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Abstract—Wireless charging is a promising way to power
wireless nodes’ transmissions. This paper considers new dual-
function access points (APs) which are able to support the
energy/information transmission to/from wireless nodes.We
focus on a large-scale wireless powered communication network
(WPCN), and use stochastic geometry to analyze the wireless
nodes’ performance tradeoff between energy harvesting and
information transmission. We study two cases with battery-free
and battery-deployed wireless nodes. For both cases, we consider
a harvest-then-transmit protocol by partitioning each time frame
into a downlink (DL) phase for energy transfer, and an uplink
(UL) phase for information transfer. By jointly optimizing frame
partition between the two phases and the wireless nodes’ transmit
power, we maximize the wireless nodes’ spatial throughput
subject to a successful information transmission probability
constraint. For the battery-free case, we show that the wireless
nodes prefer to choose small transmit power to obtain large
transmission opportunity. For the battery-deployed case,we first
study an ideal infinite-capacity battery scenario for wireless
nodes, and show that the optimal charging design is not unique,
due to the sufficient energy stored in the battery. We then extend
to the practical finite-capacity battery scenario. Although the
exact performance is difficult to be obtained analytically, it is
shown to be upper and lower bounded by those in the infinite-
capacity battery scenario and the battery-free case, respectively.
Finally, we provide numerical results to corroborate our study.

Index Terms—Wireless powered communication networks
(WPCN), harvest-then-transmit protocol, radio-frequency (RF)
energy harvesting, stochastic geometry, spatial throughput max-
imization, battery storage.

I. I NTRODUCTION

By enabling the wireless devices to scavenge energy from
the environment, energy harvesting has become a promising
solution to provide perpetual lifetime for energy-constrained
wireless networks (e.g., the wireless sensor networks) [1].
In particular, with the ability to cater to the mobility of
the wireless nodes, the ambient radio-frequency (RF) signals
have been considered as a vital and widely available energy
resource to power wireless communication networks [2]. In
recent point-to-point energy transfer experiments [3], wireless
power of 3.5mW and 1uW have been harvested from the
RF signals at distances of 0.6 and 11 meters, respectively.
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Moreover, in the experiment-based study in [4], the harvested
energy from multiple energy transmitting sources is shown to
be additive, which can be exploited to extend the operation
range of wireless charging. Due to the appealing features of
the RF-based energy harvesting, thewireless powered commu-
nication network(WPCN) [5], in which the wireless nodes
exploit the harvested RF energy to power their information
transmissions, has attracted growing attentions.

Different from traditional wireless networks, where the
wireless nodes can draw energy from reliable power supplies
(e.g., by connecting to the power grid or a battery), due to
the wireless fading channels, the random movement of the
wireless nodes, as well as the employed energy harvesting
techniques, the amount of energy that can be harvested in a
WPCN is generally uncertain. As a result, to meet the quality-
of-service (QoS) requirement of the information transmission,
the designed transmission schemes must be adaptive to the
dynamics of the harvested RF energy. Although challenging,
by assuming completely or partially known knowledge of the
energy arrival processes, effective transmission schemeshave
been proposed in, e.g., [6]-[8]. However, the adopted energy
arrival models in the above studies do not apply to the RF-
based energy harvesting scenario.

There has been a growing research interest focusing on
a point-to-point or point-to-multipoint RF energy harvesting
system, where a single transmitter transmits energy to a single
wireless node or multiple wireless nodes, respectively (e.g., in
[5], [9], and [10]). In particular, in [5] the authors studied a
point-to-multipoint system, where the energy transfer from an
access point (AP) to multiple wireless nodes is separated from
the information transfer from each of the wireless nodes to the
AP in time domain. By exploiting the harvested energy at each
wireless node, [5] investigated the optimal time allocation for
energy transfer and information transfer, so as to maximize
the system throughput with fairness consideration. Moreover,
since the RF signals may also carry information besides
energy, simultaneous wireless information and power transfer
(SWIPT) has been studied in the literature (see e.g. [9],
[10]), where more sophisticated receiver design is involved.
In addition, we also noticed there are some works focusing on
energy-efficient design for other applications (e.g., [11]-[13]).

However, most of the existing work, including the above
mentioned ones, did not consider optimal transmission scheme
design in a large-scaleWPCN with a very large number
of wireless nodes, mainly due to the following reasons: 1)
it is difficult to design a scalable transmission scheme that
can be efficiently implemented with the increasing number of
wireless nodes; and 2) due to the wireless fading channels as
well as the random placement of both energy transmitters and
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Energy transfer in the DL phase

Information transfer in the UL phase

fixed AP

moving wireless node
moving AP

fixed wireless node

Type-I network model: moving wireless nodes with fixed APs Type-II network model: moving APs with fixed wireless nodes

moving direction

Fig. 1. Two types of WPCN models with DL energy harvesting andUL information transmission.

wireless nodes, it is challenging to analytically characterize
the harvested RF energy by a wireless node from multiple
energy transmitters. It came to our attention that stochastic ge-
ometry, as a novel way to analyze large-scale communication
networks, provides a set of powerful mathematical tools for
modeling and designing the wireless networks [14]. Moreover,
the mathematical tools (e.g., probability generating functional
(PGFL) of a Poisson point process (PPP)), which facilitate
the interference analysis in a wireless communication network
[15], can also help characterize the harvested RF energy in a
WPCN [16], [17].

In this paper, by using tools from stochastic geometry,
we aim at optimizing bidirectional energy harvesting and
information transmission in a large-scale WPCN. We consider
a new type of dual-function APs which are able to coordinate
energy/information transfer to/from the wireless nodes. We
also consider two types of networks models. As illustrated
in Fig. 1, in Type-I network model, the wireless nodes (e.g.,
the portable electronic devices or the unmanned vehicles [18])
are assumed to independently move in the system over frames,
while the locations of the APs are fixed. In Type-II network
model, however, the APs (e.g., the wireless charging vehicles
[19]) are assumed to independently move in the system over
frames, while the locations of the wireless nodes are fixed.
We show that the wireless node’s downlink (DL) energy har-
vesting performance and the uplink (UL) information transfer
performance can be identically characterized for both types
of network models. Moreover, depending on whether each
wireless node deploys a rechargeable battery, we consider two
cases with battery-free and battery-deployed wireless nodes,
respectively, and study the effects of battery storage. Forboth
cases, we maximize thespatial throughputof the wireless
nodes, which is defined as the total throughput that is achieved
by the wireless nodes per unit network area averaged over all
information transmission phases (bps/Hz/unit-area) [20].

The key contributions of this paper are summarized as
follows.

• Novel harvest-then-transmit protocol to power a large-
scale network:In Section II, we propose a new harvest-
then-transmit protocol by extending that in [5], where
each time frame is partitioned into a DL phase for energy
transfer from the APs to the wireless nodes, and an

UL phase for information transfer from each wireless
node to its associated AP. We show that the proposed
harvest-then-transmit protocol is scalable and thus can
be efficiently implemented in a large-scale network.

• Problem formulation and simplification for spatial
throughput maximization:In Section III, by jointly op-
timizing time frame partition between the DL and UL
phases and the wireless nodes’ transmit power, we
formulate the spatial throughput maximization problem
under a successful information transmission probability
constraint. To make the problem analytically tractable,
we simplify the problem by utilizing the equivalence
of the successful information transmission probability
constraint to a transmission probability constraint plus
a minimum transmit power constraint.

• Spatial throughput maximization for battery-free wireless
nodes: In Section IV, we solve the spatial throughput
maximization problem in the battery-free case, by study-
ing the effects of the AP density and the wireless node
density. We also show that at the optimality the wireless
nodes generally prefer to select a small transmit power,
for obtaining large transmission opportunity.

• Spatial throughput maximization for battery-deployed
wireless nodes:In Section V, we first study an ideal
infinite-capacity battery scenario, and show that all the
feasible time frame partition and UL transmit power are
optimal, since energy stored in the battery is sufficient
over time. We then extend our study to the practical
finite-capacity battery scenario. By proposing a new
tight lower bound for the transmission probability, we
approximately solve the spatial throughput maximization
problem.

We note only limited studies in [16], [17], [21], and
[22] have adopted stochastic geometry to study the large-
scale communication networks enabled by energy harvesting.
Different from these existing studies, we consider the WPCN
where dual functional APs transmit energy and receive infor-
mation to/from wireless nodes. Moreover, we focus on char-
acterizing optimal tradeoffs between the DL energy transfer
and the UL information transfer, for both battery-free and
battery-deployed cases, and theoretically analyze the impact
of battery storage on the network throughput performance.
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In addition, different from most existing studies based on
stochastic geometry that only focused on average system
performance of one snapshot, in this paper, we pursue a long-
term average system analysis, and successfully obtain tractable
system performance in both DL and UL.

II. SYSTEM MODEL

We consider a WPCN with stochastically deployed APs
and wireless nodes, where each wireless node harvests energy
broadcast by the APs, and then uses the harvested energy to
support its information transmission to the associated AP.As
shown in Fig. 1, we assume either the wireless nodes or the
APs move in the system. In this section, we first present the
detailed operations at each wireless node for both battery-
free and battery-deployed cases, and then develop the network
model based on stochastic geometry.

A. System Operation Model

We consider that each AP has reliable power supply (e.g.,
by connecting to the power grid or equipping with large-
capacity battery storage in Type-I or Type-II network model,
respectively), while each wireless node is not equipped with
any embedded energy sources but an RF energy harvesting
device. Thus, the wireless nodes are able to harvest the
energy broadcast by the APs, and use them to support their
information transmissions to the APs. Similar to the practical
radio frequency identification (RFID) system that coexists
with the reader network over the same frequency (around
915MHz) [23], we assume all the APs and wireless nodes
operate over the same frequency band. We also assume all
the APs and wireless nodes are each equipped with a single
antenna, as in the case of the wireless sensor networks. We
partition energy transfer and information transfer in time
domain,1 as shown in Fig. 2. We assume the network is frame-
based in time and consider a harvest-then-transmit protocol
for the wireless nodes. Specifically, we assume each frame
consists ofT > 1 slots, indexing from0 to T − 1, and all the
slots are synchronized among APs and wireless nodes. In each
frame, we assign slot0 to slotN − 1, 1 ≤ N ≤ T − 1, to the
APs for broadcasting energy in the DL phase, and assign the
remaining slots, i.e., slotN to slotT−1, to the wireless nodes
for transmitting information in the UL phase. We denote the
transmit power of the APs and the wireless nodes asPD > 0
and PU > 0, respectively. We assume0 < PU ≤ Pmax,
where Pmax is the maximum allowable transmit power of
each wireless node. It is worth noting that to design ascalable
transmission scheme for a large-scale WPCN (e.g., wireless
sensor or RFID networks), where the wireless nodes usually
operate at low transmit power, we consider the samePU

and N for each wireless node, and optimizePU and N

1The time-partition-based model can also be extended to a frequency-
partition-based model, for the wireless devices with multiple antennas and
the ability to operate over different frequency bands simultaneously as in [9].
Specifically, for a system with totalT frequency bands (likeT time slots in
this paper), we can assignN bands for energy harvesting and the remaining
T−N bands for information transmission. To optimally decideN and the UL
transmit powerPU , there exists similar tradeoff as in the time-partition-based
model studied here.

   Energy harvesting device        
 (e.g. PS2110 harvester [25])

Battery-free (in Section IV)

0 1 ... N-1 N K T-1

Energy harvesting in the DL phase Information transmission in the UL phase

Battery-deployed (in Section V)

SF PU

N

Y

Z F
SF

randomly select
one slot

> Silent

  Transmiter 
PU

( power )

...

... ...

Fig. 2. Energy harvesting and information transmission foreach wireless
node in each frame.

globally for a homogeneous stochastic network as will be
shown later. Thus, wireless nodes do not need to communicate
and coordinate in interference management, which is easy to
implement in practice. Moreover, due to the wireless fading
channels as well as the low energy harvesting efficiency of
today’s RFID technology [24], the amount of energy that can
be collected in one slot is usually small, and is difficult to be
effectively exploited by the wireless nodes. As a result, asin
the practical energy harvesting devices, e.g., the P2110 power
harvester receiver [25] designed by the Powercast corporation,
we consider that a small-sized capacitor is integrated in the
circuits of the energy harvesting device,2 based on which, the
harvested energy from slot0 to slot N − 1 in the DL phase
can be accumulated without the usage of additional battery,
and then entirely boosted out for exploitation by each wireless
node (for UL transmission or battery charging), as shown in
Fig. 2. For each wireless nodei, denoteZF,i(t) as the amount
of energy harvested in DL slott of frameF , 0 ≤ t ≤ N − 1,
1 ≤ F ≤ ∞, andZF,i as the total amount of energy harvested
in the DL phase of frameF . We haveZF,i =

∑N−1
t=0 ZF,i(t).

We denoteSF,i as the amount of energy that is available
to wireless nodei at the beginning of the UL phase of frame
F . In the following, depending on whether a wireless node
is equipped with a rechargeable battery (or any other energy
storage devices) to store the total harvested DL energyZF,i

in each frameF , we consider two cases with battery-free and
battery-deployed wireless nodes, respectively. In each case,
by applying aPU -threshold based UL transmission decision
as in the literature (e.g., [16], [17], and [21]), we model
the evolvement ofSF,i overF . For convenience, we assume
a normalized unit slot time in the sequel without loss of
generality, and thus we can use the terms of energy and power
interchangeably.

1) Battery-free Case:As show in Fig. 2, in each frame
F , due to the lack of energy storage, the wireless nodes
manage the harvested energy in a myopic manner, i.e., all
the harvested energyZF,i is consumed within the current
frameF . Moreover, if ZF,i ≥ PU , wireless nodei decides
to transmit information with powerPU in the UL phase;
otherwise, it stays silent in the UL phase of frameF . Since the
unused amount of energy in the current frame (i.e.,ZF,i−PU ,

2The integrated capacitor in the energy harvesting device isonly used to
improve the energy harvesting efficiency, and thus will not be exploited as
an energy storage device as the rechargeable battery, whichcan manage the
harvested energy.
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if ZF,i ≥ PU , or ZF,i, otherwise) will not be kept for future
use, for anyF ∈ {1, ...,∞}, we can easily obtain

SF,i = ZF,i. (1)

2) Battery-deployed Case:Unlike the battery-free case, by
deploying a rechargeable battery in the device circuit, the
wireless nodes can store the unused energy in the current
frame for future use, as long as the battery capacity allows.
Thus, the harvested energy can be exploited more effectively
in the battery-deployed case than that in the battery-free case
in general. As shown in Fig. 2, in each frameF , if the
battery level at the beginning of the UL phase, given bySF,i,
is no smaller than the required UL transmit powerPU , the
wireless node decides to transmit in the UL; otherwise, it
stays silent in the UL phase. Let the battery capacity beC
with PU ≤ C ≤ ∞. For anyF ∈ {1, ...,∞}, givenSF−1,i,
by subtracting the consumed energy in the UL phase of frame
F − 1 and adding the harvested energy in the DL phase of
frameF , we obtainSF,i as

SF,i = min(SF−1,i − PUI(SF−1,i ≥ PU ) + ZF,i, C), (2)

whereS0,i = 0 and the indicator functionI(x) = 1 if x is
true, andI(x) = 0 otherwise. Note thatC = ∞ is an ideal
scenario with infinite-capacity battery. It is easy to find that
in this scenario, for anyF ∈ {1, ...,∞}, (2) is reduced to

SF,i = SF−1,i − PUI(SF−1,i ≥ PU ) + ZF,i. (3)

At last, in the UL transmission, for both cases with battery-
free and battery-deployed wireless nodes, we assume there is
no transmission coordination between the wireless nodes for
simplicity, as in [22]. We thus adopt independent transmission
scheduling for the wireless nodes.3 Specifically, to reduce
the potentially high interference level in the UL due to the
independent transmissions of the wireless nodes, we assume
that if a wireless nodei decides to transmit, it randomly selects
a slot from slotN to slot T − 1 in the UL phase with equal
probability of 1/(T − N), and transmits its information in
this slot with transmit powerPU to its nearest AP, as in [16]
and [27], for achieving good communication quality. The UL
information transmission is successful if the received signal-
to-interference-plus-noise-ratio (SINR) at the AP is no smaller
than a target SINR threshold, denoted byβ > 0.

B. Network Model

Based on the operations of the wireless nodes and the
APs, in this subsection, we develop the network model based
on stochastic geometry, and then characterize the harvested
energy of the wireless node in each frame.

As shown in Fig. 1, we consider two types of network
models, which are Type-I network model, with moving wire-
less nodes and static APs, and Type-II network model, with
moving APs and static wireless nodes. In both types of
networks models, we assume the wireless nodes and the
APs are initialized as two independent homogeneous PPPs,

3For simplicity, we only focus on independent scheduling in this paper.
More advanced scheduling schemes and their effects in wireless communi-
cation networks, as in, e.g., [20] and [26], will be considered in our future
work.

denoted byΦ(λw), of wireless node densityλw > 0, and
Φ(λAP ), of AP densityλAP > 0, respectively. In Type-I
network model, we assume all the APs stay at their initialized
locations in all frames, while the wireless nodes independently
change their locations in each frame based on the random
walk model considered in [28]. Specifically, at the beginning
of each frame, each wireless node is independently displaced
from its previous location in the proceeding frame to a new
location in the current frame; and stays at its new location
within the current frame. According to the Displacement
Theorem in [28], the homogeneous PPPΦ(λw) is preserved
by the independently displaced wireless nodes in each frame.
Similarly, in Type-II network model, we assume the wireless
nodes stay at their initialized locations in all frames, while the
APs are independently displaced over frames as the wireless
nodes in Type-I network model. Clearly, the homogeneous
PPPΦ(λAP ) is also preserved by the independently displaced
APs in each frame in Type-II network model.

Let Φ(λAP ) = {X} andΦ(λw) = {Y }, whereX,Y ∈ R
2

denote the coordinates of the APs and wireless nodes, respec-
tively. As in the existing literature that studied wirelesscharg-
ing based on stochastic geometry (e.g., [17], [21], and [22]),
we assume Rayleigh flat fading channels with path-loss.4 We
also assume the Rayleigh fading channels vary independently
over different time slots. In each slott of a particular frame,
the radio signal transmitted by an AP/wireless node is received
at the origin with strength|X |−αhX(t) and |Y |−αhY (t),
respectively, where|X | and |Y | are the distances from AP
X or wireless nodeY to the origino = (0, 0), respectively,
hX(t) andhY (t) are independent and identically distributed
(i.i.d.) exponential random variables with unit mean to model
Rayleigh fading in slott from AP X or wireless nodeY to
the origin, respectively, andα > 2 is the path-loss exponent.

In both Type-I and Type-II network models, due to the
stationarity of the homogeneous PPPΦ(λAP ), we focus on
a typical wireless node in the DL phase, which is assumed
to be located at the origin, without loss of generality. For
notational simplicity, for the typical wireless node, we omit
the lowerscripti and useZF (t) andZF to denote the amount
of energy that is harvested in a particular DL slott and over
all DL slots of frameF , respectively, and useSF to denote
the amount of available energy for UL phase in frameF .
Since the harvested energy is obtained from the received RF
signals, as in the existing studies on wireless powered energy
harvesting (e.g., [5], [9], [16], [17] and [21]), for any slot t
of frameF , 0 ≤ t ≤ N − 1, 1 ≤ F ≤ ∞, we have

ZF (t) = η
∑

X∈Φ(λAP )

PD|X |−αhX(t), (4)

where η ∈ (0, 1) is the energy harvesting efficiency. As a
result, by summingZF (t) over all slots in the DL phase of
frameF , we obtain

ZF = η
∑

X∈Φ(λAP )

PD|X |−α
N
∑

t=1

hX(t), (5)

4Since shadowing does not affect the main results of this paper, we ignore
the effects of shadowing for tractable analysis.
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where
∑N

t=1 hX(t) follows Erlang distribution with shapeN
and rate1. By applying the PGFL of the PPP, we obtain the
Laplace transform and the complementary cumulative distri-
bution function (CCDF) ofZF in the following proposition.

Proposition2.1: The Laplace transform ofZF is

LZF
(s)=exp

(

−πλAP

Γ
(

N+ 2
α

)

Γ(N)
Γ

(

1− 2

α

)

(PDηs)
2

α

)

, (6)

whereΓ(p) =
∫∞
0 tp−1e−t dt is the gamma function. When

α = 4, for any givenz ≥ 0, the CCDF forZF is given as

P(ZF ≥ z) = erf

(

λAPΓ
(

N + 2
α

)

2Γ(N)

√

π3PDη

z

)

, (7)

where erf(x) = 2√
π

∫ x

0 exp(−u2) du is the error function.
Proposition 2.1 is proved by using a approach similar to

that in [15] for deriving the interference distribution in aPPP,
with the notice that for a random variableH ∼ Erlang(N, 1),
E (Hm) = Γ(N+m)

Γ(N) , and thus is omitted here for brevity.
It is clear that Proposition 2.1 holds for both Type-I and
Type-II network models. By increasingN in (7), the term
Γ(N+2/α)

Γ(N) increases, and thus the CCDF ofZF increases for
a givenz > 0, as expected. Moreover, due to the singularity
of the path-loss law|X |−α at the origin, the average energy
arrival rate isE(ZF ) = ∞. However, this does not necessarily
mean that each wireless node can always harvest sufficient
energy, as the probability that a wireless node can be very
close to an AP is very small in any frame in general. In
addition, although from Proposition 2.1, the distributionof
ZF is identical for each wireless node in each frameF , since
the harvested energy of each wireless node comes from the
same set of APs inR2 in all frames, it is easy to verify that
in both Type-I and Type-II network models, for each wireless
node, its harvested energyZF ’s are not mutually independent
over time frames in general; and for any two wireless nodes
locating in different locations in spaceR2, their harvested
energy are also not mutually independent in each frame in
general. Since whether a wireless node can transmit in the
UL and the corresponding transmission performance are both
strongly depend on the characteristics ofZF ’s, similar to the
case in [20], such correlations betweenZF ’s over both time
frames and space yield challenges for tractable analysis of
the wireless nodes’ communication performance as well as
the system throughput.

From [29], we observe similar correlation betweenZF ’s
over both time frames and spaceR2, which is determined by
the variation of the fading channels as well as the mobility of
the wireless nodes or the APs in Type-I or Type-II network
model, respectively. From (5), due to the independently varied
fading channels between any APs and any wireless nodes over
all slots in all frames as well as the independent location
change of either the wireless nodes or the APs over frames
in the considered models, which can decorrelate the distance
between any APs and any wireless nodes over frames, it
is thus easy to verify thatZF ’s correlations over both time
frames and space are weak in general. Moreover, due to the
serious path loss for energy transfer and the generally low
energy harvesting efficiencyη < 1, the harvested energy by

each wireless node is only dominated by its near APs. By
noticing that the independent location change of either the
wireless nodes or the APs over time frames can also decouple
each wireless node’s dominated APs over time frames, it is
expected thatZF ’s correlations over both time frames and
space are very weak. Therefore, to obtain tractable results, we
apply the following independent assumption on the harvested
energyZF ’s.

Assumption 1:In both Type-I and Type-II network mod-
els, ZF ’s are mutually independent for each wireless node
over frames and mutually independent for any two different
wireless nodes inR2 in each frame.

By Assumption 1,ZF ’s become i.i.d. random variables
over both time frames and spaceR2. We also successfully
validate the feasibility of Assumption 1 later in Section VI-A
by simulation. In the next section, based on the i.i.d.ZF ’s
and their identical distribution given in Proposition 2.1,we
will focus on the system communication metrics in the UL
phase, and present the formulation of the spatial throughput
maximization problem.

III. PERFORMANCEMETRICS AND PROBLEM

FORMULATION

In this section, we focus on studying the information trans-
mission in the UL phase as system metrics. We first analyze
the point process formed by the wireless nodes that transmit
in each slot of the UL phase, and characterize the successful
information transmission probability of the typical wireless
node in the UL. Then by studying the effects of the design
variablesN andPU , we formulate the spatial throughput max-
imization problem under a successful information transmis-
sion probability constraint. Since the successful information
transmission probability constraint is very complicated,we
will further simplify it by finding equivalent constraints,which
yields an equivalent spatial throughput maximization problem
with a simpler structure, as explained later.

A. Successful Information Transmission Probability

First, we define thetransmission probabilityas the prob-
ability that the typical wireless node can transmit in the
UL. SinceSF is determined byZF in both battery-free and
battery-deployed cases, given in (1) and (2), respectively,
under Assumption 1 with i.i.dZF ’s over time frames for each
wireless nodes, it is easy to verify that{ZF }1≤F≤∞ and thus
{SF}1≤F≤∞ is ergodic over frameF for both battery-free and
battery-deployed cases. As a result, as in [21], since only the
wireless nodes withSF ≥ PU can transmit to their associated
APs, the transmission probability, denoted byρ, is defined as

ρ = lim
n→∞

1

n

n
∑

F=1

P(SF ≥ PU ). (8)

From Section II-A, in both Type-I and Type-II network
models, if a wireless node decides to transmit in the UL based
on the transmission probabilityρ, it randomly selects one slot
from the totalT −N slots in the UL phase to transmit. Thus,
in the UL phase under both network models, the point process
formed by the wireless nodes that transmit in each time slot is
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of the identical active wireless node density, which is denoted
by λa and given as

λa =
λwρ

T −N
. (9)

Due to the correlated harvested energy for different wireless
nodes in each frame, as discussed in Section II-B, the point
process formed by the active wireless nodes in each UL slot is
not a PPP in general. However,as a direct result by applying
Assumption 1 with i.i.d.ZF ’s for different wireless nodes in
each frame, the active wireless nodes’ transmissions in each
UL slot become independent, which yields a homogeneous
PPP for each UL slot, denoted byΦ(λa), of identical density
λa, in both Type-I and Type-II network models.We also
successfully validate such PPP assumption in the UL slot later
in Section VI-A by simulation.

Next, since each active wireless node only selects one slot
in the UL phase to transmit, we focus on a particular slot in
the UL, and analyze the typical wireless node’s information
transmission performance in the UL based on the PPPΦ(λa),
under both Type-I and Type-II network models. Similar to
the DL phase studied in Section II-B, due to the stationarity
of Φ(λa), we assume the typical wireless node’s associated
AP is located at the origin in the UL phase, without loss
of generality. For ease of notation, we omit the time slot
index and usehm to denote the Rayleigh fading channel
from the typical wireless node locating atm ∈ R

2 to the
origin. Suppose|m| = r is the random distance between the
typical wireless node and its associated AP. Letσ2 > 0 be
the noise power. We then define thesuccessful information
transmission probabilityasPsuc, which gives the probability
that the received SINR at the typical AP is no smaller than
the target levelβ and can be written as

Psuc= P

(

PUhmr−α

∑

Y ∈Φ(λa),Y 6=m PUhY |Y |−α + σ2
≥ β

)

. (10)

Since the typical wireless node is associated with its nearest
AP, i.e., no other APs can be closer thanr, the probability
density function (pdf) ofr can be easily found by using
the null probability of a PPP, which is given byfr(r) =
2πλAP re

−λAP πr2 for r ≥ 0 [27].
Given a generic transmission probabilityρ, we derive the

expression ofPsuc, defined in (10). By applying the PGFL of
a PPP [14], we explicitly expressPsuc for a givenρ in the
following proposition.

Proposition3.1: Given the transmission probabilityρ, the
successful information transmission probability for the typical
wireless node is

Psuc = πλAP

∫ ∞

0

e−axe−bx
α
2 dx, (11)

where a = πλaκ + πλAP = πκλwρ
T−N + πλAP , with κ =

β
2

α

∫∞
0

1

1+u
α
2

du, and b = βσ2

PU
. Whenα = 4, (11) admits

a closed-form expression with

Psuc = G exp
(

Υ2/2
)

Q(Υ), (12)

whereG = π
3

2 (βσ2)−
1

2 λAP

√
PU , Υ = G√

2π
+ π2

√
PUλwρ

2(T−N)
√
2σ2

,

andQ(x) = 1√
2π

∫∞
x

exp
(

−u2

2

)

du is the standard Gaussian
tail probability.

Proposition 3.1 is proved using a method similar to that for
proving Theorem 2 in [27], and thus is omitted for brevity.
Clearly, Proposition 3.1 also holds for both Type-I and Type-II
network models as Proposition 2.1. It is observed from both
(11), for a generalα, and (12), forα = 4, by decreasing the
transmission probabilityρ, due to the reduced active wireless
node densityλa, given in (9), the interference level in the UL
phase is reduced, and thusPsuc is increased.

In the next subsection, by applying Proposition 3.1, we
formulate the spatial throughput maximization problem. Itis
worth noting that since identical DL and UL performance
are obtained for Type-I and Type-II network models, same
spatial throughput maximization problem formulation and
corresponding solutions are obtained for the two models, and
thus we will not differentiate the two models in the sequel of
this paper.

B. Spatial Throughput Maximization Problem

We focus on the effects of the number of slotsN assigned
to the DL phase and the UL transmit powerPU to investigate
the interesting tradeoff between the energy transfer in theDL
and the information transfer in the UL. By increasingN at a
fixed PU , from (5), we observe that the harvested energyZF

in the DL increases, and thus the transmission probabilityρ is
increased. As a result, the successful information transmission
probabilityPsuc in the UL, given in (11) for a generalα or
(12) for α = 4, is decreased. Similarly, by increasingPU at
a fixedN , we observe a decreased transmission probabilityρ
in (8), and thus an increasedPsuc in the UL. In the following,
we designN andPU to optimize the network performance.

Specifically, to ensure the QoS for each wireless node,
we apply asuccessful information transmission probability
constraintsuch thatPsuc≥1− ǫ, with ǫ≪1, for any DL slot
allocationN and UL transmit powerPU . Similar to [21], we
define thespatial throughputof the considered WPCN as the
total throughput that is achieved by the wireless nodes overall
the slots in the UL phase per unit network area (bps/Hz/unit-
area). Moreover, given the receiver SINR thresholdβ, we
suppose the uplink information transmission is successful, if
the information can be coded at a ratelog2(1+βτ ) with τ≥1.
Assumingτ=1, the spatial throughput is then given by

R(N,PU ) = λa(T −N) log2(1 + β)

(a)
= λwρ log2(1 + β), (13)

where procedure(a) is obtained by applying (9). To be pre-
cise,R(N,PU ) should be scaled by the successful information
transmission probabilityPsuc; but sincePsuc is ensured to be
very close to1 given ǫ ≪ 1, this factor is omitted for ease
of notation as in [17] and [21]. It is also easy to find that
due to ρ defined in (8),R(N,PU ) is a function ofN and
PU . Moreover, in each frame consisting ofT slots, since we
should at least assign one slot to UL phase for information
transmission, we haveN ≤ T−1. Hence, under the successful
information transmission probability constraint, we formulate
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the spatial throughput maximization problem as

(P1) : max.
N,PU

R(N,PU )

s.t. Psuc ≥ 1− ǫ,

N ∈ {1, ..., T − 1},
0 < PU ≤ Pmax.

It is noted that Problem (P1) involves integer programming,
due toN ∈ {1, ..., T − 1}. Moreover, since the expression
of Psuc in Proposition 3.1 is very complicated, it is difficult
to analyze the effects ofN and PU to ensurePsuc ≥ 1 −
ǫ, and thus solve Problem (P1). In the following proposition
for the case ofα = 4, which is a typical channel fading
exponent in wireless communications, we successfully find
the equivalent constraints toPsuc ≥ 1− ǫ, which can be used
for formulating an equivalent problem to Problem (P1) with
a simpler structure.

Proposition3.2: When α = 4, as ǫ → 0, the successful
information transmission probability constraintPsuc ≥ 1 − ǫ
is equivalent to a transmission probability constraintλwρ ≤
KǫλAP (T−N) with PU ≥ g2

0
βσ2

π3λ2

AP

andKǫ =
2ǫ
1−ǫ

β−
1

2

π , where

g0 is the unique solution tog0Q
(

g0
2π

)

= (1− ǫ) exp
(

− g2

0

4π

)

.
Proof: Please refer to Appendix A.

Remark3.1: Since we assumeǫ ≪ 1 to assure satisfied
QoS in the UL transmission, Proposition 3.2 can be well
applied in our considered system. Moreover, the noise power
σ2 6= 0 provides a valid minimum transmit power level for
PU ≤ Pmax, denoted byPmin =

g2

0
βσ2

π3λ2

AP

, which is important to
assure a sufficiently largePsuc in a noise-dominant network.
To avoid the trivial case without any valid decision forPU ,
we assumePmin ≤ Pmax.

Finally, for ease of analysis, we focus on the case ofα =
4 in the sequel.5 By applying Proposition 3.2, we find an
equivalent problem to Problem (P1), which is given by

(P2) : max.
N,PU

R(N,PU )

s.t. λwρ ≤ KǫλAP (T −N),

N ∈ {1, ..., T − 1},
Pmin ≤ PU ≤ Pmax.

Clearly, Problem (P2) has transformed the successful in-
formation transmission probability constraint in (P1) to an
equivalent transmission probability constraint onρ. In the next
two sections, we solve Problem (P2) for both battery-free and
battery-deployed cases, and study the effects of battery storage
on the achievable throughput.

IV. W IRELESSPOWERED INFORMATION TRANSMISSION

IN BATTERY-FREE CASE

Due to the limited circuit size of some wireless devices, it
is hard to install a sizable battery for these devices to store
the harvested energy. Thus, the use of battery-free wireless
devices is growing in many wireless applications (e.g., the
body-worn sensors for health monitoring). In this section,we

5The value ofα does not affect the main results of this paper. Moreover,
for other cases withα 6= 4, the spatial throughput maximization problem can
be similarly studied by using the modeling methods providedin this paper.

focus on the spatial throughput maximization problem for the
battery-free wireless nodes. We first derive the transmission
probability ρ and the spatial throughputR(N,PU ). We then
substitute ρ and R(N,PU ) into Problem (P2) and solve
the spatial throughput maximization problem, by finding the
optimal solution ofN∗ andP ∗

U .
First, we derive the transmission probabilityρ. In the

battery-free case, as introduced in Section II-A, the wireless
node operates with its available energy according to (1). Thus,
by substituting (1) into (8), we obtain the expression ofρ in
the battery-free case as

ρ = lim
n→∞

1

n

n
∑

F=1

P(ZF ≥ PU )
(a)
= P(ZF ≥ PU )

(b)
= erf





Γ(N + 2/α)λAP

2Γ(N)

√

π3PDη

PU



 , (14)

where procedure(a) follows from our assumption in Section
II-B, which gives i.i.d. ZF ’s for the typical wireless node
over frames, and procedure(b) follows from (7), by replacing
z with PU . Note that since the error function erf(x) → 1
whenx is sufficiently large, from (14),ρ → 1, by adopting
sufficiently largeN , λAP , and/orPD. By substituting (14)
into (13), we obtain the spatial throughput for the battery-free
case as

R(N,PU )=λwerf





Γ(N+2/α)λAP

2Γ(N)

√

π3PDη

PU



log2(1+β).

(15)

In addition, by substituting (14) into (12), the expressionof
Psuc in the battery-free case can also be easily obtained.

Next, by substitutingρ, given by (14), andR(N,PU ), given
by (15), into Problem (P2), we obtain the spatial throughput
maximization problem for the battery-free case as

(P3): max.
N,PU

λwerf





Γ(N+ 2
α )λAP

2Γ(N)

√

π3PDη

PU



log2(1+β)

s.t.
λw

Kǫ
erf





Γ(N+ 2
α )λAP

2Γ(N)

√

π3PDη

PU



≤λAP (T−N),

(16)

N ∈ {1, ..., T − 1},
Pmin ≤ PU ≤ Pmax.

It is observed that in Problem (P3), both the objective
function and the transmission probability constraint, given by
(16), are related to the error function. Note that the error
function erf(x) increases overx ≥ 0, and then converges to
its maximum value1 whenx is sufficiently large. Suppose at
x = ve, we have1−erf(ve) = 10−n, where we assumen > 0
is sufficiently large such that whenx ≥ ve, erf(x) = 1 holds
with an ignorable absolute error, which is no larger than10−n.
Under such a tight approximation, to help solve Problem (P3),
we calculate erf(x) overx ≥ 0 as:

erf(x) =

{

erf(x), if x < ve
1, if x ≥ ve.

(17)
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It is also observed that in Problem (P3), the maximum
achievable spatial throughput over allN ∈ {1, ..., T − 1} and
PU ∈ [Pmin, Pmax] is λw log2(1+β), and it is achieved when
the transmission probabilityρ = 1, i.e.,

Γ(N + 2/α)λAP

2Γ(N)

√

π3PDη

PU
≥ ve, (18)

by applying (17) to (14). Moreover, for any given wireless
node densityλw > 0, if the AP densityλAP is sufficiently
large, such thatKǫλAP (T − N) ≥ λw holds for any
N ∈ {1, ..., T − 1}, the transmission probability constraint
given in (16) of Problem (P3) is always satisfied, and thus
any N ∈ {1, ..., T − 1} andPU ∈ [Pmin, Pmax] that satisfy
(18) is optimal to Problem (P3). However, ifλAP is too
small, the transmission probability constraint in (16) may
not be able to be satisfied with anyN ∈ {1, ..., T − 1}
and PU ∈ [Pmin, Pmax], and thus Problem (P3) has no
solution. Therefore, in the following theorem, by taking the
wireless node density as a reference, we divide the AP density
into three regimes, each with different optimal solutions to
Problem (P3), and present for these optimal solutions the
resulting maximized spatial throughput in each regime.

Theorem4.1: In the battery-free case, the optimal solutions
N∗ andP ∗

U to Problem (P3) are determined as follows, where
in each AP density regime, the corresponding maximum
spatial throughputR(N∗, P ∗

U ) is obtained by substituting the
optimalN∗ andP ∗

U to (15).

1) In the high AP density regime(λAP ≥ λw

Kǫ
), the trans-

mission probability constraint given in (16) is always
satisfied. The optimal solutions are given by














∀N∗∈{1, ..., T−1} and∀P ∗
U ∈ [Pmin, Pmax]

that satisfy (18), if (18) holds when
N=T−1, PU =Pmin,

N∗=T−1, P ∗
U =Pmin, otherwise.

(19)
2) In the medium AP density regime( λw

Kǫ(T−1) ≤ λAP <
λw

Kǫ
), a uniqueN0 ∈ {1, ..., T − 2} exists such that

KǫλAP (T −(N0+1)) < λw ≤ KǫλAP (T −N0). Thus,
(16) is always satisfied whenN ≤ N0. The optimal
solutions are then given by














∀N∗∈{1, ..., N0} and∀P ∗
U ∈ [Pmin, Pmax]

that satisfy (18), if (18) holds when
N=N0, PU =Pmin,

N∗ = N0, P
∗
U = Pmin, otherwise.

(20)

3) In the low AP density regime(λAP < λw

Kǫ(T−1) ), we
find (16) cannot be satisfied withρ = 1. We thus obtain
the following.

• if λwerf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
Pmax

)

>KǫλAP (T−N)

at N = 1, no feasible solutions exist;
• otherwise, N∗ andP ∗

U are obtained by Algorithm 1,
where Ps in Line 4 is the unique solution to

λwerf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
PU

)

=KǫλAP (T −N),

and erfinv(x) is the inverse error function ofx ≥ 0.

Proof: Please refer to Appendix B.

Remark4.1: For the battery-free case, due to the lack of
energy storage, the amount of available energy for the UL
phase in each frame is strongly affected by the time-varying
DL channel fading, and thus may often be of a small value.
As a result, we observe from Theorem 4.1 thatto obtain more
opportunity to transmit in the UL, the wireless nodes prefer
to setPU = Pmin. Moreover, given the wireless node density
λw, by increasing the AP densityλAP , we observedouble
performance improving effects in the WPCN: 1) in the DL
phase, the amount of harvested energy at each wireless node
in the DL phase increases overλAP ; 2) in the UL phase, due
to the largely shortened distance between each wireless node
and its associated AP by increasingλAP , the desired signal
strength at the AP is substantially increased, which dominates
over the increased interference effects in the UL.We thus find
the resulting successful information transmission probability
in the UL phase is increased. As a result, the successful
information transmission probability constraint becomesloose
by adopting a large AP density; and thus from Theorem 4.1,
both the number of optimal solutions and the maximized
spatial throughput are non-decreasing overλAP .

Algorithm 1 Efficient algorithm for optimally solving Prob-
lem (P3) in the low AP density regime.

1: initialize N∗ = 0, P ∗
U = 0, andR(N∗, P ∗

U ) = 0.
2: for eachN ∈ {1, ..., T − 1} do

3: if λwerf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
PU

)

≤ KǫλAP (T − N)

then
4: setPs=π3PDη

[

2Γ(N)

λAPΓ(N+ 2

α
)
erfinv

(

KǫλAP (T−N)
λw

)]−2

.

5: if Ps < Pmin then
6: setp = Pmin;
7: else
8: setp = Ps;
9: end if

10: if R(N, p) > R(N∗, P ∗
U ) then

11: setP ∗
U = p, N∗ = N , andR(N∗, P ∗

U ) = R(N, p).
12: end if
13: end if
14: end for
15: returnN∗, P ∗

U , andR(N∗, P ∗
U ).

V. W IRELESSPOWERED INFORMATION TRANSMISSION IN

BATTERY-DEPLOYED CASE

In this section, we consider the case with battery-deployed
wireless nodes, as shown in Fig. 2 and discussed in Section
II-A. In the following, we first study the ideal scenario with
infinite-capacity battery, i.e.,C = ∞, to help understand
the effects of deploying a battery for improving the network
performance. Then, we focus on a more practical scenario
with a finite-capacity battery, i.e.,C < ∞. One can imagine
that the network performance of the scenario withC < ∞ is
upper bounded by that withC = ∞.

A. Infinite-Capacity Battery Scenario (C = ∞)

In this subsection, we consider the ideal scenario with
C = ∞, for which the battery levelSF evolves over frames
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according to (3). In the following, we derive the transmission
probability ρ and the spatial throughputR(N,PU ) in this
scenario. Then by substitutingρ andR(N,PU ) into Problem
(P2), we provide the optimal solutionsN∗ and P ∗

U for the
infinite-capacity scenario.

First, we study the transmission probabilityρ. Unlike the
battery-free case, by deploying batteries to store the harvested
energy over frames, the time-varying channel effects on the
available amount of energy in the UL phase is largely alle-
viated in the battery-deployed case. WhenC = ∞, all the
harvested energyZF in each frame can be stored in the
battery and used by the following frames. Moreover, note
that the average energy arrival rate in the DL phase of each
frame isE(ZF ) = ∞, as explained in Section II-B, which is
much larger than the required transmit powerPU < ∞ in the
UL phase. Thus, as the harvested energy accumulates in the
battery over frames, we obtain the following proposition.

Proposition5.1: Given infinite-capacity battery, the typical
node’s UL transmission probability is

ρ = 1. (21)

Proof: Please refer to Appendix C.
From Proposition 5.1, in the infinite-capacity scenario, the

APs’ RF signals can be considered as areliable energy source
for the wireless nodes.

Next, by substituting (21) into (13), which is the objective
function in Problem (P2), we obtain the spatial throughput in
the infinite-capacity battery case asR(N,PU ) = λw log2(1+
β), which is a constant and is the maximum achievable spatial
throughput ofR(N,PU ). SinceR(N,PU ) is a constant, the
objective function in Problem (P2) is also a constant. Thus,
the spatial throughput maximization problem degenerates to a
feasibility problem, given by

(P4) Find N,PU

such that N ∈
{

1, ...,min

(

T−1, T− λw

KǫλAP

)}

, (22)

Pmin ≤ PU ≤ Pmax. (23)

By observing the constraints in Problem (P4), the optimal
solutionsN∗ andP ∗

U of the spatial throughput maximization
problem are given by any arbitrary point in the rectangular
feasible region defined by (22) and (23). Unlike the optimal
solutions in the battery-free case, given in Theorem 4.1,
whereN∗ and P ∗

U are correlated,N∗ and P ∗
U here can be

independently selected for the infinite-capacity battery case.
Moreover, since the transmission probabilityρ = 1, the
wireless nodes can always have opportunity to transmit in
the UL with sufficient energy. Thus, we find any transmit
power levelPU ∈ [Pmin, Pmax] is optimal in the infinite-
capacity battery scenario. This is in sharp contrast to the
battery-free case, where the optimal transmit power level is the
minimum transmit powerPmin in general. However, similar to
the battery-free case results shown in Theorem 4.1, since the
number of feasibleN ’s is non-decreasing overλAP from (22),
the number of optimal solution pairs (N∗ and P ∗

U ) is non-
decreasing overλAP . Moreover, we note that ifλAP ≥ λw

Kǫ
,

which is the high AP density regime defined for the battery-
free case in Theorem 4.1, anyN ∈ {1, ..., T − 1} is optimal

for the infinite-capacity battery case. This is because the
transmission probability constraint given in Problem (P2)is
always satisfied and the UL transmission interference is small
due to the close distance between each wireless node and its
associated AP.

B. Finite-Capacity Battery Scenario (C < ∞)

In this subsection, we consider a practical scenario with
finite-capacity battery, i.e.,C < ∞, in which the network per-
formance is upper and lower bounded by that in the infinite-
capacity battery scenario and battery-free case, respectively.
Since the stored energy is capped byC, the battery level
evolution, given in (2), and thus the transmission probability
ρ, defined in (8), are all dependent onC. It is hence difficult
to find an exact expression ofρ for the finite-capacity battery
scenario [21]. As a result, we focus on providing effective
bounds toρ. In the following, we first provide closed-form
lower and upper bounds ofρ, based on which, a special case
with ρ = 1 is obtained. Since the tightness of these closed-
form bounds cannot be assured, we then provide another lower
bound, which is relatively tighter toρ but can only be obtained
numerically. At last, by applying the obtained bounds ofρ,
we study the spatial throughput maximization problem for the
finite-capacity battery scenario.

1) Closed-form Bounds of Transmission Probabilityρ:
By noticing from (2) and (8), the transmission probability
ρ increases over the battery capacityC. We thus find the
transmission probability in the finite-capacity battery scenario
is upper and lower bounded by that in the infinite-capacity
battery scenario, given in (21), and that in the battery-free
case, given in (14), respectively. However, it is noted that
both (14) and (21) are constants and thus cannot flexibly
capture the variation ofρ over different values of capacity
C. It is also noted that [21] has proposed a lower bound,
1 − e−Q(C−PU ), whereQ is the root oflnE

[

e−Q(ZF−PU )
]

,
under the condition thatE(ZF ) > PU . Although such a lower
bound exponentially increases overC and can also be applied
in our considered system asE(ZF ) = ∞, it may not be tight
when C is small. For example, whenC = PU , the lower
bound1 − e−Q(C−PU ) provided in [21] is0, which is even
smaller than the lower bound given in (14). As a result, we
combine both lower bounds given in (14) and [21] to provide
a tighter lower bound in the following proposition.

Proposition5.2: For the finite-capacity battery case, the
transmission probabilityρ satisfiesL ≤ ρ ≤ 1, where

L=max
(

erf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
PU

)

, 1−e−Q(C−PU)
)

, with

Q = PDη
[

πλAPΓ(N+2/α)Γ(1−2/α)
PUΓ(N)

]2

.
Proof: Please refer to Appendix D.

It is noted that whenλAP ≥ 2veΓ(N)
Γ(N+2/α)

√

PU

π3PDη , the lower
bound given in Proposition 5.2 equals1, and thus we obtain
the following corollary.

Corollary 5.1: For the finite-capacity battery case, if

λAP ≥ 2veΓ(N)
Γ(N+2/α)

√

PU

π3PDη , ρ = 1.
Although the lower and upper bounds provided in Propo-

sition 5.2 are in closed-form, their tightness to the actualρ
of the finite-capacity case cannot be assured for arbitraryC
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and other parameters. Thus, in the following, we provide an
alternative lower bound toρ which is tight in general.

2) Tight Lower Bound of Transmission Probabilityρ: The
tight lower bound ofρ is obtained by modeling the battery
level as a discrete-time Markov chain [21]. In the following,
we first quantizeC, ZF , and PU , and then based on the
resulting battery level, we develop the discrete-time Markov
chain with finite number of states. By finding the steady-state
probabilities of the Markov chain, we novelly derive a tight
lower bound to the transmission probabilityρ, which is not
in closed-form but can be computed efficiently.

First, we quantize the battery capacityC, the harvested
energyZF , and the required transmit powerPU of the typical
wireless node, such that the battery level only has a finite
number of values. Specifically, letδ ≪ C represent the
quantization step size, which assures⌈PU/δ⌉ ≤ ⌊C/δ⌋, with
⌈x⌉ and⌊x⌋ denoting ceiling and floor operations ofx ∈ R,
respectively. We reduceC andZF to δ⌊C/δ⌋ andδ⌊ZF /δ⌋,
respectively, and increasePU to δ⌈PU/δ⌉. Clearly, under these
operations, the resulting battery level is a lower bound toSF

in (2), which is denoted bySLB
F , given as

SLB
F =min

(

δ⌊C/δ⌋,

SLB
F−1 − δ⌈PU/δ⌉I

(

SLB
F−1≥δ⌈PU/δ⌉

)

+δ⌊ZF/δ⌋
)

(24)

with initial SLB
0 = 0. For anyF ≥ 0, we haveSLB

F ∈
{0, δ, ..., δ⌊C/δ⌋}. By replacingSF with SLB

F in (8), we
obtain a lower bound toρ, which is denoted byρLB. It is
easy to verify that whenδ is sufficiently small,ρLB is a tight
lower bound toρ, which is expected to outperform the bounds
in Proposition 5.2. Moreover, whenδ → 0, we haveρLB = ρ
due toSLB

F = SF .
Next, we deriveρLB by analyzing the distribution ofSLB

F

via Markov-chain theory. LetU = ⌈PU/δ⌉ andV = ⌊C/δ⌋.
From (24), givenSLB

F−1 with F ≥ 2, SLB
F is independent of

{SLB
n }F−2

t=0 . Thus,{SLB
F } satisfies the Markov property and

is hence a discrete-time Markov chain, with the state space
given by{0, δ, ..., V δ}. Let Pij = P

(

SLB
F = jδ

∣

∣SLB
F−1 = iδ

)

represent the transition probability from stateiδ to jδ, with
i, j ∈ {0, ..., V }. If j < V , the battery leveljδ is below the
capacity limitV δ, and thus
Pij = P

(

δ⌊ZF /δ⌋ = (j − i)δ + UδI(i ≥ U)
)

= P
(

(j − i)δ + UδI(i ≥ U) ≤ ZF <

(j − i+ 1)δ + UδI(i ≥ U)
)

. (25)

If j = V , state transition fromi to j includes all events that
can cause battery saturation, and thus

Pij =

∞
∑

k=V −i

P
(

δ⌊ZF /δ⌋ = kδ + UδI(i ≥ U)
)

= P
(

ZF ≥ kδ + UδI(i ≥ U)
)

. (26)

By combining (25) and (26), we obtain

Pij=































P
(

(j−i)δ≤ZF <(j+1−i)δ
)

,
if j<V, i<U,

P
(

(j−i)δ+Uδ≤ZF <(j+1−i)δ+Uδ
)

,
if j<V, i≥U,

P
(

ZF ≥(V −i)δ
)

, if j=V, i<U,
P
(

ZF ≥(V −i)δ+Uδ
)

, if j=V, i≥U,

(27)

where in each case,Pij is only determined by the distribution
of ZF . Denoteπ = [π0, ...πV ] as the steady-state probabilities
of the Markov chain, andP as the state transition probability
matrix with the (i, j)-th element given byPij . By jointly
solving πP = π and

∑V
i=0 πi = 1, or applyingπ′

P
k
= π

with a randomly initialized state probabilitiesπ′ = [π′
0, ...π

′
V ]

and k ∈ Z, we can find the value ofπi, ∀i ∈ [0, ..., V ],
and thus obtainρLB =

∑U
i=0 πi. Since there is no general

expression to eachπi, ρLB can only be obtained numerically
in general. In Algorithm 2, by reducingδ to repeatedly
calculateρLB until an absolute error bound, denoted byθ ≪ 1
is satisfied, we present a simple procedure to calculateρLB,
which ensures|ρ− ρLB| ≤ θ.

Algorithm 2 Markov-chain based search algorithm to find a
tight lower bound toρ

1: initialize δ andθ, and setρ0 = 1 andρLB = 0.
2: while |ρ0 − ρLB| > θ do
3: setρ0 = ρLB.
4: setδ = δ/2.
5: calculateU , V , andP .
6: find π, such thatπ = πP , and setρLB =

∑U
i=0 πi.

7: end while
8: returnρLB.

Remark5.1: The computational complexity of Algorithm 2
is determined by the values ofδ andθ as well as the efficiency
to find the steady-state probabilities ofπ. As a result, it is
generally difficult to find the complexity order of Algorithm2
analytically, as in [30]. Intuitively, whenδ is very small, due
to the resulting large size of the state transition probability
matrix P , Algorithm 2 may not be computationally efficient.
However, it is worth noting that Algorithm 2 is essentially
an off-line algorithm. Moreover, since it is not only difficult
to find an exact expression ofρ, but also computationally
prohibitive to obtainρ by network-level simulation, the tight
lower boundρLB provided by Algorithm 2 is important for
analytical study of the actual transmission probability and
thus the spatial throughput. For example, as will be shown
later, ρLB can help evaluate the performance of other lower
or upper bounds, and maximize the spatial throughput for a
finite-capacity battery case with any designed parameters.

3) Spatial Throughput Maximization:We consider two
cases, which areλAP ≥ 2veΓ(N)

Γ(N+2/α)

√

PU

π3PDη and λAP <

2veΓ(N)
Γ(N+2/α)

√

PU

π3PDη , respectively, for spatial throughput max-
imization. We haveρ = 1 from Corollary 5.1 in the former
case, but no exact expression ofρ in the latter case.

First, we consider the case withλAP ≥ 2veΓ(N)
Γ(N+2/α)

√

PU

π3PDη .
Similar to the infinite-capacity battery case, whenρ = 1,
the spatial throughputR(N,PU ) becomes a constant. Thus,
by substitutingρ = 1 into Problem (P2), and adding the

constraintλAP ≥ 2veΓ(N)
Γ(N+2/α)

√

PU

π3PDη , or equivalently,PU ≤

π3PDη
[

λAPΓ(N+2/α)
2Γ(N)ve

]2

, the spatial throughput maximization
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problem degenerates to a feasibility problem, given by

(P5) Find N,PU

such that N ∈
{

1, ...,min

(

T−1, T− λw

KǫλAP

)}

, (28)

Pmin ≤ PU ≤ min
(

Pmax,

π3PDη

[

λAPΓ(N+2/α)

2Γ(N)ve

]2
)

. (29)

It is observed that the optimal solutionsN∗ and P ∗
U to

Problem (P5) are arbitrary values that locate in the feasible
region, defined by (28) and (29). It is also observed that
due to the reduced battery capacity, the feasible region of
Problem (P5) for the finite-capacity battery case is reduced,
as compared to that of Problem (P4) for the infinite-capacity
battery case. Unlike Problem (P4), whereN∗ andP ∗

U can be
independently selected in its feasible region,N∗ andP ∗

U of
Problem (P5) may be correlated, due to the added constraint

PU ≤ π3PDη
[

λAPΓ(N+2/α)
2Γ(N)ve

]2

to ensureρ = 1. Similar to
both battery-free and infinite-capacity battery cases, dueto the
non-decreased feasible region, we also find that the number of
optimal solutions is non-decreasing over the AP densityλAP .

Next, we focus on the case withλAP < 2veΓ(N)
Γ(N+2/α)

√

PU

π3PDη .

Due to the lack of exact expression ofρ and thusR(N,PU ),
given in (13), we exploit Algorithm 2 to study the spatial
throughput maximization problem, as defined by Problem
(P2). Specifically, for anyPU ∈ [Pmin, Pmax] and N ∈
{1, ..., T−1}, we first apply Algorithm 2 to find a tight lower
boundρLB to ρ. Then based onρLB, if the transmission prob-
ability constraintλwρ

LB≤KǫλAP (T−N) is satisfied, we can
obtain a non-zero tight lower bound of the spatial throughput
R(N,PU ), which is denoted byRLB(N,PU ); otherwise, we
set RLB(N,PU ) = 0. After finding all RLB(N,PU )’s over
PU ∈ [Pmin, Pmax] andN ∈{1, ..., T−1}, we can easily find the
optimal solutionsN∗ andP ∗

U that maximizesRLB(N∗, P ∗
U ).

From (13), if limδ→0 ρ
LB=ρ by adopting a sufficiently small

θ in Algorithm 2, we havelimδ→0 R
LB(N,PU )=R(N,PU ),

over anyPU ∈ [Pmin, Pmax] andN ∈{1, ..., T−1}. Therefore,
the obtainedN∗ andP ∗

U can be seen as tight approximations
to the actual optimal DL slots and UL transmit power, respec-
tively. A numerical example is provided in Section VI-B to
find the maximized spatial throughput based on Algorithm 2.

VI. N UMERICAL RESULTS

Numerical results are provided in this section. In the fol-
lowing, we first validate the analytical results, and then further
study the transmission probability and spatial throughputfor
both battery-free and battery-deployed cases.

A. Validation of the Analytical Results

This subsection validates the analytical results obtainedin
Section II and Section III by simulation. We validate the
feasibility of Assumption 1 for independentZF ’s, and the
homogeneous PPP assumption for the point process formed
by the active wireless nodes in the UL slot. We also find
that the distribution ofZF in Proposition 2.1 andPsuc
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Fig. 3. Validation of the independent assumption forZF ’s.

in Proposition 3.1 can be similarly validated by using the
methods in the existing literature (e.g., [15] and [27]). We
focus on the battery-free case in Type-I network model, and
find similar validation results for the battery-deployed case
in Type-I network model as well as both cases in Type-II
network model. Specifically, at the beginning of each frame,
we generateΦ(λAP ) for APs andΦ(λw) for wireless nodes
in a square of[0m, 1000m]× [0m, 1000m], according to the
method described in [14]. Then at the beginning of each
slot within a frame, we independently and uniformly relocate
all the wireless nodes in the considered area. To take care
of the border effects, we focus on sampling the wireless
nodes that locate in the interim square with side lengthLm,
0 < L < 1000. Unless otherwise specified, in this subsection,
we set η = 0.4, λw = 0.005/m2, PD = 10W, T = 3,
andN = 2. All simulation results are obtained based on an
average over 4000 frame realizations.

First, we validate the feasibility of Assumption 1. Since the
correlations betweenZF ’s are similar over time frames and
spaceR2, we focus on validating thatZF ’s can be viewed
independent over spaceR2. Specifically, we randomly select
two wireless nodes and index them withi = 1 and i = 2,
respectively. The two wireless nodes independently and uni-
formly change their locations over frames in the interim square
with lengthLm. We consider two scenarios, where in the first
scenario, we setL = 20m andPU = 1µW, and in the second
scenario, we setL = 100m andPU = 10µW. Clearly, both
wireless nodes are of smaller mobility in the former scenario
and larger mobility in the latter one. Moreover, sinceL < ∞,
the two wireless nodes are of limited mobility over frames
in both scenarios. In Fig. 3, we evaluate and compare the
marginal probability productP(ZF,1 ≥ PU )× P(ZF,2 ≥ PU )
with the joint probabilityP(ZF,1 ≥ PU , ZF,2 ≥ PU ) over the
AP densityλAP in both scenarios. It is observed from Fig. 3
that in both scenarios, for any AP density, the gap between
the marginal probability product and the joint probabilityis
tightly approaching zero; and especially when AP density is
reasonably large, such gap decreases to be zero. Hence, the
harvested energy of these two wireless nodes in one frame is
tightly approaching to be independent, and thus can be viewed
as independent. Moreover, by comparing the two scenarios,
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Fig. 4. Validation of the PPP assumption for the point process in the UL.

it is observed that when the wireless nodes are of smaller
mobility in the first scenario, the gap between marginal
probability product and the joint probability is comparatively
large whenλAP is quite small (e.g.,λAP = 0.0001/m2). This
is mainly because whenλAP is quite small, the dominate APs
are more correlated for wireless nodes with smaller mobility,
as compared to that with larger mobility. However, the resulted
correlation is rapidly reduced asλAP is reasonably increased.
Therefore, Assumption 1 can be well applied in the considered
WPCN.

Next, we validate the Poisson assumption for the point
process formed by the active wireless nodes in the UL slot.
According to [14], a point process onR2 is fully characterized
by its void probability on an arbitrary compact subset of
R

2. We evaluate and compare the void probability of the
actual point process in the UL slot with that of the assumed
PPP Φ(λa) in the interim square with side lengthL, by
settingL = 1 : 1 : 20, in Fig. 4. From [14], givenL, the
void probability ofΦ(λa) in the interim square is given by
exp

(

−λaL
2
)

. We setλAP = 0.0005/m2 andPU = 10µW.
It is observed from Fig. 4 that the void probabilities of both
the assumed PPP and the actual point process in the UL
decrease over the increased interim area with side length
L, as expected. Moreover, since Assumption 1 can be well
applied, as its direct result to obtain the PPPΦ(λa) in the
UL, it is observed that for anyL, the void probability of the
assumed PPPΦ(λa) is tightly close to that of the actual point
process in the UL, which validates the PPP assumption for the
point process in the UL. In addition, from (8) and (9), since
the densityλa is determined by the distribution ofZF , the
successful validation of the assumed PPPΦ(λa) also implies
the correctness of the derivedZF ’s distribution in Proposition
2.1 under Assumption 1.

B. Study on Transmission Probability and Spatial Throughput

This subsections studies the transmission probability and
the spatial throughput. Unless otherwise specified, in this
subsection, we reasonably setPD = 10W, σ2 = −60dBm,
ǫ = 0.05, η = 0.4, T = 100, and β = 5. Moreover,
we setn = 9 for calculating erf(x) in (17), whereve is
obtained asve = erfinv(10−9). Similarly, g0 is obtained by
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Fig. 5. Transmission probability over battery capacity.

numerically solvingg0Q
(

g0
2π

)

= (1− ǫ) exp
(

− g2

0

4π

)

as given
in Proposition 3.2. We also observe that similar performance
can be obtained by using other parameters.

1) Transmission Probabilityρ: Since the transmission
probabilities for the battery-free and infinite-capacity bat-
tery cases are obtained exactly, as given in (14) and (21),
respectively, we focus on the transmission probability for
the finite-capacity battery case. We setλw = 0.0012/m2,
λAP = 0.0008/m2, N = 60, andPU = 0.02W.

Fig. 5 compares the closed-form lower and upper bounds of
ρ, given in Proposition 5.2, and the tight lower bound, given
by Algorithm 2, over the battery capacityC. By adopting
Algorithm 2, we set the absolute errorθ = 0.001, and
initialize δ = 0.0001. First, it is observed from Fig. 5 that
the tight lower bound by Algorithm 2 monotonically increases
over battery capacityC as expected; and as the actual trans-
mission probability, it is bounded by the upper and lower
bounds provided in Proposition 5.2, respectively. Next, for
the closed-form lower bound by Proposition 5.2, it is observed
when the capacity is small with0.2 ≤ C ≤ 0.4, a constant

lower bound is obtained as erf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
PU

)

≥
1 − e−Q(C−PU ); and whenC > 0.4, the lower bound is

given by 1 − e−Q(C−PU ) ≥ erf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
PU

)

,
which generally captures the variation of the transmission
probability, by taking the tight lower bound by Algorithm 2
as a reference. Moreover, asC increases, we observe both
lower bounds by Algorithm 2 and Proposition 5.2 approach
to the upper boundρ = 1, and that by Algorithm 2 becomes
tight to ρ = 1 when C is large. Furthermore, noticing that

erf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
PU

)

is the transmission probability
in the battery-free case, given in (14), we observe that it is
always lower than the tight lower bound by Algorithm 2 in
the battery-deployed case as expected.

2) Spatial Throughput:We study the spatial throughput in
both battery-free and battery-deployed cases. In the battery-
free case, by applying Theorem 4.1, we focus on showing the
effects of the AP densityλAP and wireless node densityλw

on the maximized spatial throughput. In the battery-deployed
case, we focus on the challenging finite-capacity battery case

with λAP < 2veΓ(N)
Γ(N+2/α)

√

PU

π3PDη , and exploit Algorithm 2 to
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help find the maximized spatial throughput.
Fig. 6 shows the maximized spatial throughput over the

AP density in the battery-free case, by applying Theorem
4.1. We consider two scenarios, with wireless node density
λw = 0.0012/m2 and λw = 0.002/m2, respectively, where
for each scenario, the low, medium and high AP regimes are
given by

[

0, λw/(Kǫ(T − 1)
)

,
[

λw/(Kǫ(T − 1)), λw/Kǫ

)

,
and

[

λw/Kǫ,∞
)

, respectively. First, for both scenarios, it
is observed that by increasingλAP , the maximized spatial
throughput slowly increases in the low AP density regime,
and afterλAP = λw/(Kǫ(T − 1)), it rapidly increases in
the medium AP density regime and achieves its maximum
achievable spatial throughputλw log2(1 + β) at some point
in this regime; and after this point, it remains as the con-
stant λw log2(1 + β) over all the medium and high AP
density regimes. Since in both scenarios, we observe that
λw log2(1 + β) is achieved far beforeλAP reaches to its
high density regime, for ease of illustration, we only show the
low AP density regime and part of the medium AP density
regime in Fig. 6 for both scenarios. Next, it is observed that
the maximum achievable spatial throughputλw log2(1 + β)
is larger for the scenario with a largerλw = 0.002/m2, as
compared to the scenario withλw = 0.0012/m2. Moreover,
in the scenario with a largerλw = 0.002/m2, due to the
increased interference level, to achieveλw log2(1 + β) under
the successful information transmission probability constraint,
more APs are needed to be deployed to reduce the distance
between the wireless nodes and their associated APs, so as
to improve the desired signal strength and thus the successful
information transmission probability.

Fig. 7 shows the spatial throughput for the finite-capacity
battery case overN and PU , where we setT = 100,
Pmax = 0.02W, C = 0.04W, λw = 0.0012/m2, andλAP =
0.0008/m2. By applying Algorithm 2 withθ = 0.001 and
initializedδ = 0.0001, we use the method presented in Section
V-B3 to computeRLB(N,PU ) over all feasibleN andPU ,
and take the obtainedRLB(N,PU ) as a tight approximation
to R(N,PU ). We find the optimal solutions that maximize
RLB(N,PU ) are N∗ = 14 and P ∗

U = Pmin = 0.0055W
in Fig. 7. Thus, similar to the battery-free case in Theorem
4.1, the wireless nodes prefer to choosePmin, which assures
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Fig. 7. Spatial throughput over feasible region in finite-capacity battery case.

a large transmission probabilityρ. Moreover, with small
N∗ = 14 in the DL phase, the UL phase is assigned with
T − N∗ = 86 slots, which helps effectively reduce the UL
interference by the independent scheduling. In addition, since
a smallerPU yields an increasedρ, and thus requires a smaller
N to satisfy the transmission probability constraint in Problem
(P2), it is observed from Fig. 7 that the feasible region ofN
becomes smaller asPU decreases.

VII. C ONCLUSION

In this paper, we studied the optimal tradeoff between
the energy transfer and information transfer in a large-scale
WPCN, for both battery-free and battery-deployed wireless
nodes. We proposed a new time-partition-based harvest-then-
transmit protocol and modeled the network based on homo-
geneous PPPs. By using tools from stochastic geometry, we
characterized the distribution of the harvested energy in the
DL and the successful information transmission probability
in the UL. We studied the resulting transmission probability
and successfully solved the spatial throughput maximization
problem for both battery-free and battery-deployed cases.
Moreover, by comparing the network performance in the
battery-free, infinite-capacity battery, and finite-capacity bat-
tery cases, we investigated the effects of battery storage on
the system spatial throughput.

APPENDIX A
PROOF OFPROPOSITION3.2

We first present three lemmas.
LemmaA.1: For anyx ≥ g√

2π
, g ≥ 0, g exp

(

x2

2

)

Q(x) ≥
1 − ǫ is equivalent tox ≤ q with g√

2π
≤ q, whereq is the

unique solution tog exp
(

q2

2

)

Q(q) = 1− ǫ.

Proof: Let y0(x) =
exp

(

−x2

2

)

Q(x) . It is easy to verify that
y0(x) monotonically increases overx ≥ 0, as shown in Fig. 8.

As a result,g exp
(

x2

2

)

Q(x) ≥ 1− ǫ is equivalent tox ≤ q.

Moreover, sincex ≥ g√
2π

, we need g√
2π

≤ q; otherwise, no

valid x ∈ [ g√
2π
, q] exists to meetg exp

(

x2

2

)

Q(x) ≥ 1 − ǫ.
Lemma A.1 thus follows.
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LemmaA.2: g√
2π

≤ q is equivalent tog ≥ g0.

Proof: Let y1(x)=
√
2πx. While q is the unique solution

to y0(x) = g
1−ǫ , we have g√

2π
is the unique solution to

y1(x) = g. Notice thatq is a function ofg, and as shown
in Fig. 8, wheng increases, bothq and g√

2π
increase. First,

since g0 is the unique solution tog0
1−ǫ =

exp(−g2

0
/4π)

Q(g0/2π)
, it is

easy to obtain that wheng = g0, q0 = g0√
2π

is the unique

solution to g0
1−ǫ =

exp(−q2
0
/2)

Q(q0)
. In other words, wheng = g0,

we obtain q = g√
2π

. Next, by expandingQ(x), we have

Q(x) = 1√
2π

exp
(

−x2

2

)

[

1
x − 1

x2 + o(x−4)
]

. We thus can

easily obtainy0(x) ≥ y1(x), andlimx→∞ y0(x)=y1(x), i.e.,
y0(x) andy1(x) are getting closer asx increases. As a result,
as illustrated in Fig. 8, it is easy to verify the followings:1)
when g < g0, due to the big gap betweeny0(x) and y1(x),
we haveq < g√

2π
, as illustrated by Case 1 withg = g1 and

q = q1; and 2) due to the increasingly small gap between
y0(x) and y1(x) as g increases, wheng > g0, we have
q > g√

2π
, as illustrated by Case 2 withg = g2 and q = q2.

Lemma A.2 thus follows.

LemmaA.3: When g ≥ g0, we have
exp

(

− x2

2

)

Q(x) =
√
2πx,

as ǫ → 0.

Proof: It has been shown from the proof of Lemma A.2

that
exp

(

− x2

2

)

Q(x) >
√
2πx. On the other hand, wheng≥g0, since

q≥ g√
2π

, we have
exp

(

− x2

2

)

Q(x)

∣

∣

∣

x= g
√

2π

≤
exp

(

− x2

2

)

Q(x)

∣

∣

∣

x=q
= g

1−ǫ ,

or equivalently,
exp

(

− x2

2

)

Q(x) ≤
√
2πx
1−ǫ , by substitutingg=

√
2πx.

As a result,
exp

(

− x2

2

)

Q(x) =
√
2πx, as ǫ → 0. Lemma A.3 thus

follows.

Therefore, sinceΥ ≥ G√
2π

in (12), from Lemma A.1 and
Lemma A.2, (12) is equivalent toΥ ≤ q with G ≥ g0. From
Lemma A.3, we can obtainq = G

(1−ǫ)
√
2π

with ǫ → 0. By
substituting the expression ofΥ andG, we findPsuc ≥ 1− ǫ
is equivalent to the transmission probability constraint with
PU ≥ g2

0
βσ2

π3λ2

AP

. Proposition 3.2 thus follows.

APPENDIX B
PROOF OFTHEOREM 4.1

Note that in the first constraint of (P3), for the left-hand

side, we haveλwerf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
PU

)

) ≤ λw, and

for the right-hand side, we haveKǫλAP ≤ KǫλAP (T −
N) ≤ KǫλAP (T − 1). Thus, by comparing the upper bound

of λwerf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
PU

)

with the upper and lower

bounds ofKǫλAP (T − N), respectively, we obtain the fol-
lowing three regimes of the AP densityλAP :

1) If λw ≤ KǫλAP , i.e., in the high AP density regime,
it is clear the first constraint in Problem (P3) can
always hold. Thus, anyN ∈ {1, ..., T − 1} andPU ∈
[Pmin, Pmax] are feasible to Problem (P3). Note that
R(N,PU ) achieves its maximum value whenN = T−1
and PU = Pmin. As a result, if N = T − 1 and
PU = Pmin satisfy (18) for assuringρ = 1, we find any
pair ofN∗ andP ∗

U that satisfy (18) are optimal to Prob-
lem (P3), andR(N∗, P ∗

U ) = λw log(1 + β); otherwise,
we haveρ < 1 and thusR(N∗, P ∗

U ) < λw log(1 + β),
with N∗ = T − 1 andP ∗

U = Pmin.
2) If KǫλAP < λw ≤ KǫλAP (T − 1), i.e., in the medium

AP density regime, a uniqueN0 clearly exists, since
otherwise, the conditionKǫλAP < λw ≤ KǫλAP (T −
1) cannot hold. It is thus easy to verify that the first
constraint in Problem (P3) holds if and only ifN ≤
N0. As a result, the feasible region for Problem (P3) is
given by anyN ∈ {1, ..., N0} andPU ∈ [Pmin, Pmax].
At last, by using the similar method as in the case of
high AP density regime, we can easily findN∗, P ∗

U and
R(N∗, P ∗

U ) as stated in Theorem 4.1.
3) If λw > KǫλAP (T − 1), i.e., in the low AP

density regime, ifλwerf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
Pmax

)

>

KǫλAP (T − N) at N = 1, which gives the largest
value of the right-hand side in the first constraint
of (P3), the first constraint of Problem (P3) can-
not hold, and thus there is no feasible solution;
otherwise, there exists optimalN∗ and P ∗

U , which
yield ρ < 1. As shown in Algorithm 1, since for

any givenN , λwerf
(

Γ(N+2/α)λAP

2Γ(N)

√

π3PDη
PU

)

achieves
its minimum value whenPU = Pmax, we use
λwerf

(

π2λAPN
4

√

PDη
Pmax

)

≤ KǫλAP (T − N) to check
whether anN is feasible, by searching overN ∈
{1, ..., T − 1}. After finding a feasibleN , we then
calculate the correspondingPU = max(Ps, Pmin) that
maximizesR(N,PU ). Finally, by comparing all the
feasibleN ’s and their correspondingPU ’s, we can find
optimalN∗ andP ∗

U that maximizesR(N,PU ). Clearly,
by searching overN ∈ {1, ..., T − 1}, Algorithm 1 is
of complexity or ofO(T ).

Based on the above three cases, Theorem 4.1 thus follows.

APPENDIX C
PROOF OFPROPOSITION5.1

We note a different proof based on random walk theory for
Proposition 5.1 was provided in [21]. Compared to [21], by
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exploiting the distribution ofZF , the proof presented in the
following is much simpler. From (2), we have

SF =

F
∑

i=1

Zi − PU

F
∑

i=1

I(Si−1 ≥ PU ) ≥
F
∑

i=1

Zi − FPU .

(30)

Under Assumption 1 with i.i.d.ZF ’s, it is easy to verify
that the point processes at the end of the DL phase of each
frame are i.i.d. PPPs, each with densityλAP . Thus,

∑F
i=1 Zi

gives the harvested energy over allF i.i.d PPPs, which is
equivalent to the harvested energy in a PPP of densityFλAP .
Hence, we can easily obtain that for any givenz ≥ 0,

P

(

∑F
i=1 Zi ≥ z

)

= erf
(

Γ(N+2/α)FλAP

2Γ(N)

√

π3PDη
PU

)

, which is
equal to1 whenF is sufficiently large. As a result, from (8)
and (30), we obtain

ρ ≥ lim
n→∞

1

n

n
∑

F=1

P

(

F
∑

i=1

Zi ≥ (F + 1)PU

)

= lim
n→∞

1

n

n
∑

F=1

erf





Γ(N + 2/α)FλAP

2Γ(N)

√

π3PDη

PU





= 1. (31)

Sinceρ ≤ 1, we haveρ = 1. Proposition 5.1 thus follows.

APPENDIX D
PROOF OFPROPOSITION5.2

Since both erf
(

π2λAPN
4

√

PDη
PU

)

and 1 − e−Q(C−PU ) are
lower bounds ofρ ≤ 1, it is easy to find thatL ≤
ρ ≤ 1 holds. This proof mainly derives the expression
of Q by solving lnE

[

e−Q(ZF−PU )
]

= 0, or equivalently,
E
(

e−QZF
)

= e−QPU . From the Laplace transform ofZF

given in Proposition 2.1, it is easy to find thatE
(

e−QZF
)

=

exp
(

−πλAP
Γ(N+2/α)

Γ(N) Γ(1− 2/α)(PDηQ)2/α
)

, and thusQ

by lettingE
(

e−QZF
)

= e−QPU . Proposition 5.2 thus follows.
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