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Abstract

Communication in the presence of bounded timing asynchronism which is known to the receiver but cannot be
easily compensated is studied. Examples of such situationsinclude point-to-point communication over inter-symbol
interference (ISI) channels and asynchronous wireless networks. In these scenarios, although the receiver may know
all the delays, it is often not be an easy task for the receiverto compensate the delays as the signals are mixed
together. A novel framework called interleave/deinterleave transform (IDT) is proposed to deal with this problem.
It is shown that the IDT allows one todesign the delays so that quasi-cyclic (QC) codes with a proper shifting
constraint can be used accordingly. When used in conjunction with QC codes, IDT provides significantly better
performance than existing schemes relying solely on cycliccodes. Two instances of asynchronous physical-layer
network coding, namely the integer-forcing equalization for ISI channels and asynchronous compute-and-forward,
are then studied. For integer-forcing equalization, the proposed scheme provides improved performance over using
cyclic codes. For asynchronous compute-and-forward, the proposed scheme shows that there is no loss in the
achievable information due to delays which are integer multiples of the symbol duration. Further, the proposed
approach shows that delays introduced by the channel can sometimes be exploited to obtain higher information
rates than those obtainable in the synchronous case. The proposed IDT can be thought of as a generalization of the
interleaving/deinterleaving idea proposed by Wang et al. which allows the use of QC codes thereby substantially
increasing the design space.

Index Terms

Compute-and-forward, physical-layer network coding, andinteger-forcing receiver.

I. INTRODUCTION

Physical-layer network coding (or compute-and-forward) [2] [3] [4] has been shown to be a way
to effectively harness interference in wireless networks and to provide significantly higher throughput
than conventional strategies for many wireless networkingproblems. However, most of the results in
the literature consider the case when the time delays from the multiple transmitters to a receiver are all
identical (we refer to this as the synchronous case). One of the important open problems in this area is
to determine whether the information rates achieved with compute-and-forward in the synchronous case
can be obtained when the time delays from the multiple transmitters are different also (we refer to this as
the asynchronous case). So far, this question has not been conclusively answered and our understanding
of asynchronous physical-layer network coding is not as thorough as that of synchronous one. Recently,
there have been some efforts in the literature trying to address such problems for some specific models
such as ISI [5] and asynchronous physical-layer network coding (and compute-and-forward as well) [6]
[7] [8] [9]. In both cases, cyclic codes have been suggested for combating the time delays for these two
seemingly different problems [5] [8]. While cyclic codes are quite useful for these problems, there has
been no proof that rates achievable in the synchronous case are achievable in the asynchronous case also.
One important reason for this is the fact that there is no proof showing the existence of ensembles of
cyclic codes that can achieve capacity.

Part of the results in this paper has been submitted to the 2014 IEEE Global Communications Conference [1].

http://arxiv.org/abs/1312.4003v2
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In this paper, we show that there is no fundamental loss in theachievable information rates due to
asynchronism, when the time delays introduced by the channel are integer multiples of a symbol duration.
Interestingly, we also show that in some scenarios, time delays introduced by the channel can be exploited
to achieve higher information rates than those achievable in the synchronous case. These results are based
on two insights and novel ideas proposed in this paper. The first is the insight that cyclic codes arenot
necessary to deal with asynchronism and that quasi-cyclic (QC) codes suffice. The second main idea is to
use an interleve/deinterleave transform (IDT) which equips QC codes with the capability to combat time
delays. With a slight rate reduction, this transform will convert any linear shift of an integer multiple of
the symbol duration introduced by the channel into a circular shift of another integer value depending on
the parameter we choose. Therefore, one can then utilize theIDT for designing the equivalent time delays
seen at the transform output and implement a QC code accordingly. We then show the existence of an
ensemble of QC codes that can achieve capacity for channels whose capacity can be achieved by linear
codes and leverage this result to prove the aforementioned information-theoretic result for asynchronous
physical layer network coding.

To give concrete examples, we implement the proposed IDT together with QC codes for two instances
of asynchronous physical-layer network coding, namely integer-forcing equalization for ISI channels and
asynchronous compute-and-forward. For the integer-forcing equalization proposed in [5], we show that our
IDT-QC codes achieve the upper bound on information rates presented in [5] which may not be achievable
by the cyclic coding scheme proposed therein. For asynchronous compute-and-forward, when the delays
are integer multiples of the symbol duration, we first show that the rates achievable in the synchronous
case can also be achieved in the asynchronous case. In addition to this, we also show that the proposed
IDT-QC codes are capable of exploiting another dimension, namely the delay dimension which leads to
rates exceeding those achieved in synchronous compute-and-forward [4]. Finally, we consider the case
of non-integer valued delays and when rectangular pulses are used, we show that the proposed schemes
achieves higher rates than the scheme in [9]. It is worth noting that the proposed IDT-QC codes are not
limited to these two specific examples and can potentially beimplemented for many networks with delays
which cannot be easily compensated.

In addition to being of theoretical importance, the use of quasi-cyclic (QC) codes is of substantial
practical importance as well. QC codes, QC low-density parity check (LDPC) codes in particular, are
quite popular in modern coding theory due to their followingdesirable properties. They can be encoded
using linear feedback shift registers [10] and a message passing decoder can be implemented efficiently
in hardware in a partially parallel architecture [11]. Further, the QC property makes it efficient to route
wires when implementing the message passing decoder [12]. Moreover, the family of QC codes is much
larger than and subsumes as a special case the family of cyclic codes. Due to these properties, QC LDPC
codes have been included in many real world applications such as IEEE 802.11n [13], IEEE 802.16e [14],
DVB-S2 [15], etc. In this paper, we show that in addition to these desirable properties, when used with
the IDT transform, QC codes can be a perfect candidate for combating time delays.

The proposed IDT framework can be regarded as a generalization of the scheme in [6] where a pair of
interleaver/deinterleaver has been implemented togetherwith convolutional codes. In the very last stage
of the preparation of this paper, we became aware of a very recently posted independent work [16]
where an idea similar to [6] has been used together with tail-biting convolutional codes for asynchronous
physical-layer network-coding for the two-way relay channel. Our paper differs from [6] and [16] in the
following two important ways. Firstly, in contrast to [6] and [16] which consider only convolutional codes
and cyclic codes, our generalization permits the use of any QC linear/lattice code, thereby expanding the
design space for the codes that can be used with asynchronism. Secondly, the use of QC codes allows us
to derive capacity results for channels with asynchronism.

A. Organization

The paper is organized as follows. In Section II, we provide definitions of cyclic codes and QC codes and
also review a well-known construction of QC codes based on protographs. We also review the modulation
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scheme typically used in the compute-and-forward literature. The modulation scheme has been shown
to preserve the structures induced by the channel and hence are crucial for compute-and-forward. This
review is of practical importance as our proposed scheme heavily relies on QC codes and the modulation
scheme and the family of QC LDPC codes is one of the most popular classes of QC codes in practice.
In Section III, we elucidate the proposed IDT-QC codes and show some properties of the proposed
codes which include the capacity-achieving property. Section IV and Section V provide two interesting
applications of the proposed IDT-QC codes, namely point-to-point communication over ISI channels and
asynchronous compute-and-forward. In Section VI, we introduce a new joint detection and decoding
scheme for our proposed IDT-QC codes. This section lifts theinformation-theoretic framework proposed
in Section III-V towards practical implementation by explicitly introducing a practically implementable
decoding scheme. Finally, Section VII concludes the paper.

B. Notation

Throughout the paper,R, C, andZ represent the set of real numbers, complex numbers, and integers,
respectively.P(E) denotes the probability of the eventE . Vectors and matrices are written in lowercase
boldface and uppercase boldface, respectively. We use∗ to denote linear convolution. For a vectorx, we
usex(t) to denote the right circularly shifted version ofx by t. e.g., forx = [1, 2, 3, 4], x(1) = [4, 1, 2, 3].
Moreover,⊕ and⊙ are addition and multiplication, respectively, over a finite field whose size is understood
from the context.

II. PRELIMINARIES

We first give definitions of cyclic codes and QC codes and then discuss a well-known construction of
QC LDPC codes.

Definition 1 (Cyclic codes). A linear codeC is a cyclic code of lengthN if any circular shift of a
codeword is a codeword inC, i.e., for everyc ∈ C, c(i) ∈ C, for all i = 0, . . . , N − 1.

Definition 2 (Quasi-cyclic codes - Representation I). A linear codeC is a QC code with shifting constraint
b if any circular shift of a codeword by a multiple ofb is a codeword inC, i.e., for everyc ∈ C, c(bi) ∈ C,
for all i = 0, . . . ,

⌊
N
b

⌋
− 1.

Definition 3 (Quasi-cyclic codes - Representation II). A linear codeC is a QC code with shifting constraint
b if every codewordc ∈ C consists ofb sub-blocks and for each codeword, circularly shifting every sub-
block by the same amount results in a codeword.

Note that the above two representations of QC codes are equivalent and such codes are referred to
as b-QC codes. One can be converted to the other via an interleaver. Throughout the paper, unless
mentioned otherwise, the first representation of QC codes isadopted (Definition 2). On the other hand,
many constructions in the literature (e.g. [17], [18]) adopt the second representation.

LDPC codes have been very popular in modern coding theory andin practice due to its ability to
achieve near-capacity performance with low decoding complexity and outstanding performance in the
finite-length regime. The family of QC LDPC codes is a specialclass of LDPC codes possessing the QC
property that have efficient encoding and decoding algorithms. In what follows, we briefly review the
construction of QC LDPC codes. Most of the works in the literature consider using the protograph-based
construction of [19] to generate QC LDPC codes, see for example [17], [18] and the reference therein.

To construct a protograph of a lengthN b-QC LDPC code, one begins with ac × b protomatrix and
then replaces each entry in the protomatrix by anL×L matrix whereL , N/b. The replacement follows
the rule that if the entry is 1, it is replaced by a randomL× L permutation matrix while if the entry is
0, it is replaced by an all-zero matrix. This would result in acL× N LDPC matrix and can be used to
generate an LDPC code. Now, if we further restrict those permutation matrices to becirculant matrices,
then the output would be the parity-check matrix for ab-QC LDPC code. Unlike standard linear codes,
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the generator matrix of every QC code cannot be written in a systematic form1 without violating the QC
property. However, many existing QC LDPC ensembles including the ones used for simulation and for
the proofs satisfy those constraints.

In order to use the above QC codes for transmission, we modulate the codeword symbols onto elements
in a constellationA to form the transmitted signals. Throughout the paper, we consider using QC codes
over a prime fieldFp and restrict the constellationA to be pulse amplitude modulation (PAM) withp
elements, i.e.,A = {−p−1

2
, . . . , 0, . . . , p−1

2
}. The mappingM : Fp → A is given by

M(u) ,

{
u, 0 ≤ u ≤ p−1

2
,

u− p, p−1
2

< u < p,
(1)

for p ≥ 3, andM(u) , u − 1
2

for p = 2 (i.e., BPSK). This mapping has the important property that
M(u⊕v) = M(u)+M(v) mod p andM(u⊗v) = M(u) ·M(v) mod p for p ≥ 3 andM(u⊕v)+ 1

2
=

M(u)+ 1
2
+M(v)+ 1

2
mod 2 andM(u⊗v)+ 1

2
= (M(u)+ 1

2
) · (M(v)+ 1

2
) mod 2 for p = 2.2 Note that

the above operation is precisely the standard procedure forconstructing a lattice from linear codes via
Construction A [23] [24]. In fact, one can easily show that the above construction results in lattices having
QC property, i.e., QC lattices. Moreover, from a result by Forney et al. [25], we know that applying a
capacity-achieving linear code to Construction A would result in a sphere-bound-achieving (or Poltyrev
good) lattice. Therefore, existing good QC codes such as AR4JA codes [18] can be adopted to generate
good QC lattice codes via Construction A.

III. PROPOSEDINTERLEAVE/DEINTERLEAVE TRANSFORMEDQUASI-CYCLIC CODE

Even though our ultimate application is in networks, in thissection, we start with the point-to-
point communication to facilitate the illustration of the proposed IDT transform. Consider point-to-point
communication with additive white Gaussian noise (AWGN) and with time delaysτ that is upper bounded
by the maximal possible delayDmax. We assume that the transmitter only has access toDmax but the
receiver knows bothτ andDmax. For the point-to-point case, one can easily achieve the capacity by using
a capacity-achieving code sinceτ is known and can be easily compensated. However, in a networkwhere
there are multiple source nodes, the signals may arrive at different time and are all mixed together so
that this simple approach may no longer work. In order to obtain insight into this problem, we begin
with the point-to-point case. Motivated by this issue, we propose a general framework called IDT which
utilizes a pair of interleaver/deinterleaver to transformthe received signal into the desired form. When
combined with QC codes, the IDT allows us to combat time delays that may be introduced in many
practical scenarios such as asynchronous channels and/or ISI channels. We nickname this combination as
interleave/deinterleave transformed quasi-cyclic (IDT-QC) codes.

A. System Model

Consider a point-to-point communication with AWGN and delay τ ∈ {0, . . . , Dmax}. The transmitter
wishes to send a messagew ∈ FK

p to the receiver. It first feeds the message into an encoderEN : FK
p → FN

p

to form the codewordc = EN(w) ∈ FN
p . The transmitter adopts the modulation schemeM : FN

p → AN

to form the transmitted signalx = M(c) ∈ AN whereA is the signal constellation. The transmitted
signalx is subject to an input power constraintP .

1

N
‖x‖2 = 1

N

N∑

n=1

|x[n]|2 ≤ P. (2)

1 Note that by systematic form, we particularly mean those encoders whose generator matrices can be written as[P |I ], whereI is the
identity matrix. While it is true that for any linear code onecan always find a set of columns that can be used as systematic bits, these
positions might not be consecutive. Since reordering the bits destroys the QC property, it is not possible to put the generator matrix of every
QC code into a systematic form mentioned above without violating the QC property.

2Mappings having such properties between two rings are said to be ring homomorphisms. A ring homomorphism is a ring isomorphism if
it is bijective. One can see that the mapping in (1) is in fact anatural mapping fromFp to Z/pZ which is known to be a ring isomorphism.
There are other constellations possessing such properties(e.g. [20] [21] [22]) but we restrict ourselves to PAM for brevity.
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x̃ x̄
insert CPinterleaverE M

w xc

ỹ ȳ remove
interleaverG

ŵ y

CP
de-

channel

Fig. 1. Block diagram of the proposed IDT.

The received signal is then given by

y[n] = x[n− τ ] + z[n], n ∈ {1, 2, . . . , N + τ}, (3)

whereτ ∈ {0, . . . , Dmax} represents an integer delay andz[n] ∼ N (0, 1). Upon receivingy, the receiver
then forms an estimate of the messageŵ ∈ FK

p via GN : RN → FK
p . Throughout the paper, we assume

that τ is unknown to the transmitter and is known to the receiver andDmax is known to both ends. For
the ISI channel, this assumption implies that although the transmitter may not know how many taps we
would have, it knows the maximal delay spreadDmax. For asynchronous communication, this assumption
models the scenario where there is only a very loose synchronization mechanism that would control the
time delays to some degreeDmax. In what follows, we give the definition of codes, achievablerates, and
capacity.

Definition 4 (Codes). An (N,K) code consists of a pair of encoding/decoding functions(EN ,GN)
described above and an error probability given by

P (N)
e , P (ŵ 6= w) . (4)

Definition 5 (Achievable rate and capacity). For a given set of parametersP andDmax, a rateR(P,Dmax)
is achievable if for anyε > 0 there is an(N,K) code overFp such that

K ≥ NR(P,Dmax)/ log(p) andP (N)
e ≤ ε. (5)

The capacity is defined as the supremum of all achievable rates given by

C(P,Dmax) , supR(P,Dmax). (6)

B. IDT-QC Codes

Let C be a(N ′, K) b-QC linear/lattice code with the design rateRd = rd · log(p) whererd , K/N ′ and
rdb ∈ Z. Also, we enforce the generator matrix of this code to be systematic. In the proposed IDT-QC
codes shown in Fig. 1, the transmitter maps the message to a codewordc ∈ C via the encoderE . This
codeword is modulated byM to form the signal̃x. The signal is then fed into a(b, N ′/b) write column-
wise transmit row-wise interleaver [26] to get a interleaved signalx̄ where the input-output relationship
is given by

x̄[n] = x̃ [1 + (⌊n/L⌋) + b · (n mod L− 1)] , (7)

whereL , N ′/b is always an integer provided by the QC constraint. An illustration of interleaving can
be found in Fig. 2 and one example withb = 4 is given in Fig. 3.

Note that one can write the interleaved codeword as the collection of b sub-blocks as

x̄ = [x̄[1]x̄[2] . . . x̄[b]], (8)

where each sub-block̄x[s] for s ∈ {1, . . . , b}, is of lengthL. For each of the firstrdb sub-blocks, we
freeze theDmax last positions to be zero. This is possible since the encoderis systematic and the first
rdb blocks correspond to the message part. We then insert a cyclic prefix (CP) of lengthDmax for each
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x̃[1]

x̃[2]

x̃[b]

...

write

transmit x̃[b+ 1]

x̃[b+ 2]

x̃[2b]

...

· · ·

· · ·

· · ·

x̃[N ′ − b+ 1]

x̃[N ′ − b+ 2]

x̃[N ′]

...
...

Fig. 2. The write column-wise transmit row-wise interleaver.

... ... ... ...

x̄1 x̄2 x̄3 x̄4

Fig. 3. An example of the IDT-QC codes withb = 4.

of the last(1− rd)b sub-blocks by appending the lastDmax symbols to the front. The overall transmitted
signal is given by

x = [x[1],x[2], . . . ,x[b]], (9)

where fors ∈ {1, . . . , rdb}, x[s] = x̄[s] whose lastDmax symbols are 0, and fors ∈ {rdb+ 1, . . . , rdb}
x[s] , [x̄L−Dmax+1[s], . . . , x̄L[s]

︸ ︷︷ ︸

CP with lengthDmax

, x̄1[s], . . . , x̄L[s]
︸ ︷︷ ︸

=x̄[s]

]. (10)

The total length of this signal isN = N ′ + (1− rd)bDmax. An illustration of the overall signal structure
is given in Fig. 4.(a). In fact, for the purpose of IDT transform, one does not have to distinguish the
parts using CPs and freezing symbols; it suffices to append CPs for all the sub-blocks. The reason that
we choose to freeze symbols instead of inserting CPs for the first rdb sub-blocks will become apparent
in Sections IV and V.

At the receiver end, since the receiver knows the time delaysτ andτ ≤ Dmax, it first discards the CP
for each sub-block to form̄y. As shown in Fig. 5, this signal̄y is then fed to a(b, N ′/b) read row-wise
output column-wise deinterleaver to get outputỹ where the input-output relationship is given by

ỹ[n] = ȳ [1 + (⌊n/b⌋) + L · (n mod b− 1)] , (11)

which is then fed into the decoder of the QC code to form an estimate of the message. The actual rate
of this IDT-QC code is given by

Ra =
K − rdbDmax

N ′ + (1− rd)bDmax

log(p)

=

(

1− (2− rd)bDmax

N ′ + (1− rd)bDmax

)

Rd (12)

0

· · · CP

x̄[1] x̄[rDb+ 1]

0

x̄[2]

0 CP

x̄[rDb+ 2]

· · ·

(a) Synchronous case

· · · CP

x̄(τ)[1] x̄(τ)[rDb+ 1]

0

x̄(τ)[2]

0 CP

x̄(τ)[rDb+ 2]

· · ·

(b) Asynchronous case

τ

Fig. 4. (a) Overall signal structure. (b) Asynchronous case.
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ȳ[1]

ȳ[L+ 1]

ȳ[N ′ − L+ 1]

...

output

read · · ·

· · ·

· · ·

ȳ[L]

ȳ[2L]

ȳ[N ′]

...
...

Fig. 5. The read row-wise output column-wise deinterleaver.

which tends toRd asymptotically but introduces a rate loss for any finiteN ′.
In the following, we provide some properties of the IDT-QC codes.

Lemma 6. If the receiver opts not to compensate the delayτ , i.e., the receiver observes a noisy version
of the transmitted signal delayed byτ , [0, . . . , 0

︸ ︷︷ ︸

τ

,x[1],x[2], . . . ,x[b]], then the proposed IDT transforms

the received signal into a noisy version of the codeword circularly shifted byb · τ . Moreover, if ab-QC
code is employed in conjunction with IDT, one can directly decodec(bτ).

Proof: Let us first assume that there is no channel noise. Forτ ≤ Dmax, due to the frozen bits for
the first rdb sub-blocks and the insetion/removal of the CPs for the last(1 − rd)b sub-blocks, the linear
shift by τ introduced by the channel has been transformed into circular shift of each sub-block byτ . This
is written with a slight abuse of notation as

x̄(τ) , [x̄(τ)[1], x̄(τ)[2], . . . , x̄(τ)[b]], (13)

where fors ∈ {1, . . . , b},

x̄(τ)[s] = [x̄L−τ+1[s], . . . , x̄L[s], x̄1[s], . . . , x̄L−τ [s]] (14)

is the circularly shifted version of̄x[s] by τ positions. One can then verify that the output of the
deinterleaver with this input would bẽx(bτ) which is corresponding to the codewordc(bτ) if a b-QC
code is employed. Therefore, in the presence of channel noise, the received signal would be a noisy
signal corresponds toc(bτ) and hence we can directly decodec(bτ) instead ofc.

Theorem 7. There exists a sequence of IDT-QC linear/lattice codes thatachieve the capacity of the
asynchronous point-to-point AWGN channel.

Proof: Let L > Dmax and letC1, C2, . . . , CL be identical(b, k) linear/lattice codes that can approach
the capacity [27] [28] whenb → ∞ for a fixed k/b. i.e., for a ε > 0, there is a large enoughb such
that k/b log(p) > C(P, 0) − ε and P

(b)
e < ε/L. Moreover, in order to make these codes fit into the

aforementioned form, the generator matrices of these codesshould be systematic. We would like to
construct a capacity-achieving IDT-QC codesC for the asynchronous AWGN channel fromC1, C2, . . . , CL.
For everycl ∈ Cl for l ∈ {1, 2, . . . , L}, we construct the codeword

c = [c1, c2, . . . , cL]. (15)

Using the fact thatC1, C2, . . . , CL are identical linear/lattice codes, one can see that the collection of such
codewords forms a(bL, kL) b-QC code with design rateRd = rd log(p) whererd = K/N ′ = k/b. The
codeword is then modulated tõx, fed into the interleaver to form̄x, bits-frozen and CP-appended to get
x.

The receiver observes a noisy version of the transmitted codeword delayed byτ which can be easily
compensated asτ is known by the receiver. It then removes the CP and feeds the signal to the deinterleaver
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to get a noisy version of the original signalx. The error probability of this IDT-QC code can be bounded
using the union bound as

P (Lb)
e < L · ε

L
= ε, (16)

and from (12), one has the actual rate given by

Ra(b, L) =

(

1− (2b− k)Dmax

bL+ (b− k)Dmax

)

Rd. (17)

Now, letting b go to infinity results inRd → C and

Ra(L) = lim
b→∞

Ra(b, L) =

(

1− (2− rd)Dmax

L+ (1− rd)Dmax

)

C, (18)

which in turn results inlimL→∞Ra(L) = C which completes the proof.

Remark 8. Note that the ensemble of codes that we construct in Theorem 7is not necessarily a good
ensemble in the sense that for a particular target error rate, it requires a very long code length to achieve
that error rate. In practice, QC codes are usually not constructed this way and QC codes with not very
long block length comparing to the one constructed here can perform very well. Since this is the case,
we only use this ensemble for the proof and construct QC codesfor simulation by existing constructions
such as AR4JA.

C. Advantages and Disadvantages

Here, we provide a discussion of some advantages and disadvantages of the proposed IDT-QC codes.
Advantages:
• The proposed IDT-QC codes substantially generalize the idea of [6]. Unlike [6] which only considers

allowing the use of convolutional codes and only works for the two-way relay channel, the proposed
framework is more general in that it can take any QC codes and would work for a larger class
of networks as will be shown later on. The use of QC codes provides significant improvement in
practice as there are families of QC codes (e.g. AR4JA codes [29]) that can work very close to
the Shannon limit with reasonable decoding complexity (iterative decoding). On the other hand, for
convolutional codes, one has to use a very large constraint length (usually with formidably high
decoding complexity) in order to approach the Shannon limit.

• Compared to the use of cyclic codes as in [5] [8], our approachenjoys a better error-correcting
capability provided by QC codes. This can be easily seen by the fact that QC codes contain the
family of cyclic codes as a special case. Our simulation in the following sections show that even
when we consider the rate loss introduced by the IDT, IDT-QC codes significantly outperform cyclic
codes. Moreover, unlike cyclic codes, the proposed IDT-QC codes can be easily shown to achieve
the Shannon limit.

• In practice, QC codes (QC LDPC codes in particular) have beenvery popular and have been adopted
in many communication standards due to the existence of efficient encoding and decoding algorithms.
The proposed IDT-QC codes naturally inherit those practical benefits from QC codes and hence are
practically attractive.

• As will be unveiled in the following sections, the proposed IDT-QC codes can not only harness
interference in the presence of asynchronism, but also exploit asynchronism in some cases.

Disadvantages:
• Due to the use of interleaver and deinterleaver in our proposed IDT-QC codes, the transmitter has to

wait until the entire codeword is generated before transmission. This results in an increased encoding
latency.

• While the rate loss is negligible asL → ∞ when we prove the capacity result in Theorem 7, it must
be taken into account in the finite length regime. However, inthe following sections, we will show
that the proposed IDT-QC codes outperform cyclic codes evenwhen rate loss is included.
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Z(D)

+
Y (D)X(D)w

H(D)ENC A(D)
Y ′(D)

DEC

I(D)− 1

ŵ

Fig. 6. The integer-forcing equalization system.

IV. A PPLICATION 1: INTEGER-FORCING EQUALIZATION FOR ISI CHANNELS

In this section, we consider point-to-point communicationwith ISI. It has been known that the capacity
of the ISI channel can be achieved by multi-carrier systems.However, the high peak-to-average power ratio
makes this approach less attractive for applications requiring extremely low complexity such as wireless
sensor networks. Another way to approach capacity is to codeover time domain and uses a decision
feedback equalizer (DFE) at the receiver. For this to work, avery long interleaver/deinterleaver (between
multiple codewords) is required to avoid error propagation. Recently, Ordentlich and Erez in [5] proposed
a new linear equalization technique called integer-forcing equalization. This new equalization technique
does not require inteleaver/deinterleaver between codewords and avoids the error propagation as no DFE
is implemented. However, one of the drawbacks pointed out bythe authors themselves is that the channel
coding adopted is required to be cyclic and hence is not guaranteed to achieve capacity. In what follows,
we will replace the cyclic codes by the proposed IDT-QC codeswhich are capacity-achieving to achieve
the upper bound on information rates presented in [5]. It should be noted that unlike the DFE-based
scheme, the interleaver/deinterleaver for the proposed framework is within a QC codeword and hence is
much shorter than that in DFE-based schemes.

A. Problem Statement

The transmitter encodes its messagew ∈ FK
p to a codewordc ∈ FN

p which is then mapped to a signal
x ∈ AN via M whereA is the signal constellation (e.g., M-PAM) andM is the natural mapping. This
signal is subject to a power constraintP and is sent over an AWGN channel with ISIh = [h1, . . . , hdM ]
wheredM depends on the maximal delay spread and the sampling frequency. The received signal is given
by

y = h ∗ x+ z. (19)

i.e., the received signal would be a noisy version of a linearcombination of the codeword linearly shifted
by integers. We consider a recently proposed linear equalizer called integer-forcing equalizer proposed in
[5]. This technique first passesy to a linear equalizer chosen in such a way that the equalized channel
impulse responses are forced to be an integer vectorsi , [i0, i1, . . . , iDmax

]. Also, one can easily transform
linear convolution into circular convolution. The equalized signal is then given by

y =
Dmax∑

d=0

idx
(d) + z′, (20)

wherez′ is the filtered noise.
The authors in [5] then proposed using cyclic codes overFp at the transmitter so thatϕ(

∑Dmax

d=0 idx
(d))

with ϕ , M−1 ◦ mod p is a codeword of the same cyclic code. Therefore, one can directly decode
ϕ(
∑Dmax

d=0 idx
(d)) from y mod p. This decoded signal is then used to recoverx and hencew. In what

follows, we propose using the IDT-QC codes to replace the cyclic codes. Since the problem of designing
and analyzing integer-forcing equalizers has been well addressed in [5], we assume that the ISI channel
has already been integral. i.e.,h = i.
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Fig. 7. The idea of using IDT-QC for point-to-point communication with ISI.

B. Using IDT-QC for Point-to-Point Communication with ISI

After the integer-forcing equalizer, the signal becomes linear combination of linearly-shifted versions
of the transmitted signal with integer coefficientsid ∈ Z for d ∈ {0, . . . , Dmax}. As shown in Fig. 7
where an example withDmax = 2 is given, the receiver then removes the received signal at the positions
where the CP of the first tap’s signal should be. Then the signal can be expressed as a noisy version of
the linear combination of the codeword circularly shifted by integers given by

ȳ =

Dmax∑

d=0

idx̄
(d) + z̄, (21)

wherex̄(d) is as in (13) and elements in̄z and those inz have the same distribution. As shown in Lemma 6,
any linear shift by an integerd ≤ Dmax introduced by the channel will be transformed by the IDT into
b · d circular shift for the codeword. i.e., the channel would be transformed into

ỹ =

Dmax∑

d=0

idx̃
(bd) + z̃, (22)

where elements iñz and those inz have the same distribution. Moreover, since IDT-QC codes adopt
b-QC codes for channel coding, everỹx(bd) in (22) corresponds to a valid codeword in the underlying
QC code. This in turn allows us to directly decodeỹ mod p to a valid codewordϕ

(
∑Dmax

d=0 idx̃
(bd)
)

(or

ϕ(I(Db)X(D)) in theD-domain) in the same QC code. After this codeword is decoded,one can use the
knowledge of frozen bits to strip out all the message bits. This is perhaps easier seen from the second
representation and is shown in Fig. 7. It can be seen that within each sub-block corresponding to the
message part, one can initiate the deconvolution since the lastDmax bits are frozen.

It has been shown in Section III that there exists a sequence of the proposed IDT-QC codes that
can achieve capacity. Thus, theoretically, using the proposed framework allows one to achieve the upper
bound on information rates presented in [5] which may not be achievable for the cyclic coding scheme
proposed therein. Therefore, the proposed framework bridges the gap-to-capacity for such integer-forcing
equalization schemes. In what follows, we provide some simulation results to demonstrate that the proposed
IDT-QC codes outperform cyclic codes even though for the finite-length regime, the proposed IDT-QC
codes suffer from a rate loss. It is worth mentioning that in addition to being of independent interest, the
integer-forcing equalization for ISI channel will play an important role in using IDT-QC for asynchronous
compute-and-forward.

C. Simulation Results

We now provide some simulation results to compare the proposed IDT-QC framework and the cyclic
coded scheme proposed in [5]. We consider the dicode channelwhose impulse response isI(D) = 1+D
(i.e., i0 = i1 = 1); therefore,Dmax = 1. We construct an binary IDT-QC LDPC code from the AR4JA
ensemble [18] withN ′ = 4096, b = 32, K = 3072, and the design rateRd = 0.75. The actual rate of this
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code isRa = 0.742. For comparison with the scheme in [5], we also construct a cyclic LDPC code from
the ensemble proposed in [30] withN ′ = N = 4095, K = 2703, and the design rateRd = 0.66. Note that
for the cyclic coded scheme in [5], one has to freezeDmax bits for initializing the deconvolution. This
results in the actual rateRa ≈ Rd = 0.66. For the both codes, the decoding algorithm is a message-passing
algorithm [31] with at most200 iterations. SinceI(D) = 1+D, the receiver attempts to decodec⊕ c(b).
Simulation results presented in Fig. 8 show that in spite of having a higher rate, the proposed IDT-QC
LDPC code provides roughly 1.1 dB gain when BER is at10−5. This is mainly because the proposed
IDT transform enables the use of QC codes where very powerfulensembles such as AR4JA can be easily
constructed. Moreover, the conventional scheme in [5] relies solely on the family of cyclic codes which
is much smaller than that of QC codes.

We also provide the information rate corresponding to the independent uniformly distributed input
distribution for the dicode channel estimated by the methodin [32] (which is equivalent to the forward
recursion of the BCJR algorithm). One observes that there isa roughly 4.4dB gap between the proposed
scheme and the corresponding information rate atPe ≈ 10−5. This gap comes from the following sources.
First and foremost, a receive filter has not been used to harness all the energy in all the taps of the ISI
channel. In this example, this contributes a 3 dB loss. A second source is the power loss inherited from the
integer-forcing equalization approach which transforms the channel into amod p channel (heremod 2).
The final source of this gap simply comes from the fact that theblock length we consider here (4096)
is rather small. Similar but larger gap can be observed for the cyclic coded integer-forcing equalization
scheme.

It should be noted that for a single user ISI channel, using conventional equalization techniques such
as a decision feedback equalizer (DFE) will provide better results than integer-forcing equalization.
However, when a compute-and-forward problem is consideredwith multiple users and ISI, conventional
equalization techniques will not be sufficient to efficiently compute functions of transmitted signals since
the interference from multiple users and ISI cannot be simultaneously removed easily. In these cases,
integer-forcing equalization can substantially outperform conventional equalization techniques.

V. APPLICATION 2: ASYNCHRONOUSCOMPUTE-AND-FORWARD

In this section, we study the compute-and-forward relay network introduced by Nazer and Gastpar [4].
In particular, we consider the asynchronous version of thisnetwork where signals sent from different
source nodes may arrive at a destination node at different times. In the synchronous case, the compute-
and-forward strategy suggested in [4] implements anidentical nested lattice code [28] at each user and
directly decodes the received signal to a modulo version of linear combination of the codewords with
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ûm

...
...

hms
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integer coefficients at the destination. This scheme is shown to provide a substantially higher computation
rate in the medium signal-to-noise ratio (SNR) regime than existing schemes. For practical purposes, in
[21], this nested lattice code is replaced by linear code over Fp together with a signal mapping possessing
the property described in Section II in order to exploit the structural gain. The destination then decodes
the received signal to a linear combination of the codewordsoverFp.

There have been a few attempts at using physical-layer network coding to this asynchronous setting. A
convolutional coded scheme has been proposed in [6] to deal with synchronization errors; however, only
integer-valued delays (i.e., frame-level asynchronism) are allowed. In [7], an over-sampling method was
proposed and a graph-based decoding algorithm has been proposed specifically for this over-sampling
model. This over-sampling method can take real-valued delays (i.e., symbol-level asynchronism) but only
within one symbol time; thus, results in a stringent timing synchronization. In [9], frame-level and symbol-
level asynchronous compute-and-forward are considered where the destinations are only able to compute
synchronous functions. A very recent work in [8] has successfully applied cyclic codes to this problem
so that asynchronous functions are computable and showed through simulation that cyclic codes are able
to combat with real-valued delays within onepacket time.

In this section, we replace the cyclic codes by the proposed IDT-QC codes and show that this replace-
ment allows us to prove capacity results for both the frame-level and symbol-level cases. Moreover, the
simulation results given in Section VI show that this replacement substantially improves the performance.
It should be noted that since the proposed scheme relies on the quasi-cyclic property instead of the cyclic
property to deal with synchronization errors, the delay constraint is more stringent than the scheme in [8].
Nonetheless, it only requires the delays to be controlled within a certain rangeDmax (say few symbols
time), which is practically reasonable.

A. Problem Statement

As shown in Fig. 9, in a compute-and-forward network, there are totalS source nodes andM ≥ S
destination nodes. Each source nodes ∈ {1, . . . , S} encodes its messagews ∈ F

K
p to a codewordcs ∈ F

N
p .

This codeword is then modulated to the transmitted signalxs ∈ AN via a mappingM as described in
Section II. The codeword is subject to a power constraint given by

1

N
‖xs‖2 =

1

N

N∑

n=1

|xs[n]|2 ≤ P. (23)

Let τms be the delay experienced by the signal from sources to destinationm. We will separately con-
sider two cases, namely the frame-level asynchronous compute-and-forward whereτms ∈ {0, . . . , Dmax}
and the symbol-level asynchronous compute-and-forward where τms ∈ [0, T ) with T being symbol
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duration. For the frame-level asynchronous one, the received signal is given by

ym[n] =
S∑

s=1

hmsxs[n− τms] + zm[n], (24)

wherehms ∈ R (or C depending on whether the signal constellation is real or complex) is the channel
coefficient between the source nodes and destinationm, and zm[n] ∼ CN (0, 1). For the symbol-level
asynchronous compute-and-forward, one has to work with thecontinuous-time model given by

ym(t) =

S∑

s=1

N∑

n=1

hmsxs[n]p(t− nT − τms) + z(t), (25)

wherep(t) is the pulse shaping function andz(t) is a Gaussian process with zero mean and variance1.
The destination nodem is only interested in computing and forwarding a function ofthe messages.

In particular, the compute-and-forward scheme in [4] confines itself to synchronous functions of the
messages which mimics the behavior of linear network coding. i.e., the destination nodem chooses
{bms} and computesum = ⊕L

s=1bmsws such that the computation rate at nodem is maximized. The
computed functions together with{bms} are then forwarded to a central destination which desires all the
messages. It is clear that as long as the coefficients{bms} form a full-rank matrix, the central destination
would be able to invert the matrix and obtain all the messages. In the sequel, we will show that the use
of IDT-QC codes allows one to compute asynchronous functions which may lead one to an increased
computation rate. For ease of exposition, we will separately discuss the frame-level and symbol-level
models and restrict ourselves toS = M = 2, but the proposed scheme works for general scenarios.

B. Using IDT-QC for Frame-Level Asynchronous Compute-and-Forward

We illustrate the idea of using the proposed IDT-QC codes forframe-level asynchronous compute-and-
forward. Each source node adopts a sameb-QC code overFp for encoding its message to the codeword
cs which is then modulated to the signalx̃s = M(cs). It will then be interleaved to form̄xs and further
added frozen bits and appended CPs to form the transmitted signal xs. The length of the CPs is again
set to beDmax. One difference here is that for a compute-and-forward network with S source nodes, one
has to freezeSDmax positions instead ofDmax positions for each sub-block corresponding to message
part. As shown in Fig. 10, the receiver removes the signal at the positions where the first source node’s
CP should be and the received signal becomes

ȳm = am1x̄
(τm1)
1 + am2x̄

(τm2)
2 + z̄eq,m, (26)

where x̄
(τms)
s is as in (13) and̄zeq,m is the effective noise which consists of the noise and the self-

interference [4]. The destination node then feeds this signal into the deinterleaver. As discussed in
Lemma 6, the proposed IDT-QC codes transform any integer delay τ introduced by the channel into
b · τms circular shifts for the codeword. Thus, the deinterleaver output is given by

ỹm = am1x̃
(bτm1)
1 + am2x̃

(bτm2)
2 + z̃eq,m, (27)

where elements iñzeq,m and that inz̄eq,m have the same distribution. The receiverm then attempts to
compute the lattice pointam1x̃

(bτm1)
1 + am2x̃

(bτm2)
2 and uses the ring homomorphismϕ , M−1 ◦ mod p

to map this lattice point to

ϕ(am1x̃
(bτm1)
1 + am2x̃

(bτm2)
2 ) = bm1 ⊙ c

(bτm1)
1 ⊕ bm2 ⊙ c

(bτm2)
2 , (28)

wherebms , ϕ(ams). It should be noted that since the underlying code we adopt isa b-QC code,c(bτms)
s

is a codeword and so isfm , bm1 ⊙ c
(bτm1)
1 ⊕ bm2 ⊙ c

(bτm2)
2 .
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Fig. 10. An example of using IDT-QC for asynchronous compute-and-forward whereτm1 = 1, τm2 = 2, andDmax = 2.

The computed functions and those coefficients are then forwarded to the central destination and are
then further processed to recover all the messages. We now show that the compute-and-forward problem
with full rank coefficients can be equivalently representedas ISI channel problems in Section IV and can
be solved by deconvolution if sufficient initial conditionsare provided. For the sake of simplicity, we look
at the interleaved version offm given by

f̄m , bm1 ⊙ c̄
(τm1)
1 ⊕ bm2 ⊙ c̄

(τm2)
2 . (29)

In theD-domain, one has that

F̄ =

(
F̄1(D)
F̄2(D)

)

=

(
b11D

τ11 b12D
τ12

b21D
τ21 b22D

τ22

)

⊙
(

C̄1(D)
C̄2(D)

)

, B̄⊙ C̄. (30)

Note that mathematically, one can now left-multiply by the inverse of the matrix̄B to getC̄. In order to
endow this inverse an operational meaning, we note that for every full rank matrixB̄, one has

B̄−1 =
adj(B̄)

det(B̄)
, (31)

wheredet(.) is the determinant andadj(.) is the adjugate. One can then left multiplyF with adj(B̄) to
form

adj(B̄)⊙ F̄ = det(B̄)⊙ C̄. (32)

One observes that the problem has been converted into two separate ISI channel problems whose impulse
responses are integer vectors. Moreover, since each element in B̄ has the range{0, . . . , Dmax}, each
element indet(B̄) has range{0, . . . , 2Dmax} or in general{0, . . . , SDmax}. Therefore, this problem
can be solved by deconvolution provided that the transmitter freezeSDmax positions for each sub-block
belonging to the message part. The actual rate then becomes

Ra =
K − rdbSDmax

N ′ + (1− rd)bDmax

log(p)

=

(

1− (S + 1− rd)Dmax

L+ (1− rd)Dmax

)

Rd, (33)

which does not affect the asymptotic results. One example isgiven in the following.

Example 9. Consider a 2-by-2 example overF2. Suppose that relay 1 receives

y1[n] = x1[n− 1] + x2[n] + z1[n], (34)

and relay 2 receives
y2[n] = x1[n] + x2[n− 1] + z2[n]. (35)
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Then

B̄ =

(
D 1
1 D

)

. (36)

We havedet(B̄) = 1 +D2, andadj(B̄) = B̄. Thus, by left-multiplyingadj(B̄), one has
(

DF̄1(D) + F̄2(D)
F̄1(D) +DF̄2(D)

)

=

(
(1 +D2)C̄1(D)
(1 +D2)C̄2(D)

)

, (37)

which are two separate ISI channel problems. What (37) implies is that the receiver separately decodes
c̄1 ⊕ c̄

(2b)
1 and c̄2 ⊕ c̄

(2b)
2 whereb is the shifting constraint. Then using the frozen bits, deconvolutions are

performed to obtain̄c1 and c̄2

We now present the main theorem of this section.

Theorem 10. Consider the frame asynchronous case whereτms ∈ {0, . . . , Dmax}. At relay m, givenhm

andam, a computation rate of

R(hm, am) =
1

2
log+

((

‖am‖2 −
P |hH

mam|2
1 + P‖hm‖2

)−1
)

, (38)

whereams ∈ Z, is achievable per real dimension.

Proof: See Appendix A.

C. Achieving higher rates than in the synchronous case

One important observation here is that the proposed QC-IDT scheme allows one to exploit another
dimension, namely the delay dimension. This is due to the fact that the QC nature of the proposed
scheme enables the computation of asynchronous functions in addition to synchronous ones. Sometimes,
this allows one to achieve ratessurpassing that achieved by tightly synchronous compute-and-forward

with the same channel coefficients. For example, the matrixB̄sync =

(
1 1
1 1

)

is not invertible; however,

the matrix in (36) is invertible. It must be noted that the delays are completely determined by the channel
so that one does not have control over those parameters. But instead of being limited by those delays, the
proposed scheme is capable of exploiting them. One example of how the delay may improve the system
performance is given in the following.

Example 11. In Fig. 11, we plot the achievable computation rates of asynchronous compute-and-forward,
for the cases whereS = M = 2 andS = M = 3 respectively. The channel coefficientshms are drawn from
i.i.d. Rayleigh distribution. One can see from this figure that for both cases, increasingDmax substantially
increases achievable computation rates. This effect is most pronounced whenDmax is increased from 0 to
1. This example demonstrates that when the channel introduces delays, using the proposed scheme which
allows the decoding of asynchronous functions results in higher achievable computation rates.

Remark 12. Frame asynchronous compute-and-forward has been considered in [9]. The scheme therein
does not possess the QC or cyclic properties so that the relays are forced to compute synchronous functions
only. As a consequence, they have to use multiple antenna at the relays to rotate the received signal in
order to recover synchronous functions in the presence of frame-synchronization errors. This introduces
a huge loss not just in rates but also in degrees of freedom because multiple antennas are used just for
computing one function at each relay. On the other hand, thanks to the QC nature of the proposed scheme,
the computation rates given in Theorem 10 have the exactly same form with that in [4], i.e., as there
was no frame asynchronism at all. This is a direct consequence of enabling computing asynchronous
functions which are undecodable in [9]. However, this gain does not come for free; this gain comes with
an increased burden in the next phase since in addition toams (or bms equivalently), the relays also have
to forward the delay profile to the central destination. But this is usually not an issue as the bottleneck is
usually the first phase.
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D. Using IDT-QC for Symbol-Level Asynchronous Compute-and-Forward

We now focus on the symbol-level asynchronous compute-and-forward. i.e., τms ∈ [0, T ) and the
continuous-time model in (25) is considered. Similar to [7][16] [33], we further assume that the pulse
shaping function adopted is the ideal (rectangular) pulse.Let πm be the permutation operation at the relay
m defined by

πm(1, . . . , S) = (j1, . . . , jS), (39)

such thatτmj1 ≤ . . . ≤ τmjS . In order to extract out all the energy, in general, one can perform S different
matched filterpmi(t) for i ∈ {1, . . . , S} as

pmi(t) =







0, τmji−1
+ (n− 1)T ≤ t < τmji + (n− 1)T√

P , τmji + (n− 1)T ≤ t < τmji+1
+ (n− 1)T

0, τmji+1
+ (n− 1)T ≤ t < nT ,

(40)

whereτmj0 = 0 andτmjS+1
= T for eachm. Note that the sampled output of different matched filters would

correspond to different functions. For example, as shown inFig. 12, for theS = 3 case, three different
matched filters would correspond to three different functions, namely,cj1 ⊕ c

(b)
j2

⊕ c
(b)
j3

, cj1 ⊕ cj2 ⊕ c
(b)
j3

,
andcj1 ⊕ cj2 ⊕ cj3 . The corresponding SNR are then given by

Pmi = PT (τmji − τmji−1
). (41)

We then pick the one with the highest SNR for compute-and-forward and discard the others. This would
result in the following achievable computation rates.
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Theorem 13.Consider the symbol asynchronous case whereτms ∈ [0, T ). At relaym, givenhm andam,
a computation rate of

R(hm, am) =
1

2
log+

((

‖am‖2 −
Pm|hH

mam|2
1 + Pm‖hm‖2

)−1
)

, (42)

whereams ∈ Z andPm = maxi∈{1,...,S} Pmi, is achievable per real dimension.

Proof: Similar to the proof of Theorem 10 but replacingP by Pm.

Remark 14. In [9], the same problem has been studied and achievable computation rates similar to
(42) but withPm replaced byPmjS has been achieved as only synchronous functions are computable. Our
proposed scheme provides increased computation rates through allowing the computation of asynchronous
functions.

Remark 15. The above scheme only works with the signals corresponding to the function with the highest
SNR and completely ignores those corresponding to other functions. However, as will be discussed in
the next section, in terms of error probability, one can takeadvantage of those information by jointly
considering detection and decoding.

VI. PRACTICAL DETECTION AND DECODING FORASYNCHRONOUSCOMPUTE-AND-FORWARD

In this section, we introduce a joint detection and decodingscheme for the proposed IDT-QC codes
to alleviate the SNR loss in the presence of symbol-level asynchronism. This decoder is then used for
generating simulation results which demonstrate that the proposed framework substantially outperforms
the cyclic coding scheme [8]. We again begin with the continuous-time model in (25). We further restrict
our attention to a specific relay and drop the subscriptm for the sake of simplicity. This allows us
to assumeτ1 = 0 and τ2 = τ without loss of generality. Letτ ∈ [0, Dmax] where τ = τf + τs with
τf ∈ {0, 1, ..., Dmax − 1} being the frame-level asynchronism andτs ∈ [0, 1) being the symbol-level
asynchronism.

We use a set of matched filters similar to (40) to over-sample the received signal [7]. This will result
in the following sampled outputs

r[2n− 1] = h1x1[n] + h2x2[n− 1] + z[2n− 1], (43)

with x2[0] = 0 and
r[2n] = h1x1[n] + h2x2[n] + z[2n], (44)

andr[2(N−τf )+1] = h2x2[N−τf ]+z[2(N−τf )+1] wherez[2n−1] ∼ N (0, 1/τs), z[2(N−τf )+1] ∼
N (0, 1/τs), andz[2n] ∼ N (0, 1/(1−τs)). In what follows, we describe how to perform the detection and
decoding based on this over-sampling model.

A. Joint MAP detection and JCF decoding

We now propose a joint detection and decoding scheme which can be deemed as the decoding scheme in
[7] tailored specifically for the IDT-QC codes. The decodingalgorithm is based on the Tanner graph given
in Fig. 13. The top part of the Tanner graph with zigzag fashion is associated with the MAP detection
which accommodates the correlation between two consecutive over-sampling symbols. The bottom part
of the Tanner graph is precisely that of the underlying QC code but overFp2, i.e., the ACNC decoder
in [33] which we refer to as the joint compute-and-forward (JCF) decoder. Unlike [7], there is a pair
of interleaver/deinterleaver between the MAP detection and the JCF decoding parts. Moreover, thanks to
the ability described in Lemma 6, depending on the corresponding SNRs, the receiver can opt to decode
eitherc1 ⊕ c

(bτf )
2 or c1 ⊕ c

(b(τf+1))
2 . This is represented as solid and dash edges, respectively.
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interleaver/de-interleaver

MAP detector

JCF decoder

check nodes (code) check node (induced by delay) variable node

0 ≤ τf ≤ 0.5T 0.5T ≤ τf ≤ T

Fig. 13. Graph representation of iterative receiver

B. Simulation Results

We now provide some simulation results. For the sake of simplicity, we only consider coding overF2

with BPSK. The channel parameters are set to beh1 = h2 = 1 and Dmax = 5. We again construct a
IDT-QC LDPC code from the AR4JA ensemble withN = 4096, b = 32, K = 3072, and the design rate
Rd = 0.75. The actual rate is thenRa = 0.685. We would like to recall that for a same set ofDmax

andb, the longer the code the smaller the rate loss. Also, we construct the same cyclic LDPC code as in
Section IV with design rateRd = 0.66. Note that for using cyclic codes for asynchronous compute-and-
forward, one has to freezeSDmax bits. Thus, the actual rate of the cyclic LDPC code isRa = 0.658.
The decoding algorithm for the both codes is the joint MAP detection and JCF decoding described above
with 40 outer iterations and5 inner iterations.

In Fig. 14, BER versus SNR curve is plotted. One can observe that despite of having a higher rate,
the proposed IDT-QC LDPC code outperforms the cyclic LDPC code by roughly 1.1 dB whenτ = 0,
i.e., under perfect synchronization. This is the coding gain offered by the AR4JA code over the cyclic
code adopted. Whenτ = 0.5, the proposed IDT-QC LDPC code provides roughly 1.5 dB gain over the
cyclic-LDPC considered. This enlarged gap may be explainedby the observation that the joint graph of
the zigzag detection and the parity check of a cyclic code is more likely to create short cycles compared
to QC LDPC codes.

In Fig. 15, BER versus delay curve is plotted for SNR= 3.5 dB. One observes that in the region
τ ∈ [0, T ], the proposed IDT-QC LDPC code always performs better than the cyclic LDPC code in terms
of BER. Moreover, we observe a symmetric behavior of BER about τ = 0.5. This is a consequence
of allowing decoding to asynchronous functions so that the performance would only depend on how
close the delayτ is to an integer. According to this observation, one expectsa periodic behavior for
other [kT, (k+ 1)T ] within [0, Dmax]. Another interesting observation is that there is a local minimum at
aroundτ = 0.5. This may be explained by the observation that at aroundτ = 0.5, two codewords are
well separated and hence the zigzag detection and JCF would perform like a decode-and-forward decoder.

VII. CONCLUDING REMARKS AND FUTURE WORK

The problem of communication in the presence of time delays that cannot be easily compensated, such as
what we encounter in asynchronous physical layer network coding, has been studied. There are three main
results in the paper. Theorem 10 establishes that fundamentally there is no loss in the information rates
achievable in the presence of timing delays which are integer multiples of symbol duration in comparison
to the synchronous case. This is the first result to show that integer-valued asynchronism does not cause any
reduction in the achievable rates. This result is obtained through the use of a novel framework called the
interleave-deinterleave (IDT) transform in conjunction with quasi-cyclic codes. Secondly, in Section V-C,
we have shown that delays from the channel can be exploited todecode an increased set of functions
at the relays, thereby obtaining higher rates than in the synchronous case in some scenarios. Finally, an
achievable rate in the presence of non-integer valued delays is given in Theorem 13. The rates achievable
are higher than those reported earlier in the literature in [9].
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Fig. 14. BER performance of the proposed IDT-QC LDPC code with Ra = 0.685 and the cyclic LDPC code withR = 0.658 for
compute-and-forward.
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Fig. 15. BER versusτ for the proposed IDT-QC LDPC code withR = 0.685 and the cyclic LDPC code withR = 0.658 for compute-
and-forward.

As applications, the IDT-QC codes have been implemented as coding schemes for two channel models,
namely the integer-forcing equalized ISI channel and the asynchronous compute-and-forward relay net-
work. For the former, the proposed IDT-QC framework was ableto bridge the gap-to-capacity suffered
from the cyclic coding scheme recently proposed. For the latter, it has been shown that the proposed
IDT-QC scheme not only provides significantly higher rates than the state of the art but also allows
the exploitation of the delay dimension which may lead one torates beyond those achieved by tightly
synchronous compute-and-forward. Moreover, practical implementation of the proposed scheme has also
been considered where a joint detection and decoding schemewas considered. Simulation results for the
two transmitters and one receiver case have further confirmed the theoretical analysis and observations.

Interesting future work includes the following. Theoretically, it is of interest to see how one can
further benefit from the delay dimension introduced by the channel. For example, for the symbol-level
asynchronous compute-and-forward, it could be the case that some relays are unable to compute any
function with a rate above the threshold but some relays are able to compute more than one functions
(possibly have the same coefficients but different delays) with rates above the threshold. If the second
phase bandwidth is not an issue, the central destination canpick S functions with the highest computation
rates, regardless of where the functions are computed. Thismay lead to higher computation rates than
that provided by tightly synchronous compute-and-forward. Practically, it is interesting to design spatially-
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coupled QC LDPC codes which can further bridge the gap to those theoretical results. Moreover, it is of
interest to investigate the impact of using a practical pulse shaping function.

APPENDIX A
PROOF OFTHEOREM 10

We start by reviewing the nested lattice code of Erez and Zamir [28] adopted by [4] for achieving the
computation rate in the absence of synchronization errors.Let Λf andΛc be twob-dimensional lattices with
the relationshipΛc ⊆ Λf . A nested lattice code is a code using the minimum-energy coset representatives
of Λf/Λc as codewords. i.e.,C , Λf ∩ VΛc

whereVΛ is the fundamental Voronoi region of a latticeΛ.
The rate of a nested lattice codes is given by

R =
1

b
log

(
Vol(VΛc

)

Vol(VΛf
)

)

. (45)

Moreover, lattices in [28] are constructed by ConstructionA with (b, k) linear codes overFp; hence, one
can further rewrite the rate asR = k/b log(p). We denote such nested lattice codes as(b, k) nested lattice
codes.

Now, let C(1), C(2), . . . , C(L) be identical(b, k) nested lattice codeΛf ∩VΛc
that can achieveR(hm, am)

given in (38) in the absence of synchronization errors. i.e., for a ε > 0, there exist sufficiently largeb
andp such thatk/b log(p) > R(hm, am)− ε andP

(b)
e < ε/L. Let us again concatenateL codes to form

a super-code being the collection ofc = [c1, c2, . . . , cL]. We then feed codewords of the super-code into
the IDT transform to freeze bits and add CP. Note that every Construction A lattice can be easily put into
a systematic form [34] and hence freezing bits is feasible.

From (27), one can see that the proposed IDT transform would make the received signal a noisy version
of

[am1x
L−τm1+1, . . . , am1x

L−τm1 ]+

[am2x
L−τm2+1, . . . , am2x

L−τm2 ]. (46)

Each b sub-block is now a perfectly synchronized compute-and-forward problem. Therefore, we can
computeam1x

l+am2x
l−τm2+τm1 mod L for eachl ∈ {1, . . . , L} separately and use the mappingϕ to obtain

linear combinations inFp. The error probability can be union bounded byPLb
e < ε and the actual rate

of this strategy is given by (33). Now, lettingb, p → ∞ results in vanishingε and the rate of each
nested lattice sub-code would approachR(hm, am). Moreover, lettingL → ∞ would make the actual
rate converge to the design rateR(hm, am). This completes the proof.
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