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Abstract

In this paper we define critical graphs as minimal graphs thatsupport a given set of rates for the index coding
problem, and study them for both the one-shot and asymptoticsetups. For the case of equal rates, we find the critical
graph with minimum number of edges for both one-shot and asymptotic cases. For the general case of possibly
distinct rates, we show that for one-shot and asymptotic linear index coding, as well as asymptotic non-linear index
coding, each critical graph is a union of disjoint strongly connected subgraphs (USCS). On the other hand, we identify
a non-USCS critical graph for a one-shot non-linear index coding problem. Next, we identify a few graph structures
that are critical. We also generalize some of our results to the groupcast problem. In addition, we show that the
capacity region of the index coding is additive for union of disjoint graphs.

I. I NTRODUCTION

I NTRODUCED by Birk and Kol in [1], index coding is the problem of transmitting a set of messages to a
number of receivers via a public communication. Each receiver may also have some side information consisting of

messages desired by some of the other receivers. This problem has been the subject of several recent studies (e.g. see
[2]-[9]) In the most general form of the problem, each message can be desired by more than one destination. However
the special case of each message being desired by exactly onereceiver admits a graph theoretic representation in
terms of directed graphs and thus has received particular attention. More specifically, if there arem receivers, we
can construct a graph withm vertices. We draw a directed edge from vertexi to vertexj if and only if receiveri
knows the desired message by receiverj. For the most part of this paper we work with this graph model for the
index coding problem. Observe that in the most general case,one has to work with hypergraphs to represent the
side information.

It is common to study the index coding problem in terms of an achievable rate region based on the size of the
m messages to be decoded by them receivers (see Section II for a formal definition). Here the rate of a receiver
refers to the normalized amount of information transmittedto it. The set of all achievable rates, i.e. the capacity
region, for index coding problem remains an open problem. Nonetheless, the problem has been solved in some
special cases, notably for the equal-rate case under certain graph structures [9]. In [6], the capacity region of an
index coding problem is related to some graph theoretical features such as local chromatic number. A difference
between the performance of linear and non-linear codes is characterized in [10].

A. Connections with Network Coding and Wireless Communication

The index coding problem has significant connections with network coding and wireless communications. It is
clear that every instance of index coding can be representedas an instance of a network coding in which a single
node desires to send messages via a unit capacity channel andsome channels with infinite capacity representing
side information. In [8] it is shown that for both linear and non-linear case, for any instance of networking coding
problem, there exists an instance of index coding problem with the same capacity region. In addition, in [7] a
reduction from an instance of network coding problem to an instance of index coding problem is introduced. They
used this reduction to show that the capacity regions for linear and one-shot cases are not equal to capacity region
of asymptotic non-linear case.

In [17], the topological interference management problem is introduced for both wired and wireless networks.
In the wireless set up, this problem refers to the analysis ofdegrees of freedom of an interference network with
the assumption that all weak interferences are zero. This natural problem in the wireless networks has a significant
relation to the index coding problem. For example, in [17] itis proved that the set of degrees of freedom which
are available through linear schemes in the topological interference management problem is equal to the linear
capacity region of an equivalent index coding problem. Moreover, the non-linear degree of freedom region of the
interference management problem is related to the non-linear capacity region of the problem.

http://arxiv.org/abs/1312.0132v2
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B. Our contribution

Given a fixed set of rates, letG denote the set of all graphs that support the rates. We are interested in minimal
members ofG (with respect to containment of the edge set). More specifically, a graph is said to becritical (or
edge critical) if (1) it belongs toG and (2) deletion of any edge from the graph makes it to fall outsideG. It is
useful to study critical graphs since it identifies the minimum-cost architectures of the networks supporting a given
set of rates.

To best of our knowledge, critical graphs for index coding have not been studied before. We present several results
in this paper regarding critical graphs. When the rates are all equal, we identify the critical graph with minimum
number of edges (Theorem 1). Next we study the general case ofarbitrary rates via an additivity result that we
prove about index coding (Theorem 2; here we basically provethat a simple time division strategy is optimal).
We use this result to show that critical graphs for one-shot and asymptotic linear index coding as well as those
of non-linear asymptotic index coding are structured, by proving that they have to be a union of disjoint strongly
connected subgraphs (USCS) (Theorem 3). Equivalently, each directed edge in the graph has to be on a cycle in
the graph. On the other hand, for non-linear one-shot index coding, we construct a counterexample by finding a
critical graph that is not USCS. In addition, using Theorem 2, we prove criticality of the union of two critical
graphs (Theorem 5). Moreover, we show this result holds for symmetric criticality in both one-shot and asymptotic
linear case, as well as in asymptotic non-linear case (Theorem 5). In the next step, we provide a comprehensive
list of symmetric critical graphs for graphs with at most fivenodes, and use this list identify two general classes
of critical graphs which explain many of the critical graphsthat we had observed (Theorem 6). Finally, we have
generalized some of our results to the groupcast index coding setting (Theorem 7).

A potential application of index coding problem is in the study of wireless broadcast networks. For example, in
[18] side information of nodes in a broadcast wireless network has been employed to make the communication more
efficient. In such schemes, study of critical graphs can be helpful as it identifies the side information that cannot make
the communication more efficient. For instance, as our results shows, those side information whose corresponding
edge in the side information graph do not lie on any cycle, will not improve the efficiency of communication.
Hence, these side information can be eliminated. Accordingly, the total storage resources of wireless nodes can be
decreased using our results.

Additionally, even though we are mostly interested in critical graphs in this work, our results address the “index
coding problem” itself. For instance, our result on the additivity of the capacity region of index coding problem
(Theorem 2) finds the index coding capacity of a graph in termsof those of its subgraphs, if the graph has a certain
structure. Further we believe that by studying the characteristics of critical graphs, one can use the capacitiy region
of some critical subgraphs of the graphG to find a lower bound for the index coding problem introduced by graph
G.

This paper is organized as follows: in Section II, we introduce the basic notation and definitions used in this
paper. The results are provided in Section III. In Subsection III-A, some results that suggest structures for critical
graphs are given. In addition, In Subsection III-B, an expansion of the former results for groupcast index coding
is presented. Appendix A contains a few lemmas used in the proofs, Appendix B contains the source file for a C
program needed to do an exhaustive search to complete the proof of one of the theorems, and Appendix C contains
a list of all symmetric rate critical graphs on 5 vertices.

II. D EFINITIONS AND NOTATIONS

A (unicast) index coding problem comprises ofm nodes,{1, · · · ,m}, and a set ofm message{W1, · · · ,Wm}
where nodei needs to decode the messageWi, i = 1, · · · ,m. The side information of nodei is assumed to be a
subset of{W1, · · · ,Wi−1,Wi+1, · · · ,Wm}. We can illustrate this side information by a directed graphG = (V , E),
whereV = {1, · · · ,m} and nodei has an edge to nodej (that is,(i, j) ∈ E) if node i knowsWj . For simplicity
in the rest of this paper, we use graph as a shorthand for directed graphs. Undirected graphs are referred to by the
term “bidirectional graph”.

Definition 1. A code for an index coding problem (or an index code) consistsof
1) m alphabet setsWi, i = 1, 2, · · · ,m where the message intended by thei-th party,Wi, belongs toWi;
2) An encoding functionf from W1×· · ·×Wm to {1, 2, · · · , N} that compresses the messages(W1, · · · ,Wm)

into a symbol in{1, 2, · · · , N}. f(W1, · · · ,Wm) is called the public message since it will be made available
to all the nodes;
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3) A set ofm decoding functions at the nodes from{1, 2, · · · , N} ×
∏

(i,j)∈E Wj to Wi for i = 1, 2, · · · ,m.
Every node should be able to decode its message using the public message and its side information.

The rate vector associated with the code is a vector(r1, · · · , rm) where

ri =
log(|Wi|)

log(N)
. (1)

We will user to indicate the rate vector(r1, · · · , rm).
Probability of error associated to the code is the probability that nodei fails to correctly decodeWi for some

i = 1, 2, · · · ,m, where rvsWi (i = 1, 2, · · · ,m) are assumed to be uniform on their alphabet set and mutually
independent of each other.

Linear codes form a subclass of codes, and are defined as follows:

Definition 2. A linear code for an index coding problem with finite fieldF consists of
1) m positive integersl1, · · · , lm indicating thatWi ∈ Fli is a sequence of lengthli of symbols inF. In other

words, the alphabet set for the random variableWi is Wi = Fli ;
2) A linear mapf from W1 × · · · × Wm to Fn that compresses the messages(W1, · · · ,Wm) into a sequence

of lengthn of symbols inF;
3) A set ofm linear decoding functions fromFn ×

∏
(i,j)∈E Wj to Wi for i = 1, 2, · · · ,m.

The rate vector associated with the code is a vectorr = (r1, · · · , rm) where

ri =
li
n
. (2)

Now, we introduce two classifications for the index coding problem.

Definition 3. Linear and Non-Linear Index Coding
In linear index coding we restrict ourselves to linear codesover an arbitrary finite fieldF. However in the non-linear
index coding we are allowed to use an arbitrary code.

Definition 4. One-Shot and Asymptotic Index Coding
In the one-shot problem, we have fixed message alphabetsW1, · · · ,Wm and seek the code with the smallest alphabet
size for the public message that can result in a zero probability of error. On the other hand, in the asymptotic
coding scheme we are only given rate vectorr = (r1, · · · , rm). Then there should exist a sequence of codes with
zero error probability whose rate vectors converge tor = (r1, · · · , rm).

Remark 1. The asymptotic index coding is generally defined for a vanishing probability of error rather than an
exactly zero probability of error. However it is shown in [12] that the two definitions are equivalent.

Definition 5. Critical Graphs and Symmetric Rate Critical Gr aphs
Given an index coding problem (linear or non-linear/one-shot or asymptotic) on a graph, we say that the graph is
critical if removal of any edge from itstrictly shrinks the rate region (capacity when we are looking at asymptotics)
associated to the graph.

The maximum symmetric rate supported by a graph is the supremum ofr such thatr = (r, r, · · · , r) is achievable.
We say that the graph issymmetric rate criticalif removal of any edge from itstrictly reduces the maximum symmetric
rate by the graph. Every symmetric rate critical graph is critical, but the reverse is not necessarily true (see Theorem
4).

Next we need the following definitions from graph theory:

Definition 6. Tur án Graph
Turán Graph of orderm and k, denoted byT (m, k), is a bidirectional completek-partite graph withb parts of
sizea+ 1 and k − b parts of sizea, wherem = ak + b for a ≥ 0, b ∈ {0, 1, 2 · · · , k − 1}. We denote the number
of edges ofT (m, k) by e(m, k). In [15, Ex. 5.2.18], it is shown that

e(m, k) =
1

2
· (1−

1

k
)m2 −

b(k − b)

2k
. (3)

See also Lemma 3 from Appendix A.
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Fig. 1. An example of a strongly connected graph.

1

2 3 4

5

Fig. 2. An example of a graph that is not strongly connected.

Definition 7. Strongly Connected Graphs
The graphG = (V , E) is strongly connected if there exists a directed path between every pair of distinct vertices.

It is easy to verify that a graph is strongly connected if and only if every edge of the graphs lies on a (directed)
cycle.

Example 1. The graph shown in Fig. 1 is strongly connected. However, thegraph shown in Fig. 2 is not strongly
connected since there is no directed path between nodes 4 and2. Here the edge from node4 to node5 does not
lie on a directed cycle.

Definition 8. Union of Two Disjoint Graphs
The union ofG = (V , E) andG

′ = (V ′, E ′) is defined asG ∪ G
′ = (V ∪ V ′, E ∪ E ′).

Definition 9. USCS Graphs
GraphG is USCS(Union of Strongly Connected Subgraphs) if there exists a set of disjoint graphs{G1,G2, · · · ,Gk}
such that (1)Gi is strongly connected and (2)G =

⋃
i

Gi.

Example 2. Because the graph shown in Fig. 1 is strongly connected, it isUSCS, too. However, the graph shown
in Fig. 2 is not USCS. Next consider the graph shown in Fig. 3. If we defineG1 as the induced subgraph of the
set{1, 2, 3}, G2 as the induced subgraph of the set{4, 5}, andG3 as the induced subgraph of the set{6}, then we
haveG = G1 ∪ G2 ∪ G3. Therefore, due to the fact thatG1, G2, andG3 are strongly connected,G is USCS.

III. M AIN RESULTS

Theorem 1. Minimum Number of Edges for Equal Rates

1

2 3 4

5

6

Fig. 3. A USCS graph
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Everym-vertex graph supporting a rate vectorr = (r, · · · , r) has at least:

g(r,m) = m(m− 1)− 2 · e(m,

⌊
1

r

⌋
) (4)

edges, if 1
m

≤ r ≤ 1 (g(r,m) is the number of edges in the complement ofT (m,
⌊
1
r

⌋
)). Moreover, there is a unique

graph, up to isomorphism, that has exactlyg(r,m) edges and supports the rate vectorr = (r, · · · , r). This theorem
holds for all cases (linear or non-linear, one-shot or asymptotic).

Remark 2. This theorem shows that there is a unique (up to isomorphism)critical graph with minimum number
of edges for both one-shot and asymptotic cases.

Remark 3. Theorem 1 is valid for1
m

≤ r ≤ 1. For the caser > 1, there is no graph that supports the rate
vectorr = (r, · · · , r) since the rate of each node cannot be greater than one. Whenr < 1

m
, it is possible to send

all messages as the public message, and as a result, there is no need to have any side information. Therefore, the
empty graph is sufficient in this case.

Theorem 2. Additivity of index coding capacity region
a) Given a graphG = (V , E), suppose thatG′ andG

′′ are subgraphs ofG induced on vertex setsV ′ andV ′′. In
addition, assume thatV ′ and V ′′ partition V and there exist no edge likee = (u, v) in E that starts fromu ∈ V ′

and ends up inv ∈ V ′′, i.e. no directed edge fromG′ to G
′′ exists. Then, elimination of all the directed edges

from G
′′ to G

′ will not change the rate region in the one-shot linear, and inthe asymptotic non-linear index coding
problems.

b) [Optimality of a simple time-division strategy]. Take an index coding problem with graphG = G
′
⋃
G
′′, such

that there is no edge betweenG′ andG′′. Let C, C′ andC′′ denote the capacity regions ofG, G′ andG′′ respectively
(the three capacities are all either in the sense of asymptotic linear, or all in the sense of asymptotic non-linear).
ThenC =

⋃
α∈[0,1] αC

′ ⊕ (1− α)C′′ where⊕ is the direct sum operator. Alternatively, the index codingregion for
G is of the formr = (αr′, (1− α)r′′) for α ∈ [0, 1] and vectorr′ is in the region ofG′ and r

′′ is in the region of
G
′′, and (αr′, (1− α)r′′) is the concatenation of the vectorsαr′ and (1− α)r′′.

Theorem 3. Critical graphs are USCS
a) Every critical graph for linear index coding (one-shot or asymptotic) and for asymptotic non-linear index

coding is USCS. In particular, removing edges that do not lieon a directed cycle does not change the capacity
region in these cases.

b) There exists a critical graph for a one-shot non-linear index coding problem which is not USCS.

The condition given in item (a) of Theorem 3 are necessary butnot necessarily sufficient, i.e. USCS does not
necessarily imply criticality. This follows from the fact that if we add an edge to a USCS graph that supports a
given set of rates, the resulting graph remains a USCS graph that still supports the given rates. However observe
that the resulting graph, with one more additional edge, mayindeed support higher rates. This observation may
lead one to propose the following modified conjecture:

Conjecture 1. Take a USCS graph that supports a given set of rates for asymptotic non-linear index coding. Let
e be an edge of the graph that lies on a single directed cycle (i.e. it is completing a cycle and its removal breaks
that cycle). Then removing the edgee from the graph results in a graph that no longer supports the given set of
rates.

However the above conjecture is also false. Consider the graph in Fig. 4 withS = {0, 1}. Using Lemma 2 of
the Appendix A, the sum of the rate of every subset of nodes which contains no cycle should be less or equal to
one. Therefore, for every rate vectorr = (r1, r2, r3) supported by this graph, we have:

r2 + r3 ≤ 1, (5)

r1 ≤ 1. (6)

The edge from node2 to node3 lies on a unique cycle2 → 3 → 1 → 2. We show that if this edge is removed, all
rate vectors satisfying eqs. (5) and (6) will be still supported. It suffices to prove that anyr = (r1, r2, r3) satisfying
r1 = 1 andr2 + r3 = 1 is supported by the new graph. If we assume thatWi is a binary string of lengthli where
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1

2 3

Fig. 4. A counterexample to Conjecture 1.

l1 = l2 + l3, we can createf(W1,W2,W3) as follows: we concatenateW2 andW3 to create a binary string of
length l2 + l3 = l1 and then XOR it with the binary string ofW1. Node1 knows bothW2 andW3 and hence can
recoverW1. And both nodes2 and3 know W1. Hence they can both recover their desired message.

Remark 4. There has been some previous work on the effect of edge removal in network coding [12]-[14]. However
to best of our knowledge there is no previous work on edge removal in the context of index coding.

A. Structure of Critical Graphs

In this section we provide some results on the structure of critical graphs. The first class of critical graphs that
are easy to identify are bidirectional graphs:

Theorem 4. Any bidirectional graph is critical (by a bidirectional graph we mean one in which a directed edge
from nodei to j implies a directed edge from nodej to i). On the other hand this is not true of symmetric criticality;
in particular a bidirectional cycle of size 4 is not symmetric critical.

To derive the main results for this section, we first producedall symmetric rate critical graphs for graphs on 5
vertices. This list was compiled using the data available onYoung-Han Kim’s personal website [20], and is given
in Appendix C. We then tried to formulate a few theorems that would explain the structure of critical graphs that
we observed.

Theorem 5. Union of two critical graphs is critical
If G and H are two critical graphs, thenG ∪ H is also a critical graph for any of linear/non-linear, one-

shot/asymptotic formulations. Further, ifG and H are two symmetric rate critical graphs, thenG ∪ H is also
a symmetric rate critical in one-shot linear, asymptotic linear, and asymptotic non-linear index coding scenarios.

Theorem 6. Two structures that are critical
a) SupposeG = (V , E) is a directed cycle of lengthn, where

V = {1, · · · ,m},

E = {(i, i+ 1) : 1 ≤ i < m} ∪ {(m, 1)}.

Now, construct a new graphG′ = (V ′, E ′) so thatV ′ = V ∪ {m+1} andE ′ = E ∪ {(m+1, 1), (m+1, i), (j,m+
1), (k,m+ 1)}. Then, if1 ≤ j < i and i ≤ k ≤ n, G′ is symmetric rate critical.

b) SupposeG′ = (V ′, E ′) is a graph that satisfies the condition of part (a). We construct a new graphG′′ =
(V ′′, E ′′) by replacing any vertexu ∈ V ′ by a complete graph (different vertices can be replaced by com-
plete graphs of different sizes). Then,G

′′ is critical. More specifically, we replace vertexu with nu vertices
(u, 1), (u, 2), · · · , (u, nu) that are mutually connected to each other. We also draw a directed edge from(u, i)
to (v, j) in G

′′ for i ∈ [1 : nu] and j ∈ [1 : nv] if there exists a directed edge fromu to v in G
′.

Remark 5. The criticallity of graphs Fig.14, Fig.15, Fig.19, Fig.24,Fig.28, Fig.30, Fig.31, Fig.33, Fig.36, and
Fig.38 can be shown by Theorem 6.

B. Extension to Groupcast

The index coding problem that we considered so far is called unicast index coding problem. A generalization of
the unicast index coding is the groupcast index coding. In groupcast index coding, the desired messages of receivers
are not necessarily disjoint, i.e. a group of receivers can desire the same message.
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Definition 10. Groupcast Index Coding
Assuming a set ofm messages{W1,W2, · · · ,Wm}, a groupcast index coding problem can be modeled with a
directed hypergraph onm vertices with nodei representingWi. Each receiver can be represented as a directed
hyperedge starting from its desired message and ending at its side information. In other words, if receiveri wants
to knowWdi

while havingAi ⊂ {W1,W2, · · · ,Wm}\Wdi
like Ai as its side information, we add a directed

hyperedge from{Wdi
} to Ai. The number of receivers will be equal to the number of hyperedges.

A hypergraph is said to be critical if eliminating any memberof the side information set of any receiver strictly
reduces the set of rates supported by the hypergraph.

Definition 11. Underlying Digraph of a Directed Hypergraph
Let H = (V , E) be a directed hypergraph. Then we callG = (V , EG) the underlying digraph (directed graph) ofH,
where:

EG = {(u, v) | ∃P,Q ⊆ V : u ∈ P, v ∈ Q, (P,Q) ∈ E}

Remark 6. Since groupcast index coding problem is a generalization ofthe unicast index coding problem, we
can define the side information hypergraph for the unicast index coding problem too. It can be easily verified that
the underlying digraph of this hypergraph is equal to the directed graph we used to model unicast index coding
problem.

Theorem 7. Groupcast Critical Graphs are USCS too
a) The underlying graph of every critical hypergraph for linear groupcast index coding (one-shot or asymptotic),

and for asymptotic non-linear groupcast is USCS.
b) There exists a critical hypergraph for a one-shot non-linear groupcast index coding problem which is not

USCS.

IV. FUTURE WORK

Consider the index coding for a random graph where directed edges exists between any two nodes with probability
p and independent of other edges. Computing index coding for this class of random graphs can be of interest.
Theorem 3 can be used to find a lower bound on the expected number of edges that we can remove from this
graph such that it does not affect the capacity region. A lower bound is the expected value of number of edges
that do not lie on a directed cycle, which is equal to2

(
n
2

)
times the probability that a directed edge from node1

to node2 exists which does not lie on a directed cycle. The expected value will be equal to2
(
n
2

)
p(1 − q) where

q is the probability that there is a directed path from node1 to node2; we have multipliedp with 1 − q as they
correspond to independent events. Computingq, pair connectedness in directed random graphs, is a studiedtopic
in percolation theory [19] but we were not able to find a closedform formula for it.

V. PROOFS

A. Proof of Theorem 1

We begin by proving the given lower bound on the minimum number of edges. It suffices to prove it for the
non-linear asymptotic case since it implies that for all other cases. Suppose that a given graphG = (V , E) supports
the rate vectorr = (r, · · · , r) for non-linear asymptotic case. We aim to construct two new graphs and with the
help of Lemma 2 and 3 find some bounds on the number of edges in these two graphs. Then we use these bounds
to find a bound on the number of edges inG. Using Lemma 2, every subset ofV(G) whose size is bigger than⌊
1
r

⌋
, has a directed cycle, because the sum of the rates of the vertices in this subset is greater than or equal to

r × (
⌊
1
r

⌋
+ 1) > 1. Then, we consider an arbitrary order for the vertices ofG such as1, · · · ,m and construct

two new graphs (called “forward” and “backward” graphs) as follows: Gf = (Vf , Ef ) andG
b = (Vb, Eb) where

Vf = Vb = V , and Ef , Eb is a partition ofE into two sets as follows:Gf contains those edges ofG whose
direction agrees with the mentioned order, that is,Ef = {(x, y) ∈ E|x < y}. Gb contains the following edges:
Eb = {(x, y) ∈ E|x > y}. Now, because every cycle inG should contain at least one edge from bothG

f andG
b,

every subset of size more than
⌊
1
r

⌋
has at least one edge in bothGf andGb.

Now let us construct a bidirectional graph̃Gf on the same set of vertices as follows:x is connected toy in G̃
f

for x 6= y if an only if (min(x, y),max(x, y)) /∈ Ef . Observe that̃Gf is like the complement ofGf if we ignore
the edge arrows ofGf . Similarly, G̃b is constructed as the complement ofG

b if we ignore the direction of arrows
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in it. Since every subset of size more than
⌊
1
r

⌋
has at least one edge in bothGf andGb, we can conclude that̃Gf

and G̃b do not have a clique of size
⌊
1
r

⌋
+ 1. Using Lemma 3, the number of edges of bothG

f andGb is at least
(
m

2

)
− e(m,

⌊
1

r

⌋
) =

g(r,m)

2
. (7)

Hence,G itself has at leastg(r,m) edges.

Next, we will show that the complement ofT (m,
⌊
1
r

⌋
) supports the rater. It suffices to show this for one-shot

linear coding and it implies that for all cases there exists agraph which supports the rater. Let m = a
⌊
1
r

⌋
+ b

for somea ≥ 0, b ∈ {0, 1, 2 · · · ,
⌊
1
r

⌋
− 1}. Then we constructG so that it consists ofb cliques of sizea+ 1, and⌊

1
r

⌋
− b cliques of sizea.1 Then one can verify thatG hasg(r,m) edges. In addition, if every node desires only

one bit and we transmit the XOR of the bits in every clique, every vertex can decode its message, and the rate of
every message equals to1

⌊ 1
r
⌋
≥ r. Furthermore, it is obvious that this is a one-shot linear coding. Thus we have

shown that there exists a graph which supports the rater.

Lastly, to show that no other graph with exactlyg(r,m) edges supportsr, consider a graphG that hasg(r,m)
edges and supports the rate vectorr = (r, · · · , r) in non-linear asymptotic case (it suffices to show this for the
non-linear asymptotic case and it will imply other cases). If we constructGf andGb as discussed before, each of
them should have exactlyg(r,m)

2 edges and they should have the structure mentioned in Lemma 3. So, the only
remaining step is to show that the cliques inG

f andGb coincide on each other. Suppose this does not hold, that is,
there are two vertices where there is an edge between them inG

f , but not inGb. Let us call these two verticesu
andv. Choose one vertex from each of the⌊ 1

r
⌋ components ofGf such thatu is chosen and let us denote this set

by X . Then we claim thatX ∪ {v} does not contain any cycle inG. Note that if a cycle exists, it should include
the edge betweenu and v, because it is the only edge inX ∪ {v} in G

f and the cycle should have at least one
edge fromG

f . Now the other edges in the cycle form a path fromv to u in G
b . As every component ofGb is a

clique thenu andv should have an edge, which contradicts our assumption thatu andv are disconnected inGb.

B. Proof of Theorem 2

1) Proof of part (a):
Proof of part (a) for asymptotic non-linear index coding:Consider an arbitrary code on the original graph

with zero probability of error. LetK = f(W1,W2, · · · ,Wm) be the public message. The rate of this code is
r = (r1, r2, · · · , rm) where

ri =
log(|Wi|)

log(|K|)
.

The union ofG′ andG′′ corresponds to the graphG after elimination of directed edges fromG′′ to G
′. Take an

arbitrary ǫ > 0. We create a code for the union ofG′ andG
′′ that achieves the rate vectorr′ = (r′1, r

′
2, · · · , r

′
m)

wherer′i ≥ ri− ǫ, with the probability of error being less thanǫ. This concludes the proof (see Remark 1 on index
coding with a vanishing probability of error).

We can conceiven i.i.d. repetitions of the given code with(Wn
1 ,W

n
2 , · · · ,W

n
m) and public messageKn. The

rate of the i.i.d. code is the same as the original one since

log(|Wn
i |) = n log(|Wi|), log(|Kn|) = n log(|K|).

Since the original code had zero error probability, the i.i.d. code has also a zero probability of error.
We defineWG′ as a shorthand forWi, i ∈ G

′, andWn
G′ as a shorthand forWn

i , i ∈ G
′. We define a new code

that uses(K ′,K ′′) instead ofKn whereK ′ is used by nodes inG′ andK ′′ is used by nodes inG′′:
• Size of the alphabet ofK ′, i.e. |K′|, is less than or equal to2n(I(K;W

G′
)+δ). Furthermore, the nodes inG′ can

useK ′ and their side information (which is insideG′) to recover their message with probability1− ǫ.
• Size of the alphabet ofK ′′, i.e. |K′′|, is less than or equal to2n(H(K|W

G′
)+δ). Furthermore, the nodes inG′′

can useK ′′ and part of their side information of messages insideG
′′ to recover their message with probability

1− ǫ.

1A clique is a graph where every vertex has a directed edge to every other vertex.



9

This would finish the proof sincelog(|K′| · |K′′|) is equal ton(log(|K|) + 2δ) and by choosingδ small enough we
can ensure that the rate of the new code is withinǫ of the original code.

Construction ofK ′′:
We haveminw

G′
H(K|WG′ = wG′ ) ≤ H(K|WG′). Thus, it suffices to constructK ′′ whose alphabet size is less

than or equal to2n(H(K|W
G′
=w

G′
)+δ) wherewG′ is the one that minimizesH(K|WG′ = wG′ ).

Let us first assume in the original problem thatWG′ = wG′ has occurred and the nodes inG′′ = G − G
′ are

all aware of this (thus, if some of the nodes inG′′ had partial information about messages of nodes inG
′, we

are giving all of them a full access toWG′ and this should only help them in decoding their message). Thus the
nodes inG′′ should be able to recover their intended messages usingK and their side information insideG′′ with
probability one, whenWG′ = wG′ is fixed. We can use the conditional joint pmfp(K,WG′′ |WG′ = wG′) as a joint
pmf on q(k, wG′′ ) on K,WG′′ and think of it as an index code on nodes inG′′ (sinceWG′′ is independent ofWG′ ,
the marginal distribution ofq(wG′′ ) is uniform and coordinatewise mutually independent). The public message in
the index coding problem onG′′ would be produced according toq(k) = p(k|WG′ = wG′) and it leads to zero
error probability.

If we have n i.i.d. copies of the pmfq (still a code with zero error probability), the corresponding public
message can be compressed using Shannon’s source coding theorem and sent to the parties, where nodes inG

′′

can first decompress it and then use it to run their decoding algorithm. Compression can be achieved at a rate of
Hq(K) + δ = H(K|WH = wH) + δ bits at the cost of a probability of error ofǫ, which is tolerated.

Note that the public messageK ′′ is only meant for the use of subgraphG′′; to construct the code forG′′ we
have pretended thatWG′ = wG′ has happened in each copy ofG

′. It is clear thatK ′′ contains no useful information
aboutWn

G′ that has actually occurred, and nodes inG
′ can ignoreK ′′.

Construction ofK ′:
Let p(k, wG′) denote the joint distribution ofK andWG′ in the original code. The decoding function used by

nodei ∈ G
′ can be expressed as the conditional pmfp(ŵi|k, (wj)j:(i,j)∈E ) whereŴi is the reconstruction of node

i. Of courseŴi = Wi since perfect reconstruction is assumed. Therefore the joint pmf

p(k, wG′ , ŵG′) = p(k, wG′)
∏

i∈G′

p(ŵi|k, (wj)j:(i,j)∈E )

has the property that the marginal distribution onWG′ andŴG′ is equal to

p(WG′ = wG′ , ŴG′ = ŵG′) =
∏

i∈G′

1[wi = ŵi]. (8)

We use the covering lemma (rate-distortion coding) to create a code for nodes inG′. Let δ > 0 be an arbitrary
small positive real.

Codebook generation:Assume that the transmitter and the receivers initially share a codebook of2n(I(K;W
G′
)+δ)

sequences
Kn(1),Kn(2), · · · ,Kn(2n(I(K;W

G′
)+δ))

each being an i.i.d. sequence according top(k).
Encoding:Having Wn

G′ at the transmitter, it finds an indexj such thatKn(j) is jointly typical with Wn
G′ (i.e.

(Kn(j),Wn
G′ ) ∈ T n

δ (p(k, wG′ ))), where we use the notion of typicality given in [16, 2.4]. Since the number of
generatedKn(·) sequences is larger than2n(I(K;W

G′
)+δ) by the covering lemma [16, Lemma 3.3], this can be done

with high probability. The transmitter then sends the indexj asK ′ to the receiver (the cardinality of the alphabet
of K ′ allows it to send the indexj).

Decoding:Having receivedK ′ = j, nodesi ∈ G
′ createŴn

i as a function ofKn(j) and their side information
(they use the same decoding functions of the original code).More precisely, if we denote the joint pmf ofKn(j)
andWn

G′ by qKn(j),Wn
G′
(k, wn

G′), the joint pmf of the constructed rv’s is equal to

qKn(j),Wn
G′
(k, wn

G′)
∏

i∈G′

n∏

s=1

p(ŵis|ks, (wjs)j:(i,j)∈E )

If (Kn(j),Wn
G′ ) ∈ T n

δ (p(k, wG′)), with high probability we will have(Kn(j),Wn
G′ , Ŵn

G′) ∈ T n
δ′ (p(k, wG′ , ŵG′ )) for

anyδ′ > δ, as we have passedKn(j),Wn
G′ through the i.i.d. conditional pmf ofp(ŵG′ |k, wG′) (Conditoinal typicality
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lemma [16, 2.5]). ThereforeKn(j),Wn
G′ , Ŵn

G′ will be joint typical with high probability. Thus for anyi ∈ G
′, with

high probability(Wn
i , Ŵ

n
i ) will be jointly typical. We claim that two sequences(Wn

i , Ŵ
n
i ) jointly typicality in

the sense of [16, 2.4] is equivalent with their equality. Equation (8) implies thatp(WG′ = wG′ , ŴG′ = ŵG′) > 0 if
and only ifwG′ = ŵG′ , and hence for any pair(wG′ , ŵG′) wherewG′ 6= ŵG′ we have (using notation of [16]) that

∣∣Π(wG′ , ŵG′ |Wn
i , Ŵ

n
i )− p(wG′ , ŵG′)

∣∣ ≤ δ′ · p(wG′ , ŵG′) = 0.

HenceΠ(wG′ , ŵG′ |Wn
i , Ŵ

n
i ) = p(wG′ , ŵG′) = 0 for any wG′ 6= ŵG′ , implying thatWn

i = Ŵn
i . Therefore with

high probability the decoders will successfully decode their intended messages.
It should be noted that the above proof does not work for asymptotic linear index coding becauseK ′ will not

necessarily be linear ifK is a linear index code.
Proof of part (a) for one-shot linear index coding:Assume that there exists a valid one-shot linear coding

scheme for a graphG with |V| = m vertices such that:

Wi = (wi1, wi2, · · · , wili), (9)

wherewij ∈ F for some fieldF. Additionally, assume that:

f(W1,W2, · · · ,Wm) = (t1, t2, · · · , tn) (10)

wheretk is equal to

tk =
m∑

i=1

li∑

j=1

cijk · wij , ∀1 ≤ k ≤ n, (11)

for some coefficientscijk in the fieldF. In other words, the following matrix is used for the linear map:

C =



c111 c121 · · · c1l11 c211 · · · cmlm1

...
c11n c12n · · · c1l1n c21n · · · cmlmn


 .

Without loss of generality we can assume thatC is in the row echelon form, since elementary row operation on
C is equivalent to usinginvertible linear combinations oft1, t2, · · · , tn instead of these variables. The row echelon
form can be represented by a sequence of indices

(ik, jk), k = 1, 2, · · · , n, jk ≤ lik (12)

that are increasing in a lexicographical order, i.e. eitherik < ik+1 holds or bothik = ik+1 andjk < jk+1 hold.
Further we must havecijk = 0 if (i, j) is less than(ik, jk) in the lexical order.

Since all nodes are able to decode their messages via(t1, · · · , tn) and their side information, there should exist
coefficientsαij1, αij2, · · · , αijn for each messagewij (1 ≤ j ≤ li) so that:

n∑

k=1

αijktk (13)

is equal towij plus a linear combination ofwi′j′ that are available to nodei as side information, i.e.
n∑

k=1

αijktk = wij +
∑

i′,j′:(i,i′)∈E

wi′j′ · γi′j′ , (14)

for some coefficientsγi′j′ .
Now, we turn to the proof of the lemma. Without loss of generality, suppose that the vertices ofG′ arem −

|V ′| + 1,m − |V ′| + 2, · · · ,m. Note that this assumption and the assumption thatC is in the row echelon form
do not contradict the generality together. One can simply label the vertices ofG such that nodes inG′ be labeled
with m− |V ′|+1,m− |V ′|+2, · · · ,m and then applies some elementary row operations to findC in row echelon
form. The statement of the theorem basically asks us to show that there is no need for nodes inG′′ to know (as
side information) any of the messages for nodes inG

′, i.e.Wi, i ∈ G
′. To show this, we first define a new encoding

linear mapf ′ and then prove that it enables nodes inG
′′ to recover their intended messages without any need to
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G
′

G
′′

s

Fig. 5. A pictorial representation of the row echelon form ofC that clarifies the definition ofs. Gray elements are zero and green elements

are non-zero.

have access toWi, i ∈ G
′. Nodes inG′ are also shown to be still able to decode their messages with the encoding

function f ′ using their side information (nodes inG′ do not know any of the messages of nodes inG
′′ sinceG′

does not have any outgoing edge). Thus, the edges betweenG
′ andG′′ can be removed.

Part 1: definition of a new linear encoding functionf ′: Let

s = min{k | cijk = 0, ∀1 ≤ i ≤ m− |V ′|, 1 ≤ j ≤ li}. (15)

Fig. 5 clarifies the definition of thes. Note that{k | cijk = 0, ∀1 ≤ i ≤ m − |V ′|, 1 ≤ j ≤ li} cannot be
empty. We prove this by contradiction. Suppose that the mentioned set is empty, then for each1 ≤ k ≤ n there
exists acijk 6= 0 that i ≤ m− |V ′|. As a result,

∀1 ≤ k ≤ n : ik ≤ m− |V ′|. (16)

Now assume thatθ is the smallest number thatαm1θ 6= 0, then:

n∑

k=1

αm1k · tk =
θ−1∑

k=1

αm1k · tk +
n∑

k=θ

αm1k · tk (17)

=

θ−1∑

k=1

0 · tk +

n∑

k=θ

αm1ktk (18)

=

n∑

k=θ

αm1ktk (19)

=

n∑

k=θ

αm1k · (

m∑

p=1

lp∑

q=0

cpqk · wpq) (20)

Note that the coefficient ofwiθjθ in the above statement is:
n∑

k=θ

αm1k · ciθjθk (21)

Because(iθ, jθ) is lexicographically smaller than(ik, jk) for any k > θ:

∀k > θ : ciθjθk = 0. (22)

Then
n∑

k=θ

αm1k · ciθjθk = αm1θ · ciθjθθ 6= 0 (23)

Note thatiθ ≤ m− |V ′| by eq. (16), soiθ ∈ G
′′. Hence,wiθjθ is not provided as side information to nodem,

which is in G
′. As a result, the non-zero coefficient ofwiθjθ in

∑n

k=1 αm1k · tk is in contradiction to eq. (14).
So we have proved that{k | cijk = 0, ∀1 ≤ i ≤ m − |V ′|, 1 ≤ j ≤ li} is a non-empty set and thuss is
well-defined.
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G
′

G
′′

s

Fig. 6. A schematic representation ofc′
ijk

.

Further let

c′ijk =

{
0 k < s and i > m− |V ′|

cijk otherwise
(24)

and

t′k =
m∑

i=1

li∑

j=1

c′ijk · wij . (25)

for all 1 ≤ k ≤ n. Set

f ′(W1,W2, · · · ,Wm) = (t′1, t
′
2, · · · , t

′
n) (26)

A schematic representation ofc′ijk is given in Fig. 6. Observe that eq. (24) implies thatt′k = tk for all k ≥ s.
Part 2: showing that nodes inG′ are able to decode their message by using(t′1, t

′
2, · · · , t

′
n) and their side

information:Consider the coefficientsαijk for decoding of the original linear mapping given in eq. (13). We claim
for any r ∈ G

′ (i.e. r > m− |V ′|) thatαrj1 = · · · = αrj(s−1) = 0 for every1 ≤ j ≤ lr. This completes the proof
since for everyr ∈ G

′:
n∑

k=1

αrjktk =
n∑

k=s

αrjktk =
n∑

k=s

αrjkt
′
k. (27)

Equations (14) and (27) illustrate that every noder ∈ G
′ is able to obtainwrj in the new coding scheme by

calculating
∑n

k=s αrjkt
′
k.

We proveαrj1 = · · · = αrj(s−1) = 0 for every1 ≤ j ≤ lr by contradiction. Suppose thatx is the smallest index
thatαrjx 6= 0 andx < s. By the definition ofs, ix ≤ m− |V ′| (ix ∈ G

′′). It is also clear that the definition ofx
results in:

αrjy = 0, (28)

for any y < x. Because(ik, jk), k = 1, 2, · · · , n is strictly increasing:

cixjxy = 0, (29)

for all y > x. As

n∑

k=1

αrjk · tk =

n∑

k=1

αrjk · (

m∑

p=1

lp∑

q=1

cpqk · wpq), (30)



13

The coefficient ofwix,jx in
∑n

k=1 αrjk · tk is:

n∑

k=1

αrjk · cixjxk =

x−1∑

k=1

αrjk · cixjxk + αrjx · cixjxx +

n∑

k=x+1

αrjk · cixjxk (31)

=

x−1∑

k=1

0 · cixjxk + αrjx · cixjxx +

n∑

k=x+1

αrjk · 0 (32)

= αrjx · cixjxx (33)

6= 0, (34)

which is in contradiction to the independency of
∑n

k=1 αrjktk from wixjx , that was guaranteed by eq. (14). (Note
that r ∈ G

′ andix ∈ G
′′, sowixjx is not provided as side information tor)

Part 3: showing that underf ′ decoding is possible without the need for nodes inG
′′ to know messages for nodes

in G
′:

For everyi ∈ G
′′, let

βijk =

{
0 k ≥ s;

αijk k < s.
(35)

We claim that for everyi ∈ G
′′:
n∑

k=1

βijkt
′
k = wij +

∑

i′,j′:(i,i′)∈E and i′ 6∈G′

wi′j′ · γi′j′ , (36)

whereγi′j′ is given in eq. (14). This shows that nodes atG
′′ are able to decode their messages using(t′1, t

′
2, · · · , t

′
n)

and their side information inG′′ (excluding side information from nodes atG′). We have:

n∑

k=1

βijkt
′
k =

s−1∑

k=1

βijkt
′
k +

n∑

k=s

βijkt
′
k (37)

=

s−1∑

k=1

αijkt
′
k +

n∑

k=s

0 · t′k (38)

=

s−1∑

k=1

αijk · (

m∑

p=1

lp∑

q=0

c′pqk · wpq) (39)

=
s−1∑

k=1

αijk · (

m−|V′|∑

p=1

lp∑

q=0

c′pqk · wpq) (40)

=

s−1∑

k=1

αijk · (

m−|V′|∑

p=1

lp∑

q=0

cpqk · wpq), (41)

where eqs. (40) and (41) follow from the definition ofc′ijk in eq. (24). Note that the expression of eq. (41) does
not include any ofwij for i > m− |V ′|. Moreover, the coefficient ofwij for i ≤ m− |V ′| are the same as those
in
∑n

k=1 αijktk. This establishes eq. (36).
2) Proof of part (b):
The proof has two parts: first we show that

⋃
α∈[0,1] αC

′ ⊕ (1− α)C′′ ⊆ C and then we will finish the proof by
showing thatC ⊆

⋃
α∈[0,1] αC

′ ⊕ (1 − α)C′′.
Before starting the proof, let us label the vertices ofG so that the vertices ofG′ come first.
Proving

⋃
α∈[0,1] αC

′⊕(1−α)C′′ ⊆ C: Take an arbitrary vectorr′ in C′. Then we can allocate all of our resources
for G′ and do not send anything forG′′. This shows that(r′, 0) is in C. Similarly for anyr′′ in C′′, we have that
(0, r′′) is in C. Using the standard time-sharing techniques, one can show that the capacity region of the index
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coding problem is a convex set. Therefore for anyα ∈ [0, 1] the rate(αr′, (1 − α)r′′) ∈ C. This completes the
proof.

ProvingC ⊆
⋃

α∈[0,1] αC
′⊕(1−α)C′′: For any rate vectorr ∈ C, there exist a sequence of codes likeC1, C2, · · ·

whose rates converge tor. Take someǫ > 0 and a code described by encoding functionf whose raterǫ is within
ǫ distance ofr.

• Linear Case: Suppose thatf : W1 ×W2 × · · · × W|V′|+|V′′| → Fn. In the proof of the part (a), we showed
that there exist encoding functionsf ′ : W1 ×W2 × · · · × W|V′| → Fn′

andf ′′ : W|V′|+1 ×W|V′|+2 × · · · ×

W|V′|+|V′′| → Fn′′

which are respectively valid forG′ and G
′′. Additionally, the size of the range of the

concatenation off ′ andf ′′ equals the size of the range off , i.e. n = n′ + n′′. Hence, if we call the rates of
f ′ andf ′′, r′ andr′′, we will have:

rǫ =

(
log

F
|W1|

n′ + n′′
,
log

F
|W2|

n′ + n′′
, · · · ,

log
F
|W|V′|+|V′′||

n′ + n′′

)
(42)

=

(
n′

n′ + n′′

(
log

F
|W1|

n′
, · · · ,

log
F
|W|V′||

n′

)
,

n′′

n′ + n′′

(
log

F
|W|V′|+1|

n′′
, · · · ,

log
F
|W|V′|+|V′′||

n′′

))
(43)

=

(
n′

n′ + n′′
r
′, (1−

n′

n′ + n′′
)r′′
)

(44)

Sincer′ ∈ C′ andr′′ ∈ C′′, above statement results in the fact thatrǫ lies in
⋃

α∈[0,1] αC
′ ⊕ (1−α)C′′. By the

definition of the asymptotic capacity region,C′ andC′′ are closed sets. We are done with the proof by noting
that rǫ can be made arbitrarily close tor.

• Non-linear Case: Suppose thatf : W1 ×W2 × · · · × W|V′|+|V′′| → {1, 2, · · · , N}. In the proof of the part
(a), we showed that we can find encoding functionsf ′ : Wn

1 ×Wn
2 × · · ·×Wn

|V′| → {1, 2, · · · , 2n(K
′+δ)} and

f ′′ : Wn
|V′|+1×Wn

|V′|+2×· · ·×Wn
|V′|+|V′′| → {1, 2, · · · , 2n(K

′′+δ)} in whichK ′ andK ′′ satisfyN = 2K
′+K′′

,
δ is an arbitrary positive real number, and an appropriaten can be found for any fixedδ so that such functions
exist. Moreover,f ′ andf ′′ are respectively valid forG′ andG′′ over the alphabet sets ofWn

1 ,W
n
2 , · · · ,W

n
|V′|

andWn
|V′|+1,W

n
|V′|+2, · · · ,W

n
|V′|+|V′′|. Hence, if we call the rates off ′ andf ′′, r′ andr′′, we will have:

rǫ =

(
log |W1|

logN
,
log |W2|

logN
, · · · ,

log |W|V′|+|V′′||

logN

)
(45)

=

(
log |Wn

1 |

n logN
,
log |Wn

2 |

n logN
, · · · ,

log |Wn
|V′|+|V′′||

n logN

)
(46)

=

(
log |Wn

1 |

n(K ′ +K ′′)
,

log |Wn
2 |

n(K ′ +K ′′)
, · · · ,

log |Wn
|V′|+|V′′||

n(K ′ +K ′′)

)
(47)

=

(
K ′ + δ

K ′ +K ′′

(
log |Wn

1 |

n(K ′ + δ)
, · · · ,

log |Wn
|V′||

n(K ′ + δ)

)
,

K ′′ + δ

K ′ +K ′′

(
log |Wn

|V′|+1|

n(K ′′ + δ)
, · · · ,

log |Wn
|V′|+|V′′||

n(K ′′ + δ)

))
(48)

=

(
K ′ + δ

K ′ +K ′′
r
′,

K ′′ + δ

K ′ +K ′′
r
′′

)
(49)

=
K ′ +K ′′ + 2δ

K ′ +K ′′

(
K ′ + δ

K ′ +K ′′ + 2δ
r
′,

K ′′ + δ

K ′ +K ′′ + 2δ
r
′′

)
(50)

=
K ′ +K ′′ + 2δ

K ′ +K ′′

(
K ′ + δ

K ′ +K ′′ + 2δ
r
′, (1−

K ′ + δ

K ′ +K ′′ + 2δ
)r′′
)

(51)

Thus,
K ′ +K ′′

K ′ +K ′′ + 2δ
rǫ =

(
K ′ + δ

K ′ +K ′′ + 2δ
r
′, (1−

K ′ + δ

K ′ +K ′′ + 2δ
)r′′
)

(52)
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Fig. 7. In the index coding problem associated with this graph, removing the edges which belong to no cycle implies a larger public message

rate.

As r
′ ∈ C′ andr′′ ∈ C′′, K′+K′′

K′+K′′+2δ rǫ lies in
⋃

α∈[0,1] αC
′ ⊕ (1− α)C′′ for any δ > 0. Since

⋃
α∈[0,1] αC

′ ⊕
(1− α)C′′ is a closed set and we can makeδ andǫ as close to zero as we want, we will be done.

C. Proof of Theorem 3

We prove two parts of Theorem 3 in the following two subsections.
1) Proof of part (a):
Linear one-shot case:If G is USCS, then proof is finished. Otherwise,G contains an edge likee = (u, v) which

is not located in any cycles. LetV1 be the set of vertices that can be reached fromv. Morever, letV2 be the set
of vertices who cannot be reached fromv. It is easy to verify that there will be no edge that starts from V1 and
finishes inV2. Using part (a) of Theorem 2, we can remove all edges betweenV1 andV2 including e, so that the
rate region does not shrink. As the number of the edges ofG is finite, by repeating this process we can find a
USCS subgraph ofG like G

′ whose rate region equals the rate region ofG. Hence, ifG is a critical graph, it should
be equal toG′ which is USCS. In other words, any critical graph for one-shot linear index coding is USCS.

The proof forNon-linear asymptotic index codingusing part (a) of Theorem 2 is similar.
Linear asymptotic case:This follows from the one-shot case. For any codeC of lengthn, there is another code

C′ with the same rate vector on a subgraphG
′ of G that is USCS. Now, given any arbitrary sequence of codes

C1, C2, · · · whose rate vector converges to a given rate vectorr = (r1, r2, · · · , rm), we can find a sequence of codes
C′

1, C
′
2, · · · on subgraphsG′

1,G
′
2, · · · whose rate vector converges to the same rate vectorr = (r1, r2, · · · , rm).

Since any graphG has only a finite number of subgraphs, we can find indicesi1 < i2 < · · · such thatG′
ik

= G̃ are
identical. The subsequence of the codesC′

ik
is defined on the USCS graph̃G and has a rate vector that converges

to r = (r1, r2, · · · , rm). SinceG and is critical and̃G is a subgraph ofG, we conclude thatG = G̃ implying that
G is USCS.

2) Proof of part (b): To prove this part we need to show that a critical graph existsfor one-shot non-linear case
that is not USCS.

Consider the graph given in Fig. 7. We call this graphG = (V , E). Assume that

Wi = {0, 1}, 1 ≤ i ≤ 5,

W6 = {0, 1, 2, 3, 4}.

We have the following claim:

Claim 1. Sending a symbol from{1, 2, · · · , 32} as the public message suffices for every node to decode its message.
However, if we remove the edges connected to node6, which do not belong to any cycle, we need at least 35 symbol
to have a successful transmission of the messages.

This claim establishes the desired result, since ifG is critical it would be an instance of a non-USCS graph that
is critical. If G is not critical, there is a subgraphG′ of it (obtained by removing edges fromG) that is critical; that
is the graphG′ is such that sending a symbol from{1, 2, · · · , 32} as the public message suffices for every node
to decode its message. However any further removal of edges from G

′ results in a graph that does not have this
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property. By the above claim, the minimal graphG′ should contain at least one of the edges connected to the node
6; since if not,G′ would be a subgraph of the graph shown in the claim to need at least 35 symbols. Therefore,G′

contains an edge that is not on any cycle. Hence it is a non-USCS and critical graph.
We now turn to the proof of the claim. In order to construct thecoding scheme using 32 symbols forG, first

note thatW1W2W3W4W5 forms a binary sequence of the length 5. Based on the value ofW6, we XOR this
sequence with one the following sequence:00000, 10001, 01111, 01100, 10111, that is, if W6 is 0 we XOR the
sequence with00000, if it is 1 we XOR it with 10001, and so on. Then, we transmit the result as the public message
(the public message has 32 different possibilities and can be transmitted). Let us denote the 5-bit public message
by W̃1W̃2W̃3W̃4W̃5. It is sufficient to show that every node can decode its message with the help of the public
message and its side information. First of all, because the node6 knows the message of 1 to 5, it can XOR their
message by the public message and from the XOR decode its message. For the other nodes, note thatWi ⊕ W̃i

for 1 ≤ i ≤ 5 is a function of the side information of nodei, and therefore, nodei can decode its message. We
explain the decoding process for node1; the decoding process for other nodes is similar. Node1 knowsW2 and
W5 . By comparing these two bits with̃W2 andW̃5, node1 can exactly recoverW6 if it is equal to0, 2 or 3. If
W6 is equal to1 or 4, node1 cannot find the exact value ofW6. However in both cases ofW6 = 1, 4 we have
W̃1 = ¬W1, and by flippingW̃1 the first node can recover its intended bit.

In order to prove that if we remove the edges connected to node6, at least 35 symbols are needed, suppose
that there exists a coding scheme which requires at most 34 symbols. According to Pigeonhole Principle, we can
conclude that there existsw6 ∈ {0, 1, 2, 3, 4} so that ifW6 = w6, public message gets at most 6 distinct different
values when we vary thew1, w2, · · · , w5, i.e. the cardinality of the set

{
f(w1, w2, · · · , w6) : w1, w2, · · · , w5 ∈ {0, 1}

}

is at most 6. For this value ofw6, consider the following function over five variablesw1, w2, · · · , w5:

f̃(w1, w2, · · · , w5) = f(w1, w2, · · · , w5, w6).

SinceW6 was independent of(W1, · · · ,W5) and we have zero probability of error, the functioñf is a valid
encoding function for a cycle of length 5. This contradicts Lemma 1 below.

Lemma 1. The bidirectional cycle of length 5 withWi = {0, 1} needs a public message of alphabet size 7 to
achieve a zero probability of error for the one-shot problem.

Proof: We prove this lemma by contradiction. Assume otherwise thatthere exists a coding scheme that uses a
public message with 6 possibilities. From the Pigeonhole Principle, we conclude that the encoding function maps at
least 6 combinations of the messages to one symbol, i.e. there are six sequences of(w1i, w2i, · · · , w5i) ∈ {0, 1}5,
i = 1, 2, · · · , 6, whosef(w1i, w2i, · · · , w5i) are equal, i.e. their corresponding public message is the same. Thus,
the nodes should be able to recover their own messages using their side information. In other words, for instance
for node1, if w1i 6= w1i′ for somei andi′, then we should have(w2i, w5i) 6= (w2i′ , w5i′ ). Thus the six sequences
should be distinguishable, where we call two sequences(w1, w2, · · · , w5) and(w′

1, w
′
2, · · · , w

′
5) distinguishable if

for eachi ∈ {1, 2, · · · , 5} eitherwi = w′
i or thewj 6= w′

j for somej : (i, j) ∈ E .
Given a sequence(w1, w2, · · · , w5), consider the graph induced on the set of vertices{j : wj = 1}. We call

the sequence(w1, w2, · · · , w5) “good” if the induced graph does not contain of a vertex of degree zero (i.e. is
connected). For instance, in a cycle of size5 if we take(w1, w2, · · · , w5) = (1, 1, 1, 0, 0), the induced graph would
be on nodes1, 2, 3 which is connected. However(w1, w2, · · · , w5) = (1, 1, 0, 1, 0) corresponds to the induced
graph on nodes1, 2, 4 which is not connected since node4 is not connected to nodes1 and2. It is easy to verify
that (w1, w2, · · · , w5) and(w′

1, w
′
2, · · · , w

′
5) distinguishable if and only if their bitwise XOR is good. Forinstance

(1, 1, 0, 1, 0) and (0, 0, 0, 0, 0) are not distinguishable (by node 4) since their XOR,(1, 1, 0, 1, 0) is not good.
Now, we know that the XOR of any two of(w1i, w2i, · · · , w5i), i = 1, 2, · · · , 6 is good. We show that this

cannot happen. Without loss of generality, we can assume that one of the six sequences is the all zero sequence.
Therefore, we should look for 5 sequences that are individually good, and their pairwise bitwise XOR is also good.
In Appendix B, we provide a code inC++ which checks all possible cases and shows that such a set of sequences
does not exist.
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D. Proof of Theorem 4

Suppose thatG = (V , E) is a bidirectional graph whereV = {1, 2, · · · ,m}. To show thatG is critical, we need
to find a rate vector,r = (r1, r2, · · · , rm), for everye = (u, v) ∈ E that is achievable inG, but it is not achievable
in G− e. We definer in the following manner:

ri =

{
1 if i = u or i = v
0 otherwise

To show thatr is achievable inG, suppose thatWi is the message of nodei, andWi ∈ Wi where:
{

Wi = {0, 1} if i = u or i = v
Wi = {0} otherwise

Now, if we sendWu ⊕ Wv as public message, thenu and v can decode their message, because they have the
message of each other as side information and the sum of theirmessage. AsWi has only one element fori 6= u, v,
the other vertices can trivially decode their message. Therefore,r is supported byG.

Additionally, since the set{u, v} in G − e has no directed cycle, Lemma 2 implies that for everyr
′ =

(r′1, r
′
2, · · · , r

′
m) supported byG− e, r′u + r′v ≤ 1. Thus,r cannot be supported byG− e.

Next we show that a cycle of size four with vertices{1, 2, 3, 4} and edges{(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3),
(4, 1), (1, 4)}) is not symmetric rate critical. If this graph supports the rate vector r = (r, r, r, r), as the set
{1, 3} has no directed cycle, Lemma 2 gives thatr ≤ 1

2 . In addition, consider the subgraphH of the cycle
with edges{(1, 2), (2, 1), (3, 4), (4, 3)}. If we send two bits(W1 ⊕ W2,W3 ⊕ W4) as public message, then all
nodes can decode their message. Hence, the rate(12 ,

1
2 ,

1
2 ,

1
2 ) is achievable inH. Now, since removing edges

(2, 3), (3, 2), (4, 1), (1, 4) do not change the symmetric capacity region of cycle of size four, it is not symmetric
rate critical.

E. Proof of Theorem 5

1) Criticality of G ∪ H: In order to show the criticality ofG ∪ H we need to show that by eliminating every
edge likee from G ∪H, the capacity region of the index coding problem related toG ∪H shrinks strictly. Without
loss of generality assume thate ∈ EG. As G is a critical graph, there exists a rate vector liker that supportsG, but
not G′(VG, EG − {e}). Now, consider a rate vector for the index coding problem introduced byG∪H in which the
rates of nodes inH are all zero and rates of the nodes inG equalsr. This rate vector is evidently admissible for
G ∪ H, but not forG′ ∪ H (which isG ∪ H after elimination ofe).

2) Symmetric Criticality ofG∪H in Asymptotic Scenarios:Showing that the maximal symmetric rate also reduces
after we remove an edge fromG∪H is more challenging. Letr1 andr2 be the maximal symmetric rate forG and
H respectively. It is clear that concatenation of these two coding functions with proportion of r2

r1+r2
and r1

r1+r2
for

G andH respectively, results in a coding function forG ∪ H with the symmetric rate ofr = r1r2
r1+r2

.
We claim that this symmetric rate would not be achievable if any edge likee is removed fromG ∪ H. This

will prove the symmetric criticality ofG ∪ H. We are going to prove this claim by contradiction. Without loss of
generality, assume thate is an edge ofG. We refer to the graph obtained byG after elimination ofe asG′. Suppose
that there exists a coding function likef for G′ ∪H with the symmetric rate ofr. From Theorem 2 then, there exist
someα ∈ [0, 1] and symmetric ratesr′1 andr′2 for G′ andH such thatr = αr′1 = ᾱr′2. This implies that

r′1r
′
2

r′1 + r′2
=

r2

αᾱ
r
α
+ r

ᾱ

= r =
r1r2

r1 + r2

Thus,
1

r′1
+

1

r′2
=

1

r1
+

1

r2
(53)

However, by the symmetric criticality ofG and by the definitions ofr1 andr2, we have that

r′1 < r1, r′2 ≤ r2

⇒
1

r1
<

1

r′1
,

1

r2
≤

1

r′2

⇒
1

r′1
+

1

r′2
>

1

r1
+

1

r2
(54)
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Equations (53) and (54) are in contradiction with each other. This contradiction completes the proof.
3) Symmetric Criticality ofG ∪ H in One-Shot Linear Scenario:Consider the symmetric one-shot linear index

coding problems defined overG, H, andG ∪ H. Assume that the alphabet of each node in each of these problems
is Fl for some finite fieldF. Let n1 be the minimum possible positive integer number such that there exists a valid
linear coding function with the output size ofn1 symbols overF. Definen2 for H in the same manner. It is clear
that there exists an encoding function for the problem related to G ∪ H that uses a public message ofn1 + n2

symbols by concatenation of the encoding functions that usen1 symbols forG andn2 symbols forH. Hence, the
symmetric rate of l

n1+n2
is achievable for the index coding problem introduced byG ∪ H.

We are going to show that ifG and H are both symmetric critical, thenG ∪ H is symmetric critical too. To
prove the symmetric criticality ofG ∪ H, we will prove that any valid coding function forG ∪ H needs at least
n1+n2+1 public symbols after removal of any edge likee from G∪H. Without loss of generality, we assume that
e is removed from theG component ofG ∪ H. We refer to the graph obtained byG after the removal ofe asG′.
Then, the graph obtained fromG∪H after the removal ofe would beG′∪H. Let f be a valid encoding function for
G
′ ∪ H, we have shown in the proof of part (a) of Theorem 2 that there exist two valid encoding functionsf ′ and

f ′′ for G′ andH so that the concatenation off ′ andf ′′ has the same output size tof . As f ′′ is a valid encoding
function forH, its output size is at leastn2. In addition, because of the criticality ofG, we know that every valid
encoding function forG′, includingf ′, needs at leastn1+1 symbols. Accordingly, the concatenation off ′ andf ′′

has an output size of at leastn1+n2+1. Consequently, the output size of thef is at leastn1+n2+1. This means
that G ∪ H is a symmetric critical graph because it cannot support the symmetric rate of l

n1+n2
after removal of

any of its edges.

F. Proof of Theorem 6

1) Proof of part (a): In the first step of the proof, we will show that the new graphG
′ supports the symmetric

rate ofr = ( 1
m−1 ,

1
m−1 , · · · ,

1
m−1 ). In the next step, we will show that this rate will not be achievable if any edge

is eliminated. These two steps will clearly prove this theorem.
(I) Achievability:Let Wi denote the message of nodei, andWi ∈ Wi = {0, 1}. Consider the encoding function

f(W1, · · · ,Wm) = (f1, · · · , fm) = (W1⊕W2, · · · ,Wj−1⊕Wj ,Wj⊕Wj+1⊕Wm+1,Wj+1⊕Wj+2, · · · ,Wk−1⊕
Wk,Wk ⊕Wk+1 ⊕Wm+1,Wk+1 ⊕Wk+2, · · · ,Wm−1 ⊕Wm,Wm ⊕W1).

The lth element off is the sum of the side information of nodel andWl; therefore nodel (for 1 ≤ l ≤ m) can
decode its message. Nodem+ 1 can cosider:

i−1⊕

l=1

fl =

i−1⊕

l=1,l 6=j

(Wl ⊕Wl+1)⊕ (Wj ⊕Wj+1 ⊕Wm+1) (55)

=W1 ⊕Wi ⊕Wm+1 (56)

Since nodem+ 1 hasW1 andWi as side information, it can decode its message with the help public message.
As f(W1, · · · ,Wm) ∈ {0, 1}m, it shows the achievability of rate( 1

m
, 1
m
, · · · , 1

m
). To prove the achievability of

rater, notice that fort 6= j, k, we have
m⊕

l=1

fl = 0.

Therefore, we can only send(f2, · · · , fm); f1 can be omitted from public message and instead recovered from the
rest offi’s. Thus, the rater is achievable, too.

(II) Unachievability after Edge Removal:To show thatG′ is critical, it suffices to prove that after removing any
edge ofE ′, we will need at leastm bits of public message. Lemma 2 implies that if there exists asubset of length
m in a graph which does not contain any cycle, the rater would not be achievable in the graph (otherwise the sum
of the rates would be m

m−1 which is greater that 1). Thus, it suffices to show that for every e ∈ E ′, there exists a
subset ofV ′, sayA, of length at leastm such that the induced subgraph ofA in G

′ − e has no directed cycle.
First, suppose thate ∈ E . Then we can chooseA = V . As A contains exactlym vertices and the induced graph

is a directed path which contains no cycle then these edges are critical. Fore = (m + 1, 1), A can be chosen as
V ∪ {m + 1} \ {i}. Same argument can be made fore = (m + 1, i). For e = (j,m + 1), A can be chosen as
V ∪ {m+ 1} \ {k}. Same argument can be made fore = (k,m+ 1).
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2) Proof of part (b): We use the same approach from part (a) to show that the rater = ( 1
m−1 ,

1
m−1 , · · · ,

1
m−1 )

is achievable inG′′, and by removing every edge the rate would not be achievable.
(I) Achievability: Suppose that the message of node(u, i) ∈ V ′′ is Wu,i. Then, define:

Wu =

nu⊕

i=1

Wu,i

Similar to part (a), consider the encoding functionf = (f1, f2, · · · , fm) = (W1 ⊕ W2, · · · ,Wj−1 ⊕ Wj ,Wj ⊕
Wj+1⊕Wm+1,Wj+1⊕Wj+2, · · · ,Wk−1⊕Wk,Wk⊕Wk+1⊕Wm+1,Wk+1⊕Wk+2, · · · ,Wm−1⊕Wm,Wm⊕W1).
Again, for 1 ≤ l ≤ m and t ∈ [1 : nl], the lth element off , fl, is the sum of the side information andWl,t. So,
these nodes can decode their message. Fort ∈ [1 : nm+1], node(m+ 1, t) can consider:

i−1⊕

l=1

fl =

i−1⊕

l=1,l 6=j

(Wl ⊕Wl+1)⊕ (Wj ⊕Wj+1 ⊕Wm+1) (57)

=W1 ⊕Wi ⊕Wm+1 (58)

=

(
n1⊕

l=1

W1,l

)
⊕

(
ni⊕

l=1

Wi,l

)
⊕

(
nm+1⊕

l=1

Wm+1,l

)
(59)

By definition ofG′′, node(m+1, t) knowsW1,1, · · · ,W1,n1
,Wi,1, · · · ,Wi,ni

,Wm+1,1, · · · ,Wm+1,t−1,Wm+1,t+1

, · · · ,Wm+1,nm+1
as side information. Therefore, with the help of public message and its side information(m+1, t)

can decode its message. Additionally, fort 6= j, k, we have:
m⊕

l=1

fl = 0.

Thus,f1 can be eliminated from the public message (and instead recovered from the rest) and the rater would be
achieved.

(II) Unachievability after Edge Removal:Now, we want to show that by elimination of any edge inE ′′, r will
not be achievable anymore. As discussed in part (a), it suffices to show that after removing any edge inE ′′, there
will be A ⊂ V ′′ with at leastm vertices which does not contain any directed cycle. As we have two different types
of edges inG′′, we analyze the impact of edge removal on the capacity regionin two different cases.

case 1)e = ((u, s), (v, t)) whereu 6= v
By definition of G′′, we havee′ = (u, v) ∈ E ′. In part (a), we proved that there existsA′ ⊂ V ′ of sizem which
does not contain any cycle inG′ − e′. Now, chooseA = {(l, 1) : s ∈ A′, l 6= u, v} ∪ {(u, s), (v, t)}. If (x, y) and
(x′, y′) ∈ A, thenx, x′ ∈ A′ andx 6= x′. Thus,(x, y) has edge to(x′, y′) in G

′′ if and only if x has edge tox′ in
G
′ and becauseA′ has no cycle inG′ thenA has no cycle inG′′.
case 2)e=((u, s), (u, t))

For 1 ≤ u ≤ m, chooseA = {(u, s), (u, t)} ∪ {((u+ l) modm, 1), 1 ≤ l ≤ m− 1}, and foru = m+ 1. Choose
A = {(l, 1) : 1 ≤ l ≤ m, l ≤ j, k} ∪ {(u, s), (u, t)}. It is straightforward to check that these two sets contain no
cycle.

G. Proof of Theorem 7

1) Proof of part (b): As mentioned in Remark 6, the underlying digraph of the hypergraph that characterizes a
unicast index coding problem equals the directed graph model we used for unicast index coding problem. Thus,
the example we offered in part (b) of Theorem 3 works for the groupcast scenario too.

2) Proof of parts a and c:Let H = (V , E) be a hypergraph related to a groupcast index coding problem.Further,
let G = (V , EG) be the underlying directed graph ofH. To prove this theorem, it suffices to show that for every
edgee = (Wi,Wj) in G which is not located in any cycles, elimination ofe will not change the capacity region.
It should be noted that elimination ofe from the underlying digraph is interpreted as removingWj from the side
information set of all receivers who intend to findWi. From now on, we will show the hypergraph obtained by the
elimination ofe from G using the notationH− e.

Now, we are going to show that for any valid coding functionf for side information hypergraphH, there exists
a coding functionf ′ which is valid for the groupcast index coding problem introduced byH− e and its output size
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equals the output size off . Let V1 be the set of vertices that are reachable fromWj andV2 = V − V1 whereV
is the vertex set of the graph. Using the assumption thate is not located in any cycles, one can conclude thatV is
partitioned into two partsV1 andV2 such that:

• Wi ∈ V2

• Wj ∈ V1

• ∄(u, v) ∈ EG : u ∈ V1 ∧ v ∈ V2

In other words, any receiver who wants to find a message inV1 does not have any side information about the
messages inV2. This was the only assumption we used in the proof of part (a) of Theorem 2 in order to show
that we can find two coding functionsf1 andf2 such that all receivers inVi be able to findf usingf1, f2, and
their side information inVi and the size of(f1, f2) equals the output size off . Hence, using same arguments,
(f1, f2) is a valid coding function for the groupcast index coding problem introduced by the hypergraph obtained
by eliminating edges betweenV1 andV2 (including e).
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APPENDIX A
TWO USEFUL LEMMAS

Lemma 2 ([11]). Assume thatX is a subset of the vertices of a graphG = (V , E) which contains no directed
cycle. Then in every rate vectorr = (r1, · · · , rm) supported byG in non-linear asymptotic case, the following holds:

∑

i∈X

ri ≤ 1 (60)

Although the lemma above is proved in [11], we will give a simple operational proof based on graph theory.

http://circuit.ucsd.edu/~yhk/indexcoding.html
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Proof: We construct a new graphG′ = (V ′, E ′) by contracting the setX in G. Strictly speaking, the vertices
of G′ include the vertices ofG when we replace all vertices inX with a single vertex labeled byα:

V ′ = (V − X ) ∪ {α}, (61)

and edges connected to vertices inX are now connected toα in G
′, i.e.

E ′ ={(x, y) ∈ E|x ∈ V − X , y ∈ V − X}

∪ {(y, α)|y ∈ V − X , ∃x ∈ X : (y, x) ∈ E}

∪ {(α, y)|y ∈ V − X , ∃x ∈ X : (x, y) ∈ E}.

We prove that if we use the same coding scheme ofG for G
′, the nodeα can decode all messages belonging to

the vertices inX . Since the setX does not contain any cycle, we can order the elements ofX as

X = {x1, · · · , xt}

such that vertices have only edges to vertices with a higher index, i.e. an edge from vertexxi to vertexxj may
only exist wheni < j. Now the vertexα in G

′ can decode the message ofxt due to the fact thatxt is the last
element of the order, and therefore, it does not know the messages of the other vertices inX . So,α has all side
information ofxt and can decode its message. Next,xt−1 can have only the message ofxt from the messages of
the vertices inX , which has been decoded by now. Thus,α in G

′ can decode the message ofxt−1, too, and this
process goes on. Therefore, we can prove by induction thatα can obtain all the messages of the vertices inX . In
this coding scheme the rate of vertexα equals to:

∑

i∈X

ri (62)

and by considering the fact that the rate of each vertex cannot be more than1, we get our desired result.

Lemma 3 (Turán). A bidirectionalm-vertex graphG that contains no clique of sizek + 1 has at moste(m, k)
edges. Furthermore, the only graph (up to isomorphism) which satisfies the aforementioned condition isT (m, k).

The above lemma is known as the Turán Theorem, and its proof can be found in many graph theory books such
as [15, Thm. 5.2.9].

APPENDIX B
C++ CODE FOR THE PROOF OFTHEOREM 3 PART (B)

1 # inc lude < i o s t r eam>
2 # inc lude <vec to r>
3 us ing namespace s t d ;
4 cons t i n t N = 5 , M = 5 ;
5 v e c t o r <i n t > goodMessages ;
6 i n t i nd [M + 1] = {−1, 0 , 0 , 0 , 0 , 0} ;
7 bool isGood (i n t x ) { / / check whether a comb ina t i on i s good or no t .
8 f o r ( i n t I =0 ; I<N; I ++){
9 i n t l = ( I + 1 ) % N, r = ( I + N − 1) % N;

10 i f ( ( x >> I & 1) == 1 && ( x >> l & 1 ) == 0 && ( x >> r & 1) == 0)
11 re turn f a l s e ;
12 }
13 re turn t rue ;
14 }
15 bool check (i n t dep th ){
16 i f ( dep th == M)
17 re turn t rue ;
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18 f o r ( i n t I = ind [ dep th ] + 1 ; I<( i n t ) goodMessages . s i z e ( ) ; I ++){ / / check f o r t h e
n e x t comb ina t i on

19 bool f l a g = t rue ;
20 ind [ dep th + 1 ] = I ;
21 f o r ( i n t K=1; K<=dep th ; K++)
22 f l a g &= isGood ( goodMessages [ I ] ˆ goodMessages [ i nd [K ] ]) ;
23 i f ( f l a g && check ( dep th + 1) ) / / i f t h e XORs wi th a l l p r e v i o u s

c o m b i n a t i ons are good then t h i s comb ina t i on w i l l be added
24 re turn t rue ;
25 }
26 re turn f a l s e ;
27 }
28 i n t main ( ){
29 f o r ( i n t mask =1 ; mask<1<<N; mask++) / / f i n d a l l good c o m b i n a t i ons
30 i f ( isGood ( mask ) )
31 goodMessages . pushback ( mask ) ;
32 i f ( check ( 0 ) )
33 cou t << ” There e x i s t s such s e t s . ”<< end l ;
34 e l s e
35 cou t << ” Such s e t s have no t been found . ”<< end l ;
36 re turn 0 ;
37 }

cycle.cpp

APPENDIX C
ALL SYMMETRIC RATE CRITICAL GRAPHS ON5 NODES

This section provides all symmetric rate critical graphs on5 nodes using the list given on the website of Young-
Han Kim[20]. There are a total of 9608 graphs listed on the website, among which 32 are critical, appearing from
the next page.
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