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Abstract—This paper summarizes recent contributions in the
broad area of energy harvesting wireless communications. In
particular, we provide the current state of the art for wireless
networks composed of energy harvesting nodes, starting from the
information-theoretic performance limits to transmission schedul-
ing policies and resource allocation, medium access, and net-
working issues. The emerging related area of energy transfer for
self-sustaining energy harvesting wireless networks is considered
in detail covering both energy cooperation aspects and simulta-
neous energy and information transfer. Various potential models
with energy harvesting nodes at different network scales are re-
viewed, as well as models for energy consumption at the nodes.

Index Terms—Energy harvesting communications, energy co-
operation, simultaneous wireless information and energy transfer.

I. INTRODUCTION

PROVIDING energy harvesting capability to wireless de-
vices enables the nodes to continually acquire energy

from nature or man-made phenomena. This in turn provides a
promising future for wireless networks: self-sustainability and
virtually perpetual operation with network lifetimes limited by
those of the hardware rather than the energy storage. Energy
harvesting wireless networks are expected to introduce several
transformative changes in wireless networking as we know it:
in addition to energy self-sufficiency and perpetual operation,
expected benefits include reduced use of conventional energy
and accompanying carbon footprint, untethered mobility by
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breaking away from conventional battery recharging, and an
ability to deploy wireless networks at hard-to-reach places such
as remote rural areas, within concrete structures, and within
the human body. As such, energy harvesting wireless networks
will make it possible to develop new medical, environmental,
monitoring/surveillance and safety applications which are oth-
erwise impossible with conventional battery-powered operation.

There are several different natural sources and associated
technologies for energy harvesting: solar, indoor lighting, vi-
brational, thermal, biological, chemical, electromagnetic, etc.
[1]–[8]. In addition, energy may be harvested from man-made
sources via wireless energy transfer, where energy is trans-
ferred from one node to another in a controlled manner. These
technologies have varying degrees of harvesting capacities
and efficiencies. While the devices/circuits side of engineering
has been continually working to improve energy harvesting
mechanisms and devices and their efficiency, the efforts on the
signals/systems side of engineering to develop communication
schemes for networks composed of energy harvesting nodes
have been quite recent, e.g., [9]–[56]; see also [57]. The goal
of this review article is to summarize recent results in energy
harvesting wireless communications and wireless energy trans-
fer from the perspectives of communication theory, signal pro-
cessing, information theory and wireless networking. Energy
harvesting brings new dimensions to the wireless communica-
tion problem in the form of intermittency and randomness of
available energy, as well as the possibility of sharing energy
among the nodes in a network via wireless energy transfer,
which necessitate a fresh look at wireless communication pro-
tocols at the physical, medium access and networking layers, as
well as at the fundamental performance limits, i.e., the channel
capacity. In this article, we summarize such approaches taken
in the past few years in this new research field.

The remainder of the paper is organized as follows. In
Section II, we summarize the efforts in identifying the
information-theoretic limits of energy harvesting communi-
cations, i.e., capacity, by considering energy harvests at the
channel use level. Next, in Section III, we consider throughput
maximization, where energy harvests are at the communication
slot level, and describe the efforts in identifying the through-
put optimal transmission power and scheduling policies. This
section considers offline availability of energy harvesting times
and amounts. In Section IV, we consider online optimiza-
tion of general reward functions, including the throughput. In
Section V, we go above the physical layer and develop medium
access layer control protocols for energy harvesting wireless
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Fig. 1. AWGN channel with random energy arrivals with (a) an unlimited battery, (b) no battery.

devices. Next, Section VI considers the case where energy
can be shared and transferred between the nodes in a wireless
network, jointly with information. Here, we consider both
information-theoretic and network-theoretic advances in infor-
mation and energy transfer including the notions of energy
cooperation and interactive exchange of information and en-
ergy. In Section VII, we consider energy harvesting sensor
networks where a number of operations other than transmis-
sion incur energy costs and impact the performance. Next, in
Section VIII, we examine the potential of large-scale energy
harvesting networks, including mobile ad hoc and cellular net-
works composed of energy harvesting wireless devices, as well
as heterogeneous systems with nodes of varying capabilities.
Section IX describes the advances in identifying total energy
consumption models for energy harvesting communication sys-
tems. Finally, Section X provides the conclusions for the article
and lists some future directions in the broad area of energy
harvesting communications.

II. AN INFORMATION-THEORETIC VIEW

OF ENERGY HARVESTING

Consider the classical AWGN channel with input X , additive
zero-mean unit-variance Gaussian noise N, and output Y =
X + N. The capacity of this channel is C = 1

2 log(1 + P). In
this classical result of Shannon [58], the codewords are average
power constrained in the following way:

1
n

n

∑
i=1

X2
i ≤ P (1)

for very large n, where Xi denotes the ith element of the
transmitted codeword. Consider now that the energy arrives
(is harvested) stochastically at the transmitter as a stationary
and ergodic random process Ei, with an average recharge rate
E[Ei] = P, as shown in Fig. 1(a). We therefore introduce a
canonical model of an energy harvesting system as a commu-
nication channel augmented with an energy harvesting battery
(energy queue) as shown in Fig. 1(a). In this initial model, we
assume that the battery has an unbounded capacity as depicted
by an open ceiling in Fig. 1(a). At each channel use, X2

i units
of energy are depleted from the battery, and Ei units of energy
enter the battery. For a codeword to be transmitted without
any energy outages, we need to satisfy the energy causality
constraints at every channel use

k

∑
i=1

X2
i ≤

k

∑
i=1

Ei, k = 1, . . . ,n (2)

That is, at each channel use, the cumulative energy expended
cannot exceed the cumulative energy harvested. We note that
while the average power constraint in the classical information
theory setting in (1) imposes a single constraint for the entire
codeword, the energy harvesting scenario in (2) imposes n
power constraints on the codeword. We also note that the
cumulative form of the constraints (2), and the unbounded
nature of the battery, allow for saving of the energy harvested
in any channel use to be used at a later channel use. On the
other hand, when there is no battery to save harvested energy
for future use, the constraints on the codewords become

X2
i ≤ Ei, i = 1, . . . ,n (3)

which impose instantaneous stochastic amplitude constraints
on the code symbols, as depicted in Fig. 1(b). When we have
a finite-sized battery (of maximum size Emax) as shown in
Fig. 2(a), the battery size (i.e., the amount of available energy
in the battery) at channel use i, denoted as Bi, will evolve as
follows

Bi+1 = min
{

Bi −X2
i +Ei,Emax

}
(4)

which denotes that first an X2
i amount of energy exits the

battery (due to the transmission of symbol Xi), and then Ei

amount of energy is harvested into the battery. Therefore, what
is transmitted, i.e., Xi, affects the amount of energy in the
battery in the next channel use, and how much energy there
is in the battery, i.e., Bi, affects the allowable set of symbols
via the instantaneous amplitude constraint X2

i ≤ Bi. Here we
note for future reference that: the battery state Bi will be a
highly correlated random process over time even when the har-
vesting process Ei is i.i.d.; actions of the transmitter (i.e., what
it sends) affect the future of the battery state; and the transmitter
naturally knows the battery state, but the receiver does not.

The capacity of the energy harvesting channel is known
only in the cases of unboundedly large battery (Emax = ∞)
[23], no battery (Emax = 0) [24], and for a unit-sized battery
(Emax = 1) over a binary noiseless link [25]. We will see that,
for a Gaussian channel, the channel capacities for Emax = ∞ and
Emax = 0 are very different and they are achieved with vastly
different strategies. In particular, when Emax = ∞, Gaussian
codebooks achieve capacity as in the classical setting, whereas
when Emax = 0, discrete signaling is observed numerically to
be optimal. The result for the case of unit-sized battery over
a binary noiseless link in [25] shows the richness of and the
challenges posed by this problem, and presents an interesting
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Fig. 2. (a) System with a finite-sized battery, (b) equivalent timing representation.

connection to timing channels [59]. The capacity for general
noisy channels with finite capacities (i.e., for any Emax) is
an important open research problem. Some progress has been
made in this direction, in terms of developing lower and upper
bounds to the capacity, in recent work [60], [61].

A. Capacity With an Unlimited-Sized Battery, Emax = ∞

We first note that each codeword satisfying the constraints (2)
also satisfies the average power constraint in (1) automatically
by the strong law of large numbers as 1

n ∑n
i=1 Ei → P. Therefore,

the constraints of the energy harvesting system are stricter,
and hence the capacity of the energy harvesting system is
upper bounded by the classical capacity with an average power
constraint equal to the average recharge rate.

Reference [23] gives two schemes to achieve this upper
bound. In the first scheme, called save-and-transmit, the
transmitter saves energy in the first h(n) channel uses (does
not transmit anything), and transmits data in the remaining
n−h(n) channels uses by using a codebook generated with i.i.d.
Gaussian samples of power equal to the average recharge rate P.
By letting both h(n) and n− h(n) go to ∞, and choosing h(n)
as o(n) such as log(n), we can achieve the AWGN capacity.
This can be seen as follows: By saving an infinite amount of
energy in the saving phase we prevent energy outages in the
data transmission phase with probability one, and by choosing
h(n) as o(n) we make the rate-hit taken by not transmitting
any data during the saving phase negligible. In the second
scheme, called best-effort-transmit, we start data transmission
right away without a saving period. We construct a Gaussian
codebook with average power that is ε (small enough) less
than the average recharge rate. At any given channel use, if we
have sufficient energy in the battery, we send the corresponding
code symbol, otherwise, we send a zero symbol (i.e., not send
anything). This creates mismatches between what is in the
codebook, and what is actually transmitted, but the number
of mismatches remains finite from the strong law of large
numbers, and therefore such mismatches are inconsequential
with joint typical decoding.

It is important to note that the availability of an unlimited
battery is essential in both achievable schemes. In particular, in
the save-and-transmit scheme, the unlimited battery enables us
to save essentially an unlimited amount of energy in the saving
phase to prevent any energy outages in the data transmission
phase. In the best-effort-transmit scheme, the unlimited battery
enables the energy queue size to blow up sooner or later,
preventing any energy shortages after a large enough channel

use index, implying that only finitely many mismatches occur.
Another important point to note regarding these two schemes
is that neither the transmitter nor the receiver need to know the
energy arrival process or the current battery energy state. This is
again due to the unlimited nature of the battery which smoothes
out the randomness in the stochastic energy arrival process, and
any battery state information at the transmitter or receiver does
not improve the achievable rates. On the other hand, as we will
see, in the case of 0 ≤ Emax < ∞ it is crucial that the transmitter
has causal information of the energy arrival to achieve a non-
zero reliable rate. However, we note that it is natural that the
transmitter has causal knowledge of the energy arrival process,
because it observes the incoming energies into its battery.

Finally, we note that [62] considers the same problem, and
proves the same capacity result in [23] by using a different proof
technique which relies on Asymptotically Mean Stationary
(AMS) sequences. In addition, [63], [64] extend these results
to multiple access channels with energy harvesting transmitters
with unlimited-sized batteries; see also [23, Section VI].

B. Capacity With no Battery, Emax = 0

We now consider the other extreme where there is no battery
to store and save energy for future use. In this case, the
channel inputs are instantaneously amplitude constrained as in
(3). However, different from the existing literature [65], these
amplitude constraints are not deterministic and constant, but are
time-varying and stochastic. The transmitter knows the energy
arrival profile causally, and the receiver does not know it. In this
case, the transmitter can choose the code symbols according to
the observed energy, which is the state of the system. Reference
[24] combines the works of Smith [65], which considers the
static amplitude-constrained AWGN, and Shannon [66], which
considers the capacity of state-dependent channels with causal
state information available at only the transmitter, to deter-
mine the capacity of this channel model. In the solution, the
transmitter sends the channel input T1 when the energy arrival
state is e1 and T2 when the energy arrival state is e2, where
T1,T2 are jointly distributed random variables in [−√

e1,
√

e1]×
[−√

e2,
√

e2]. Reference [24] observes experimentally that the
support set of this distribution is finite. This is reminiscent of
Smith’s result for the static amplitude constrained case, where
the input distribution resides in one dimension. In addition, if e1

and e2 are sufficiently small, then symmetric binary distribution
with masses at (

√
e1,

√
e2) and (−√

e1,−
√

e2) is optimal. As
e1 and e2 are increased, the optimal distribution begins to
have higher number of mass points, e.g., ternary, quaternary,
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Fig. 3. (a) Energy harvesting system. (b) Energy feasibility tunnel.

etc. Reference [24] shows that the capacity with an unlimited
battery is significantly larger than the capacity with no battery.
Reference [67] extends these results to the case of an energy
harvesting multiple access channel with no batteries.

C. Capacity With Unit-Sized Battery, Emax = 1

We now summarize the very recent work in [25] which
takes a step towards understanding the capacity of an energy
harvesting link with a finite-sized battery, i.e., 0 < Emax < ∞;
see Fig. 2(a). With a finite-sized battery, the channel inputs
are instantaneously amplitude-limited to the (square root of
the) current amount of energy in the battery. From [24], [65]
(and the previous sub-section), we know that, when the channel
inputs are constant amplitude-constrained, or i.i.d. stochastic
amplitude-constrained, over a Gaussian channel, the optimum
input distributions are discrete. However, these discrete mass
points are arbitrary real numbers, and it is hard to track the dy-
namics of the energy queue, if it is served with codebooks gen-
erated by arbitrary real mass points. For a tractable abstraction
of the system, [25] models energy arrivals as multiples of a fixed
quantity, and correspondingly, considers a physical layer which
has a discrete alphabet based on this fixed quantity. For further
analytical tractability, [25] assumes that the physical layer is
a noiseless binary channel, energy arrivals are binary, and the
battery is unit-sized. Even in this simple model, unavailability
of the battery state at the receiver, memory of the battery state
in time, and the fact that the state evolves based on the previous
channel inputs, render the problem challenging. The fact that
channel inputs affect future states is reminiscent of action
dependent channels in [68]. While Shannon strategy, which
is optimal in the zero-battery case in [24], yields achievable
rates for the finite-battery case, the transmitter may utilize the
memory in the battery state to achieve higher rates.

Reference [25] shows that this noiseless binary channel with
a unit-battery can equivalently be modeled as a timing channel
[59], where information is transmitted by timings between 1s,
as opposed to the actual places of 1s and 0s. This converts the
problem into a timing channel with additive geometric noise
(service time), where the service time is causally known to
the transmitter. This is explained in Fig. 2(b), where circles
represent energies harvested and triangles represents 1s put to
the channel. Here, after sending a 1, we have to wait a random
Zi number of channel uses to receive an energy into the battery.

Then, we choose to wait a Vi number of channel uses to send
information. Here Vi serves as our channel input that is to be
optimized. Reference [25] combines Anantharam–Verdu’s bits
through queues [59] and Shannon’s state-dependent channels
with causal state information available at only the transmitter
[66] to find a single-letter capacity expression for the capacity
of this equivalent channel. We note that the channel input Vi is
a function of the message (denoted by Ui in [25]) and the state
Zi which is causally known to the transmitter. Shannon strategy
[66] is optimal here, because the state Zi is i.i.d. in time. The
capacity expression involves an auxiliary random variable U ,
and its optimization is difficult. For this reason, [25] determines
an achievable rate based on a certain selection of this auxiliary
random variable. This selection resembles the concentration
idea in [69], and may be interpreted as a lattice-type coding
for the timing channel. Reference [26] provides an n-letter
expression for the noisy-channel version of this problem with
an arbitrary battery size, conjectures that it is the capacity, and
evaluates it using techniques in [70].

III. OFFLINE ENERGY MANAGEMENT FOR

THROUGHPUT MAXIMIZATION

In this section, we take a communication theory and network-
ing approach to the energy harvesting communication problem.
We first consider the basic single-user channel, and then present
extensions to multi-user settings and practical considerations
such as processing costs and battery imperfections.

A. Single-User Channel

Consider the single-user fading channel with additive Gaus-
sian noise as shown in Fig. 3(a). The transmitter has two queues,
the data queue where the data packets are stored, and an energy
queue where the arriving (harvested) energy is stored. The goal
here is to schedule the transmission of data packets in the data
queue using the energy in the battery. We relate the instanta-
neous power and rate through a monotone increasing concave
function. While we can use an arbitrary monotone concave
relationship, for simplicity and convenience, we assume the
following familiar power–rate relationship: R = 1

2 log(1+ hP).
Therefore, whenever we send a signal with power P in an epoch
of duration �, �

2 log(1 + hP) bits of data are served out from
the data backlog with the cost of �P units of energy depletion
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Fig. 4. The optimal policy is the tightest string that connects the two ends. (a) Emax = ∞. (b) Finite Emax.

from the energy queue. With this model in mind, we solve for
the optimum power control policy P(t) in time as a function
of the energy arrival profile, the data backlog profile and the
channel fading profile, in order to minimize the time by which
all of the packets are successfully transmitted. Minimizing
the transmission completion time for a given number of bits
is equivalent to maximizing the number of bits transmitted
in a given duration. Therefore, in the following, we consider
maximizing the number of bits delivered by a deadline T .

The optimization problem is subject to the energy causal-
ity constraint on the harvested energy, and the finite-storage
constraint on the rechargeable battery. In particular, the en-
ergy causality constraint requires that the energy that has not
arrived yet (has not been harvested yet) cannot be used. The
finite-storage constraint, on the other hand, requires that no
energy is wasted because of battery being full at the time
of energy arrivals; we also call this constraint the no-energy-
overflow constraint. Assume that energies of {E0,E1, . . . ,EN−1}
are harvested, and epoch lengths are {�1, . . . , �N−1}. Due to
the concavity of the rate–power relationship, power must be
kept constant between energy harvests [12]. This reduces the
power control policy of P(t) to a sequence of constant powers
{p1, . . . , pN}. The energy causality constraints become [12]

k

∑
i=1

�i pi ≤
k−1

∑
i=0

Ei, k = 1, . . . ,N (5)

and the no-energy-overflow constraints become [13]

k

∑
i=0

Ei −
k

∑
i=1

�i pi ≤ Emax, k = 1, . . . ,N −1 (6)

We illustrate these two constraints on the energy consump-
tion policy in Fig. 3(b). The upper staircase is the cumulative
energy arrival profile which provides the energy causality up-
per bound, and the lower staircase is the no-energy-overflow
curve which provides a lower bound. Any feasible energy
consumption curve must lie in between. We note that the energy
causality constraint forces the energy consumption to slow
down not to exceed the harvested amount, while the no-energy-
overflow constraint forces energy consumption to speed up to
open up space in the battery for new energy arrivals. Although
the optimization is over all monotonically non-decreasing time
functions for the energy consumption curve, by the concavity
of the objective function, the optimal power policy must remain

constant in between energy harvests; therefore, the dimension
of the optimization problem is reduced to the finite number
of epochs in an interval. Geometrically, this means that the
feasible energy consumption profiles which are candidates to
be optimum must be piece-wise linear. The optimal policy is
shown to be the tightest string that lies in the energy feasibility
tunnel [12], [13]. This solution aims to keep longest stretches
of constant power periods subject to energy causality and no-
energy-overflow constraints, as the concavity of the power–rate
relationship favors constant powers to the extent possible. An
example of the optimum energy consumption curve is shown
in Fig. 4(a) for Emax = ∞, i.e., there is no energy overflow
concerns, and in Fig. 4(b) for a finite Emax.

An alternative approach to the feasible tunnel approach is
the directional water-filling algorithm presented in [14]. The
directional water-filling algorithm aims to distribute the water
(energy) equally over time, subject to energy causality con-
straints, which introduce the directionality of water (energy)
flow. The directional water-filling algorithm requires walls at
the points of energy arrival, with right permeable water taps in
each wall which allows water to flow only to the right. This
implements the energy causality constraint, i.e., energy can be
saved and used in the future, but the energy that will arrive
in the future cannot be used before it has arrived. In addition,
these taps allow at most Emax amount of water to flow to the
right. This implements the finite-capacity battery constraint by
avoiding overflows. These are based on the KKT optimality
conditions found from the corresponding convex optimization
problem [14]

p∗i =
1(

∑N+1
j=i λ j −∑N

j=i µ j

) −1, i = 1, . . . ,N (7)

where λi are the Lagrange multiplier that enforce energy causal-
ity and µi are the Lagrange multipliers that enforce no-energy-
overflow conditions. In the implementation of the directional
water-filling algorithm, first, the taps are kept off, and transfer
from one epoch to the other is not allowed. Then, the taps
are turned on one by one, and at most Emax − Ei units of
energy transfer from past to the i+ 1st epoch is allowed. An
example run of the algorithm is shown in Fig. 5, for a case of
5 epochs. Four energy arrivals occur during the course of the
transmission, in addition to the energy available at time t = 0.
We observe that the energy level equalizes in epochs 1 and 2.
The energy arriving at the beginning of epoch 3 cannot flow



ULUKUS et al.: ENERGY HARVESTING WIRELESS COMMUNICATIONS 365

Fig. 5. Directional water-filling algorithm. (a) Initial water (energy) levels. (b) Final water levels.

left due to the energy causality constraint, which are enforced
by right permeable taps. We observe that the excess energy in
epoch 3 cannot flow right either, due to the Emax constraint.
In addition, the energy arriving at the beginning of epoch 5
cannot flow left, again due to the energy causality constraint. In
the case of a fading channel, additionally, the strengths of the
channel states play an important role in the directional water-
filling algorithm [14]. See also [15] for a staircase water-filling
algorithm.

B. Multi-User Channels and Practical Considerations

This concludes the summary of the basic findings in the case
of a single-user channel. In the case of a broadcast channel
with an energy harvesting transmitter, [17], [19] showed that
the optimal total transmit power management policy is the
same as the optimal single-user counterpart summarized above,
and this optimum total transmit power is distributed among
signals going to the users according to a cut-off structure;
only the optimum total transmit power that is above this cut-
off level goes to the weaker user. For the case of a broadcast
channel, an iterative algorithm is developed in [18], and these
approaches are generalized to a fading and MIMO case in [20].
In the case of a multiple access channel with energy harvesting
transmitters, [16] uses a combination of directional water-filling
together with a generalized water-filling in [71] and iterative
water-filling in [72] to obtain the optimum energy management
schemes to maximize the region of departed bits in a given
duration. For the case of an interference channel, using some
recent advances in the sum-capacity of the interference channel,
[21] develops sum-rate optimal transmission policies for a
class of two-user interference channels with energy harvesting
transmitters. In particular, using concavity properties of the
sum-rate expressions, sum-rate optimal transmission policies
of the users are found by using directional iterative water-filling
algorithms, where one user’s power profile determines the noise
profile of the other user.

References [28], [29] consider the full duplex end-to-end
communication over a two-hop relay channel where the source
and the relay node harvest energy from nature. The source sends
data by using its harvested energy and the relay forwards the
data coming from the source to the destination using its own
harvested energy. References [28], [29] show that the optimal
policy is in general non-unique and that there exists a separable
optimal policy in which the source optimizes its throughput
without regard to the relay energy harvesting profile, and the

relay optimizes its throughput subject to its own energy profile
and the data profile coming from the source. In [33]–[38], half-
duplex two-hop and more general two-way relay settings are
studied.

Reference [39], [40] consider the case of processing costs,
where the transmitter spends a constant amount of energy per
unit time for the circuitry when the transmit power is non-
zero, and solve the throughput maximization problem subject
to energy causality, no-energy-overflow and processing cost
conditions. The solution is characterized as a directional glue-
pouring algorithm. There is a threshold power level p∗ that is
found by solving the following fixed-point equation:

log(1+ p∗)
p∗+ ε

=
1

1+ p∗
(8)

Glue-pouring is performed such that the power level is always
higher than p∗ whenever it is non-zero and the glue level is
calculated accordingly. In particular, the optimal transmission
policy is bursty in the sense that the length of a transmission
schedule is not allowed to be arbitrarily long due to the pro-
cessing cost incurred per unit time. In the directional glue-
pouring algorithm, harvested energies are allocated into the
corresponding epochs first where energy is viewed as the glue
in [73]. Then, the glue is allowed to flow to the right only
and the equilibrium glue levels are determined. Reference [41]
extends the results in [39] by considering a broadband fading
energy harvesting communication system with processing cost,
and shows that when energy is limited, additional bandwidth
may not be utilized.

References [21], [22], [27] address practical imperfections in
energy storage and retrieval. Energy storage units may foster
imperfections such as losses during charging/discharging, leak-
age of available energy over time, etc. In particular, [27] con-
siders offline throughput maximization for energy harvesting
systems with energy leakage over time. The presence of energy
leakage is reflected in the modification of the shape of the
energy feasibility tunnel. In particular, the cumulative energy
harvesting curve decreases in between two energy harvests due
to energy leakage and the power levels have to be determined
accordingly. Reference [21] considers the imperfection that
occurs instantaneously at the time of charging and discharging
of the battery. In particular, due to the inefficiency in charging/
discharging, [21] shows that it may be more advantageous to
immediately use the harvested energy without first storing it
in the battery, and determines an optimum double-threshold
policy. Recent [22] considers the case where the portion of the
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energy not stored in the inefficient battery can be saved in an
efficient, but size-limited, super-capacitor, yielding a hybrid en-
ergy storage unit composed of a large-sized but inefficient bat-
tery and small-sized but perfect super-capacitor. Reference [22]
finds the optimum power management policy by applying the
directional water-filling algorithm in multiple stages. Reference
[42] considers the outage probability as opposed to throughput
as the design metric, and determines the corresponding optimal
power allocation policy.

IV. ONLINE ENERGY MANAGEMENT FOR GENERAL

REWARD MAXIMIZATION

In this section, we consider the case in which devices with
energy harvesting capabilities send data packets to a receiver
according to some transmission policy. Specifically, time is
slotted, and in every slot a data packet is produced, which can be
either transmitted in the same slot or discarded (i.e., no queu-
ing is considered). The transmission of a packet corresponds
to some reward, and maximization of the long-term average
reward per slot is sought. We start by considering the case with a
single device. The treatment here is based on [74], [75]. Related
work that studies the throughput of TDMA and carrier sense
multiple access protocols can be found in [76].

The device operates in a completely on-line fashion, i.e.,
it has only causal knowledge of the evolution of the system.
In this case, the device must make intelligent decisions about
whether or not to transmit based on the system state, which
includes the amount of energy stored in the battery, and possibly
some state of the harvesting process. A useful framework to
study these types of problems is provided by Markov Decision
Processes. For simplicity, assume that the harvesting process is
i.i.d.,1 so that the state of the system is limited to the current
contents of the battery. Each system state is assigned a set of
possible actions (e.g., idle and transmit, possibly with different
power levels), so that transitions from a certain state depend on
external events (e.g., whether or not some energy is harvested)
as well as on the decision made (e.g., whether or not the packet
is transmitted). Since each policy (i.e., the definition of the
probability distributions of the various actions as a function of
the state) will result in a different evolution of the underlying
Markov chain and correspondingly a different value of the
overall reward, the objective is to come up with the policy for
which the reward is maximized.

A quite general model that describes the evolution of the bat-
tery status in slot k, Bk, is Bk+1 = min{[Bk −Qk]

+ +Ek,Emax},
where Qk is the amount of energy used in slot k as a result of
the action chosen, Ek is the amount of energy harvested during
slot k, and Emax is the finite storage capacity of the battery.

A. Optimal Transmission Policies With Perfect Knowledge of
the State-of-Charge

Consider the case in which the device has full access to the
information regarding the exact energy level in its own battery.
In this case, the battery state evolution above can be observed,

1Extensions to non-i.i.d. harvesting are discussed in [75].

so that the decision will always be compatible with the amount
of energy that is available in the battery.

Two different models have been studied in this case. In
the first model [77], each packet has an associated random
importance value, Vk, which represents the reward that is gained
if the packet is transmitted. In this case, the action is binary and
is represented by the decision about whether or not to transmit
the packet. Such decision can be implemented by a simple
threshold policy, where the packet is sent if its importance value
is above a certain state-dependent threshold, and discarded
otherwise. The long-term average reward per slot can be com-
puted as

R = liminf
K→∞

1
K

E

[
K−1

∑
k=0

QkVk

]
(9)

and the optimal strategy can be numerically found using stan-
dard techniques, such as the Policy Iteration Algorithm (PIA)
[78]. In some cases, it is possible to approximate the optimal
policy through some heuristics which, while being very easy
to compute and to store in the device, provide a level of
performance that is very close to the optimum. A notable
example, which is asymptotically optimal for Emax → ∞ and
very good already for quite modest values of Emax, is the so-
called balanced policy, where the threshold is such that in
each slot the average consumed energy is equal to the expected
harvested energy.

In the second model, different power levels can be used
for transmission, which correspond to different rewards (no
importance value needs to be considered in this case). The
optimization now looks for the best strategy in selecting the
transmit power so as to make the best use of the available energy
while accounting for the specific relationship between transmit
power and reward gained.

As discussed in [75], the above model can be extended to
the case in which the harvesting process is correlated, which in
most cases is a much more accurate model of what may happen
in reality (e.g., solar energy). In this case, if the harvesting
process is itself regulated according to some underlying Markov
chain, we can include it in the system state and use the same
approach as before. Note that in this case the standard numerical
procedures can still be applied (at least as long as the complex-
ity of the model is manageable), but the additional complexity
may make it more difficult (and in some cases impossible)
to obtain closed-form results. An interesting observation in
this case is that the performance is no longer determined by
the battery size alone, Emax, but rather depends on the ratio
between Emax and the dynamics of the harvesting process (e.g.,
for slow harvesting processes in which periods of low harvest
can potentially last long, a large battery is needed for good
performance).

B. Optimal Transmission Policies With Imperfect Knowledge
of the State-of-Charge

Although it may seem quite natural that a microprocessor is
able to access the battery and to accurately know the amount of
energy it contains, several studies have shown that this may not
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always be the case. For example, uncertainty in the parameters
of the components of the circuitry may lead to errors as large as
30% [79]. In addition, there is a trade-off between the accuracy
in the knowledge of the battery State-of-Charge and the amount
of time and energy invested in gaining such knowledge, so that,
even if it were possible, obtaining accurate information may
be too expensive, especially in simple and resource constrained
devices. It is therefore of interest to study the case in which the
optimization of the transmission policy needs to be carried out
under the constraint of uncertain information about the battery
status.

The underlying process that describes the evolution of the
battery status is still a Markov chain, but in this case the state of
the chain is known with some error, and therefore the Markov
Decision Process framework no longer applies. Rather, this new
formulation falls in the realm of the so-called Partially Observ-
able MDPs, which model the lack of perfect observability of
the system state. In this case, the optimal policy can be found,
but full knowledge of the past history is required (unlike for the
Markov case, where the most recent state is sufficient), making
the policy very difficult to compute in general. If resource
constrained devices are considered, it may make sense to study
simplified policies, in which for example only the latest state
is used. For some cases of interest, it has been shown that
such suboptimal policies actually provide very good results, and
may be very close to the true optimum [80]. For the case of
correlated harvesting, it has been shown that overall it is more
important to know the harvesting state rather than the energy
state [81].

C. Optimal Transmission Policies for Two Users

As a first step towards multi-user energy harvesting systems,
consider a small network with only two devices who send
their data to a Fusion Center (FC) through a collision channel,
where individual transmissions are correctly received whereas
simultaneous transmissions lead to the loss of both packets. As
an upper bound to the performance of such a system, consider
the case in which a central controller (e.g., the FC itself) has
full knowledge of the energy state and of the importance values
of the packets at the two devices, and decides which (if any)
is going to transmit. This case can be studied by extending
the previous formulation to a two-dimensional model, which
is conceptually similar to the one-dimensional case (and can
similarly be solved numerically using the PIA), but does not
lend itself to analysis and closed-form results. What can be
numerically observed in this case is that as long as the batteries
are not very small, a balanced policy is able to provide good
results which lose very little compared to the true optimal
solution [82].

D. Battery Degradation Phenomena

In traditional energy conservation schemes, it is assumed
that a finite amount of energy is initially stored in a non-
rechargeable battery, and therefore needs to be judiciously
used in order to maximize the device lifetime or some mea-
sure of energy efficiency. Energy harvesting technologies and

rechargeable batteries hold the promise of breaking this barrier,
enabling perpetual operation if the consumption and harvesting
of energy can be balanced in some ways. However, this vision
overlooks an important aspect, which is familiar to all cell
phone users: after a battery has been recharged many times, it
starts losing its capability of storing energy and/or it discharges
more quickly. In fact, a battery cannot last forever, and some
aging phenomena make it less and less capable as a function
of the number of recharge cycles it went through. Perpetual
operation may not be possible, after all.

In order to study this phenomenon, one can still use the MDP
model described above, but needs to introduce an additional
layer of memory which tracks the degradation of the battery,
which in this case translates in a time-varying characterization
of its parameters. For example, after a certain number of cycles,
c, a battery that originally was capable of storing an amount of
energy equal to Emax may exhibit a reduced capacity α(c)Emax,
where α(c) ≤ 1 is a non-increasing function of c. In order to
avoid the very large number of states that would result from
this direct formulation, one can characterize this degradation
process using some probabilistic technique, in which several
degradation stages are identified and the battery jumps from
one to the next with some (small) probability in every slot.
Such formulation, described in detail in [83], makes it possi-
ble to carefully study these effects while keeping the model
complexity within reasonable limits. Using this model, one
can characterize the total amount of energy that a battery can
provide through all the recharging cycles it can support during
its entire life.

E. Sensing Policies

A formulation that is similar to the above but has a different
flavor is presented in [84]. Here the model focuses on the energy
consumed for sensing (instead of transmitting), and the policy
makes a decision about whether a sensor should be activated in
a given slot (with the corresponding energy consumption and
accrued benefit) or it should remain idle (to save energy but at
the risk of missing important events).

For correlated events, the optimal strategy leverages on the
ability to predict whether or not an event is likely to occur in
the next slot, and on some thresholding rule on the amount of
available energy: intuitively, if an event is expected and there is
enough energy, the sensor will be activated.

F. Optimal Random Multi-Access for a Network of Energy
Harvesting Devices

We now turn to the case in which multiple devices try to
access the channel randomly in order to send a data packet of
random importance to the Fusion Center (FC). The scheme is
very simple in that there is no coordination enforced by the
FC. The model for each device would still obey the recursive
formulation for the battery state above. The problem here,
unlike in the simple two-user example given above, is that no
coordination is available, which makes the model much more
realistic but also prone to collision errors and inefficiencies.
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Fig. 6. (a) Frames (orange) and slots (green) for TDMA and DFA MAC protocols in the nth inventory round (IR); (b) Trade-off between delivery and time
efficiencies for different harvesting rates µH for the MAC protocols TDMA, FA and DFA.

The reward model for a given user u can be rewritten as

R(u) = liminf
K→∞

1
K

E

[
K−1

∑
k=0

Qu,kVu,k ∏
i �=u

(1−Qi,k)

]
(10)

where the user index has been explicitly added to the decision
variable, Qu,k ∈ {0,1}, and to the importance value, Vu,k, and
U is the total number of users. Equation (10) shows that user
u gains its importance value if it decides to transmit while all
other users are silent. The overall system reward is therefore
expressed as the sum of R(u) over all users u. Using the Markov
formulation, it is possible to write the objective function as

R =
U

∑
u=1

G(ηu)∏
i �=u

(1−P(ηi)) (11)

where ηu is the policy for user u, which specifies for each level
of battery energy, e = 0,1, . . . ,Emax, the transmission proba-
bility or, equivalently, the threshold on the importance value
used in making a decision about whether or not to transmit,
and G(ηu) and P(ηi) are the corresponding average gain and
average transmit probability for users u and i, respectively. If
we assume a symmetric system with fairness constraints, (11)
becomes

R =UG(η)(1−P(η))U−1 (12)

The overall optimization problem can then be formulated as
the maximization of R within the set of admissible policies.
Unfortunately, unlike in the case U = 1, the problem is non-
convex, and therefore the global maximum cannot be easily
found. Through a game theoretical formulation, the problem
can be addressed as follows: (i) we assume that the devices
play a game, each trying to increase its own reward; (ii) we
look for Nash Equilibria in this game, i.e., situations in which
no user has an incentive to deviate; (iii) in particular, we look
for symmetric Nash Equilibria, where all users adopt the same
policy and they all have no incentive to do otherwise; (iv) it
is possible to show that the game has a unique symmetric Nash
Equilibrium, and that such equilibrium is a local optimum of the
original problem; (v) while there is of course no guarantee that
the local optimum is also a global optimum, some numerical
investigation has shown that the solution found as described

above is very good unless the battery capacity of the devices
is very small. More details about the above formulation as well
as numerical results and discussions can be found in [85].

V. MEDIUM ACCESS CONTROL FOR ENERGY

HARVESTING NETWORKS

In this section, we address medium access control (MAC)
protocols for single hop networks in which a fusion center
collects data from energy harvesting devices in its surround-
ings. We consider the case in which the devices generate data
periodically, when timed measurements of a given quantity of
interest need to be reported.

We investigate how the performance and design of standard
MAC protocols, such as TDMA, framed-ALOHA (FA) and
dynamic-FA (DFA) [86], are influenced by the discontinuous
energy availability in the energy harvesting devices in the pres-
ence of periodic data generation; see [74], [87], [88]. Consider
a single hop network with a fusion center surrounded by M
energy harvesting devices. The fusion center retrieves data, e.g.,
measurements of a given phenomenon of interest, from the
devices via periodic inventory rounds (IRs). Each IR is started
by the fusion center by transmitting an initial query command,
which provides both synchronization and instructions to the de-
vices on how to access the channel. Time is slotted. In every IR,
each device has a packet, e.g., a new measurement, to transmit
with a given probability, independent of the other devices and
previous IRs. Each measurement is the payload of a packet,
whose transmission fits within the slot duration. The goal of the
fusion center in each IR is to collect as many packets as possible
within the constraints imposed by the energy availability at the
devices.

Each IR is organized into frames, each of which is composed
of a number of slots that is selected by the fusion center; see
Fig. 6(a). Depending on the adopted MAC protocol, any device
that needs to transmit in a frame either chooses or is assigned
a single slot within the frame for transmission. Moreover,
after a device has successfully transmitted its packet to the
fusion center, it first receives an acknowledgment of negligible
duration from the fusion center and then becomes inactive for
the remaining of the IR. The fusion center knows neither the
number of devices with a new measurement to transmit nor the
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state of the devices’ batteries. Assuming flat fading channels
and that transmission is successful if the signal-to-interference
ratio is large enough, any slot can be: empty when it is not
selected by any device; collided when it is chosen by more than
one device but no device is received successfully; successful
when a device transmits successfully, while possibly in the
presence of other (interfering) devices. Each device has a finite
battery, and a fixed amount of energy is consumed at each
packet transmission. During the time between two successive
IRs, each device harvests a random amount of energy with
average, normalized by the transmission energy, defined as µH .
No energy is harvested within an IR, as its duration is assumed
to be much smaller than the time needed to harvest sufficient
energy for a transmission.

We measure the system performance in terms of the trade-
off between the time efficiency, which measures the rate of data
collection at the fusion center and the delivery efficiency, which
accounts for the number of packets successfully reported to the
fusion center. The time efficiency is a standard measure for the
performance of MAC protocols, and is calculated as the ratio
between the overall number of packets successfully received
by the fusion center and the total number of slots allocated
by the MAC protocol. The delivery efficiency is instead the
fraction of devices that are able to successfully report their
payload to the fusion center within a given IR. This criterion
is specifically relevant for energy harvesting networks, since
energy harvesting devices may run out of energy before being
able to transmit successfully. We observe that, with contention-
based MACs such as ALOHA and variations thereof, there is a
trade-off between time and delivery efficiencies. Increasing the
delivery efficiency requires the fusion center to allocate a larger
number of slots in an IR, as this reduces packet collisions and
hence the amount of energy wasted in unsuccessful transmis-
sions; however, a larger number of slots per IR decreases the
time efficiency.

With the TDMA protocol, each device is pre-assigned an
exclusive slot in each IR, irrespective of whether it has a
packet to deliver or enough energy to transmit. Recall that
such information is not available at the fusion center. Any
IR is thus composed by one frame with M slots as seen in
Fig. 6(a). Since TDMA is free of communication errors in the
considered interference-limited scenario, its delivery efficiency
is only limited by the energy availability at the devices and it
is thus an upper bound on the delivery efficiency for ALOHA-
based MACs. However, TDMA might not be time efficient due
to the many empty slots when the probability of having a new
measurement and/or the energy harvesting rate are small.

With the DFA protocol, the nth IR is organized into a set of
frames as shown in Fig. 6(a). The backlog for the kth frame
is the set composed of all sensors that simultaneously satisfy
the following three conditions: i) have a new measurement
to transmit in the nth IR; ii) have transmitted unsuccessfully,
because of collisions, in the previous k − 1 frames; iii) have
enough energy left in the battery to transmit in the kth frame. All
the devices in the backlog set attempt transmission during frame
k. To make this possible, the fusion center allocates a frame of
Lk(n) slots, where Lk(n) is selected based on an estimate of the
backlog size. A typical choice is to make Lk(n) proportional to

the estimated backlog. We define the proportionality constant
as ρ. It is known that the optimal ρ for non-energy harvesting
devices in terms of time efficiency equals 1 [86]. However,
following the discussion above (see also [87]), this is no longer
the case for energy harvesting enabled networks. Finally, FA is
a special case of DFA where only one single frame of size L1(n)
is announced and hence the retransmission of collided packets
is not allowed.

The trade-off between the delivery efficiency and the time ef-
ficiency is shown in Fig. 6(b) for the considered MAC protocols
and for different values of the harvesting rate µH . For TDMA,
the trade-off consists of a single point on the plane, whereas
FA and DFA allow for more flexibility via the selection of the
parameter ρ. Specifically, when ρ is increased more devices can
report their measurements to the fusion center, thus increasing
the delivery efficiency, but at the cost of lowering the time
efficiency.

VI. JOINT WIRELESS ENERGY AND

INFORMATION TRANSFER

In the preceding sections, we considered wireless nodes that
acquire their operational energy from external sources. In this
realm of energy self-sustaining networks, a new dimension that
can be envisioned is sharing and transferring energy between
the nodes just like information. Energy and information transfer
between nodes can be made simultaneously or by separate
means/technologies. In this section, we review the state of the
art in energy and information transfer for wireless networks.

A. An Information-Theoretic View

The possibility of harvesting energy from the communicated
signal itself has been discussed in the circuits literature, es-
pecially in the context of biomedical implants [89]. The first
explicit information-theoretic formulation of harvesting energy
from the communicated signal is given in [90]; prior to this
work, [91] studied a related problem, where capacity with
receiver-side power constraints were considered. Reference
[90] modeled the problem as one of maximization of mutual
information under a minimum requirement of energy delivered
to the receiver:

C(B) = max
f (x)

I(X ;Y ), s.t. E[Y 2]≥ B (13)

where B denotes the energy harvested by the receiver, and C(B)
denotes the capacity at this harvesting level. This reference
also provided tradeoffs between capacity and average energy
delivered for some example cases. The information-energy
transfer formulation is also mathematically similar to the clas-
sical problem of cost-constrained capacity in [92, Thm. 6.11]
and [93, Thm. 3.7.2]. For finite alphabets, by defining the “cost”
of a particular input symbol as the difference of the energy
delivered by the symbol, and the maximum energy delivered
over all symbols, one can reduce the information-energy trans-
fer problem to the cost-constrained capacity problem.

For energy and information transfer using inductively cou-
pled circuits (see Fig. 7), assuming an additive Gaussian noise,
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Fig. 7. (a) Coupled-inductor circuit commonly used for wireless power transfer. (b) Frequency-faded channel transfer function.

[94] observed that this problem can be viewed as transfer
of information and energy over a frequency-faded channel.
Fig. 7(a) shows a coupled-inductor circuit commonly used
for wireless power transfer. The same circuit models near-
field communication commonly used in RFIDs and medical
implants [89]. Fig. 7(b) shows a transfer function of H( f )
and white noise z (of power spectral density N( f ) = 1); the
curve is the plot of N( f )/|H( f )|2. Reference [94] derived the
tradeoffs between capacity and energy delivery. For this system,
the optimal information-transfer strategy is water-filling [95];
whereas the optimal power-transfer strategy is to send a single
sinusoidal tone at the resonant frequency. However, the optimal
info-power transfer tradeoff is not achieved by a strategy that
time-shares between these two. Reference [94] showed that
the optimal strategy outperforms any strategy that time-shares
between water-filling and transmission of a single tone at the
resonant frequency.

The simultaneous energy and information transfer literature
has been extended to MIMO broadcast [96], fading [97], MIMO
interference [98] channels, and also considering practical cir-
cuit implementations [99] keeping in mind the current practical
limitations on receivers which may not be able to decode
information and harvest energy simultaneously.

B. Coding for Energy and Information Transfer

In this section, we concentrate on the problem of code design
for systems with joint information and energy transfer. Classical
codes, which are designed with the only aim of maximizing
the information rate, are unstructured, i.e., random-like. As a
result, they do not allow to control the timing of the energy
transfer. This is a critical drawback, since, in most scenarios
of interest, arbitrary energy transmission patterns may lead
to inefficiencies, such as battery overflows or underflows. In
contrast, as reviewed here, constrained, rather than classical
unconstrained, codes allow the energy transfer properties of the
code to be better adjusted to the receiver’s energy utilization
requirements [100].

We consider a point-to-point link and assume binary trans-
mission, in which “1” symbols carry energy while no energy is
carried by “0” symbols. Barring channel losses, which happen
with a given probability, the receiver can harvest the energy car-
ried by the “1” symbols and store it in a battery. The receiver’s

energy utilization is modeled as a binary Markov stochastic
process. Due to the finite capacity of the battery, there may
be battery overflows and underflows. An overflow event takes
place when energy is received but the battery is full; instead, an
underflow event occurs when energy is required by the receiver
but the battery is empty. Note that the probability of overflow
measures the efficiency of energy transfer by accounting for
the energy wasted at the receiver. In contrast, the probability
of underflow is a measure of the fraction of the time in which
the application run at the receiver is in outage due to the lack of
energy.

Constrained run-length limited (RLL) codes are defined by
constraints on the minimum and maximum duration of bursts
of “1” or “0” symbols. Specifically, type-0 (d,k)-RLL codes
are such that the runs of 0s have length at most k, while the
runs of 0s between successive 1s have length at least d; see
Fig. 8(a). As a result, type-0 (d,k)-RLL codes are suitable for
overflow-limited regimes in which controlling overflow events
is most critical. Type-1 (d,k)-RLL codes are similarly defined
by substituting “1” for “0”, and are hence appropriate for
underflow-limited regimes in which it is necessary to ensure
the presence of bursts of energy. Constrained RLL codes have
been traditionally studied for applications related to magnetic
and optical storage [101]. The first application to the problem
of energy transfer has been reported in the context of point-to-
point RFID systems in [102].

We now provide a numerical example to compare the per-
formance of unconstrained and constrained codes. In Fig. 8(b),
we observe the trade-off between the information rate and the
performance in terms of energy transfer. The latter is measured
by the minimum between the probability of underflow Pu f and
the probability of overflow Po f . In the example, the receiver
wishes to use energy periodically once every two time slots.
A full description of the simulation set-up can be found in
[100]. The figure shows that, when the desired rate is small, it
is sufficient to use a type-0 RLL code with a small k, since,
with this choice, the resulting pattern of 0s and 1s in the
codewords matches well the periodic requests of energy by the
energy harvesting receiver. The resulting improvement in terms
of energy transfer efficiency is significant. As the rate grows
larger, one needs to increase the value of k, while keeping d as
small as possible in order to increase the number of available
codewords and hence the rate [101].
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Fig. 8. (a) Finite-state machine that defines the constraints that the codewords of a type-0 (d,k)-RLL codes must satisfy. (b) Maximum between probability of
underflow and overflow for unconstrained and type-0 constrained codes versus the information rate.

C. Energy Cooperation

Consider a three-node relay network as shown in Fig. 9(a).
Here, both the source node and the relay node harvest energy
from nature in the amounts Ei and Ēi in slot i. In addition,
there is a wireless energy transfer unit that transfers δi amount
of energy from the source’s battery into the relays battery in
slot i. When the source node sends δi amount of energy, the
relay node receives αδi amount of energy into its battery,
where α < 1 accounts for the inefficiency of wireless energy
transfer. The goal of the network is to deliver the data packets
of the source node to the destination node, and in the process,
maximize the end-to-end throughput of the system, from the
source node to the destination node.

The problem of power control to maximize the end-to-end
data throughput of this relay system without any energy transfer
was studied in [28], [29]. They showed that the optimum
scheme should work in the following way: The source node
should transmit as many data packets as possible to the relay
node by using its harvested energy. This will cause a certain
packet arrival profile at the relay node. The relay node then
should transmit as many of these data packets as possible to the
destination node by using its harvested energy. One can note
now that some of the packets that were delivered by the source
node to the relay node may not be forwarded to the destination
node if the relay node does not have a sufficient amount of
harvested energy. Therefore, some of the data packets delivered
to the relay node will have no utility for the overall system
(i.e., will not contribute towards the end-to-end throughput)
since they are not delivered to the destination node. Note that
the source node had spent some of its energy to deliver these
eventually undelivered data packets to the relay node.

One could think that the source node might as well not
transmit those data packets to the relay node and keep its
remaining energy. However, a better solution would be obtained
if the source node sent some of its remaining energy to the
relay node via wireless energy transfer and used the rest of the
remaining energy to send as many data packets as possible to
the relay node. The source node will determine the amount of
energy to be transferred to the relay node such that there will
be no remaining energy and no remaining data packets at the

relay node at the end of the transmission session. This is the
rationale behind the concept of energy cooperation introduced
in [103]; see also [104]. In this scheme, we observe two types
of cooperation: the relay node cooperates at the signal level
by forwarding the source’s data packets to the destination
[105], and the source node cooperates at the energy level by
transferring some of its harvested energy to the relay node.
These two cooperation schemes combined yield the optimum
scheme for the overall system. Note that, even though there was
energy transfer inefficiency in the system represented by α < 1,
so long as the source node had sufficiently more energy than the
relay node, it is worth transferring some of the source energy to
the relay.

The concept of energy cooperation in two-way and multi-
ple access channels have been studied in [106], [107], where
users transmit information over two-way and multiple access
channels, and there is one-way energy transfer from one user
to the other, as motivated by practical scenarios such as RFID
networks, where there is two-way information exchange but
one-way energy transfer from the reader to the RFID node.
References [106], [107] develop two-dimensional directional
water-filling, where energy is distributed directionally due to
energy causality and flows only from the past to the future
and from the energy transferring user to the energy harvesting
user. This creates two dimensions for energy flow, in time
and over users; and also directionality due to energy causality.
Fig. 10 shows an example run of two-dimensional directional
water-filling algorithm; (a) shows the initial energy allocation
and (b) shows the final energy allocation. More recent works
[108], [109] generalize this approach to consider the case with
two-way energy cooperation in two-way and multiple access
channels, and develop a separation-based approach that opti-
mizes wireless energy transfer and temporal power allocation
separately to yield a global optimum solution for the overall
problem. As a final remark, we note that in energy cooperation
described in this section, energy and information are sent by
different signals over orthogonal channels. This is reminiscent
of the power splitting approach implemented at the receivers,
see for example [99], however, we implement power splitting
at the transmitter as opposed to the receiver.
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Fig. 9. Energy cooperation via wireless energy transfer. (a) Relay channel. (b) Two-way channel.

D. Interactive Exchange of Energy and Information

In this section, we consider a multi-hop topology in which
the harvested energy can be reused for communications. Multi-
hop networks with distinct source and destinations are consid-
ered under this assumption in [110]. Here, instead, we study a
two-way communication system, in which two nodes interact
for the exchange of information and can harvest the received
energy; see Fig. 11(a). To enable analysis and insights, we
assume that the two parties involved have a common clock
and that, at each time, a node can either send a “1” symbol,
which carries one unit of energy, or a “0” symbol, which does
not carry any energy. Each node communicates in a full-duplex
manner, that is, at a given instant, it can simultaneously send
and receive an energy unit. The channel in one direction is
orthogonal to the channel in the other direction, and hence the
full-duplex channel is an ideal composition of two independent
unidirectional channels. We consider here the case in which
the two nodes start with a given number of energy units in
their batteries, which can neither be lost or replenished from
outside, and the binary channel in either direction is noiseless.
Extensions can be found in [111].

To see that even this simple scenario offers relevant re-
search challenges, we observe the following. If there were
no limitation on the number of energy units, the nodes could
communicate 1 bit per channel use in either direction, given
that the channels are ideal. However, if there is, say, one
energy unit available in the system, only the node that currently
possesses the energy unit can transmit a “1”, whereas the other
node is forced to transmit a “0”. Therefore, the design of the
communication strategy at the nodes should aim not only at
transferring the most information to the counterpart, but also
to facilitate energy transfer to enable communication in the
reverse direction. In [111], a coding strategy is proposed for
this set-up that employs codebook multiplexing. The basic idea
is that each node utilizes a different codebook for each energy
state. An energy state is defined by the current distribution
of the energy units between the two nodes. Note that, under
the given assumptions, both nodes are aware of the current
energy state. Whenever a given energy state takes place, each
node sends the next bit from the corresponding codebook.
The key point is that, when the number of available energy
units at the node is large, the node should use a codebook
with a larger fraction of “1” symbols in order to facilitate
energy transfer; instead, when the available energy is scarce,
a codebook with a larger fraction of “0” symbols should
be used.

Fig. 11(b) compares the achievable sum-rate obtained with
the mentioned scheme to an upper bound derived in [111]
versus the total number of energy units. Specifically, for the
achievable sum-rate, we consider both a conventional codebook
design, in which all the codebooks have the same fraction of
0s and 1s irrespective of the energy state (labeled as “non-
adaptive” in the figure), and one in which the probabilities are
optimized (labeled as “adaptive” in the figure). It can be seen
that using conventional codebooks, which only aim at maxi-
mizing information flow on a single link, leads to substantial
performance loss. Instead, the proposed strategy with optimized
probabilities, which account also for the need to manage the
energy flow in the two-way communication system, performs
close to the upper bound. The latter is indeed achieved when
the number of energy units is large enough.

VII. ENERGY HARVESTING WIRELESS

SENSOR NETWORKS

Wireless sensor networks differ from the wireless systems
considered thus far in that the devices need not only to cater to
the requirements of data transmission but also to those of source
acquisition. Specifically, each sensor runs a source acquisition
that involves sensing, sampling and compression, and these
operations often entail an energy cost that is comparable with
that of radio transmission; see, e.g., [112]–[115]. Therefore,
a proper allocation of the limited energy resources to source
acquisition and transmission is necessary. As a result, the
techniques studied above that only adapt to the temporal varia-
tions of the energy harvesting process and of the transmission
channel must be revised in order to account for the time-varying
properties of the source acquisition systems, e.g., for the quality
of the measurements taken by the sensor.

In order to concentrate on the main aspects of the problem,
we focus on a system, studied in [116], in which a single
sensor communicates with a single receiver. Time is slotted.
The energy harvested in each time slot is assumed to follow an
ergodic stationary process. As shown in Fig. 12(a), the sensor is
equipped with a battery (energy queue) in which the harvested
energy is stored. The battery is assumed here to be of infinite
size for simplicity of analysis. We observe that the case with
multiple sensors is studied in [116], while multi-hop sensor
networks are addressed in [117]. Moreover, a scenario with
delay constraints is investigated in [118], where the optimal
offline resource allocation policy is derived.

In each time slot, the sensor acquires a time sequence
of the phenomenon of interest. This is characterized by a
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Fig. 10. Two-dimensional directional water-filling. (a) Initial energy allocation. (b) Final energy allocation.

measurement SNR, which evolves across the time slots as an
ergodic stationary process. The measurements are compressed
and stored into a data queue. The quality of compression is
defined by a distortion measure, such as the mean squared error.
Following [112], [113], we assume that the bit rate produced
by this source acquisition step depends on the energy allocated
for source acquisition, on the desired distortion and on the
measurement SNR. In every time slot, the sensor also transmits
a number of bits from the data queue to the receiver over
a fading channel with a given instantaneous channel SNR.
The channel SNR evolves across the time slots according to
an ergodic stationary process. The number of bits that are
successfully transmitted depends on the energy allocated to data
transmission and on the channel SNR as per, e.g., Shannon’s
channel capacity.

The energy management problem of interest is the following.
Based on the statistics of the energy harvesting process, and
based on the current states of the measurement SNR, channel
SNR and data queue, the energy management unit (EMU)
decides the compression distortion and how much energy to
allocate to source acquisition and data transmission (Encoder).
The performance criterion considered here is the stability of
the data queue, which separates the data acquisition unit from
the data transmission block, under a constraint on the average
distortion of the measurements recovered at the receiver.

For a given desired average distortion level, we wish to
identify a class of policies that is able to stabilize the data
queue while satisfying the distortion constraint whenever pos-
sible. Note that this definition of optimality generalizes the

classical notion of “throughput optimal” policies, where only
the stability constraint is imposed. As shown in [116], a class
of optimal strategies exists that performs separate resource
allocation optimizations for the source acquisition and data
transmission. More precisely, without loss of optimality, the
battery can be divided into two subcomponents, one used for
source acquisition and one for data transmission: the energy
harvested in each slot is split according to a fixed factor between
the two batteries. Moreover, the energy allocated to source
acquisition from the corresponding battery in a given time slot
only depends on the measurement SNR, and not on the channel
SNR; and, similarly, the energy used for data transmission
depends only on the channel SNR.

Fig. 12(b) shows the average distortion of the source recon-
struction at the receiver versus the variance of the harvesting
process; see [116] for a full description of the set-up. The
performance of the optimal policy discussed above is compared
to a number of suboptimal policies that either use the energy
in a greedy fashion or do not perform adaptation to the cur-
rent SNR states. Specifically, we consider strategies that use
immediately all the harvested energy with and without optimal
energy allocation between source acquisition and transmission
depending on the SNR states (“no battery” and “no battery,
adapt”, respectively); and strategies that use the battery to adapt
the operation only of source acquisition (“source-only”) or of
data transmission (“transmission-only”). It can be seen that
an increased uncertainty about the harvested energy, i.e., a
larger variance, degrades the quality of the reconstruction at
the receiver. Moreover, adapting the energy usage to the current
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Fig. 11. (a) Two-way system with energy reuse. (b) Achievable sum-rates with non-adaptive and adaptive codebooks and upper bound.

measurement and channel SNRs, especially when leveraging
the possibility to store energy in the battery, leads to significant
performance gains.

VIII. LARGE-SCALE WIRELESS NETWORKS

WITH ENERGY HARVESTING

The preceding sections focus on algorithms and protocols
for point-to-point links or small-scale systems powered by
energy harvesting. From the perspective of network designers
and operators, it is interesting to study the effects of en-
ergy harvesting on large-scale networks based on models that
capture network architectures, node distributions and realistic
channel/interference models, which is the theme of this section.
In particular, we model mobile ad hoc networks (MANETs) and
cellular networks powered by energy harvesting and relate their
performance to the characteristics of energy arrival processes or
energy fields. Typical renewable energy fields such as wind and
solar power exhibit both temporal and spatial variations and are
commonly modeled as random fields [119]. Preceding sections
address the temporal variation and how to counteract it by
adaptive transmission. On the other hand, the spatial variation
of renewables can significantly degrade network coverage and
hence has to be accounted for in network modeling and design.
To this end, a tractable model for renewable-energy fields is
discussed in the sequel and applied to investigate the coverage
of renewable powered networks.

A. Mobile Ad Hoc Networks With Energy Harvesting

The spatial throughput of a MANET with energy harvest-
ing is analyzed in [120]. The transmitters are modeled as a
homogeneous Poisson point process (PPP) with density λ0 in
the horizontal plane. Each communicates with an affiliated
receiver located at a unit distance. Given a fixed encoding rate
log(1 + θ), reliable decoding of a data packet at a receiver
requires the receive SINR to exceed a threshold θ except for
a small outage probability, called an outage constraint. The
transmission powers are assumed to be identical and equal to
P. Nodes in the MANET are small devices like sensors and
wearable computing devices. Given their deployment environ-

ment, the energy arrival processes at different transmitters are
assumed to be i.i.d. random sequences with mean λe called the
energy-arrival rate. For simplicity, the batteries of harvesters
are assumed to have infinite capacity.

In the steady state, depending on the energy availability, each
transmitter is turned on or off with probability ρ and (1− ρ),
respectively. The probability is shown in [120] to have a simple
form: ρ = min(1,λe/P). This allows the network throughput to
be written as

R = λ0ρ log(1+θ). (14)

Note that λ0ρ is the active-transmitter density. The expression
of ρ suggests that the density can be controlled by varying P. On
one hand, large density and power can cause strong interference
and as a result violate the outage constraint. On the other
hand, too sparse transmitters reduce network throughput and
too low power leads to incorrect decoding. Thus, transmission
power should be optimized under the outage constraint and
the criterion of maximum throughput. As shown in [120], for
relatively sparse networks with a sufficiently high energy arrival
rate, the optimal power is one that allows all transmitters to be
active with probability one. Otherwise, the probability should
be smaller than one as derived.

B. Cellular Networks With Energy Harvesting

Reference [121] addresses the effect of the spatial variation
of the (renewable) energy field, e.g., solar or wind power, on
the coverage of a cellular network. To this end, a tractable
energy field model is proposed in [121] where the energy
intensity at a particular location is given by spatial combining
of Poisson distributed “energy centers” with fixed maximum
intensities, which is known as a Boolean random function.
The combining factors are determined by an exponential-decay
function of squared distance. Such a function is commonly
used in spatial interpolation for atmospherical mapping [122]
and solar-field estimation [123]. The advantage of the energy-
field model is that its distribution is controlled by only two
parameters, namely the energy-center density denoted as λe and
the exponential rate of the weight function denoted as ν. It can
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Fig. 12. (a) System model for an energy harvesting wireless sensor link. (b) Average distortion D of the source reconstruction at the receiver versus the variance
of the harvesting process.

be observed from the illustrations in Fig. 13 that the energy field
is almost flat for large λe and ν or otherwise highly random.
Next, the downlink network is modeled using the traditional
hexagonal-cell model but with renewables powered BS’s. The
network is assumed to operate in the noise-limited regime
that is most interesting for renewable powered network since
network performance in the regime is sensitive to transmission
power and hence harvested energy. In addition, an outage con-
straint is applied on downlink transmissions. We consider two
scenarios of harvester deployments. First, each BS is powered
by a single on-site harvester. Based on the energy field model,
the outage probability can be related to the coverage probability
of a Boolean model comprising random disks. The result shows
that the outage probability decreases exponentially with the
product λeν.

Next, consider the scenario where energy harvested by dense
harvesters is collected by aggregators that distribute power
to nearby BS’s. The aggregators effectively perform spatial
averaging of the energy field and consequently stabilize the
transmission power of BS’s. It is shown in [121] that as the
number of energy harvesters connected to a single aggregator
increases, the transmission power converges to a constant by
virtue of the law of large numbers. This renders the outage
probability to be either one or zero. Nevertheless, since har-
vesters cannot afford high-voltage power transmission, total
energy-transmission loss can become significant as the number
of harvesters for energy aggregation increases. Such loss can
be regulated by increasing the voltage at harvesters following a
derived scaling law.

C. Other Types of Energy Harvesting Networks

The interesting idea of opportunistic energy harvesting is
explored in [124] for cognitive radio networks where passive
secondary nodes not only opportunistically access the spectrum
of primary nodes but also harvest energy from radiation by the
latter whenever it is possible. Coexisting networks are modeled
as overlaid spatial point processes. Based on this model, the
transmission capacity of the secondary network adopting the
strategy of opportunistic energy harvesting is characterized and
optimized over the node density and transmission power.

A closely related piece of work is presented in [125] for
cellular networks where mobiles are wireless recharged by
dedicated power stations via microwave power transfer (MPT).

Also adopting the approach of using stochastic geometry
for network modeling and analysis, the requirements on the
MPT network deployment are analyzed for different MPT
technologies.

Last, heterogeneous cellular networks with energy harvesting
is modeled and studied in [126] where multi-tier renewable
powered base stations are modeled as independent PPP’s. Con-
sidering small base stations deployed in an urban area, energy
arrival processes for BS’s are suitably assumed to be indepen-
dent unlike the energy field discussed earlier. This allows the
on/off states of BS’s to be modeled as independent Bernoulli
random variables and then their impact on the network coverage
performance can be quantified mathematically using stochastic
geometry.

IX. ENERGY CONSUMPTION MODELS

Because energy-harvesting systems typically operate at short
distances (a few meters or less), the energy consumed in
transmitter/receiver circuitry can be comparable, or can even
dominate, the energy consumed in transmissions. Thus, it is im-
portant to understand energy harvesting communications in the
context of total (transmit + circuit) energy minimization. The
difficulty in developing a comprehensive theory of total energy
minimization lies in obtaining models for energy consumed in
circuitry that are simple enough for analysis, and yet accurate
enough to yield relevant estimates of energy consumption. How
can we abstract the energy consumed by various possible circuit
algorithms, implementation architectures, and implementation
technologies? As a first step, the authors in [73], [127], model
the transmitter and receivers as black-boxes that consume a
fixed amount of energy per unit time powered “on”. Although
the formulations in [73], [127] are considerably different, their
conclusions are the same: since keeping systems powered “on”
consumes circuit energy, transmissions should be “bursty,” i.e.,
both receiver and transmitter are turned “off” for some time in
order to reduce circuit energy. However, the energy required in
transmission increases exponentially with burstiness (because
capacity scales logarithmically in power), so the transmission
cannot be too bursty. That the optimal burstiness is non-zero
is surprising: traditional transmit power analysis [128] for a
non-fading channel predicts that the transmission rate should
be made as small as possible, and the signals least bursty, for
minimum energy consumption.
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Fig. 13. The energy field. (a) λe = 1 and ν = 0.1. (b) λe = 10 and ν = 1.

While insightful, the black-box model has its shortcomings:
because it lumps together all of the power used in processing the
signal, the black-box model does not yield much insight into
code choice or decoder design. Does the code-choice matter?
Recent empirical work has shown that energy consumption of
the decoding circuitry changes substantially with the choice of
the code [129]. Thus a more detailed model of circuit energy
is needed in order to guide the choice of the communication
strategy as well as the circuit design. One model that has
commonly been used to understand tradeoffs in circuit com-
putations is the “VLSI model of computation,” developed by
Thompson in 1980. The model, illustrated in Fig. 14(a), was
used by Thompson to derive fundamental limits on the tradeoffs
between the required total wiring-length and the number of
clock-cycles. The underlying idea is: when the computation to
be performed is such that a substantial amount of information
needs to be moved around on the circuit, one has to either make
wires long so that information can be communicated farther in
the same clock-cycle, or increase the number of clock-cycles.
These wiring and clock-cycle tradeoffs provide an approximate
understanding of the required energy: if we assume that each
wire is used in each clock-cycle, the product of the total wiring-
length and the number of clock-cycles yields a bound on the
required energy. Even this approximate understanding has been
made more accurate in the more recent “information-friction”
model [130], which also generalizes the VLSI model so that it is
applicable to asynchronous models of computation, and to other
substrates of computation (e.g., circuit links made of carbon
nanotubes, optical fibers, physical matter transport, or wireless,
or even axons that connect neurons in the nervous system).

The VLSI model has been used to understand energy and
complexity of encoding and decoding in the system. Focusing
on the energy consumed in the computational nodes at the
decoder (and ignoring the wiring energy), [131]–[133] showed
that the required number of clock-cycles at the decoder (im-
plemented in the VLSI model) diverges to infinity as Pe → 0,
and as the communication rate approaches the channel capacity.
This is used to obtain a lower bound on total energy. It turns
out that to optimize this lower bound, the optimal strategy is

to communicate at a constant gap from the Shannon limit as
Pe → 0. Numerical evaluation of regular LDPC codes shows
that they can achieve order optimal total energy in this model
of energy consumption; see Fig. 14(b).

However, the empirical work in [129] showed that the wiring
energy (ignored in [131]–[133]) can be a significant fraction
of the circuit energy, and can further change substantially with
change in the code design ([129] uses LDPC codes where the
code-degree and code-length is kept constant but the code-girth
is varied). Using the information-friction model to abstract the
wiring energy, [130] (and the ensuing work in [134]) showed
that the wiring energy diverges to infinity much faster than
the node energy, an observation consistent with that of circuit
practitioners. Further, the total-energy optimal communication
strategy is to communicate farther and farther away from the
channel capacity as the error-probability converges to zero, and
thus keeping the rate close to capacity can actually increase the
total power.

Thus the total energy minimizing communication strategy,
as well as the scaling limits on total energy as Pe → 0, change
drastically when circuit energy is also incorporated. We be-
lieve it is important to model and understand the effects of
circuit energy (both node and wiring energy) in the context of
energy-harvesting as well for the following reasons: Ignoring
circuit energy can yield optimistic results and strategies that
may significantly underestimate total energy requirements in
practice, and be highly inefficient in a total (transmit + circuit)
energy sense. In order to understand the energy required in a
computation, it is not sufficient to compute the Turing com-
plexity (i.e., count the number of operations) or node energy.
Understanding wiring energy (i.e., the energy required to move
information between circuit elements) can be key because it
tends to dominate the node energy in asymptotics. Thompson’s
VLSI model, and ensuing improvements, can prove useful in
estimating energy requirements of circuitry in an order sense,
which can be extremely helpful in deciding the communication
strategy. Energy-harvesting circuit might itself need energy, and
when systems use joint information and energy transfer, there
might be a further increase in cost for circuit energy in order
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Fig. 14. (a) Thompson’s VLSI model of computing. (b) Energy with a model of computation that only considers energy consumed in computational nodes. The
upper bounds are obtained using a node model on a (4,6) regular LDPC code.

to harvest energy from the same signal. Models for energy-
harvesting circuits can thus reveal much about performance of
these systems in the real world.

X. CONCLUSION AND FORWARD LOOK

In this article, we have summarized recent advances that have
taken place in the broad area of energy harvesting wireless
communication networks. We have covered a variety of topics
ranging from information-theoretic physical layer performance
limits to scheduling policies and medium access control proto-
cols, as well as the newly emerging paradigm of energy transfer
and cooperation that occur in addition or simultaneous with in-
formation transfer for such networks. Models and results under
a variety of network structures, those with single and multiple
hops as well as small and large scale have been addressed. We
have also presented models for total energy consumption.

It is worth noting that energy harvesting wireless networks
simultaneously present new theoretical challenges and those
that stem from physical phenomena and practical concerns.
As such, the area provides a rich set of possibilities for ob-
taining design insights from mathematical formulations which
take practical considerations into account. These considerations
include such physical properties as storage imperfections, con-
sumption models, processing costs, as well as realistic mod-
eling such as causal energy harvesting profiles. Additionally,
the area of energy and information transfer provides exciting
possibilities to further adapt the network operation and improve
its performance. The possible improvement therein is closely
tied to the efficiency of energy transfer and hence to the device
and circuit technologies, connecting the theory again to the
real world. To this end, we conclude by stating that the future
challenges for energy harvesting wireless networks lie not only
in advancements in various layers of network design starting
from signal processing and communications physical layer all
the way to the networking layer, but also in embracing the truly
interdisciplinary nature of the energy harvesting wireless net-
works integrating with the advances from circuits and devices
that harvest and transfer energy.
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