKn (), Wy, (k,wg&), the joint pmf of the constructed rv’s is equal to

dKn(j), W" k wG/ H Hp ’LUZSUCS, Wijs 7(1,7)65)
i€G s=1

If (K™(4), W&) € T (p(k,we)), with high probability we will have K™ (5), Wg, Wg) € T (p(k, we , e )) for
anyd’ > 4, as we have passéd™(j), W¢, through the i.i.d. conditional pmf gf(we |k, we ) (Conditoinal typicality
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lemma [16, 2.5]). Thereforé("(j),Wg,,Wg will be joint typical with high probability. Thus for any e G’, with
high probability (W}, Wi") will be jointly typical. We claim that two sequencéBVi",Wi") jointly typicality in
the sense of [16, 2.4] is equivalent with their equality. &ipn [8) implies thap(Ws = wer, We = we ) > 0 if
and only ifwg = ¢/, and hence for any paiwe, we ) wherewg # we we have (using notation of [16]) that

‘H(w(;/ y ﬁ}G/ |I/Vin7 Wzn) - p(w(;/ y ’lb(;/)

< ¢ plwe,der) = 0.

Hencell(wg:, e |W*, W) = p(we, ) = 0 for any we # e, implying thatW;* = W;. Therefore with
high probability the decoders will successfully decodertimended messages. ]
It should be noted that the above proof does not work for asgticplinear index coding becaud€’ will not
necessarily be linear i is a linear index code.
Proof of part (a) for one-shot linear index codingAssume that there exists a valid one-shot linear coding
scheme for a grapls with |V| = m vertices such that:

Wi = (wir, wiz, -+, wq,), ()]
wherew;; € F for some fieldF. Additionally, assume that:
FWy, Wa, -+ W) = (t1,t2, - ,tn) (10)
wherety, is equal to l
tr = izlcijk “Wij, Vi<k<n, (12)
i=1 j=1

for some coefficients;;; in the fieldF. In other words, the following matrix is used for the lineaapn

C111 C121 o Clii1 C211 e Cml,,1

C= :
Clin Ci2n - Cilyn  C2ln "~ Cmly,n

Without loss of generality we can assume tas in the row echelon form, since elementary row operation on
C is equivalent to usingnvertible linear combinations ofy, ¢s, - - - , ¢, instead of these variables. The row echelon
form can be represented by a sequence of indices

(ikajk)v k:1727 7n7jk§lik (12)

that are increasing in a lexicographical order, i.e. eithek ix.1 holds or bothiy = i1 and ji < jr+1 hold.
Further we must have;;, = 0 if (i, 7) is less than(iy, ji) in the lexical order.
Since all nodes are able to decode their message§via - , t,,) and their side information, there should exist

coefficientsa;1, aijo, - - - , ayjn fOr each message;; (1 < j <(;) so that:
n
> aijiti (13)
k=1
is equal tow;; plus a linear combination ob; ; that are available to nodeas side information, i.e.
n
S aiwte =wig + Y Wi Y (14)
k=1 i3 (i,4')EE

for some coefficientsy; ;.

Now, we turn to the proof of the lemma. Without loss of gengrakuppose that the vertices & are m —
V|4 1,m—|V'|+2,---,m. Note that this assumption and the assumption €hé in the row echelon form
do not contradict the generality together. One can simgdglléhe vertices ofc such that nodes &’ be labeled
with m — V| +1,m — V| +2,--- ,m and then applies some elementary row operations todiimirow echelon
form. The statement of the theorem basically asks us to shatthere is no need for nodes @ to know (as
side information) any of the messages for node§'in.e. W;, i € G'. To show this, we first define a new encoding
linear mapf’ and then prove that it enables nodesGh to recover their intended messages without any need to
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Fig. 5. A pictorial representation of the row echelon form(that clarifies the definition of. Gray elements are zero and green elements
are non-zero.

have access ttV;,i € G'. Nodes inG’ are also shown to be still able to decode their messages hetlericoding
function f’ using their side information (nodes & do not know any of the messages of nodessihsince G’
does not have any outgoing edge). Thus, the edges bet@feand G’ can be removed.

Part 1: definition of a new linear encoding functigi: Let

s=min{k | ¢;jr =0, VI<i<m-—-'|, 1<j<[} (15)

Fig. [T clarifies the definition of the. Note that{k | ¢;jx =0, V1 <i<m—|V|, 1<j <I;} cannot be
empty. We prove this by contradiction. Suppose that the imeed set is empty, then for eadh< k < n there
exists ac;;, # 0 thati < m — |V’|. As a result,

Vi<k<n:ip<m-—|[V| (16)
Now assume thaf is the smallest number that,,1y # 0, then:
n 6—1 n
Z Qm1k "tk = Z Qmik "tk + Zamlk g (17)
k=1 k=1 k=60
0—1 n
= Z 0t + Z Qm 1kt (18)
k=1 k=60
- Z Qmikt (19)
k=60
n m lp
= Z QAmlk * (Z Cpgk - wpq) (20)
k=0 p=1g¢=0
Note that the coefficient oi;,;, in the above statement is:
Z Uik ciejgk (21)
k=0
Becaus€(iy, jo) is lexicographically smaller thafiy, ji) for any k > 6:
Vk > 0 : Ciejek =0. (22)
Then
Zamlk . Cigjgk = Qm10 * Cigj99 ;A O (23)

k=0
Note thatis < m — |V'| by eq. [16), saiy € G”. Hence,ws,j, is not provided as side information to node
which is in G’. As a result, the non-zero coefficient of,;, in ZZ:l am1k - tr is in contradiction to eq.[(14).
So we have proved thgtk | ¢;;x =0, V1 <i<m—[V|, 1< <} isanon-empty setand thusis
well-defined.
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Fig. 6. A schematic representation ijk

Further let

. _ /
, _{0 k<s and i>m—|V| (24)

C. . = .
ik Cijk otherwise

and

m 1
=Y chy - wij. (25)

i=1 j=1
forall 1 <k <n. Set
f/(WhWQa"'7Wm):(t/lat/25"'7t;z) (26)
A schematic representation of;; is given in Fig[®. Observe that ed._{24) implies tiat= ¢, for all k& > s.
Part 2: showing that nodes i’ are able to decode their message by usitg t;,--- ,t,,) and their side
information: Consider the coefficients;;, for decoding of the original linear mapping given in €q.](18) claim
foranyr € G’ (i.e.7 > m — [V'|) thata,j1 = --- = a,j,—1) = 0 for every1 < j < [,. This completes the proof

since for everyr € G';

n n n
ZO‘Tjktk = Z Qrjktl = Z arjkt;. (27)
k=1 k=s k=s

Equations [(I4) and(27) illustrate that every nade G’ is able to obtainw,; in the new coding scheme by
calculating_;_ . a,jkt},.

We provea,;; = --- = a,j(s—1) = 0 for everyl < j <1, by contradiction. Suppose thatis the smallest index
that a,.j, # 0 andz < s. By the definition ofs, i, <m — |V'| (i, € G”). It is also clear that the definition af
results in:

Orjy =0, (28)
for anyy < z. Becausqiy, ji),k = 1,2,--- ,n is strictly increasing:
Cigjey = 0, (29)
for all y > x. As
m  lp

Z Qrjk tp = Z Qrjk - (Z Z Cpak * Wpq); (30)
k=1 k=1

p=1g=1



13

The coefficient ofw;, 5, iIN >7_ | aji -t is:

n x—1 n
E Qrjk * Cigjok = E Qrjk * Cigjak + Qrjo * Cigjee + E Qrjk * Cigjak (31)
k=1 k=1 k=z+1
x—1 n
— § 0- Ci ik + Arjz * Cigjax + § Qrjk - 0 (32)
k=1 k=x+1
= Qprjz " Ci,j.x (33)
# 0, (34)

which is in contradiction to the independencyXf,_, a;jxtx from w;_;,, that was guaranteed by ef.(14). (Note
thatr € G andi, € G”, sow;_;, is not provided as side information t9

Part 3: showing that undef’ decoding is possible without the need for node&'into know messages for nodes
in G":
For everyi € G”, let

0 k> s;
ﬂijk o {aijk k <s. (35)
We claim that for every € G”:
n
Z Bijit, = wij + Z Wi Vgt (36)
k=1 i’,5':(4,i") €€ and i’ G’

where~, ;- is given in eq.[(IB). This shows that nodesG4tare able to decode their messages usihgts, - - - ,t,,)
and their side information it” (excluding side information from nodes &t). We have:

n s—1 n
Z Bijity = Z Bijity + Zﬁijkt;g (37)
k=1 k=1 k=s
s—1 n
= ity + > 04, (38)
k=1 k=s
s—1 m  lp
= Z Qijk (Z Z C;)qk * Wpq) (39)
k=1 p=1g¢=0
s—1 m—|V'| Ip
= @ijk - ( Z Z C;;qk  Wpq) (40)
k=1 p=1 ¢q=0
s—1 m—V'| Ip

= ik - ( Z Z Cpgk * Wpg), (41)

where egs.[(40) and_(#1) follow from the definition &f, in eq. [24). Note that the expression of €q.](41) does
not include any ofw;; for i > m — |V’|. Moreover, the coefficient ofy;; for i < m — |V’'| are the same as those
in >, _; ajjrte. This establishes ed. ([36). [ |

2) Proof of part (b):

The proof has two parts: first we show th@gem al’' @ (1 — a)C” C C and then we will finish the proof by
showing thatC C (J (o1 aC" & (1 — a)C".

Before starting the proof, let us label the verticesGo$o that the vertices o’ come first.

ProvingU,e(o.1) @€' ® (1 —a)C” C C: Take an arbitrary vectar' in C’. Then we can allocate all of our resources
for G’ and do not send anything f&”. This shows thatr’,0) is in C. Similarly for anyt” in C”, we have that
(0,7") is in C. Using the standard time-sharing techniques, one can shatithe capacity region of the index
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coding problem is a convex set. Therefore for any [0,1] the rate(ar’, (1 — «)T”) € C. This completes the
roof.

P ProvingC C U,eo,1) @€' ® (1 —a)C": For any rate vector € C, there exist a sequence of codes kg Cs, - - -

whose rates converge 1o Take some > 0 and a code described by encoding functjpwhose rater. is within

e distance ofr.

o Linear Case Suppose thaf : Wy x Wa X -+ X Wy 4y — F". In the proof of the part (a), we showed
that there exist encoding functiorfs : Wi x Wa x -+ X Wy — F™" and f” : Wivrjg1 X Wiprjgg X -+ X
Wiy gy — F"" which are respectively valid fo6’ and G”. Additionally, the size of the range of the
concatenation of’ and f” equals the size of the range ¢fi.e.n = n’ +n”. Hence, if we call the rates of
fand f”, ¥ andt”, we will have:

logi [Wi| loge [Ws|  logg [Wiyj+ v 42
€ n/+n//’ n/_}_n//"”7 n +n' ( )
- n logg (W1 logg Wiy
- n' +n' n! T n' ’
n’  (logg Wiyra| log]F (Wi vl (43)
n! +n’ n' ’ n'
n n
- (n’ + n”r/’ (1= n' + n”)rﬂ) (44)

Sincet’ € C’ andt” € C”, above statement results in the fact thaties in |, ¢, ;; oC’ ® (1 — a)C". By the
definition of the asymptotic capacity regiaff, andC” are closed sets. We are done with the proof by noting
thatr. can be made arbitrarily close

« Non-linear Case Suppose thaf : Wi x Wa x -+ x Wiy 4y — {1,2,--- , N}. In the proof of the part
(@), we showed that we can find encoding functighs Wit x Wi x --- x W, — {1,2, - ,2n(K'+0)} and
P W i X Wi X X Wiy = {1,200+, 27 (K"+8)1 in which K" and K" satisfy N = 25K'+K"
0 is an arbitrary positive real number and an appropma@an be found for any fixed so that such functions

exist. Moreoverf’ and f” are respectively valid fo6” andG” over the alphabet sets ¥9]*, W, - - Wi
and Wi 1 Wi s Wi o) Hence, if we call the rates of and f”, ¥ andr”, we will have:
_ (log[Wi| logWs|  log [Wiyrspr| (45)
¢ logN ’ logN =~ log N
_ [log|wp| log|wy|  log Wiy (46)
nlogN > nlogN '’ nlog N
log Wy logwg|  log V| 47)
KI + K/I (K/ + K/I) ) n(K/ + KI/)
B K'+6 log Wr'| log Wi/l
T \KFE \ (K F8) T n(K +0)
K"+ (logDVnl - 1og Wiyl (48)
K+ K"\ n(K"+0) ' n(K"+0)
K'+6 , K'+06 _
= (K/ + [(//rl7 K’ + K" rﬂ) (49)
K+ K"+26 K' +4 = K"+§ » (50)
B K' 4+ K" K'+K"+25 "K'+ K" +25
K'+ K" +25 K'+§ K'+6
= V(- ——— ) 51
K+ K" (K’+K”—|—26r’( T > (1)
Thus, K'+ K" K'+6 K'+6
— = ¥ (1l 52
K +K"+25 (K’+K”+25r’( K’+K”+25)r) (52)
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Fig. 7. In the index coding problem associated with this Grapmoving the edges which belong to no cycle implies a tapgblic message
rate.

AsT € and¥’ € C", A7, lies in U, aC’ @ (1 — )C” for any § > 0. Sincel,, (o, aC’ @

(1 —«)C" is a closed set and we can makeande as close to zero as we want, we will be done.
[

C. Proof of Theorerhl3

We prove two parts of Theore 3 in the following two subsettio

1) Proof of part (a):

Linear one-shot caséf G is USCS, then proof is finished. Otherwise contains an edge like = (u,v) which
is not located in any cycles. L&f; be the set of vertices that can be reached fronvorever, let), be the set
of vertices who cannot be reached framlt is easy to verify that there will be no edge that startsrfrg; and
finishes inV,. Using part (a) of Theorei 2, we can remove all edges betwgeamd ) including e, so that the
rate region does not shrink. As the number of the edge6 & finite, by repeating this process we can find a
USCS subgraph of like G’ whose rate region equals the rate regiorcoHence, ifG is a critical graph, it should
be equal toG’ which is USCS. In other words, any critical graph for onetdim®ar index coding is USCS.

The proof for Non-linear asymptotic index codingsing part (a) of Theorel 2 is similar.

Linear asymptotic casé&his follows from the one-shot case. For any cd@def lengthn, there is another code
C’ with the same rate vector on a subgraghof G that is USCS. Now, given any arbitrary sequence of codes
C4,Cs, - - - wWhose rate vector converges to a given rate veeter(ry,rs, - - - , 7, ), We can find a sequence of codes
C{,C%,--- on subgraphss), G, - -- whose rate vector converges to the same rate vacter(ry,ra, -, m).
Since any grapié has only a finite number of subgraphs, we can find indiges i, < --- such thatG] = G are
identical. The subsequence of the codgs is defined on the USCS graghand has a rate vector that converges
tor = (r1,72, -+ ,Tm). SinceG and is critical andG is a subgraph ofs, we conclude tha6 = G implying that
G is USCS.

[ |

2) Proof of part (b): To prove this part we need to show that a critical graph ex@st®ne-shot non-linear case
that is not USCS.

Consider the graph given in Figl 7. We call this graph- (1, £). Assume that

Ws = {0,1,2,3,4}.

We have the following claim:

Claim 1. Sending a symbol frofil, 2, - - - , 32} as the public message suffices for every node to decode itagees
However, if we remove the edges connected to Boednich do not belong to any cycle, we need at least 35 symbol
to have a successful transmission of the messages.

This claim establishes the desired result, sincg i§ critical it would be an instance of a non-USCS graph that
is critical. If G is not critical, there is a subgrag of it (obtained by removing edges fro) that is critical; that
is the graphG’ is such that sending a symbol frofii, 2, --- ,32} as the public message suffices for every node
to decode its message. However any further removal of edges @&’ results in a graph that does not have this
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property. By the above claim, the minimal gra@Ghshould contain at least one of the edges connected to the node
6; since if not,G’ would be a subgraph of the graph shown in the claim to needaat 85 symbols. Thereforg&/
contains an edge that is not on any cycle. Hence it is a non8J&l critical graph.

We now turn to the proof of the claim. In order to construct toeling scheme using 32 symbols fGr first
note thatWW,WoW3 W, W5 forms a binary sequence of the length 5. Based on the valid&gfwe XOR this
sequence with one the following sequen@ed00, 10001, 01111, 01100, 10111, that is, if W is 0 we XOR the
sequence with0000, if it is 1 we XOR it with 10001, and so on. Then, we transmit the result as the public message
(the public message has 32 different possibilities and @transmitted). Let us denote the 5-bit public message
by W, W, WsW,Ws. It is sufficient to show that every node can decode its messdth the help of the public
message and its side information. First of all, because tiie 6 knows the message of 1 to 5, it can XOR their
message by the public message and from the XOR decode itageedor the other nodes, note th&} @ W,
for 1 < i < 5 is a function of the side information of node and therefore, node can decode its message. We
explain the decoding process for notiethe decoding process for other nodes is similar. Nodenows W, and
W5 . By comparing these two bits witd’, and W5, nodel can exactly recoveWs if it is equal to0, 2 or 3. If
Ws is equal tol or 4, nodel cannot find the exact value &¥s. However in both cases d/; = 1,4 we have
Wh = W4, and by flippingW; the first node can recover its intended bit.

In order to prove that if we remove the edges connected to 6pde least 35 symbols are needed, suppose
that there exists a coding scheme which requires at most Béag. According to Pigeonhole Principle, we can
conclude that there existsgs € {0,1,2, 3,4} so that if Wi = wg, public message gets at most 6 distinct different
values when we vary then, wo, - - -, ws, i.e. the cardinality of the set

{f(w17w27"' awﬁ):wlaw21"' , W5 € {011}}

is at most 6. For this value afg, consider the following function over five variables, wo, - - - , ws:

f(wl7w27"' ,’U}5) :f(wlaw27"' 7w5aw6)-

Since W was independent ofWy,--- ,Ws) and we have zero probability of error, the functignis a valid
encoding function for a cycle of length 5. This contradicesmimal below. ]

Lemma 1. The bidirectional cycle of length 5 withV; = {0,1} needs a public message of alphabet size 7 to
achieve a zero probability of error for the one-shot problem

Proof: We prove this lemma by contradiction. Assume otherwise tiexte exists a coding scheme that uses a
public message with 6 possibilities. From the Pigeonholedifie, we conclude that the encoding function maps at
least 6 combinations of the messages to one symbol, i.ee trersix sequences 6f;, wo;, - - - ,ws;) € {0,1}5,
i=1,2,---,6, whosef (w;,ws, - ,ws;) are equal, i.e. their corresponding public message is thee s@ihus,
the nodes should be able to recover their own messages Umirgside information. In other words, for instance
for nodel, if wy; # wq; for somei andi’, then we should havews;, ws;) # (way, wsi ). Thus the six sequences
should be distinguishable, where we call two sequeriggsws, - - - , ws) and (w}, wj, - - ,w}) distinguishable if
for eachi € {1,2,---,5} eitherw; = w; or thew; # w’; for somej : (i, j) € £.

Given a sequencéws,ws, - -- ,ws), consider the graph induced on the set of verti€gs w; = 1}. We call
the sequencéw,,ws, - ,w;) “good” if the induced graph does not contain of a vertex ofrdegzero (i.e. is
connected). For instance, in a cycle of sizé we take (wy, wo, -+ ,ws) = (1,1, 1,0,0), the induced graph would
be on nodesdl, 2,3 which is connected. Howevenv,, wo, - ,ws) = (1,1,0,1,0) corresponds to the induced
graph on nodeg, 2, 4 which is not connected since nodds not connected to noddsand?2. It is easy to verify
that (wq, wa, - -+ ,ws) and (w,wh, - - -, w}) distinguishable if and only if their bitwise XOR is good. FHostance
(1,1,0,1,0) and(0,0,0,0,0) are not distinguishable (by node 4) since their XOR,1,0, 1, 0) is not good.

Now, we know that the XOR of any two dfwi;, wa;, -+ ,ws;), i = 1,2,---,6 is good. We show that this
cannot happen. Without loss of generality, we can assumeotieof the six sequences is the all zero sequence.
Therefore, we should look for 5 sequences that are indiliylgaod, and their pairwise bitwise XOR is also good.
In AppendixB, we provide a code ifi + + which checks all possible cases and shows that such a sefudrsees
does not exist. ]



17

D. Proof of Theoreril4

Suppose tha€ = (V, €) is a bidirectional graph wherg = {1,2,--- ,m}. To show thatG is critical, we need
to find a rate vectof = (rq,r2,--- , ), fOr everye = (u,v) € £ that is achievable i, but it is not achievable
in G — e. We definer in the following manner:

7’-{1 ifi=uori=v
710 otherwise
To show thafr is achievable inG, suppose thatV; is the message of nodeandW; € W, where:
wW; ={0,1} ifi=uori=v

{ W; = {0} otherwise
Now, if we sendW, @& W, as public message, thenand v can decode their message, because they have the
message of each other as side information and the sum ofrtiesisage. A¥V; has only one element far#£ u, v,
the other vertices can trivially decode their message. &fbeg,T is supported byG.

Additionally, since the sef{u,v} in G — e has no directed cycle, Lemnid 2 implies that for evefy=
(ri,rh, -+ ,r.) supported byG — e, r,, + r/, < 1. Thus,T cannot be supported by — e.

Next we show that a cycle of size four with verticgls 2, 3,4} and edge$(1, 2), (2,1), (2, 3), (3,2), (3,4), (4, 3),
(4,1),(1,4)}) is not symmetric rate critical. If this graph supports théeraectorr = (r,r,r,r), as the set
{1,3} has no directed cycle, Lemnid 2 gives that< % In addition, consider the subgraph of the cycle
with edge$(1,2),(2,1),(3,4),(4,3)}. If we send two bits(W; & Wy, W5 & W,) as public message, then all
nodes can decode their message. Hence, the(fatg, 3, 1) is achievable inH. Now, since removing edges
(2,3),(3,2),(4,1),(1,4) do not change the symmetric capacity region of cycle of s, fit is not symmetric
rate critical. [ |

E. Proof of Theorem]5

1) Criticality of G U H: In order to show the criticality ofc U H we need to show that by eliminating every
edge likee from G U H, the capacity region of the index coding problem relate@ toH shrinks strictly. Without
loss of generality assume that ;. As G is a critical graph, there exists a rate vector fikéhat supportss, but
not G'(Vg, & — {e}). Now, consider a rate vector for the index coding problemoihiced byG U H in which the
rates of nodes i are all zero and rates of the nodesGrequalsr. This rate vector is evidently admissible for
G U H, but not forG’ U H (which is G U H after elimination ofe).

2) Symmetric Criticality oG UH in Asymptotic ScenariosShowing that the maximal symmetric rate also reduces
after we remove an edge froU H is more challenging. Let; andro be the maximal symmetric rate fé&r and
H respectively. It is clear that concatenation of these twairgp functions with proportion olerT2T2 and Tl:jrz for
G andH respectively, results in a coding function f6ru H with the symmetric rate of = =2

We claim that this symmetric rate would not be achievableny adge likee is removed fromG U H. This
will prove the symmetric criticality ofG U H. We are going to prove this claim by contradiction. Withoogd of
generality, assume thatis an edge ofc. We refer to the graph obtained I&/after elimination ofe asG’. Suppose
that there exists a coding function likefor G’ UH with the symmetric rate of. From Theoreml2 then, there exist
somea € [0, 1] and symmetric rates; andr;, for G andH such thatr = ar] = ars. This implies that

Thus,

1 1 1 1

—+—=—+— (53)
Tl 7”2 1 (]

However, by the symmetric criticality d& and by the definitions of; andry, we have that

<, Ty < 1o

1 1 1 1

1 T T2 To

1 1 1 1
St > 4 (54)
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Equations[(5B) and (54) are in contradiction with each othbis contradiction completes the proof.

3) Symmetric Criticality ofc U H in One-Shot Linear ScenarioConsider the symmetric one-shot linear index
coding problems defined ové&, H, andG U H. Assume that the alphabet of each node in each of these prsble
is ! for some finite fieldF. Let n; be the minimum possible positive integer number such theetlexists a valid
linear coding function with the output size aff symbols oveff. Definens for H in the same manner. It is clear
that there exists an encoding function for the problem eelab G U H that uses a public message of + no
symbols by concatenation of the encoding functions thatryssymbols forG andn, symbols forH. Hence, the
symmetric rate ofﬁ is achievable for the index coding problem introducedGy H.

We are going to show that i& and H are both symmetric critical, the@ U H is symmetric critical too. To
prove the symmetric criticality o6 U H, we will prove that any valid coding function fd&d U H needs at least
n1+no+ 1 public symbols after removal of any edge likdrom GUH. Without loss of generality, we assume that
e is removed from thec component ofG U H. We refer to the graph obtained I8 after the removal ot asG'.
Then, the graph obtained fro@UH after the removal oé would beG’ UH. Let f be a valid encoding function for
G’ UH, we have shown in the proof of part (a) of Theorem 2 that theist éwo valid encoding functiong’ and
f” for G’ andH so that the concatenation ¢f and f” has the same output size fo As f” is a valid encoding
function for H, its output size is at least,. In addition, because of the criticality &, we know that every valid
encoding function folG’, including f/, needs at least; + 1 symbols. Accordingly, the concatenation gfand f”
has an output size of at least + no + 1. Consequently, the output size of tliés at leastu; +no + 1. This means
that G U H is a symmetric critical graph because it cannot support yinensetric rate of—— after removal of

X ni+nz
any of its edges. ]

F. Proof of Theorem]6

1) Proof of part (a): In the first step of the proof, we will show that the new graghsupports the symmetric
rate ofr = (15, —L- ... L), In the next step, we will show that this rate will not be avhigle if any edge
is eliminated. These two steps will clearly prove this ttesor

(I) Achievability: Let W; denote the message of nodeand W, € W, = {0, 1}. Consider the encoding function
f(Wl, cee ,Wm) = (fl, cee ,fm) e (Wl@WQ, ce ,ijl@Wj, Wj@Wj+1 SWht1, Wj+1 @WjJrQ, v W10
Wi, Wie ® Wip1 @ W1, W1 & Wigo, oo W1 @ Wiy, W, @ Wl).

The " element off is the sum of the side information of nodend 17;; therefore nodé (for 1 < I < m) can
decode its message. Node+ 1 can cosider:

i—1 1—1
@fl = @ (Wl &) Wl+1) D (Wj D Wj+1 &b Werl) (55)
=1 I=1,0]

=W & W; d Wt (56)

Since noden + 1 hasW; andW; as side information, it can decode its message with the hgifigomessage.
As f(Wy, -+, Wp,) € {0,1}™, it shows the achievability of ratel, L ... L) To prove the achievability of
ratet, notice that fort £ 5, k, we have
i -0
=1

Therefore, we can only sends, - -, f.,); f1 can be omitted from public message and instead recovergdtfie
rest of f;’s. Thus, the rat& is achievable, too.

(II) Unachievability after Edge Removarlo show thatG’ is critical, it suffices to prove that after removing any
edge of¢’, we will need at leastn bits of public message. Lemria 2 implies that if there existslaset of length
m in a graph which does not contain any cycle, the Fateould not be achievable in the graph (otherwise the sum
of the rates would be- ™5 which is greater that 1). Thus, it suffices to show that fomgvec £’, there exists a
subset of)’, say A, of length at leastn such that the induced subgraph 4fin G’ — ¢ has no directed cycle.

First, suppose that € £. Then we can choosd = V. As A contains exactlyn vertices and the induced graph
is a directed path which contains no cycle then these edgesriical. Fore = (m + 1,1), A can be chosen as
VU {m+ 1} \ {i}. Same argument can be made fo= (m + 1,i). Fore = (j,m + 1), A can be chosen as
VU {m+ 1} \ {k}. Same argument can be made for (k,m + 1).
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2) Proof of part (b): We use the same approach from part (a) to show that therraté_—15, L ... 1)

is achievable inG”, and by removing every edge the rate would not be achievable.
() Achievability: Suppose that the message of nddei) € V" is W, ;. Then, define:

Wu = é Wu,i
i=1

Similar to part (a), consider the encoding functipn= (f1, fo, -, fm) = W1 & Wa,--- W1 @ W;, W, @
Wit1 @Wini1, Wip1®@Wjga, -+ , Wi 1 @Wi, Wi @ Wi 1 @Wing1, Wi 1 @Wiga, - -+, Wi 1 @ Wi, Wi, @ W),
Again, for1 <1 < m andt € [1 : ny], thel*" element off, f;, is the sum of the side information antl; ;. So,
these nodes can decode their messaget Eofl : n,,+1], node(m + 1,¢) can consider:

1—1 1—1
@fl = @ W, eWi)® (Wj S Wit @ Wing1) (57)
=1 I1=1,l#7

=W & W; ® Wy (58)

= <@ W1,z> @ (@ Wu) @ <é9 Wm+1,z> (59)
=1 =1 =1

By definition of G”, node(m+1,¢) knowsWr 1, -+ . Wi, Wity s Winis W11, s Wina1,6—1, Winb 1,641
v s Wimti,n..,, as side information. Therefore, with the help of public neggsand its side informatioim+1, )
can decode its message. Additionally, fof£ j, k, we have:

@fl =0.
=1

Thus, f1; can be eliminated from the public message (and instead eeed\from the rest) and the ratevould be
achieved.

(I Unachievability after Edge RemovalNow, we want to show that by elimination of any edgeéif, T will
not be achievable anymore. As discussed in part (a), it esffio show that after removing any edgetth, there
will be A C V" with at leastm vertices which does not contain any directed cycle. As westtawo different types
of edges inG”, we analyze the impact of edge removal on the capacity reigiowo different cases.

case 1)e = ((u, s), (v,t)) whereu # v
By definition of G”, we havee’ = (u,v) € £'. In part (a), we proved that there exist$ C V' of sizem which
does not contain any cycle i& — ¢’. Now, choosed = {(I,1) : s € A’,l # u,v} U{(u,s), (v,t)}. If (z,y) and
(',y') € A, thenz, 2’ € A’ andz # 2/. Thus,(z,y) has edge td2’,y’) in G” if and only if z has edge ta’ in
G’ and becausel’ has no cycle inG’ then A has no cycle inG”.

case 2)e=((u, s), (u, 1))

For1 < u < m, chooseA = {(u,s), (u,t)} U{((w+1) modm,1),1 <l <m— 1}, and foru = m + 1. Choose
A={11):1<1l<ml<jk}U{(u,s),(u,t)}. It is straightforward to check that these two sets contan n
cycle. [ ]

G. Proof of Theorerhl7

1) Proof of part (b): As mentioned in Remark 6, the underlying digraph of the hgpmash that characterizes a
unicast index coding problem equals the directed graph medeused for unicast index coding problem. Thus,
the example we offered in part (b) of TheorEin 3 works for theugcast scenario too.

2) Proof of parts a and cLetH = (V, £) be a hypergraph related to a groupcast index coding prol#terther,
let G = (V,&g) be the underlying directed graph b To prove this theorem, it suffices to show that for every
edgee = (W;, W;) in G which is not located in any cycles, elimination efwill not change the capacity region.
It should be noted that elimination effrom the underlying digraph is interpreted as removifig from the side
information set of all receivers who intend to fifd;. From now on, we will show the hypergraph obtained by the
elimination ofe from G using the notatioH — e.

Now, we are going to show that for any valid coding functjprior side information hypergrapH, there exists
a coding functionf’ which is valid for the groupcast index coding problem introdd byH — e and its output size
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equals the output size of. Let V; be the set of vertices that are reachable fifdandV, =V — V; whereV
is the vertex set of the graph. Using the assumption dhatnot located in any cycles, one can conclude ¥as
partitioned into two part3; andV, such that:

o« W, €Yy

. Wj eV

o Au,v)€&c: ueViAveEW,
In other words, any receiver who wants to find a messag¥,imloes not have any side information about the
messages i,. This was the only assumption we used in the proof of part {ajheorem[2 in order to show
that we can find two coding functiong and f> such that all receivers iw; be able to findf using f1, f2, and
their side information inV; and the size of f1, f2) equals the output size of. Hence, using same arguments,
(f1, f2) is a valid coding function for the groupcast index codinghpem introduced by the hypergraph obtained
by eliminating edges betweaw, and)s (includinge). ]
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APPENDIXA
TwoO USEFUL LEMMAS

Lemma 2 ([11]). Assume thatt is a subset of the vertices of a gragh= (V, &) which contains no directed

cycle. Then in every rate vecter= (r1, - - - , ) supported byG in non-linear asymptotic case, the following holds:
> o<1 (60)
i€eX

Although the lemma above is proved [n_[11], we will give a sienpperational proof based on graph theory.
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Proof: We construct a new grap& = (V’,£’) by contracting the set’ in G. Strictly speaking, the vertices
of G’ include the vertices o6 when we replace all vertices ¥ with a single vertex labeled bey:
V=WV -X)U{a}, (61)
and edges connected to verticesXnare now connected ta in G, i.e.
E={(z,y) €llreV-X,yeV-X}
U{(y,)lyeV-X,Fz € X : (y,2) € E}
U{(,y)lyeV—-X,qx € X : (z,y) € E}.

We prove that if we use the same coding schem& dbr G’, the nodea can decode all messages belonging to
the vertices inY. Since the seft does not contain any cycle, we can order the elements ab

X:{l'l,"' ,l't}

such that vertices have only edges to vertices with a highdex, i.e. an edge from vertex to vertexxz; may
only exist wheni < j. Now the vertexa in G’ can decode the message6fdue to the fact that; is the last
element of the order, and therefore, it does not know the agessof the other vertices ilt. So, « has all side
information of x; and can decode its message. Neaxt,; can have only the message @f from the messages of
the vertices inX, which has been decoded by now. Thusin G’ can decode the messageagf 1, too, and this
process goes on. Therefore, we can prove by inductiondhatn obtain all the messages of the verticestinin
this coding scheme the rate of vertexequals to:

> (62)

i€EX
and by considering the fact that the rate of each vertex ddmmonore thanl, we get our desired result. [ ]

Lemma 3 (Turan) A bidirectional m-vertex graphG that contains no clique of size+ 1 has at mosk(m, k)
edges. Furthermore, the only graph (up to isomorphism) visitisfies the aforementioned conditioriZi&n, k).

The above lemma is known as the Turan Theorem, and its pasobe found in many graph theory books such
as [15, Thm. 5.2.9].

APPENDIX B
C++ CODE FOR THE PROOF O HEOREM[3 PART (B)

#include <iostreanm>
#include <vector>
using namespacestd;
const int N= 5, M = 5;
vector <int> goodMessages;
int indM+ 1] = {-1, 0, 0, O, 0, Q;
bool isGood(int x){ //check whether a combination is good or not.
for (int 1=0; I<N; I++){
int I = (I + 1) %N, r=¢(l +N- 1) % N;
if ((x>1&1)==18&& (X > | & 1) == 08& (X > r & 1) == 0)
return false;
}
return true ;
}
bool check(int depth){

if (depth == M)
return true ;
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18 for (int I=ind[depth]+1; I<(int)goodMessages.size(); |+f)/check for the
next combination

19 bool flag = true;

20 ind[depth + 1] = I;

21 for (int K=1; K<=depth; K++)

22 flag &= isGood(goodMessages|[l] = goodMessages|[ind[K]]

23 if (flag & check(depth + 1)) //if the XORs with all previous
combinations are good then this combination will be added

24 return true ;

25 }

26 return false;

27 }

28 int main (){

29 for (int mask=1; maskl<<N; mask++) //find all good combinations

30 if (isGood(mask))

31 goodMessages . pushack (mask) ;

32 if (check(0))

33 cout<< "There exists such sets.%< endl;

34 else

35 cout << "Such sets have not been found << endl;

36 return O;

37}

cycle.cpp

APPENDIXC
ALL SYMMETRIC RATE CRITICAL GRAPHS ON5 NODES

This section provides all symmetric rate critical graphssomodes using the list given on the website of Young-
Han Kim[20]. There are a total of 9608 graphs listed on thesitepamong which 32 are critical, appearing from
the next page.
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Fig. 17. B8=4
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Fig. 20. 5 =3
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Fig. 23. #=3
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