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Communication Theoretic Data Analytics

Kwang-Cheng Chen, Shao-Lun Huang, Lizhong Zheng, H. Vincent Poor

Abstract—Widespread use of the Internet and social
networks invokes the generation of big data, which is
proving to be useful in a number of applications. To deal
with explosively growing amounts of data, data analytics
has emerged as a critical technology related to computing,
signal processing, and information networking. In this pa-
per, a formalism is considered in which data is modeled as a
generalized social network and communication theory and
information theory are thereby extended to data analytics.
First, the creation of an equalizer to optimize information
transfer between two data variables is considered, and
financial data is used to demonstrate the advantages. Then,
an information coupling approach based on information
geometry is applied for dimensionality reduction, with a
pattern recognition example to illustrate the effectiveness.
These initial trials suggest the potential of communication
theoretic data analytics for a wide range of applications.

Index Terms—big data, social networks, data analysis,
communication theory, information theory, information
coupling, equalization, information fusion, data mining,
knowledge discovery, information centric processing

I. INTRODUCTION

With the booming of Internet and mobile commu-
nications, (big) data analytics has emerged as a crit-
ical technology, adopting techniques such as machine
learning, graphical models, etc. to mine desirable infor-
mation for a wide array of information communication
technology (ICT) applications [1][2][3[4][5][6]]. Data
mining or knowledge discovery in databases (KDD)
has been used as a synonym for analytics on computer
generated data. To achieve the purpose of data analytics,
there are several major steps: (i) based on the selection
of data set(s), pre-processing of the data for effective
or easy computation, (ii) processing of data or data
mining, likely adopting techniques from statistical infer-
ence and artificial intelligence, and (iii) post-processing
to appropriately interpret results of data analytics as
knowledge. Knowledge discovery aims at either verifi-
cation of user hypotheses or prediction of future patterns
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from data/observations. Statistical methodologies deal
with uncertain or nondeterministic reasoning and thus
models, and are the focus of this paper. Machine learning
and artificial intelligence are useful to analyze data,
e.g. [21[3N[7], typically via regression and/or classifi-
cation. With advances in supervised and unsupervised
learning, inferring the structure of knowledge, such as
inferring Bayesian network structure from data, is one of
the most useful information technologies [8]. In recent
decades, considerable research effort has been devoted
to various aspects of data mining and data analysis,
but effective data analytics are still needed to address
the explosively growing amount of data resulting from
Internet, mobile, and social networks.

A core technological direction in data analytics lies
in processing high-dimensional data to obtain low-
dimensional information via computational reduction
algorithms, namely by nonlinear approaches [9][10],
compressive sensing [L1l], or tensor geometric analy-
sis [12]. In spite of remarkable achievements, with the
exponential growth in data volume, it is very desirable to
develop more effective approaches to deal with existing
challenges including effective algorithms of scalable
computation, complexity and data size, outlier detec-
tion and prediction, etc. Furthermore, modern wireless
communication systems and networks to support mobile
Internet and Internet of Things (IoT) applications require
effective transport of information, while appropriate data
analytics enable communication spectral efficiency via
proper context-aware computation [13]. The technologi-
cal challenge for data analytics due to very large numbers
of devices and data volume remains on the list of the
most necessary avenues of inquiry. At this time, state-of-
the-art data analytics primarily deal with data processing
through computational models and techniques, such as
deep learning [14]. There lack efforts to examine the
mechanism of data generation [15] and subsequent rela-
tionships among data, which motivates the investigation
of data analytics by leveraging communication theory
and information theory in this paper.

As indicated in [16] and other works, relationships
among data can be viewed as a type of generalized social
network. The data variables can be treated as nodes in
a network and their corresponding relationships can be
considered to be links governed by random variables (or
random processes by considering a time index). Such
scenarios are particularly relevant for today’s interactive



Internet data from/related to social networks, social
media, collective behavior from crowds, and sensed data
collected from sensors in cyber-physical systems (CPS)
or Internet of Things. Therefore, with the aid of this
generalized social network concept, we propose a new
communication theoretic methodology of information-
centric processing for (big) data analytics in this pa-
per. Furthermore, by generalizing the scenario from a
communication link into a communication network, we
may use ideas from network information theory and
information geometry to develop a novel technology
known as information coupling [37]], which suggests a
new information-centric approach to extraction of low-
dimensional information from high-dimensional data
based on information transfer. These technological op-
portunities describe a complete communication theoretic
view of data analytics.

The rest of this paper is organized as follows. Section
II presents our modeling of data into a generalized social
network and its resemblance to typical communication
system models. Section III describes the setting of our
proposed communication theoretic data analytics to more
effectively process the data, using financial data to
illustrate the processing methodology with comparisons
to well-known techniques. Related literature is reviewed
to better explain our proposed methodology. Section IV
briefly introduces the rationale from information geom-
etry and the principle of information coupling to realize
dimensionality reduction, with an image pattern recogni-
tion example to show the effectiveness of this new idea
based on network information theory. Finally, we make
concluding remarks in Section V, with suggested open
problems to fully understand and to most effectively
revisit data mining and knowledge discovery in (big) data
analytics. In addition to its potential for creating new
methods for data analytics, this new application scenario
also creates a new dimension for communication and
information theory.

II. SOCIAL NETWORK MODELING OF DATA

As noted in [16]], entities (e.g. data) with relationships
can be viewed as social networks, and thus social net-
work analysis and statistical communication theory share
commonalities in many cases. For data analytics, it is
common to face a situation in which we have two related
variables, say X and Y. When there exists uncertainty
in observing these two variables, it is common to model
these two variables as random variables. If a time index
is involved, say the variables are observed or sampled in
sequence, these two variables are actually two random
processes. Consequently, each sequence of data drawn
from a variable is actually a sample path (i.e. sampled
data) of the random process. An intuitive way of exam-
ining the relationship between the two processes is to

Fig. 1. Graphical model of network variables for a large data set.

compute the correlation coefficient between these two
sampled data sequences.

For big data problems in an Internet setting, we are
often facing a substantial number of variables up to
thousands or even millions in order, and therefore must
rely on machine learning to handle such scenarios to
predict or otherwise to infer from data. One of the
key problems is to identify low-dimensional information
from high-dimensional data, as a key issue of knowledge
discovery. Recently, another vision, known as small data,
has emerged to more precisely deal with variables of
data on a human scale [17]. Therefore, in data analytics,
whether addressing big data or small data, effective and
precise inference from data is always the fundamental
challenge. An approach different from machine learning
arises by extracting embedded information from data.
More precisely, for example, we may identify the infor-
mation flowing from variable X to variable Y just as in
a typical point-to-point digital communication system.

Unfortunately, real world problems are much more
complicated than a single communication link, and there
are many more variables involved. Figure 1 depicts the
social network structure of a large data set through
realization of graphical models and Bayesian networks,
while each node (i.e. variable) represents a data variable
(actually a vector of data) and each link represents the
relationship and causality between two data variables.
Such relationships between two data variables usually
exhibit uncertainty due to the nature of data or imperfect
observations, and thus require probabilistic modeling.
Even more challenging, such causal relationship among
large numbers of variables may not be known, and thus
a challenge is to determine or to learn the knowledge
discovery structure [6][19][20].

The social network analysis of data can be performed
in different ways, such as using graphical models with
machine learning techniques [2]][16]. However, as noted,
such widely applied methodologies focus on data pro-
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Fig. 2. Communication theory in signal flow or graphical model to
show causal relationship in data variables.

cessing and inference, rather than considering informa-
tion transfer. Communications can be generally viewed
as transmission of information from one location to
another location as illustrated in Figure 2(a). We may
further use signal flow of random variables to abstractly
portray such a system as in Figure 2(b). The channel as a
link between random variables X and Y, can be charac-
terized by the condition probability distribution f(y|x).
When a channel involves multiple intermediate variables
relating X and Y, this results in receive diversity as
shown in Figure 2(c).

More advanced communication theory, namely multi-
ple access communication, has been developed in recent
decades and may be useful for Internet data analyt-
ics. Multiuser detection (MUD), though commonly con-
nected with code division multiple access (CDMA), gen-
erally represents situations in which multiple user signals
(no need to be orthogonal) are simultaneously transmit-
ted then detected over the same frequency band [18]. In
such situations, the signal model can be described as

Y = (AR)X+N

where X is the transmitted signal vector; Y is the
received signal vector embedded in noise IN; R denotes
the correlation matrix among signals used by transmitter-
receiver pairs and A is a diagonal matrix containing
received amplitudes. The non-diagonal part of AR re-
sults in multiple-access interference (MAI). Similarly, a
multiple antenna (MIMO) signal model can be described
mathematically as

Y=HX+N

where H is the channel gain matrix [21]. From the
similarity in mathematical structure of MUD and MIMO
systems, a duality in receiver structures can be also
observed. This is fundamentally the same information
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flow structure as in data analytics, and so multiuser
communication theory provides a new tool to com-
prehend information flow in general social networking
models. In [[16], recommender systems are illustrated as
an example for this potential.

In this paper, we will delineate the connection between
data analytics and social network analysis, considering a
link in a generalized social network to be equivalent to a
communication link. Consequently, we can leverage the
knowledge of communication theory to investigate data
analytics, a process we term communication theoretic
data analytics. Processing on graphs to extract motif
information aims at alleviating the complexity of data
analytics [22]], and bears somewhat the same spirit as
the communication theoretic data analytics. Section III
will introduce the optimal receiver to tackle nonlinear
distortion by using an equalizer, and thereby to optimize
information transfer for more effective data analytics. A
further interesting communication model is the sensor
network illustrated in Figure [3] where an information
source is detected by multiple sensors that send their
measurements to a fusion center for decisions [23]. The
number of sensors might be large but the actual informa-
tion source might be simple. Directly processing sensor
data might be a big data problem but a single source
may induce simplification by considering information
transfer, which alternatively suggests an information
theoretic formulation of information coupling toward
critical dimension reduction in data analytics, which will
be introduced in Section IV.

IIT. COMMUNICATION THEORETIC IMPLEMENTATION
OF DATA ANALYTICS AND APPLICATIONS

Using the communication theoretic setup, we will
demonstrate how to deal with practical data analytics.
To infer useful results from big data, we will be able to
acquire some knowledge, say the conditional probability
structure f(yn|2,) in a general social network modeling
of big data as in Figure 1. Through communication the-
ory, we may treat X,,, as an information transmitter and
Y,, as the information receiver. In our setting, f(y,|Tm)
represents the communication channel, which can be
corrupted by noise due to imperfect sampling, noisy
observation, and possible interference from unknown
variables or outliers. This point-to-point scenario is well
studied in communication theory.
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Fig. 4. Equalizer structure to extract the causal relationship between
two variables, from X to Y.

A common and most fundamental scenario in (big)
data analytics is to find the relationship between two
variables, X and Y, while each variable represents a
set or a series of data. Let us borrow the concept
of Bayesian networks or graphical models in machine
learning. We may subsequently infer the realization y of
Y based on the observation of the realization x of X.
Suppose there exists a causal relationship X — Y, with
uncertainty (or embedded in an unknown mechanism
allowing information transfer). As noted above, this
causal relationship can be represented by the conditional
or transition probability f(y|x), which can be considered
as a communication channel. Direct computation and
inference therefore proceed based on this structure. If
we intend to infer the knowledge structure such as this
simple causal relationship, machine learning on (big)
data becomes a principal problem [2][5][6][7].

A. Equalizer to Optimize Information Transfer

Again, our view of this simple causal relationship
considers information transfer from X to Y as a com-
munication channel. In this context, if we want to deter-
mine the causal relationship of data due to information
transfer, according to communication theory, we should
establish an equalizer for the channel to better receive
such information. The equalizer in data analytics is most
appropriately of the form of an adaptive equalizer, with
earlier observed data used for the purpose of training to
obtain the weighting coefficients. The most challenging
task in machine learning is knowledge discovery, i.e.,
identifying the causal relationship among variables. The
communication theoretic approach supplies a new angle
from which to examine this task, and its information
theoretic insight will be investigated in Section IV via
information coupling.

Well known in communication theory, an equalizer
serves as a part of an optimal receiver to detect a
transmitted signal from a noisy channel distorted by
nonlinearities and other impairments. In order to infer
from another data variable or time series, we may take
advantage of the same concept to process the data.
Proper implementation of an equalizer could enhance

the causal relationship between data variables and time
series, and thus allow better judgement or utilization of
the causal relationship. This is one core issue in knowl-
edge discovery of data analytics. In big data analytics,
this knowledge problem has a very large number of
variables. As in Figure 1, we focus on the problem
of identifying the causal relationships between the set
of variables X1, Xo,---, X and the set of variables
Y1,Ys, .-, Yy, specified by appropriate weights. This is
identical to the following multiple access communication
problem:

(X1, X, o, Xan)[hijlusn = (Y1, Yo, ..., Ya)T (1)

where [h;;] = H is analogous to the channel matrix. This
knowledge discovery problem in data analytics is thus
equivalent to a blind channel estimation/identification
problem in multiple access communication. Since a
feedback channel may not exist in general, this is a blind
problem. However, for online processing, equivalent
feedback might not be impossible, which we leave as an
open issue. We start from some simple cases to illustrate
this idea.

« Information diversity: A variable X may influence
a number of variables, say Y7, Y5, - -+, Y, which is
a form of information diversity. To identify a causal
relationship between X and Y,,, this is precisely a
multi-channel estimation problem such as arises in
wireless communication. Since feedback in causal
data relationships is generally impossible, such a
class of problems falls under the category of blind
multi-channel estimation/identification [24][25].

o Information fusion: Another class to consider
is the causal relationship from many data vari-
ables to influence a single data variable, say
X1, Xs,---, Xy to Y. This corresponds to multi-
input-single-output channel estimation or identifica-
tion, which is a rather overlooked subject. However,
another similar problem, source separation has been
well studied.

B. Applications to Inference on Financial Time Series

A useful way to demonstrate our analytical method-
ology is to consider financial time series data, which
has been well studied in the literature. The purpose
is to demonstrate the prediction of stock prices from
other factors. In this example, we are trying to predict
the stock price of Taiwan Semiconductor Manufacturing
Corp. (TSMC), which is the world’s largest contract
chip fabrication company. To demonstrate information
transfer and thus communication theoretic data analytics,
we consider two factors, which appear to be somewhat
indirectly related to stock prices in Taiwan but are
potentially influential: the exchange rate between US
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Fig. 5. Prediction of TSMC stock price by (a) multivariate linear regression, and (b) multivariate Bayesian estimation, where blue dots denote
actual prices and red crosses denote prices inferred from the exchange rate and NASDAQ index.

dollars (USD) and New Taiwan Dollars (NTD, the local
currency in Taiwan), and the NASDAQ index which
primarily consists of high-tech stocks in the US.

Let the time series of the exchange rate between USD
and NTD be X;[n], n =0,1,... and the time series of
the NASDAQ index be X3[n|, n = 0,1,.... The time
series for the stock price of TSMC is Y[n], n =0,1,.. ..
Now, both X;[n] and X3[n] may influence Y'[n]. This
classical problem has been typically handled by multi-
variate time series analysis, which serves as a benchmark
without introducing more advanced techniques.

Now we treat this information fusion problem as a
two-channel information transfer (and thus communi-
cation) problem: X;[n] — Y[n] and Xs5[n] — Y[n].
To proceed, we establish an equalizer to filter the data
in each channel. The equalizer is typically of the tap-
delay-line type, while the time unit is one day since our
data uses the closing rate/index/price. The length of this
adaptive equalizer is L and the corresponding weighting
coefficients are determined via training. We treat 2009-
2013 as the training period and then infer 2014 data in
an online way. The order of the adaptive equalizer and
the weighting coefficients are learned during the training
period, and they are kept and used during inference. Our
numerical experiment shows that

o Each individual factor (exchange rate or NASDAQ
index) is surprisingly useful but each alone is not
good enough to infer the TSMC stock price. Fur-
thermore, via classical methods such as linear least
squares or Bayesian estimation [26], the exchange
rate appears to be a much less predictive factor than
the NASDAQ index, which is to be expected since
the NASDAQ index to a certain extent can represent
high-tech stocks including TSMC.

o It is expected that multivariate statistical analysis
would help in this case. We adopt multivariate linear
regression [27] and multivariate Bayesian estima-
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Fig. 6. Communication theoretic data analytics using an equalizer to
optimize information transfer from (a) the exchange rate, and (b) the
NASDAQ index to the TSMC stock price.

tion [26] as benchmark techniques. The inference
of TSMC stock prices from the exchange rate and
NASDAQ index is shown in Figure [5] The mean
square errors for both techniques perform similarly
to the results using only the NASDAQ index.

« We implement the tap-delay-line equalizer structure
of Figure [ to optimize information transfer. Based
on the mean square error (MSE) criterion, we search
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for the best length equalizer and corresponding
weighting coefficients, which are then used for
inference. During the inference period of 2014,
the length remains the value from training but
the weighting coefficients are updated online. In
Figure [6| we surprisingly observe excellent per-
formance of inference using the exchange rate,
as effective as the NASDAQ index. This result
illustrates different insights into the correlation of
data from the traditional approaches, since these
approaches suggest that the NASDAQ index can
describe the TSMC stock better. Therefore, our
result demonstrates the potential of this communica-
tion theoretic data processing methodology and the
potential of considering information transfer. Thus,
the potential of information-centric data processing
over conventional machine learning is worth further
study.

o Similar to diversity combining in digital communi-
cation systems, information combining in commu-
nication theoretic data analytics potentially further
improves the performance of inference. Maximal
ratio combining (MRC) is well known to be op-
timal for diversity combining based on signal-to-
interference-plus-noise ratio (SINR). Using a simi-
lar concept as equation (I3)), we develop MRC in-
formation combining to weight equalized channels
inversely proportional to the MSE in the training
period. Such weights in MRC information com-
bining can be updated online. Figure [/| depicts
the prediction results (red crosses) and true values
(blue dots). We calculate the mean square error and
find even better performance than using only the
exchange rate. The MSE can be lower than those
of multivariate linear regression and multivariate
Bayesian estimation.

In Appendix A, we develop the following rules of

thumb for communication theoretic data analytics, while
subject to further enhancements.

Problem: To infer Y based on X7, X5, ...
Procedure:

Xn.

(1) Use an equalizer (i.e. optimal receiver) implemen-
tation to identify causal relationships among data
variables, X1 — YV, Xo — Y,..., Xy — Y, with
the corresponding MSEs according to the training
dataset(s).

(2) Select N, data variables to transfer sufficient infor-
mation (or sufficiently small MSE errors in training)
to identify the structure of knowledge by keeping
the length and coefficients of the equalizer, or by
online update of coefficients.

(3) Conduct MRC information fusion of these IV, data
variables as in Fig. 12 to infer.

Remark 1. The conjecture that this communication the-
oretic data analytics approach delivers more desirable
performance comes from optimizing information transfer
and avoiding cross-interference among data variables
(similar to multiple access interference in multiuser
communication), while existing multivariate statistical
analysis or statistical learning multiplexes all data vari-
ables together to result in multiple access interference
in data analytics. Furthermore, for each data variable,
a selected equalizer length with coefficients is used,
then information is combined with other data variables,
to allow better matching to extract information in this
communication theoretic data analytics approach. Each
equalizer is designated to match a specific data variable,
while multivariate analysis usually deals with a common
fixed depth of observed data in processing for all data
variables. More observations may not bring in more rele-
vant information but rather additional noise/interference.
Although recent research suggests a duality between
time series and network graphs [28][29], information-
centric processing of data suggested by communication
theory supplies a unique and generally applicable view of
inference, even though its extension to more complicated
network graphical relationship of data is still open.
Note that during the training period, the computational
complexity is high, however, the computation load is
rather minor in the inference stage.

Remark 2. Applying information theoretic data analytics
such as mutual information and information divergence
beyond correlation have been proposed in the literature,
e.g. [30][31]. However, such efforts have not systemat-
ically applied information-centric processing techniques
based on communication systems as suggested in this
paper. In the mean time, though we have illustrated only
one-hop network graphical inference, these methods may
be applied further for data cleaning, data filtering, iden-
tification of important data variables for inference, and



identification of causal relationships among data vari-
ables to support knowledge discovery in data analytics.
To fuse heterogeneous information, fuzzy logic [30] or
Markov logic [31] is usually employed. In the proposed
approach, information combining of different-depth in-
formation transfer alternatively serves the purpose in an
effective way, while time series data mining typically
considers similarity measured in terms of distance [32].

At this point, we cannot conclude that communi-
cation theoretic data analytics are better than multi-
variate analysis and other machine learning techniques,
as many advanced techniques such as Kalman filter-
ing [33], graphical models [34]], or role discovery [35]
that are somewhat similar to our proposed approach have
not been considered in our comparison. However, via
the above example, the communication theoretic data
analytical approach indeed demonstrates its potential,
particularly as a way of fusing information, while it
seems more difficult to achieve a similar purpose by pure
multivariate analysis. Some remaining open problems for
communication theoretic data analytics are

o How to measure the information transfer from each
variable X; — Y, i=1,2,....

e« How to determine a sufficient amount of informa-
tion transfer? And thereby, how to determine which
variables should be considered in data analytics.

A more realistic but complicated scenario involves
information fusion and information diversity at the same
time, which is a multiuser detection or MIMO problem.
Due to space limitations, it is not possible to explore
this idea here, in spite of its potential applicability to
different problems, such as recommender systems etc.
Some open issues include:

e Joint prediction of Y7,Ys,.... YNy  from
X1,Xo,...,Xn, and associated techniques
to effectively solve this problem, such as sub-space
approaches etc.

e Optimal MUD has NP-hard complexity, leading
to suboptimal receivers such as the de-correlating
receiver. Comparisons of such structures to mul-
tivariate time series analysis, mathematically and
numerically, are of interest.

IV. INFORMATION COUPLING

Thus far, we have intuitively viewed communication
theoretic data analytics as being centered on information
transfer among different data variables, and then applied
receiver techniques to enhance data analytics. This sug-
gests that the amount of information in the data is in fact
far less then the amount of (big) data. The methodology
in Section III deals with a number of data variables to ef-
fectively execute information processing analoguesly to
communication systems and multiuser communications.

The remaining challenge is to identify low-dimensional
information structure from high-dimensional (raw) data,
and to better construct intuition about communication
theoretic data analytics from information theory. In this
section, we aim to apply the recently developed infor-
mation coupling [37]] to achieve this purpose, and also
provide information theoretic insights to information-
centric data processing.

A. Introduction to Information Coupling

From the analog between communication networks
and data analytics, intuition suggests the need for
information-centric processing in addition to data pro-
cessing for not only optimizing communication sys-
tems/networks but also mining important information
from (big) data. The conventional studies of information
processing are limited to data processing, thereby focus-
ing on representing information as bits, and transmitting,
storing, and reconstructing these bits reliably. To see
this, let us consider a random variable with M possible
values {1,2,..., M}. If we know its value reliably, then
we can describe this knowledge with a single integer,
and then further process the data with this known value.
On the other hand, if the value is not deterministically
acquirable, then we need to describe our knowledge with
an M-dimensional distribution Py;(m), which requires
M — 1 real numbers to describe. Therefore, the data
processing task has to be performed in the space of
probability distributions.

When we move towards information-centric process-
ing, the general way to describe information processing
relies on the conditional distribution of the message,
conditioned on all the observations, at each node of
the network, e.g., Pyn‘ x,, in Figure Conventional
information theoretic approaches working on the dis-
tribution spaces in communication and data processing
are mostly based on coded transmission, in which the
desired messages are often quite large, which results in
the extremely high dimensionality of the belief vectors.
This is in fact one of the main difficulties of shifting the
data processing from data centric to information centric.
It turns out that this difficulty comes from the fact that
the distribution space itself is not a flat vector space, but
is a rather complicated manifold. Amari’s work [36] on
information geometry provides a tool to study this space,
but the analysis can be quite involved in many cases.
In this section, we propose a framework that allows us
to greatly simplify this challenge. In particular, we turn
our focus to low rate information contained in the data,
which is significant for describing the data. We call such
problems information coupling problems [37]][38]].

To formulate this problem mathematically, let us con-
sider a point-to-point communication scenario, where
a signal X is transmitted through a channel with the



transition probability Wy |x, which can be viewed as
a |Y| x |X| matrix, to generate an output Y. In the
conventional communication systems, we consider en-
coding a message U into the signal vector X, to form a
Markov relation U — X — Y. From which, an efficient
coding scheme aims to design both the distribution Py
and the conditional distributions Px |y, to maximize
the mutual information I(U;Y’), which corresponds to
the communication rate. Such optimization problems in
general do not have analytical solutions, and require nu-
merical methods such as the Blahut-Arimoto algorithm
to find the optimal value. More importantly, when we
allow coded transmissions, i.e., to replace X and Y by
n independent and identically distributed (i.i.d.) copies
of the pair, it is not clear a priori that the optimizing
solution would have any structure. Although Shannon
provided a separate proof for the point-to-point case
that the optimization of the multi-letter problem over
PXH‘U should also have an i.i.d. structure, failure to
generalize this proof to multi-terminal problems remains
the biggest obstacle to solving network capacity and
subsequently design algorithms. In contrast, the informa-
tion coupling deals with the maximization of the same
objective function I(U;Y), but with an extra constraint
that the information encoded in X, measured by I(U; X)
is small. With a slight strengthening this constraint can
be reduced to the condition that all the conditional
distributions Py ¢ (-|u), for a u, are close to the marginal
distribution Px. We refer the reader to [37] for the
details of this strengthening. With this extra constraint,
the linear information coupling problem for the point-
to-point channel can be formulated as

1
s S @

1
subject to: EI(U;X) <0,
1
S Px = — Px|*=0(3), Yu, (3

where ¢ is assumed to be small.

It turns out that the local constraint (@) in @) that
assumes all conditional distributions are close to the
marginal distribution, plays the critical role of reducing
the manifold structure into a linear vector space. In
addition, the optimization problem, regardless of the
dimensionality, can always be solved analytically with
essentially the same routine. In order to show how the
local constraint helps to simplify the problem, we first
note that given the conditional distributions Px|y—,
are closed to Px for all v in terms of ¢, the mutual
information I(U; X') can be approximated up to the first
order as

I(U;X)=6-Y Py(u)- [vul®+0(), @

where 1, is the perturbation vector with the entries
VYu(z) = (Pxju=u(z) — Px()) /\/6 - Px(x), for all
x. This local approximation results from the first order
Taylor expansion of the Kullback-Leibler (K-L) diver-
gence D(Px|y—u||Px) between Px|y—, and Px with
respect to (w.r.t.) 4. In addition, with this approximation
technique, we can similarly express the mutual informa-
tion at the receiver end as

IU;Y) =6 Py(u)- [¢ull® +0(5), (5

where ¢u(y) = (Pyu=u(y) = Pr(y)) /\/3- Py (y).

Now, note that U — X — Y forms a Markov relation,
therefore both Py‘U:u and Py, viewed as vectors, are
the output vectors of the channel transition matrix Wy x
with the input vectors Px7—, and Px. This implies that
the vector 1[)u is the output vector of a linear map B with
1), as the input vector, where

B2 [V Wk [VPx] (©)

and [v/Px| and [/Py| denote diagonal matrices with
diagonal entries Px(z) and Py (y). This linear map
B is called the divergence transition matrix (DTM) as
it carried the K-L divergence metric from the input
distribution space to the output distribution space.

We shall point out here that with this local approxi-
mation technique, both the input and output probability
distribution spaces are linearized as Euclidean spaces
by the tangent planes around the input and the output
distributions Px and Py. Hence, we can define the
coordinate system in both distribution spaces, such as the
inner product and orthonormal basis, as in the conven-
tional Euclidean spaces. Under such a coordinate system,
the mutual information I(U; X) becomes the Euclidean
metric of the perturbation vector 1, averaged over
different values of w. Similarly, the mutual information
I(U;Y) can also be viewed as the Euclidean metric
of the perturbation vector B - 1, at the output space.
Hence, the optimization problem of maximizing the
mutual information I(U;Y") is turned into the following
linear algebra problem:

max. ZPU(’LL)' HB'l/JuHQ (7N
subject to: ZPU(U) bu)* = 1.

In particular, U can without loss of the optimality be
designed as a uniform binary random variable, and the
goal of is to find the input perturbation vector i,
that provides the largest output image B -1),, through the
linear map B. The solution of this problem then relies on
the singular value decomposition of B, and the optimal
1, corresponds to the singular vector of B w.r.t. the
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Fig. 8. The divergence transition matrix B serves as a linear map
between two spaces, with right and left singular vectors as orthonormal
bases. Different input singular vectors have different output lengths at
the output space.

largest singular value. Figure [§] illustrates the geometric
intuition of linearized distributions spaces.

More importantly, this information coupling frame-
work with the locality constraint allows us to deal with
the multi-letter problems in information theory in a
systematic manner. To see this, consider the multi-letter
version of the problem

1 n
Uﬁrgclgﬁynﬁj(lj’ Yo, ®)

1
subject to: EI(U;X”) <4,

? = 0(9), Vu,

1
—||Pxn|y=y — Pxn
n

in which the message is encoded in an n-dimensional
signal vector X" and the optimization is over the distri-
bution space of Pxn|y—,. By applying the same local
approximation technique, we can again linearize both
input and output spaces into Euclidean spaces, and the
linear map between these two spaces turns out to be
the tensor product B™. Due to the fact that the singular
vectors of B™ are tensor products of the singular vectors
of B, we know that the optimal perturbation vector in
the multi-letter case has the tensor product form, and the
optimal conditional distribution Pxn|y—, has an i.i.d.
structure [37]. More interestingly, this approach of deal-
ing with multi-letter information theory problems can be
easily carried to multi-terminal problems, in which all
the information theory problems are simply reduced to
the corresponding linear algebra problems. In particular,
the i.i.d. structure of Pxny—, for the point-to-point
case was also observed by Shannon with an auxiliary
random variable approach; however, the generalization
of the auxiliary random variable approach to multi-
terminal problems, e.g., the general broadcast channel,
turns out to be difficult open problems. In a nutshell,
the information coupling and the local constraint help
us to reduce the manifold structure into a linear vector
space, where the optimization problem, regardless of the
dimensionality can always be solved analytically with

essentially the same routine.

Furthermore, the information coupling formulation not
only simplifies the analysis, but also suggests a new way
of communication over data networks or information
transfer over networks of data variables. Instead of trying
to aggregate all the informations available at a node,
pack them into data packets, and send them through
the outgoing links, the information coupling method-
ology seeks to transmit a small piece of information
at a time, riding on the existing data traffic [39]. The
network design of data variables thus focuses on the
propagation of a single piece of message, from the
source data variable to all destination data variables.
Each node in the network only alters a small fraction
of the transmitted symbols, according to the decoded
part of this message. The analytical simplicity of the
information coupling allows such transmissions to be
efficient, even in the presence of general broadcasting
and interference. Furthermore, information coupling can
be employed to obtain useful information from network
operation, as a complementary function for (wireless)
network tomography. Consequently, we can analyze the
covariance matrix of received signals at the fusion center
in a sensor network to form communities like social
networks such that energy efficient transmission and
device management can be achieved.

B. Implementation of Information Coupling

Using the information theoretic setup via informa-
tion coupling, we shall demonstrate how to deal with
practical data analytics. To infer useful results from big
data, we shall be able to acquire important knowledge
in general social network modeling of big data such as
Figure [I] In particular, we consider X1,..., X as in-
formation transmitters and Y7, ..., Yy as the information
receivers. The probabilistic relationship between X's
and Y’s represents the communication channel, which
copes with the effects of imperfect sampling, noisy
observation, or interference from unknown variables or
outliers. In the following, we are going to demonstrate
the potential of extracting critical low dimensional infor-
mation from (big) data through the innovative informa-
tion coupling approach.

To demonstrate the idea, suppose that there is a hidden
source sequence " = {x1,T2,..., Ty}, i.i.d. generated
according to some distribution Px. Instead of observing
the hidden source directly, we are only allowed to
observe a sequence y" = {y1,¥2,...,Yn}, Which can
be statistically viewed as the noisy outputs of the source
sequence through a discrete memoryless channel Wy-|x.
Traditionally, if we want to infer the hidden source from
the noisy observation y™, we would resort to a low-
dimensional sufficient statistic of y™ that has all the
information one can tell about x”. However, in many



cases, such a sufficient statistic might be computationally
difficult to obtain due to the high dimensional structures
of " and ™, which turns out to be the common obstacle
in dealing with big data. In contrast to seeking a useful
sufficient statistic, we would like to rather turn our
focus to consider the statistic from y™ that is efficient
to describe a certain feature of x™.

In particular, there are many different ways to define
the efficiency of information extraction from data. From
the information theoretic point of view, we would like
to employ the mutual information as the measurement
of the information efficiency about the data. Rigorously,
we want to acquire a binary feature U in =" from the
observed data y", such that the efficiency, measured by
I(U;Y™), can be maximized. In order to find such a
feature, we shall formulate an optimization problem that
has the same form as the linear information coupling
problem (), and the optimal solution of (§) character-
izes which feature of z™ can be the most efficiently
extracted from the noisy observation y"™ in terms of
the mutual information metric. Therefore, from [37]], we
can explicitly express the optimal solution Pxny; of (§)
as the tensor product of the distribution Pxy(z) =

x) £ \/0Px(z) - ¥x(x), where ¢x is the singular
vector of the DTM with the largest singular value.

Then, we want to estimate this piece of information
U from the noisy observation y™. For this purpose, we
apply the maximum likelihood principle, and the log-
likelihood function can be written as

o Pynjy=i(y") .
li(y") = log (Pyn(y") , 1=0,1,

where Pyn and Py |y are the output distributions of
the channel Wy x with input distributions Py~ and
Pxn|y. Then, the decision rule depends on the sign of
lo(y™) — 11 (y™): when it is positive, we estimate U = 0,
otherwise, U=1. Now, noting that both Py-»|;; and Py
are product distributions, we can further simplify lo(y™)
as

Y|U=

i(Ys)
Zl ( PY yz) )
Yy (i)
,Zlog <1+\[ B, (yz)>
Yy (i)

~ V-
Z\/Pyyz

where in the last equation, we ignore all the higher

order terms of . We call fL the score function

\’/”I;L Y — R, in which the empirical sum of this
function over the data y1, ..., ¥, is the sufficient statistic
of a specific piece of information in z™ that can be the

most efficiently estimated from y". Figure [J] illustrates
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Fig. 9. The score function for the noisy observations.

the score function in this point-to-point setup. The score
function derived from the information coupling approach
provides the maximal likelihood statistics of the most
efficiently inferable information from the data, and we
call the score function the efficient statistic of the data.
The efficient statistic of the data can be deemed as a
low dimensional label corresponding to the most signif-
icant information of the data that can be employed in
further data processing tasks. In the next subsection, we
shall demonstrate how to apply the efficient statistic to
practical machine learning problems and its performance
through an image recognition example.

Finally, we would like to emphasize that the efficient
statistic can be useful in many machine learning scenar-
ios, such as image processing, network data mining and
clustering. Consider the social network modeling of big
data as Figure [I] with very large number of nodes in the
network. In this case, acquiring a meaningful sufficient
statistic for the data is usually an intractable task due
to the complicated network structure. Moreover, even if
it is possible to specify the sufficient statistic, the com-
putational complexity can still be extremely high due to
the high dimensional structure of the data. On the other
hand, the efficient statistic obtained from the information
coupling provides the information that, while low di-
mensional, keeps the most significant information about
the original data. This is precisely the main objective of
the dimension reduction or feature extraction studied in
machine learning subjects. Equalization in Section III
may be considered as an intuitive implementation of
information coupling in big data. In addition, in order
to acquire the efficient statistic from the data, we simply
need to solve the score function, i.e., the optimal singular
vector, which can be computationally efficient. There-
fore, we could see that information coupling potentially
provides a new framework for efficiently processing and
analyzing big networked data.

C. Application to Dimension Reduction in Pattern
Recognition

Let us illustrate how the efficient statistic can be ap-
plied to practical data processing. For demonstration pur-
poses, we aim to address the image recognition task of
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Fig. 10. (a) Handwriting Recognition between the number “1” and “2”
via the noisy images. (b) Ising Model of Noisy Images. The pixels of
the clean image can be viewed as random variables X;. After passing
through the channel, the pixels are corrupted by the noise to different
levels, and the collection of noisy pixels are the random variables Y.

handwriting numbers “1” and “2” through noisy images,
as illustrated in Figure [T0(a)} We consider these 2-D
images as from an Ising model as shown in Figure[T0(b)]
Each clean pixel in Figure [T0(D)] is passed through one
of the parallel independent noisy observation channels,
to get a noisy image. In abstract, we can think of the
pixels of the clean image as a collection of random
variables X7, Xs, ..., Xn. Then, passing through noisy
observation channels with a transition kernel Py~ |xn,
the pixels of the noisy image is a collection of random
variables Y7,Ys,...,Yy. Now, to apply the efficient
statistic to acquire the most significant feature, we shall
in principle go through the following procedures:

(1) To determine the divergence transition matrix B,
we shall determine the distributions Py~ and Py~
as well as the transition kernel Py~ |x~. The dis-
tributions Px~ and Py~ can be learned from the
empirical distribution of the images viewed as N-
dimensional vectors. In addition, we design the
transition kernel Py ~|x~ in this image recognition
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Fig. 11. Experimental results for the separation efficiency with respect
to different values of e.

example.

Solve the singular value decomposition of B and
determine the optimal left singular vector i of B.
Note that v/ has the dimensionality |Y|V.

The efficient statistic is then specified by the
score function 9 (y™) /Py~ (yV) of the data yV =
{y1,...,yn}, which can be obtained by the yV-th
entry of the vector vy, divided by Py~ (y™).

Now, let us demonstrate the application of this pro-
cedure to a practical image recognition problem. Here,
we employ the MNIST Database [40] of handwritten
digits as the test images, where each image is of size
19 x 19 pixels and each pixel value is scaled to have
one of four values as in Figure [[0(a)] In particular, as
shown in Figure [T0(a)] we have a mixture of images of
handwritten digits 1 and 2, and we assume that we can
observe the noisy version of these images. Our goal is
to separate these noisy images with respect to different
digits by computing the score of these images with our
algorithm and ordering them.

To this end, we view the (clean) images as generated
from the Ising model, in which each pixel corresponds
to the nodes X; in the Ising model. Then, we pass each
pixel in the images independently through a discrete
memoryless channel with transition matrix

1—2e 2e e 5
e 1-—3e 2e %
e 0 1—4e T ®)
0 e e 1—e

Here, the transition matrix is chosen merely to facilitate
our simulation, and e is the parameter measuring the
noise level of the channel. After passing clean pixels
through the channel, we observe the noisy version of
these images, where each noisy pixel corresponds to Y;
in this setup. Clearly, the empirical joint input and output
distributions can be obtained by the statistics of the
images. Then, we can apply our algorithm to compute
the score for each noisy image, and then order these
scores to separate images with respect to different digits.

To measure the performance of our algorithm, we
classify a batch of 2N images with NV of 1’s and NV of
2’s. After ordering the scores, an ideal classifier should



have the N lowest scored images belonging to one
digit and the N largest scores belonging to the other
digit. To compare with the ideal classifier, we define
the separation error probability as the proportion of the
pictures that is wrongly classified, i.e.

# of wrongly classified pictures
2N

Error probability =
(10)

The classifier is more efficient when the separation factor
is closer to 0. For different values of e, our algorithm has
the performance as in Figure From this simulation
result, we can see that our algorithm is quite efficient in
separating images with respect to different digits. This
result tells that the efficient statistic is in fact a very
informative way to describe stochastic observations.

Remark 3. It might be curious at first glance that in
Figure [I1] the error probability does not decay as the
noise level e grows. In fact, this phenomenon can be
explained as follows. Note that the score function defined
in this section not only depends on the data vectors X",
but also on the designed channel transition matrix (9).
Therefore, different channel transition matrices may pro-
vide different score function on the noisy data vectors
YN, We shall notice that the score function is designed
to extract the feature that can be communicated the best
through the channel, but not necessary the best feature to
separate the two sets of images. Thus, the performance
of the image recognition may not be improved with
a less noisy channel. On the other hand, we should
understand our result as that, with a rather arbitrarily
designed channel transition matrix @]) we have obtained
a rather nice performance of error probabilities, which
does not require any extra learning other than the em-
pirical distributions of the data, i.e., completely unsu-
pervised. Thus, our result demonstrates a new potential
of applying communication and information theory to
machine learning problems.

Remark 4. Dimension reduction is one of the central
topics in statistics, machine learning, pattern recogni-
tion, and data mining, and has been studied inten-
sively. Celebrated techniques addressing this subject
including principal component analysis (PCA) [41], K-
means clustering [42]], independent component analysis
(ICA) [43], and regression analysis [44], where many
efficient algorithms have been developed to implement
these approaches [45]-[6]. In particular, these approaches
mainly focus on dealing with the space of the data, rather
than addressing the information flow embedded in the
data. On the other hand, recent studies have suggested
the trend of information-centric data processing [16],
thus advocating the research direction of analyzing the
underlying information flow of networked data. The
information coupling approach can be considered as a
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technique that aims to provide a framework to reach this
goal from the information theoretic perspective. From the
discussions in this section, we can see that information
coupling studies the data analysis problems from the
angle of distribution space but not simply the data space,
Thus, information coupling potentially provides a fresh
view of how information can be exchanged between
different terminals in implementing the data processing
tasks, which not only helps to more deeply understand
the existing approaches, but also opens a new door to
develop new technologies.

Remark 5. While this simple image recognition exam-
ple illustrates the feasibility of introducing information
coupling to data analysis problems, there are critical
challenges for future research:

« How to develop efficient iterative algorithms that
exploit the structure of the graphical models to com-
pute the singular vectors and evaluate the scores.

« In the case where some training data are available,
how the information coupling approach can be
adjusted to cooperate with the side information.

o Except for the most informative bit, how can we
extract the second and third bits from the data, and
how these bits can be applied to deal with practical
data analysis tasks.

V. CONCLUSIONS

Statistical analysis on big data has usually been treated
as an exercise in statistical data processing. With the
help of statistical communication theory, we have intro-
duced a new methodology to enable information-centric
processing (or statistical information processing) for big
data. Hopefully, this opens new insights into both big
data analytics and statistical communication theory.

Although we have demonstrated initial feasibility of
this methodology, there are further critically associated
challenges ahead, namely

o How to identify appropriate or enough variables to
influence one variable (or a set of variables).

e How to detect outliers [48]].

« How to generalize big data analytics using large
communication network analysis beyond multiuser
communications.

o How to interpret and adopt traditional machine
learning approaches and data processing technolo-
gies, such as (un)supervised learning, feature se-
lection, blind source separation, via the techniques
developed in network communication theories.

APPENDIX A
EQUALIZER IMPLEMENTATION FOR COMMUNICATION
THEORETIC DATA ANALYTICS

As in Fig. 4, by proper selection of adaptive algorithm
and step size, the output of the equalizer after training
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Fig. 12. Maximal-Ratio Combining of Two Equalized Data Variables
(Time Series).

period gives the inference

L
gn] = Zwlx[n—l]. (11)
1=0
Based on the minimum MSE criterion, the purpose of
training data is to obtain
2

L
argmin ¢ | y[n] — Z wizn —1] , (12)
v 1=0

and
2

L
argmin ¢ [ y[n] — Z wiz[n — 1]
L 1=0

The first equation is to obtain the vector of weighting
coefficients, and the second equation is to identify the
most appropriate observation depth, L. Once we identify
L, we keep it and therefore the equalizer structure to
infer data. We may keep the same set of coefficients or
update online. Please note we may also obtain a predictor
as follows:

L

gln + 1) :Zwlm[n—l], (13)
1=0

where we cannot go into further detail due to the length

constraint on this paper.

When we have two (or more) data variables to infer
another data variable, say using X; and X, to infer Y,
we have to use information fusion as in Figure[I2] Again,
we adopt the minimum MSE criterion, to yield

M 2
Y - Z [ n [1] ) (14)
m=1

min F
am[n]

where

Lo,
W m T [0 — 1.

Ym[n] =
=0

13

Necessary conditions for this minimization gives the
solution for a, [n]. The consequent estimator is therefore

il =S amliminl = 3 aml] S wmimln - 1]
m=1 m=1 =0 (15)

which is defined as the maximal ratio combining of
equalized multivariate regression of different optimal
observation lengths L,,, m = 1,..., M. This design re-
alizes the idea of maximizing information flow between
data variables or time series. For ease of implementation,
we may set oy, [n] = q,,, or we may adopt selective
combining and equal-gain combining.

Remark 6. A conjecture to explain why we intend to
equalize data of a certain length L,,, instead of the
entire data set, is that earlier components in the time
series may introduce very noisy information, like inter-
ference or noise in multiuser communication systems
or simply weakly correlated information after a large
time separation. Such lengths L,,, m = 1,...., M,
for data variables X7, ..., X/, represent the span/range
of useful data for inference. Of course, based on the
MSE, we may further select useful data variables among
Xi,...,Xps. Similar concepts are not rare in machine
learning, for example, to identify support vectors in
support vector machines (SVMs). What we are doing
here is more effective implementation by properly se-
lecting data variables, range of observations, and finally
weighting coefficients in each equalizer, for multivariate-
regression leveraging the optimization of information
transfer between relational data variables.
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