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Abstract—Location awareness is a key factor for a wealth of
wireless indoor applications. Its provision requires the careful
fusion of diverse information sources. For agents that use
radio signals for localization, this information may either come
from signal transmissions with respect to fixed anchors, from
cooperative transmissions inbetween agents, or from radar-like
monostatic transmissions. Using a-priori knowledge of a floor
plan of the environment, specular multipath components can be
exploited, based on a geometric-stochastic channel model. In this
paper, a unified framework is presented for the quantification
of this type of position-related information, using the concept of
equivalent Fisher information. We derive analytical results for the
Cramér-Rao lower bound of multipath-assisted positioning, con-
sidering bistatic transmissions between agents and fixed anchors,
monostatic transmissions from agents, cooperative measurements
inbetween agents, and combinations thereof, including the effect
of clock offsets. Awareness of this information enables highly
accurate and robust indoor positioning. Computational results
show the applicability of the framework for the characterization
of the localization capabilities of a given environment, quantifying
the influence of different system setups, signal parameters, and
the impact of path overlap.

Index Terms—Cramér-Rao bounds, channel models, ultra
wideband communication, localization, cooperative localization,
clock synchronization

I. INTRODUCTION

Location awareness is a key component of many future

wireless applications. Achieving the needed level of accuracy

robustly1 is still elusive, especially in indoor environments

which are characterized by harsh multipath conditions. Promis-

ing candidate systems thus either use sensing technologies

that provide remedies against multipath or they fuse infor-

mation from multiple information sources [1], [2]. WLAN-

based systems make use of existing infrastructure and exploit

the position dependence of the received signal strength [3].

However, the latter shows a relatively large variance w.r.t. the

position-related parameters such as the distance, even with an

optimized deployment [4].
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1We define robustness as the percentage of cases in which a system can
achieve its given potential accuracy.
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Fig. 1. Illustration of multipath geometry using VAs for (i) bistatic transmis-

sions (black) between an anchor at p
(j)
1 and an agent at p(m) and for (ii) a

monostatic measurement (gray) by an agent at p
(j)
1 .

In Multipath-assisted indoor positioning, multipath com-

ponents (MPCs) can be associated to the local geometry

using a known floor plan. In this way, MPCs can be seen

as signals from additional (virtual) anchors (VAs). Ultra-

wideband (UWB) signals are used because of their superior

time resolution and to facilitate the separation of MPCs.

Hence, additional position-related information is exploited that

is contained in the radio signals.

This is in contrast to competing approaches, which either

detect and avoid non-line-of-sight (NLOS) measurements [5],

mitigate errors induced by strong multipath conditions [6], or

employ more realistic statistical models for the distribution of

the range estimates [7]. Cooperation between agents is another

method to increase the amount of available information [8] and

thus to reduce the localization outage. Actual exploitation of

multipath propagation requires prior knowledge [9]. This can

be the floor plan, like in this work and related approaches [10],

or a set of known antenna locations to enable beamforming

(e.g. in imaging [11]). In an inverse problem, the room geome-

try can be inferred from the multipath and known measurement

locations [12].

Insight on the position-related information that is conveyed

in the signals [13] can be gained by an analysis of performance

bounds, such as the Cramér-Rao lower bound (CRLB), which

is the lower bound of the covariance matrix of an unbiased

estimator for a vector parameter. Using the concept of equiv-

alent Fisher information matrices (EFIMs) [14], [15], allows

for analytic evaluation of the CRLB by blockwise inversion

of the Fisher information matrix (FIM) [16], [17].

A proper channel model is paramount to capture the in-

formation contained in MPCs. It is common [18]–[22] to

differentiate between resolvable MPCs which origin from
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specular reflections or scatterers and so-called dense or diffuse

multipath (DM), which comprises all other “energy producing”

components that can not be resolved by the measurement

aperture. This part of the channel is often modeled statistically

since many unresolvable components add up in one delay bin

of the channel impulse response. An established approach to

describe these statistics is to use parametric models for the

power delay profile (PDP) [18], [19]. The overall models are

often referred to as hybrid geometric-stochastic channel mod-

els (GSCMs). For the analysis presented in this paper, prop-

agation effects other than the geometrically modeled MPCs

constitute interference to useful position-related information.

This interference is also called diffuse multipath (DM) [23]

and modeled as a colored noise process with non-stationary

statistic.

Fig. 1 illustrates the geometric model for multipath-assisted

positioning. A signal exchanged between an anchor at position

p
(j)
1 and an agent at p(m) contains specular reflections at the

room walls, indicated by the black lines.2 These reflections

can be modeled geometrically using VAs p
(j)
k , mirror images

of the anchor w.r.t. walls that can be computed from the floor

plan [24]–[26]. We call this the bistatic setup, where the fixed

anchors and the floor plan constitute the available infrastruc-

ture. In a cooperative setup, agents localize themselves using

bistatic measurements inbetween them. Here, the node at p
(j)
1

is an agent that plays the role of an anchor (and thus provides

a set of VAs) for the agent at p(m). If the agents are equipped

accordingly, they can use monostatic measurements, indicated

by the gray lines. Here, the node at p
(j)
1 acts as anchor for

itself with its own set of VAs.

For these measurement setups, we analyze the following

scenarios isolated to get insights on different effects of interest:

(i) Multipath-Sync with known clock-offset between anchors

and agents, (ii) Multipath-NSync with unknown clock-offset

between anchors and agents and optionally also between the

individual anchors, and (iii) Multipath-Coop with cooperation

between the agents, monostatic measurements, and possibly

additional fixed anchors. Clock-synchronization for impulse

radio UWB has shown to achieve a synchronization accuracy

in order of 1 ns, which results still in large localization errors

[27]. As a consequence, we estimate the clock-offset jointly,

solely based on the received signal and the a-priori known

floor plan. Only the differences between the arrival times of

MPCs carry position-related information in this case, not the

time of arrival as in the synchronized one.

For a tracking application, we have coined the terms

multipath-assisted indoor navigation and tracking (MINT) for

the bistatic setup [23], and Co-MINT [28] for the cooperative

setup. The robustness and accuracy of MINT have been

reported in [24], [29], [30] and references therein. Also, a

real-time demonstration system has been realized [29].

The key contributions of this paper are:

• We present a mathematical framework for the quantifica-

tion of position-related information contained in geomet-

2Since the radio channel is reciprocal, the assignment of transmitter and
receiver roles to anchors and agents is arbitrary and this choice can be made
according to higher-level considerations.

rically modeled specular reflections in (ultra) wideband

wireless signals under DM.

• This information is quantified for conventional bistatic,

monostatic, and cooperative measurement scenarios, op-

tionally including unknown clock offsets, allowing for

important insights that can be used in the design of a

localization system.

• The results show the relevance of a site-specific, position-

related channel model for indoor positioning and the

components it comprises of. This position-related FIM

is a measure for accuracy and as a further consequence,

it can also be seen as indicator for robustness, since it

increases with the number of useful MPCs, which also

makes algorithms based on multipath-assisted approach

more robust.

• We validate, using real measurements, the usefulness

of the derived bounds and of the introduced signal-

to-interference-plus-noise-ratio (SINR) as a measure for

position-related information.

The paper is organized as follows: Section II introduces the

geometric-stochastic signal model that is used in Section III

to derive the CRLB on the position estimation error. Section

IV describes the relationship between signal parameters and

node positions in a generic form. These results are used in

Section V to derive the CRLB for the different scenarios.

Finally, Sections VI and VII wrap up the paper with results,

discussions, and conclusions.

Mathematical notations: Ez {·} represents the expectation

operator with respect to the random variable z. [A]n,m is the

(n,m)-th element of matrix A; AN×M indicates the size of

a matrix. ‖ · ‖ is the Euclidean norm, | · | is the absolute value,

and (∗) denotes convolution. A � B means that A − B is

positive semidefinite. IN is the identity matrix of size N . (·)H
is the Hermitian conjugate. tr{·} and diag{·} are the trace and

the diagonal of a square matrix, respectively.

II. SIGNAL MODEL

In Sections II and III, we simplify the setup—for the ease

of readability—to a single (fixed) anchor located at position

p1 ∈ R2 and one agent at position p ∈ R2. Note that

two-dimensional position coordinates are used throughout the

paper, for the sake of simplicity3. A baseband UWB signal

s(t) is exchanged between the anchor and the agent. The

corresponding received signal is modeled as [23]

r(t) = rdet(t) + rdiff(t) + w(t)

=

K∑

k=1

αks(t− τk) + (s ∗ ν)(t− ǫ) + w(t). (1)

The first term rdet(t) describes a sum of K deterministic

MPCs with complex amplitudes {αk} and delays {τk}. We

model these delays by VAs at positions pk ∈ R2, yielding

τk = 1
c
‖p − pk‖ + ǫ, with k = 1 . . .K , where c is the

speed of light and ǫ represents the clock-offset due to clock

asynchronism. K is equivalent to the number of visible VAs

3The extension to three dimensional coordinates is straightforward.



at the agent position p [24]. We assume the energy of s(t) is

normalized to one.

The second term rdiff(t) denotes the convolution of the

transmitted signal s(t) with the DM ν(t), which is modeled as

a zero-mean Gaussian random process. Note that the statistic

of rdiff(t) is non-stationary in the delay domain and it is

colored due to the spectrum of s(t). For DM we assume

uncorrelated scattering along the delay axis τ , hence the auto-

correlation function (ACF) of ν(t) is given by

Kν(τ, u) = Eν {ν(τ)[ν(u)]∗} = Sν(τ)δ(τ − u), (2)

where Sν(τ) is the PDP of DM at the agent position p.

The DM process is assumed to be quasi-stationary in the

spatial domain, which means that Sν(τ) does not change in

the vicinity of position p [31]. The PDP Sν(τ) is crucial to

represent the power ratio between useful deterministic MPCs

and DM (along the delay axis τ ) and it is represented by an

arbitrary function which can be estimated from an ensemble

of measurements [19] 4, rather than a parametric PDP [18].

We will assume that the DM statistic is known a-priori to be

able to analyze the influence of DM on the CRLB in closed

form, with no parametric restriction on the DM PDP Sν(τ).
With this, our results will show that information coming from

MPCs is quantified by a signal-to-interference-plus-noise-ratio

(SINR) for these MPCs, which represents the power ratio

between useful deterministic MPC and impairing DM plus

noise. Finally, the last term w(t) denotes an additive white

Gaussian noise (AWGN) process with double-sided power

spectral density (PSD) of N0/2.

In the following, we will drop the clock-offset ǫ. We will re-

introduce it in Section V-B where the Multipath-NSync setup

is studied.

III. CRAMÉR-RAO LOWER BOUND

The goal of multipath-assisted indoor positioning is to

estimate the agent’s position p from the signal waveform

(1), exploiting the knowledge of the VA positions {pk},
in presence of diffuse multipath and AWGN with known

statistics. Let θ̂ denote the estimate of the position-related

parameter vector θ = [pT ℜαT ℑαT]T ∈ RDθ , where

ℜα = [ℜα1, . . . ,ℜαK ]T and ℑα = [ℑα1, . . . ,ℑαK ]T are

the real and imaginary parts of the complex amplitudes α,

respectively, which are nuisance parameters. According to the

information inequality, the error covariance matrix of θ is

bounded by [32]

Er|θ

{(
θ̂ − θ

)(
θ̂ − θ

)H} � III−1
θ , (3)

where IIIθ ∈ RDθ×Dθ is the Fisher information matrix (FIM)

and its inverse represents the CRLB of θ. We apply the chain

rule to derive this CRLB (cf. [14], [17]), i.e., the FIM IIIθ
is computed from the FIM of the signal parameter vector

ψ =
[
τT,ℜαT,ℑαT

]T ∈ RDψ , where τ = [τ1, . . . , τK ]T

represents the vector of position-related delays. We get

IIIθ = JTIIIψJ (4)

4The PDP for instance can be estimated globally for an anchor placed in
a room from sets of measurements distributed over the according floor plan
and then it can be updated during tracking of an agent [24].

with the Jacobian

J =
∂ψ

∂θ
∈ RDψ×Dθ . (5)

The FIM IIIψ ∈ RDψ×Dψ of the signal model parameters

can be computed from the likelihood function f(r|ψ) of the

received signal r conditioned on parameter vector ψ,

IIIψ = Er|ψ

{[
∂

∂ψ
ln f(r|ψ)

] [
∂

∂ψ
ln f(r|ψ)

]T}
. (6)

A. Likelihood Function

The likelihood function f(r|ψ) is defined for the sampled

received signal vector r = [r(0), r(Ts), . . . , r((N − 1)Ts)]
T ∈

CN , containing N samples at rate 1/Ts. Using the assumption

that AWGN and DM are both Gaussian, it is given by

f(r|ψ) ∝ exp
{
−(r− Sα)HC−1

n (r− Sα)
}

∝ exp
{
2ℜ

{
rHC−1

n Sα
}
−αHSHC−1

n Sα
}

(7)

where S = [sτ1 , . . . , sτK ] ∈ RN×K is the signal ma-

trix containing delayed versions sτk = [s(−τk), s(Ts −
τk), . . . , s((N−1)Ts−τk)]T of the sampled transmit pulse and

Cn = σ2
nIN + Cc ∈ RN×N denotes the co-variance matrix

of the noise processes. The vector of AWGN samples has

variance σ2
n = N0/Ts; the elements of the DM co-variance

matrix are given by [Cc]n,m = Ts

∑N−1
i=0 Sν(iTs)s(nTs −

iTs)s(mTs − iTs) (see Appendix A).

B. FIM for the Signal Model Parameters

1) General Case: The FIM IIIψ is obtained from (6) with

(7). Following the notation of [14], it is decomposed according

to the subvectors of ψ into

IIIψ =




ΛA ΛR
B ΛI

B

(ΛR
B)

T Λ′
C 0

(ΛI
B)

T 0 Λ′
C


 =

[
ΛA ΛB

ΛT
B ΛC

]
. (8)

Its elements are defined as [32], for example (see also (A.5)),

[ΛR
B]k,k′ = Er|ψ

{
−∂2 ln f(r|ψ)

∂τk∂ℜαk′

}

which yields with (7)

[ΛA]k,k′ = 2ℜ
{
αkα

∗
k′

(
∂sτk′

∂τk′

)H

C−1
n

∂sτk
∂τk

}
(9)

[ΛR
B]k,k′ = 2ℜ

{
αk

(
sτk′

)H
C−1

n

∂sτk
∂τk

}
(10)

[ΛI
B]k,k′ = 2ℑ

{
αk

(
sτk′

)H
C−1

n

∂sτk
∂τk

}
(11)

[Λ′
C]k,k′ = 2ℜ

{(
sτk

)H
C−1

n sτk′

}
. (12)

These equations can be used to numerically evaluate the

FIM without further assumptions. The CRLB can thus be

evaluated, but the inverse of the covariance matrix Cn, which

is needed as a whitening operator [33] to account for the

non-stationary DM process, limits the insight it can possibly

provide. More insight can be gained under the assumption that

the received deterministic MPCs {αks(t−τk)} are orthogonal,

which occurs in practice when MPCs are non-overlapping.



2) Orthogonal MPCs: In this case, the columns of the

signal matrix S are orthogonal and ΛA becomes diagonal

(since C−1
n is symmetric). Furthermore, [ΛB]k,k′ is zero (due

to the symmetry of the autocorrelation function of s(t)) and

as a consequence [ΛC]k,k′ is not needed. The elements of ΛA

can then be written as (see Appendix A)

[ΛA]k,k = 8π2β2SINRkγk (13)

where β2 =
∫
f
f2|S(f)|2df is the effective (mean square)

bandwidth of the energy-normalized transmit pulse s(t)
F←→

S(f),

SINRk :=

∣∣αk

∣∣2

N0 + TpSν(τk)
(14)

is the signal-to-interference-plus-noise ratio (SINR) of the k-th

MPC, and γk is the so-called bandwidth extension factor. The

product of these three factors quantifies the delay information

provided by the k-th MPC. It hence provides the following

insight for the investigated estimation problem: The interfer-

ence term TpSν(τk) is determined by the PDP of DM Sν(τk)
at the delay τk of the MPC. It scales with the effective pulse

duration Tp of the pulse s(t), the reciprocal of its equivalent

Nyquist bandwidth BN = 1/Tp. An increased bandwidth is

hence beneficial to suppress DM.

The bandwidth extension quantifies the SINR-gain due to

the whitening operation. It is defined as γk = β2
k/β

2, where

β2
k is the mean square bandwidth of the whitened pulse,

β2
k =

∫

f

f2|S(f)|2 N0 + TpSν(τk)

N0 + |S(f)|2Sν(τk)
df. (15)

If the pulse has a block spectrum, we have (due to the

energy normalization of s(t)) |S(f)|2 = Tp for |f | ≤ BN/2,

hence β2
k = β2 and γk = 1. I.e., in this case, there is no

bandwidth extension due to whitening5. The same holds if

DM is negligible, i.e. N0 ≫ TpSν(τk). For the asymptotic

case that AWGN is negligible, i.e. |S(f)|2Sν(τk) ≫ N0, we

drop N0 in (15) and get a block spectrum that corresponds to

the absolute bandwidth of S(f).

In general, γk is a function of the interference-to-noise

ratio (INR) TpSν(τk)/N0 and can be evaluated numerically.

Closed-form results can be given for special cases. E.g.

for a root-raised-cosine pulse with roll-off factor R, we

have β2 = B2
N(

1
12 + π2−8

4π2 R2) which scales slightly with

R. In the asymptotic case where DM dominates, we get

β2
k = (1+R)3

12 B2
N. Hence the bandwidth extension due to the

whitening operation can result in an SINR gain of up to about

7 dB at R = 1. Numerical evaluation shows a γk of 4 dB at

R = 0.6 and INR of 15 dB.

For further analysis, we define the extended SINR

S̃INRk = SINRkγk (16)

which quantifies the delay information provided by MPC k as

a function of the signal, interference, and noise levels.

5This specialization was assumed in our previous paper [23].

C. Position Error Bound

The FIM IIIψ of the signal model parameters quantifies the

information gained from the measurement r. The position-

related part of this information lies in the MPC delays τ ,

which are a function of the position p. To compute the position

error bound (PEB), the square-root of the trace of the CRLB

on the position error, we need the upper left 2× 2 submatrix

of the inverse of FIM IIIθ ,

P{p} =
√
tr
{[
III−1
θ

]
2×2

}
=

√
tr
{
III−1
p

}
, (17)

which can be obtained with (4) and (5) using the blockwise

inversion lemma. This results in the so-called equivalent FIM

(EFIM) IIIp [14],

IIIp = HT
(
ΛA −ΛB

(
ΛC

)−1
ΛT

B

)
H,

which represents the information relevant for the position error

bound. Matrix H = ∂τ/∂p is the submatrix of Jacobian (5)

that relates to the position-related information, the derivatives

of the delay vector τ w.r.t. postition p. It describes the

variation of the signal parameters w.r.t. the position and can

assume different, scenario-dependent forms, depending on the

roles of anchors and agents. General expressions for these

spatial delay gradients are derived in the next section.

IV. SPATIAL DELAY GRADIENTS

The following notations are used to find the elements of

matrix H: p(m) ∈ R2 is the position of the m-th agent, where

m ∈ Nm = {1, 2, . . . ,M}. p(j)
1 ∈ R2 is the position of the

j-th fixed anchor, j ∈ Nj = {M + 1, . . . ,M + J}, with

VAs at positions p
(j)
k ∈ R2. In the cooperative scenario, we

replace j with an arbitrary index ξ to cover fixed anchors as

well as agents which act as anchors. The corresponding VAs

are at p
(ξ)
k ∈ R2. To describe gradients w.r.t. anchor or agent

position, we use an index η, introducing p(η) ∈ R2.

The delay of the k-th MPC is defined by the distance

between the k-th VA and the m-th agent,

τ
(ξ,m)
k =

1

c

∥∥p(m) − p
(ξ)
k

∥∥ (18)

=
1

c

√(
x(m) − x

(ξ)
k

)2
+
(
y(m) − y

(ξ)
k

)2
. (19)

The angle of vector (p(m) − p
(ξ)
k ) is written as φ

(ξ,m)
k . To

describe the relation between the signal parameter τ
(ξ,m)
k and

the geometry, we need to analyze the spatial delay gradient,

the derivative of the delay τ
(ξ,m)
k w.r.t. position p(η),

h
(ξ,η,m)
k =

∂τ
(ξ,m)
k

∂p(η)
=

1

c

∂
∥∥p(m) − p

(ξ)
k

∥∥
∂p(η)

=
1

c

∂
(
x(m) − x

(ξ)
k

)

∂p(η)

x(m) − x
(ξ)
k∥∥p(m) − p
(ξ)
k

∥∥

+
1

c

∂
(
y(m) − y

(ξ)
k

)

∂p(η)

y(m) − y
(ξ)
k∥∥p(m) − p
(ξ)
k

∥∥

=
1

c

(
δm,ηI2 − δη,ξ

∂p
(ξ)
k

∂p(ξ)

)T

e

(
φ
(ξ,m)
k

)
(20)



where e(φ) := [cos(φ), sin(φ)]T is a unit vector in direction

of the argument angle and δm,η is the Kronecker delta.Using

(B.9) for the Jacobian p
(ξ)
k /p(ξ) of a VA position w.r.t. its

respective anchor’s position from Appendix B, we get

h
(ξ,η,m)
k = (21)

1

c

[
δm,ηe

(
φ
(ξ,m)
k

)
− δη,ξe

(
(−1)Q

(ξ)
k φ

(ξ,m)
k + 2ζ̄

(ξ)
k

)]
,

where the first summand represents the influence of the agent

position while the second summand is linked to the anchor

position. The parameter ζ̄
(ξ)
k (see Appendix B) describes the

effective wall angle of the k-th MPC w.r.t. to the η-th anchor

(or agent) and Q
(ξ)
k represents the according VA order. We

stack the transposed gradient vectors (21) for the entire set

of multipath components in the gradient matrix H(ξ,η,m) ∈
RK(ξ,m)×2 and the matrices for all the agents’ derivatives into

matrix H(ξ,m) ∈ RK(ξ,m)×2M .

The following specializations will be used:

1) Bistatic scenario: k = 1, . . . ,K(ξ,m)

a) The gradient with respect to the agent: This case

describes the derivatives of delay τ (ξ,m) w.r.t. the agent

position, i.e. η = m, yielding the gradient

h
(ξ,m,m)
k =

∂τ (ξ,m)

∂p(m)
=

1

c
e
(
φ
(ξ,m)
k

)
(22)

which represents a vector pointing from an agent to the k-th

VA of the according anchor. We define the gradient matrix

H
(ξ,m)
Ag = H(ξ,m,m) ∈ RK(ξ,m)×2.

b) The gradient with respect to the anchor: In this case,

the derivatives w.r.t. the anchor position p(ξ) = p
(ξ)
1 are

described, i.e. η = ξ. For the k-th MPC, the gradient is

expressed as

h
(ξ,ξ,m)
k =

∂τ
(ξ,m)
k

∂p(ξ)
(23)

= −1

c
e
(
(−1)Q

(ξ)
k φ

(ξ,m)
k + 2ζ̄

(ξ)
k

)
=

1

c
e
(
φ
(m,ξ)
k

)

which in this case is a vector pointing from an agent acting

as anchor to the k-th VA of a cooperating agent. The proof

for the final equality can be obtained graphically. The gradient

matrix is H
(ξ,m)
An = H

(m,ξ)
Ag = H(ξ,ξ,m) ∈ RK(ξ,m)×2.

2) Monostatic scenario: Here we restrict the VA set to k =
2, . . . ,K(m,m), the agent is as well the anchor, ξ = m, and

both move synchronously, η = m, i.e., the two terms in (21)

interact with each other. The gradient

h
(m,m,m)
k =

∂τ
(m,m)
k

∂p(m)
(24)

=
1

c

(
e
(
φ
(m,m)
k

)
− e

(
(−1)Q

(m)
k φ

(m,m)
k + 2ζ̄

(m)
k

))

=






2
c
sin

(
ζ̄
(m)
k

)
e
(
φ
(m,m)
k + ζ̄

(m)
k − π

2

)
If Q

(m)
k is even

2
c
sin

(
ζ̄
(m)
k − φ

(m,m)
k

)
e

(
ζ̄
(m)
k − π

2

)
If Q

(m)
k is odd

has been decomposed—as shown in Appendix C—into a mag-

nitude term 0 ≤
∥∥h(m,m,m)

k

∥∥ ≤ 2
c

and a resulting direction

vector. Both depend on the angle φ
(m,m)
k , the VA order, and

the angles of all contributing walls comprised in ζ̄
(m)
k . The

gradient matrix is H
(m)
Mo = H(m,m,m) ∈ R(K(m,m)−1)×2.

The following interpretations apply for the monostatic case:

Single reflections (Q
(m)
k = 1, ζ̄

(m)
k = φ

(m,m)
k ± π

2 ) and

reflections on rectangular corners (Q
(m)
k = 2, ζ̄

(m)
k = ±π

2 )

constitute important types of monostatic VAs. Both have

∂τ
(m,m)
k /∂p(m) = 2

c
e(φ

(m,m)
k ), which is twice as much

spatial sensitivity of delays as in the bistatic cases (22) and

(23), thus providing higher ranging information. The simplest

case of a vanishing gradient (magnitude zero) is a second-order

reflection between parallel walls (Q
(m)
k = 2, ζ̄

(m)
k = 0).

V. CRLB ON THE POSITION ERROR

In this Section, the CRLB on the position error is derived

for the three scenarios Multipath-Sync, Multipath-NSync, and

a Multipath-Coop scenario.

Using a stack vector Ψ = [TT,ℜAT,ℑAT]T of the signal

parameters for all relevant nodes, with T combining the delays

and A combining the amplitudes, the Jacobian (5) has the

following general structure.

J =
∂Ψ

∂Θ
=

[
H L 0

0 0 I

]
(25)

=




∂T/∂P ∂T/∂ǫ ∂T/∂ℜA ∂T/∂ℑA
∂ℜA/∂P ∂ℜA/∂ǫ ∂ℜA/∂ℜA ∂ℜA/∂ℑA
∂ℑA/∂P ∂ℑA/∂ǫ ∂ℑA/∂ℜA ∂ℑA/∂ℑA





Vector Θ = [PT, ǫT,ℜAT,ℑAT]T, spatial delay gradient

H = ∂T/∂P, and gradient L = ∂T/∂ǫ are specifically

defined for the different cases in the following subsections.

A. Derivation of the CRLB for Multipath-Sync

Assuming that only one agent is present in Multipath-

Sync and Multipath-NSync, we drop the agent index m so

that P = p, and define Nj = {1, 2, . . . , J}. We use the

geometry for the bistatic scenario, case (a) Section B. The

clock-offset ǫ is considered to be known and zero. Using

a suitable signaling scheme6, measurements r(j) from all J
anchors are independent. Hence, the log-likelihood function is

defined as

ln f(R|Ψ) =
∑

j∈Nj

ln f
(
r(j)|τ (j),α(j)

)
, (26)

where R =
[(
r(1)

)T
, . . . ,

(
r(J)

)T]T
combines all measure-

ments and τ (j) and α(j) are the delay and amplitude vectors

respectively, corresponding to measurement r(j). The Jacobian

J has the following structure,

J =




H
(1)

K(1)×2
...

H
(J)

K(J)×2

IDI×DI



, (27)

where zero-matrices in the off-diagonal blocks are skipped for

clarity and DI = 2
∑J

j=1 K
(j). The subblocks H(j) = H

(j,1)
Ag

6E.g conventional multiple access schemes, like time-division-multiple-
access (TDMA).



account for the geometry as described in Section IV. Due to

the independence of the measurements r(j), the EFIMs III(j)p

from the J different anchors are additive. Using Equation (4),

we can write the EFIM as

IIIp = (28)
∑

j∈Nj

(
H(j)

)T(
Λ

(j)
A −Λ

(j)
B

(
Λ

(j)
C

)−1(
Λ

(j)
B

)T)
H(j)

where Λ
(j)
A , Λ

(j)
B , and Λ

(j)
C are subblocks of III(j)ψ defined

in (8). Expression (28) simplifies when we assume no path

overlap (i.e. orthogonality) between signals from different

VAs. In this case, ΛB = 0 and ΛA will be diagonal, as

discussed in Section III-B2 and we can then write

IIIp =
∑

j∈Nj

(
H(j)

)T
Λ

(j)
A H(j)

≈ 8π2β2

c2

∑

j∈Nj

K(j)∑

k=1

S̃INR
(j)

k Dr(φ
(j)
k ) (29)

where S̃INR
(j)

k is the extended SINR (eq. 16) for the j-th

anchor and

Dr(φ
(j)
k ) = e(φ

(j)
k )e(φ

(j)
k )T (30)

is called ranging direction matrix (cf. [14]), a rank-one matrix

with an eigenvector in direction of φ
(j)
k .

Valuable insight is gained from (29) and (14). In particular,

• Each VA (i.e. each deterministic MPC) adds some pos-

itive term to the EFIM in direction of φ
(j)
k and hence

reduces the PEB in direction of φ
(j)
k .

• The S̃INR
(j)

k determines the magnitude of this con-

tribution as discussed in Section III-B2 (cf. ranging

intensity information (RII) in [14]). It is limited by

diffuse multipath—an effect that reduces with increased

bandwidth—and it can show a significant gain due to the

interference whitening if the interference-to-noise ratio is

large.

• The effective bandwidth β scales the EFIM. Any increase

corresponds to a decreased PEB.

Discussion of path overlap (cf. [14]):

• τk − τk′ ≪ Tp: In this case the MPCs can not be distin-

guished and the position-related information is entirely

lost.

• τk − τk′ ≈ Tp: In this case the MPCs are correlated,

but the position-related information can still partly be

used. The discrete-time formulation of the CRLB based

on (7) can quantify this information gain, in contrast to

our previous, continuous formulation in [23].

• τk − τk′ ≫ Tp: If this holds, the MPCs are considered

to be orthogonal and (29) can be used if it holds for all

k 6= k′.

B. Derivation of the CRLB for Multipath-NSync

Next we consider the same setup as before, but assume the

clock offsets ǫ to be unknown parameters. The differences

between arrival times still provide position information in

this case. When using multiple anchors, we distinguish two

different scenarios where either the clocks of all anchors

are synchronized among each other, or alternatively no syn-

chronization is present at all. While this does not affect

the signal parameter FIM, we need to take it into account

when performing the parameter transformation. Apart from the

partial derivatives L = ∂T/∂ǫ, the terms of the Jacobian are

identical for Multipath-Sync and Multipath-NSync, resulting

in

J =




H
(1)

K(1)×2
L
(1)

K(1)×Dǫ
...

...

H
(J)

K(J)×2
L
(J)

K(J)×Dǫ

IDI×DI



, (31)

where L(j) = ∂τ (j)/∂ǫ and Dǫ is the length of ǫ.

Synchronized anchors: When assuming ǫ(1) = · · · =
ǫ(J) = ǫ, the vector ǫ reduces to ǫ = ǫ. The derivatives

of the arrival times with respect to the clock offset are then

given by L(j) = l
(j)
syn = [1, . . . , 1]T. Applying the parameter

transformation and computing the block inverse similarly as

in (28) leads to additivity of the 3 × 3 EFIMs III(j)p,ǫ for the

extended parameter vector [pT, ǫ]T (see Appendix D). When

neglecting path overlap this expression simplifies to

IIIp,ǫ =
∑

j∈Nj

III(j)p,ǫ = 8π2β2
∑

j∈Nj

K(j)∑

k=1

S̃INR
(j)

k Dr,ǫ(φ
(j)
k ),

(32)

with

Dr,ǫ(φ
(j)
k ) = vvT, v =

[
1

c
cos(φ

(j)
k ),

1

c
sin(φ

(j)
k ), 1

]T
.

The inner sum in (32) reveals that the 3×3 EFIMs III(j)p,ǫ are in

canonical form. Since Dr,ǫ is a positive semidefinite matrix,

it highlights that each VA adds information for the estimation

of p and ǫ, scaled by its extended S̃INRk and β.

The EFIM IIIp can be computed from IIIp,ǫ by again applying

the blockwise inversion lemma. When neglecting path overlap,

the expression for IIIp becomes

IIIp =
8π2β2

c2




∑

j∈Nj

K(j)∑

k=1

S̃INR
(j)

k Dr(φ
(j)
k )−CCC



 , (33)

where CCC accounts for the (negative) influence of the clock

offset estimation with

CCC = 1
∑

j∈Nj

∑K(j)

k=1 S̃INR
(j)

k

ccT,

c =
∑

j∈Nj

K(j)∑

k=1

S̃INR
(j)

k e(φ
(j)
k ).

Note that Multipath-NSync can theoretically achieve equal

performance as Multipath-Sync under the (rather unlikely)

condition c = 0. Otherwise CCC reduces the information, and

thereby increases the PEB.

Asynchronous anchors: When having ǫ(i) 6= ǫ(j), ∀i 6= j,

i, j ∈ Nj , we stack all clock offsets in the vector ǫ =



[ǫ(1), . . . , ǫ(J)]T. The derivatives of the arrival times with

respect to the clock offsets are then given by a gradient

matrix L = ∂T/∂ǫ of size
∑

j∈Nj
K(j) × J which stacks

submatrices L
(j)
asyn with one nonzero column [L

(j)
asyn]i,j = 1, i =

1, . . . ,K(j). This leads to an additivity of the 2 × 2 EFIMs

as shown in Appendix D, i.e. IIIp =
∑

j∈Nj
III(j)p . When

neglecting path overlap, IIIp takes the form of (33), but with

CCC =
∑

j∈Nj

1
∑K(j)

k=1 S̃INR
(j)

k

c(j)
(
c(j)

)T
, (34)

c(j) =

K(j)∑

k=1

S̃INR
(j)

k e(φ
(j)
k ).

Again, equality with Multipath-Sync is obtained if each c(j) =
0, otherwise the PEB is increased.

C. Derivation of the CRLB for Multipath-Coop

We assume M agents m ∈ Nm = {1, 2, . . . ,M} and J
fixed anchors j ∈ Nj = {M+1, . . . ,M+J}, which cooperate

with one another. As outlined in the Introduction, every agent

conducts a monostatic measurement, meaning it emits a pulse

and receives the multipath signal reflected by the environment,

and conventional bistatic measurements with all other agents

and the fixed anchors. All measurements are distributed such

that every agent is able to exploit information from any of

its received and/or transmitted signals. The clock-offsets ǫ are

considered to be zero.

The signal parameter vectors for the (j,m)-th received sig-

nal r(j,m) are defined as τ (j,m) =
[
τ
(j,m)
1 , . . . , τ

(j,m)

K(j,m)

]T
and

α(j,m) =
[
α
(j,m)
1 , . . . , α

(j,m)

K(j,m)

]T
. For deriving the cooperative

EFIM, we stack positions p(m) of the M agents into the vector

P =
[(
p(1)

)T
, . . . ,

(
p(M)

)T]T ∈ R2M×1 (35)

and all measurements r(j,m) in the vector

R =
[(
r(1,1)

)T
, . . . ,

(
r(1,M)

)T
, . . . ,

(
r(M,M)

)T
,

(
r(M+1,1)

)T
, . . . ,

(
r(M+J,M)

)T]T ∈ CDR×1, (36)

where DR = NM(M + J). Further, we stack the signal

parameters correspondingly in the vectors

T =
[(
τ (1,1)

)T
, . . . ,

(
τ (1,M)

)T
, . . . ,

(
τ (M+J,M)

)T]T
(37)

and

A =
[(
α(1,1)

)T
, . . . ,

(
α(1,M)

)T
, . . . ,

(
α(M+J,M)

)T]T
(38)

of length DT = DA =
∑

j∈(Nm∪Nj)

∑
m∈Nm

K(j,m) to

construct vector Ψ = [TT,ℜAT,ℑAT]T . The corresponding

joint log-likelihood function, assuming independent measure-

ments r(j,m) between the cooperating nodes, is defined as

ln f(R|Ψ) =
∑

j∈(Nm∪Nj)

∑

m∈Nm

ln f
(
r(j,m)|τ (j,m),α(j,m)

)
.

(39)

The EFIM IIIP is described by (see Appendix E)

IIIP =
∑

j∈(Nm∪Nj)

∑

m∈Nm

(
H(j,m)

)T
Λ(j,m)H(j,m) (40)

where

Λ(j,m) = Λ
(j,m)
A −Λ

(j,m)
B

(
Λ

(j,m)
C

)−1(
Λ

(j,m)
B

)T
(41)

yields the sub-blocks III(j,m)
ψ of the FIM for the likelihood

function (39), for independent measurements, and H(j,m) are

the spatial delay gradients7 of the Jacobian

J=




H
(1,1)

K(1,1)×2M
...

H
(1,M)

K(1,M)×2M
...

H
(M+J,M)

K(M+J,M)×2M

IDI×DI




, (42)

where DI = 2DA.8 As shown in Appendix E, one gets the

following final result for the EFIM IIIp for all agents

IIIP =




III(1)Mo+2III(1)Ag+III
(1)
An 2III(1,2)C . . . 2III(1,M)

C

2III(2,1)C

. . .

...

2III(M,1)
C III(M)

Mo +2III(M)
Ag +III(M)

An



.

(43)

The diagonal blocks III(η)Ag =
∑

m∈Nm\{η}

(
H

(m,η)
Ag

)T
Λ(m,η)H

(m,η)
Ag account for the

bistatic measurements between agent η and all other

agents, III(η)An =
∑

j∈Nj

(
H

(j,η)
Ag

)T
Λ(j,η)H

(j,η)
Ag account for

the bistatic measurements between agent η and all fixed

anchors, and III(η)Mo =
(
H

(η)
Mo

)T
Λ(η,η)H

(η)
Mo account for the

monostatic measurement of agent η. The off-diagonal

blocks III(η,η
′)

C =
(
H

(η′,η)
Ag

)T
Λ(η′,η)H

(η,η′)
Ag account for the

uncertainty about the cooperating agents in their role as

anchors (cf. (E.2) and (E.3)). This has a negative effect on the

localization performance of the agents. The factors of two in

(43), related to the EFIM of measurements inbetween agents,

results from the fact that those measurements are performed

twice. This simplifies the notations in this section. If such

repeated measurements are avoided, the same result would

apply but with these factors removed.

Finally, the CRLB on position p(η) of agent η is

P{p(η)} =
√

tr
{[
III−1
P

](η,η)
2×2

}
. (44)

VI. RESULTS

Computational results are presented in this section for

two environments. We first validate the theoretical results

using experimental data for a room illustrated in Fig. 2 and

then discuss in detail the trade-offs of different measurement

scenarios for a synthetic room shown in Fig. 3.

7Multipath-Coop can be seen as the most general setup, if clock offset
issues are also included. This can be done by combining the results of
Multipath-NSync and Multipath-Coop by replacing H(j,m) with G(j,m) =
[H(j,m),L(j,m)] (see Appendix D), which accounts for the geometry and
clock offset. For monostatic measurements Lm,m = 0.

8Assuming no path overlap, (40) can be simplified as in (29), using the
result from Appendix A.



TABLE I
CHANNEL PARAMETERS FOR NUMERICAL EVALUATIONS.

Param. Value for Room Description
Valid. Synth.

Deterministic
MPCs

2 max. VA order
3 dB attenuation per

reflection

Signal
parameters

fc 8GHz 7GHz carrier freq.
Tp 1 ns, (0.5 ns,2 ns) pulse duration

RRC pulse shape
R 0.6 roll-off factor

PDP of diffuse
multipath

Ω1 2.67e−6 1.16e−6 norm. power
γ1 10 ns 20 ns

shape param.γrise 3 ns 5 ns
χ 0.98

ELOS/N0 29.5 dB (at 1m) LOS SNR

TABLE II
MPC SINRS FOR THE VALIDATION ENVIRONMENT, ESTIMATED FROM

MEASURED SIGNALS AND COMPUTED FROM THE CHANNEL MODEL.

SINR (measurem.) / SINR (model) [dB]
MPC Tp = 0.5 ns Tp = 1 ns Tp = 2 ns

LOS Anchor 1 23.1 / 25.8 24.7 / 24.7 23.2 / 23.7
lower wall 11.1 / 18.3 5.4 / 15.9 4.1 / 13.7
right window 13.5 / 12.6 7.6 / 10.2 6.9 / 7.7
upper wall 2.2 / 11.7 -0.6 / 9.5 5.2 / 7.1
lower wall – right win. 9.5 / 7.3 7.6 / 4.9 4.9 / 2.4

LOS Anchor 2 25.9 / 26.4 26.0 / 25.3 26.5 / 24.2
right window 11.9 / 12.6 10.5 / 10.8 9.3 / 8.8
upper window 10.1 / 14.0 8.2 / 11.6 5.1 / 9.1
left wall 3.1 / 14.4 4.2 / 11.9 5.5 / 9.4
upper wall – right win. 10.6 / 5.7 11.7 / 3.9 3.5 / 1.8
upper win. – left wall 7.2 / 9.7 4.8 / 7.3 2.1 / 4.8

For the transmit signal s(t), we use a root-raised-cosine

(RRC) pulse with unit energy and a roll-off factor R = 0.6,

modulated on a carrier at fc = 7GHz and fc = 8GHz

(see Table I). The computations are done for pulse durations

of Tp = 0.5 ns, Tp = 1 ns and Tp = 2 ns. In the synthetic

environments, we assume for all antennas isotropic radiation

patterns in the azimuth plane and gains of 0 dB. The free-

space pathloss has been modeled by the Friis equation. To

account for the material impact, we assume 3 dB attenuation

per reflection. As in our previous paper [23], the PDP of the

DM is considered to be a fixed double-exponential function, as

introduced by [22, eq. (9)]. This choice reflects the common

assumption of an exponential decay of the DM power and also

the fact that the LOS component is not impaired by DM as

severely as MPCs arriving later [34]. The model has been fitted

in [22] to measurements collected in an industrial environment.

We have used χ = 0.98 as in [22] to describe the impact

of DM on the LOS component and adapted γrise and γ1 to

reflect the smaller dimensions of our environments. Table I

summarizes the parameters of the channel and signal models.

We would like to emphasize that this parametric model was

introduced for simplicity and reproducibility, to analyze the

impact of DM on the PEB in various scenarios. In practice,

the SINR values can be estimated from channel measurements

and used with the results from Section V to compute the PEB

for real environments. This approach is used next to validate

the theoretical results and the parametric channel model.
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Fig. 2. Logarithmic PEB (17) for estimated SINRs in the validation environ-
ment using measured signals with Tp = 0.5 ns and fc = 8GHz and only

MPCs corresponding to the anchor at p
(2)
1 . 30-fold standard deviation ellipses

are shown for the CRLB and a tracking algorithm (c.f. [24]).

A. Validation with Measurement Data: Multipath-Sync

The validation is conducted in an example environment

shown in Fig. 2, c.f. [29]. The MPC SINRs (14) are estimated

from channel measurement data as discussed in [13], [24],

using fixed positions for two anchors and a set of “estimation

points” for the agent as illustrated in the figure. Table II

shows the obtained values for selected MPCs. It also lists the

corresponding SINRs computed from the parametric channel

model, with parameters given in Table I. The choice of the

parameters of the double exponential PDP of the DM has

been made to account for the smaller room dimensions in

comparison to the synthetic environment used below.

The estimated SINRs in Table II show the relevance of

the corresponding MPCs. The LOS is the most significant

one. Its SINR is approximately constant over all bandwidths

used, indicating that it is only slightly influenced by DM.

The reflections at the windows and at the lower wall also

provide significant position-related information. A scaling with

bandwidth—as suggested by (14)—is observable reasonably

well. Other MPCs provide less information, such as the left

wall (plasterboard) and the upper wall. This is caused by a

reduced reflection coefficient, increased interference by DM,

and increased variance of the MPC amplitude over the estima-

tion points. Reference [35] contains further results supporting

the presented findings based on measurement data from other

environments [36].

Table II also shows that the parametric channel model yields

realistic SINRs in many cases and therefore valid performance

bounds. It has to be stressed that the global PDP model as

used here cannot describe the local behavior of DM. However,

based on the provided framework, it is straightforward to

introduce more realism by fitting separate parameterized or

sampled models to any appropriate local area.

Figure 2 shows the logarithmic PEB for the validation

environment using the estimated SINRs from Table II for

Anchor 2 and Tp = 0.5 ns. Equation (29) has been employed

to compute the PEB, i.e. path overlap has been neglected and



synchronization assumed. Clearly, one can observe from this

figure the visibility regions and the relative importance (c.f.

Table II) of specific MPCs. The PEB is better than 10 cm at

almost the entire area. The ellipses encode the geometrically

decomposed PEB with 30-fold standard deviation, computed

from (17). Dashed ellipses are for a multipath-assisted tracking

algorithm [24] that makes use of the estimated SINRs for

properly weighting the information from MPCs. It can be

observed that both results match closely.

B. Synthetic Environment

The synthetic environment shown in Fig. 3 is used to com-

pare different measurement scenarios. The PEB is evaluated

across the entire room, assuming one or two fixed anchor at

positions p
(1)
1 = [10, 7]T and p

(2)
1 = [2, 1]T. We use a point

grid with a resolution of 2 cm, resulting in 180,000 points. VAs

up to order two are considered, unless otherwise specified.
1) Multipath-Sync: Fig. 3 shows the PEB over the floor-

plan for Multipath-Sync and Tp = 1 ns. Figs. 3(a) and (b)

compare the simplified PEB neglecting path-overlap (cf. (29))

with the full PEB considering it (cf. (28)). A single anchor

is employed in both cases at position p
(1)
1 , yielding a PEB

below 10 cm for most of the area. One can clearly see the

visibility regions of different VA-modeled MPCs encoded by

the level of the PEB. A valid PEB is obtained over the entire

room even though the anchor is partly not visible from the

agent positions. If path-overlap is considered (Fig. 3(b)) in

the computation of the CRLB, the adverse effect of room

symmetries is observable, corresponding to regions where

deterministic MPCs overlap. In case of unresolvable path

overlap, i.e. the delay difference of two MPCs is less than

the pulse duration τk − τk′ ≪ Tp, the information of the

components is entirely lost (see Section V-A). The ellipses

illustrate the geometrically decomposed PEB with 20-fold

standard-deviation.

Fig. 3(c) shows the PEB with path-overlap for the same

parameters but for two anchors. The error ellipses clearly

indicate that the PEB is much smaller and the impact of path

overlap has been reduced.

A quantitative assessment of this scenarios is given in

Figs. 4 and 5, showing the CDFs of the PEB for different pulse

durations (Tp = 0.5 ns, Tp = 1 ns and Tp = 2 ns). One can

observe that the PEB increases vastly w.r.t. this parameter. The

“no PO” results account for the proportional scaling of Fisher

information with bandwidth and additionally for the increased

interference power due to DM, both of which are clearly seen

in approximation (29). The influence of path overlap, which is

neglected by (29), magnifies this effect even further because

its occurrence becomes more probable. It almost diminishes—

on the other hand—for the shortest pulse Tp = 0.5 ns. Over

all, the error magnitude scales by a factor of almost ten, while

the bandwidth is scaled by a factor of four.

Our work in [24], [29], [30] shows algorithms based on the

presented signal model that can closely approach these bounds.

I.e. cm-level accuracy is obtained for 90% of the estimates.
2) Multipath-NSync: Fig. 6 compares the CDFs of the PEB

for Multipath-NSync and different synchronization states in-

between anchors, obtained from (33). The CDFs are shown for
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Fig. 3. Logarithmic PEB (17) for Multipath-Sync with Tp = 1 ns over the

example room for VAs up to order two. (a) One anchor at p
(1)
1 ; path overlap

neglected. (b) same as (a) but considering the influence of path overlap. (c) a

second anchor has been introduced at p
(2)
1 ; path overlap included. At some

sample points, 20-fold standard deviation ellipses are shown.

either two anchors at p
(1)
1 and p

(2)
1 which can be synchronized

or not, or just the first anchor. A pulse duration of Tp = 1 ns is

used. The performance deteriorates w.r.t. the Multipath-Sync

case in Figs. 4 and 5, which can be explained by the fact

that some of the delay information is used for clock-offset



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

 

 

0.5ns
0.5ns, no PO
1ns
1ns, no PO
2ns
2ns, no PO

PSfrag replacements

P(p)[m]

C
D

F

Fig. 4. CDFs of the PEB (17) for Multipath-Sync, pulse durations

Tp = 0.5 ns, Tp = 1 ns and Tp = 2 ns, and one anchor at p
(1)
1 . Path overlap

is neglected in results marked by dashed lines.
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Fig. 5. CDFs of the PEB (17) for Multipath-Sync, pulse durations

Tp = 0.5 ns, Tp = 1 ns and Tp = 2 ns, and two anchors at p
(1)
1 and p

(2)
1 .

Path overlap is neglected in results marked by dashed lines.

estimation, resulting in a loss of position-related information.

A second anchor helps to counteract this effect. Here, one can

recognize an additional gain of information if the two anchors

are synchronized. The impact of path overlap is smaller if two

anchors are used and even less pronounced if the anchors are

synchronized.

A qualitative representation of the PEB is shown in Fig. 7

for Multipath-NSync over the example room, with two anchors

at p
(1)
1 and p

(2)
1 , and Tp = 1 ns. Comparing this result with

the synchronized case shown in Fig. 3(c), one can observe

an increase due to the need of extracting syncronization

information. Also, the impact of path overlap has increased.

Fig. 8 compares Multipath-Sync and Multipath-NSync for

the two-anchors case and Tp = 1 ns, considering VAs of order

one or two and an NLOS scenario where the LOS component

has been set to zero across the entire room. One can observe

the importance of the LOS component which usually has a sig-

nificantly larger SINR and provides thus more position-related

information than MPCs arriving later. Increasing the VA order

leads in general also to an information gain. However, in a

few cases this trend is reversed since a larger VA-order can

lead to more positions with unresolvable path overlap. This

occurs especially at locations close to walls and in corners.

3) Multipath-Coop: Fig. 9 contains 2D-plots of the differ-

ent contributions to the PEB in (44) for the cooperative case.
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Fig. 6. CDFs of the PEB (17) for Multipath-NSync and different synchro-
nization states at pulse duration Tp = 1 ns. Either two anchors are used at

p
(1)
1 and p

(2)
1 , which can be synchronized or not, or just the first anchor.
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Fig. 7. Logarithmic PEB (17) for Multipath-NSync over the example room

with Tp = 1 ns, using two asynchronous anchors at p
(1)
1 and p

(2)
1 . 20-fold

standard deviation ellipses are shown at some sample points.
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Fig. 8. CDFs of the PEB in (17) for Multipath-Sync and Multipath-NSync

and Tp = 1 ns with two anchors at p
(1)
1 and p

(2)
1 . VAs of order one or two

are considered; for the latter case also for an artificial NLOS situation over
the whole room.

The PEB has been evaluated for Agent 3 across the entire

room with two resting, cooperating agents at p(1) and p(2). In

Fig. 9(a), only the monostatic measurements of Agent 3 are

considered, illustrating the adverse effect of room symmetries

and resulting unresolvable path overlap. In particular, areas

close to the walls are affected as well as the diagonals of the

room. Fig. 9(b) shows the information provided by the agents
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Fig. 9. Logarithmic PEB (44) with Tp = 1 ns over the example room for three

cooperating agents, two of which are resting at positions p(1) and p(2) . The
PEB is decomposed into its (a) monostatic and (b) cooperative components.
Plot (c) shows the total PEB for Multipath-Coop. In (c), also the 40-fold
standard deviation ellipses are shown at some sample points for these three
cases and—in addition—for the (bistatic) case with fixed anchors.
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Fig. 10. CDFs of the PEB (44) for Multipath-Coop with Tp = 1 ns, for VAs
of order one and two, analyzing contributions of different measurements.

at p(1) and p(2) in their role as anchors. Their contribution

is similar to the fixed-anchor case analyzed in Fig. 3(c), but

due to uncertainties in their own positions, this information is

not fully accessible. A robust, infrastructure-free positioning

system is obtained if these two components can complement

one another. Indeed Fig. 9(c) indicates excellent performance

across the entire area. The distinction between the parts of

the position-related information is further highlighted by the

CRLB ellipses in Fig. 9(c), which also include the fixed-anchor

(bistatic) case of Fig. 3(c). It shows the decreased information

of the cooperative part in comparison to the bistatic case with
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Fig. 11. CDFs of the PEB in (44) for Multipath-Coop with Tp = 0.5 ns
and Tp = 2 ns for VAs of order two, showing contributions of different
measurements types.

fixed anchors. The monostatic ellipses are mostly oriented

towards the nearest wall, where the most significant informa-

tion comes from. In many cases, this information is nicely

complemented by the cooperative contribution.

Fig. 10 shows the CDFs of the PEB in (44) for Tp = 1 ns

and VAs of order one and two. It is interesting to note that

Multipath-Coop does not benefit from taking into account

second-order MPCs. This is explained by the large influence

of the monostatic measurements, for which second-order re-

flections cause many regions with unresolvable path overlap

(c.f. Fig. 9(a)). For cooperative measurements, increasing the

VA order is still beneficial.

Fig. 11 illustrates the influence of bandwidth on Multipath-

Coop, using Tp = 0.5 ns and Tp = 2 ns for VAs of order two.

Especially for the monostatic measurements, the occurrence

of unresolvable path overlap is significantly reduced, leading

to a clear advantage of a larger bandwidth.

VII. CONCLUSIONS AND OUTLOOK

In this article, we have introduced and validated a unified

framework for evaluating the accuracy of radio-based indoor-

localization methods that exploit geometric information con-

tained in deterministic multipath components. The analysis

shows and quantifies fundamental relationships between en-

vironment properties and the position-related information that

can potentially be acquired. This is due to two mechanisms:

(i) Diffuse multipath, which is related to physical properties

of the propagation environment, acts as interference to useful

specular multipath components. (ii) Path overlap, which relates

to system design choices as the placement of agents but also to

the given geometry of an environment, may render determinis-

tic components useless. An increased signal bandwidth allows

to counteract those effects since it improves the time-resolution

of the measurements: The power of DM thus decreases and

path overlap becomes less likely.

The framework allows for the analysis of different measure-

ment setups: For instance, (i) in absence of synchronization,

position information can be extracted from the time-difference

between MPCs. The need for clock-offset estimation reduces

thereby the positioning accuracy in comparison to a syn-

chornized setup. (ii) Cooperation between agents increases



the available position-related information, but the uncertainty

of the unknown positions of agents acting as anchors partly

levels this effect. (iii) With monostatic measurements, the VAs

move synchronously with the agents, which leads to a scaling

of the information provided by MPCs. These MPC-geometry-

dependent scaling factors lie between zero and two w.r.t. a

conventional bistatic measurement.

The quantification of position-related information, as pro-

vided by the presented framework, can be used for designing

positioning and tracking algorithms (e.g. [24], [29], [30]). The

proper parametrization of the underlying geometric-stochastic

channel model optimizes such algorithms and provides valu-

able insight for system design choices such as antenna place-

ments and signal parameters. Algorithms that can learn and

extract these environmental parameters online from measure-

ments may achieve such optimization without the need for

manual system optimization and are thus an important topic

for further research on robust indoor localization.

APPENDIX A

FIM FOR ORTHOGONAL MPCS

For a sampled received signal, the covariance matrix of

AWGN and the DM is written as

Cn = σ2
nIN +Cc = σ2

nIN + S̄HSν S̄ (A.1)

where S̄ = [s0, · · · , sN−1]
T ∈ RN×N is the full signal matrix

with si =
[
s((−i)modNTs), . . . , s((N − 1 − i)modNTs)

]T
,

defined as a circulant matrix. The covariance matrix of DM is

[S̄HSνS̄]n,m =

N−1∑

i=0

TsSν(iTs)s((n− i)modNTs)

× s((m− i)modNTs). (A.2)

Using the Woodbury matrix identity, the inverse of Cn can be

written as

C−1
n =

1

σ2
n

[
IN − S̄H

(
σ2
nS

−1
ν + S̄S̄H

)−1
S̄
]
. (A.3)

In (7), this inverse is multiplied from the right by Sα, which

can be re-written as

C−1
n Sα =

K∑

k=1

αkC
−1
n sτk

=
1

σ2
n

K∑

k=1

αk

[
IN − S̄H

(
σ2
nS

−1
ν + S̄S̄H

)−1
S̄
]
sτk

where the factor S̄sτk on the very right is an autocorrelation

vector of the transmitted signal shifted to delay time τk. The

desired properties of s(t)—a large bandwidth and favorable

autocorrelation properties—imply that this autocorrelation has

most of its energy concentrated at delay τk. It hence samples

the nonstationary PDP at time τk and we can replace Sν for

each summand by a stationary PDP S
(τk)
ν = TsSν(τk)IN .

Using this assumption, we define
[
C(τk)

n

]−1
=

[
σ2
nIN + TsSν(τk)S̄

HS̄
]−1

which involves the inverse of a cyclic matrix that can be

diagonalized by a DFT. We introduce a unitary DFT matrix

W, WHW = WWH = I, and use S̄ = WS̃WH, where

S̃ = diag(
√
NWs0) is a diagonal matrix containing the DFT

of sT0 (the first row of S̄), to obtain

[
C(τk)

n

]−1
=

[
W

(
σ2
nIN + TsSν(τk)S̃

HS̃
)
WH

]−1

= W
(
σ2
nIN + TsSν(τk)S̃

HS̃
)−1

WH. (A.4)

With this, we can approximate the second summand of likeli-

hood function (7) by

[αHSHC−1
n Sα]k,k′ ≈ α∗

kαk′sHτk

[
C(τk)

n

]−1
sτk′

=

N−1∑

i=0

α∗
kαk′ |Sf [i]|2

σ2
n + Ts|Sf [i]|2Sν(τk)

exp

{−j2πi(τk − τk′ )

N

}

where Sf [i] are samples of the DFT of s0 and the exponential

accounts for the delays τk and τk′ . Approximating the sum by

an integral yields

[αHSHC−1
n Sα]k,k′ ≈

∫

f

α∗
kαk′ |S(f)|2

N0 + |S(f)|2Sν(τk)
exp {−j2πf(τk − τk′)} df.

With this expression, the diagonal elements of submatrix ΛA

of the FIM can be written as

[ΛA]k,k = Er|ψ

{
−∂2 ln f(r|ψ)

∂τk∂τk

}
(A.5)

≈ 8π2|αk|2
∫

f

f2 |S(f)|2
N0 + Sν(τk)|S(f)|2

df

=
8π2

N0
SINRk

∫

f

f2|S(f)|2 N0 + TpSν(τk)

N0 + |S(f)|2Sν(τk)
df

= 8π2β2SINRkγk

where β2 =
∫
f
f2|S(f)|2df is the mean square bandwidth

of s(t), SINRk = |αk|2/(N0 + TpSν(τk)) is the signal-

to-interference-plus-noise ratio (SINR) of the k-th MPC,

and γk = β2
k/β

2 is called bandwidth extension factor, ex-

pressing the influence of the whitening. The latter relates

the mean square bandwidth of the whitened pulse β2
k =∫

f
f2|S(f)|2 N0+TpSν(τk)

N0+|S(f)|2Sν(τk)
df to β2. Its value is a function

of the interference-to-noise ratio TpSν(τk)/N0. Note that s(t)
is assumed to be normalized to unit energy. Hence we have

|S(f)|2 = Tp for |f | ≤ 1/(2Tp) if s(t) has a block spectrum.

APPENDIX B

JACOBIAN OF VA POSITION W.R.T. ANCHOR POSITION

We want to find a simple expression for ∂p
(ξ)
k /∂p(ξ). We

restrict our derivation on a single VA of a specific node

w.l.o.g., so we drop all ξ, k-indexing and use a simpler notation

∂pVA/∂p. As explained in Section I, pVA is obtained by

mirroring p on walls Q times where Q is the VA order. We use

index q for this iteration and refer to the intermediate positions

as p̃q where p̃0 = p and p̃Q = pVA. We need to express pVA

as a function of p and room geometry. We account for the

latter by considering walls with line equations

y − yq = tan(ζq)(x − xq) (B.1)



where ζq is the wall angle and dq = (xq, yq)
T is an offset

vector. We obtain the q-th position by mirroring position q−1
on the q-th wall, or more formally

p̃q = Mir(p̃q−1, ζq,dq) . (B.2)

where Mir is defined as the mirroring operator. Starting at

q = Q and using recursive substitution down to q = 0, we get

pVA = Mir(. . .Mir(Mir(p, ζ1,d1), ζ2,d2) . . . , ζQ,dQ) .
(B.3)

The mirroring operation is given by

Mir(p̃q−1, ζq,dq) = M(ζq)(p̃q−1 − dq) + dq (B.4)

= M(ζq)p̃q−1 +
(
I−M(ζq)

)
dq

where we use a mirror matrix that acts w.r.t. a line through

the origin at angle ζq ,

M(ζq) =

[
cos(2ζq) sin(2ζq)
sin(2ζq) − cos(2ζq)

]

= Rot(2ζq)

[
1 0
0 −1

]
= Rot(2ζq)F (B.5)

and can be decomposed into a rotation by 2ζq , Rot(2ζq) and

a sign-flip F in the second dimension. M(ζq) has eigenvalues

{−1,+1} and bears analogies to rotation. For breaking down

(B.3), we prefer the latter form of (B.4) because of the

separated p̃q−1-summand. By carefully repeated application,

we obtain a formula

pVA = M(ζQ) · p̃Q−1 +
(
I−M(ζQ)

)
dQ

= M(ζQ)M(ζQ−1) · p̃Q−2 +

M(ζQ)
(
I−M(ζQ−1)

)
dQ−1 +

(
I−M(ζQ)

)
dQ

= . . . =

(Q−1∏

q=0

M(ζQ−q)

)
p +

Q∑

q=1

(Q−q∏

q̃=1

M(ζQ+1−q̃)

)
(I−M(ζq))dq (B.6)

where the derivative w.r.t. p is just the leading product of

mirror matrices. Transposition reverses multiplication order

(
∂pVA

∂p

)T

=

Q∏

q=1

M(ζq) . (B.7)

To resolve this product, we derive a pseudo-homomorphism

property of the mirror matrix. We note that both F and M(ζ)
are symmetric, orthogonal, and self-inverse. Thus, M(ζ) =
Rot(2ζ)F implies M(ζ)F = Rot(2ζ). We rearrange the

product of two mirror matrices

M(ζa)M(ζb) = M(ζa)M(ζb)
T = Rot(2ζa)FF

TRot(2ζb)
T

= Rot(2ζa)I Rot(−2ζb) = Rot(2(ζa − ζb))

and obtain the property

M(ζa)M(ζb) = M(ζa − ζb)F . (B.8)

Applying (B.8) to (B.7) (Q − 1)-times the Jacobian of a VA

position w.r.t. its respective anchor’s position yields

(
∂pVA

∂p

)T

= M(ζ̄)FQ−1 = Rot(2ζ̄)FQ (B.9)

where we refer to ζ̄ := ζ1 − ζ2 + . . . + (−1)Q−1ζQ =∑Q
q=1(−1)q−1ζq as the effective wall angle, where index q

iterates the order of occurrence of walls during MPC reflection

or VA construction.

APPENDIX C

DELAY GRADIENT FOR THE MONOSTATIC SETUP

We transform the initial gradient from Appendix B into a

magnitude-times-unit-vector form by component-wise applica-

tion of basic trigonometric identities. This yields an insightful

expression for the monostatic case, cf. (24). We consider

e(φ)− e((−1)Qφ+ 2ζ̄) =

[
cos(φ)− cos((−1)Qφ+ 2ζ̄)
sin(φ)− sin((−1)Qφ+ 2ζ̄)

]

=



2 sin

(
((−1)Q+1)φ+2ζ̄

2

)
sin

(
((−1)Q−1)φ+2ζ̄

2

)

2 cos

(
((−1)Q+1)φ+2ζ̄

2

)
sin

(
− ((−1)Q−1)φ+2ζ̄

2

)


 .

By defining symbols for the arguments that contain φ depend-

ing on the even/odd parity of Q

O :=
(−1)Q − 1

2
φ+ ζ̄ =

{
ζ̄ If Q is even

ζ̄ − φ If Q is odd

E :=
(−1)Q + 1

2
φ+ ζ̄ =

{
ζ̄ + φ If Q is even

ζ̄ If Q is odd

we further get

e(φ)− e((−1)Qφ+ 2ζ̄) = 2 sin(O) e
(
E − π

2

)

=

{
2 sin(ζ̄)e(φ + ζ̄ − π

2 ) If Q is even

2 sin(ζ̄ − φ)e(ζ̄ − π
2 ) If Q is odd

. (C.1)

APPENDIX D

DERIVATION OF THE NSYNC CRLB

Synchronized anchors: In order to derive the 3 × 3 EFIM

IIIp,ǫ we need to repartition the transformation matrix J by

combining the submatrices H(j) and L(j) = l
(j)
syn to G(j) =

[H(j), l
(j)
syn]. Applying the transformation leads to

IIIP = JTIIIψJ = (D.1)



∑
j∈Nj

(
G(j)

)T
Λ

(j)
A G(j)

(
G(1)

)T
Λ

(1)
B · · ·

(
G(J)

)T
Λ

(J)
B

(
Λ

(1)
B

)T
G(1) Λ

(1)
C

...
. . .

(
Λ

(J)
B

)T
G(J) Λ

(J)
C



.

The 3× 3 EFIM is then given as the sum over the EFIMs of

the corresponding anchors

IIIp,ǫ = (D.2)
∑

j∈Nj

(
G(j)

)T[
Λ

(j)
A −Λ

(j)
B

(
Λ

(j)
C

)−1(
Λ

(j)
B

)T]
G(j).



When neglecting path overlap, this reduces to

IIIp,ǫ =
∑

j∈Nj

(
G(j)

)T
Λ

(j)
A G(j), (D.3)

which leads finally to (32).

Asynchronous anchors: The result for IIIθ (D.1) is also valid

when considering asynchronous anchors, provided that we

respect L(j) = L
(j)
asyn and G(j) = [H(j),L

(j)
asyn]. We apply the

blockwise inversion lemma twice, first to derive the EFIM

IIIp,ǫ (note that now ǫ is a vector), and then again to proof the

additivity of the EFIMs III(j)p .

The EFIM IIIp,ǫ is now a square matrix of order 2+J . It can

be expressed as in (D.2), but taking account of the changed

definition of G(j). We can write its structure as

IIIp,ǫ =
∑

j∈Nj




III(j)A III(j)B(
III(j)B

)T

III(j)D



 , (D.4)

with III(j)A ∈ R2×2, III(j)B ∈ R2×J and III(j)D ∈ RJ×J . Further

evaluation yields, that only the j-th column of III(j)B is nonzero,

and the sum over III(j)B can be written as

∑

j∈Nj

III(j)B =
[
b(1), . . . ,b(J)

]
, b(j) ∈ R2, (D.5)

meaning that each column is determined by the contribution

of a different anchors. Similarly, III(j)D has only one nonzero

entry
[
III(j)D

]

j,j
, leading to

∑

j∈Nj

III(j)D = diag

([
III(1)D

]

1,1
, . . . ,

[
III(J)D

]

J,J

)
. (D.6)

Rewriting IIIp,ǫ (D.4) and again applying the blockwise inver-

sion lemma yields the additivity of the EFIMs III(j)p :

IIIp =
∑

j∈Nj

III(j)A −
1[

III(j)D

]

j,j

b(j)
(
b(j)

)T

=
∑

j∈Nj

III(j)p . (D.7)

The involved terms are defined by

III(j)A =
(
H(j)

)T(
Λ

(j)
A −Λ

(j)
B

(
Λ

(j)
C

)−1(
Λ

(j)
B

)T)
H(j),

[
III(j)D

]

j,j
=

K(j)∑

u=1

K(j)∑

v=1

[
Λ

(j)
A −Λ

(j)
B

(
Λ

(j)
C

)−1(
Λ

(j)
B

)T]
u,v

,

and

b(j) =
(
H(j)

)T(
Λ

(j)
A −Λ

(j)
B

(
Λ

(j)
C

)−1(
Λ

(j)
B

)T)
[1 . . . 1]T1×K(J) .

APPENDIX E

DERIVATION OF THE MULTIPATH-COOP CRLB

The EFIM for the cooperative setup is defined as

IIIP = HTdiag
(
Λ(1,1), . . . ,Λ(1,M), . . . ,Λ(M+J,M)

)
H,

being of size 2M × 2M . It can be written with subblock H

from (42) in the canonical form (40). Matrix Λ(j,m) is defined

in (41). The canonical form decomposes the EFIM IIIP into

contributions from independent transmissions inbetween the

agents or between agents and fixed anchors. Matrix IIIP con-

sists of the following subblocks for η, η′ ∈ Nm = {1, . . . ,M},

[IIIP]η,η
′

2×2

=
∑

j∈(Nm∪Nj)

∑

m∈Nm

(
H(j,η,m)

)T
Λ(j,m)H(j,η′,m) (E.1)

where H(j,η,m) stacks the spatial delay gradients (21) as

defined in Section IV. Considering that only summand (j,m)
of (E.1) contributes to a block, for which either index j or

index m equals η or η′, we get the following subblocks:

1) Off-diagonal blocks η 6= η′:

[IIIP](η,η
′)

2×2 =
(
H(j,η,m)

)T
Λ(j,m)H(j,η′,m)

∣∣∣
j=η,m=η′

+
(
H(j,η,m)

)T
Λ(j,m)H(j,η′,m)

∣∣∣
j=η′,m=η

=
(
H

(η,η′)
An

)T
Λ(η,η′)H

(η′,η)
Ag

+
(
H

(η′,η)
Ag

)T
Λ(η′,η)H

(η′,η)
An ,

using the definitions for H
(η,η′)
An and H

(η,η′)
Ag from Section IV-1.

With H
(η,η′)
An = H

(η′,η)
Ag (Section IV-1) and Λ(η,η′) = Λ(η′,η)

we get

[IIIP](η,η
′)

2×2 = 2III(η,η
′)

C = 2
(
H

(η′,η)
Ag

)T
Λ(η′,η)H

(η,η′)
Ag . (E.2)

2) Diagonal blocks η = η′:

[IIIP]η,η2×2 =
(
H(η,η,η)

)T
Λ(η,η)H(η,η,η)

+
∑

j∈Nm\{η}
m=η

(
H(j,η,m)

)T
Λ(j,m)H(j,η,m)

+
∑

m∈Nm\{η}
j=η

(
H(j,η,m)

)T
Λ(j,m)H(j,η,m)

+
∑

j∈Nj

(
H(j,η,η)

)T

Λ(j,η)H(j,η,η)

=
(
H

(η)
Mo

)T
Λ(η,η)H

(η)
Mo

+
∑

j∈Nm\{η}

(
H

(j,η)
Ag

)T
Λ(j,η)H

(j,η)
Ag

+
∑

m∈Nm\{η}

(
H

(η,m)
An

)T
Λ(η,m)H

(η,m)
An

+
∑

j∈Nj

(
H

(j,η)
Ag

)T
Λ(j,η)H

(j,η)
Ag

using again H
(η,η′)
An and H

(η,η′)
Ag from Section IV-1 and H

(η)
Mo

from Section IV-2. With H
(η,m)
An = H

(m,η)
Ag and Λ(j,m) =

Λ(m,j) due to reciprocity, we get

[IIIP](η,η)2×2 = III(η)Mo + 2
∑

m∈Nm\{η}

III(m,η)
Ag +

∑

j∈Nj

III(j,η)An

= III(η)Mo + 2III(η)Ag + III(η)An (E.3)

which implicitly defines the contributions from monostatic

measurements, bistatic measurements inbetween agents, and

bistatic measurements between agents and fixed anchors.
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Param. Value for Room Description
Valid. Synth.

Deterministic
MPCs

2 max. VA order
3 dB attenuation per

reflection

Signal
parameters

fc 7GHz carrier freq.
Tp 1 ns, (0.5 ns,2ns) pulse duration

RRC pulse shape
R 0.6 roll-off factor

PDP of diffuse
multipath

Ω1 2.67e−6 1.16e−6 norm. power
γ1 10 ns 20 ns

shape param.γrise 3 ns 5 ns
χ 0.98

ELOS/N0 29.5 dB (at 1m) LOS SNR

SINR (measurem.) / SINR (model) [dB]
MPC Tp = 0.5 ns Tp = 1 ns Tp = 2 ns

LOS Anchor 1 23.1 / 25.8 24.7 / 24.7 23.2 / 23.7
lower wall 11.1 / 18.3 5.4 / 15.9 4.1 / 13.7
right window 13.5 / 12.6 7.6 / 10.2 6.9 / 7.7
upper wall 2.2 / 11.7 -0.6 / 9.5 5.2 / 7.1
lower wall – right win. 9.5 / 7.3 7.6 / 4.9 4.9 / 2.4

LOS Anchor 2 25.9 / 26.4 26.0 / 25.3 26.5 / 24.2
right window 11.9 / 12.6 10.5 / 10.8 9.3 / 8.8
upper window 10.1 / 14.0 8.2 / 11.6 5.1 / 9.1
left wall 3.1 / 14.4 4.2 / 11.9 5.5 / 9.4
upper wall – right win. 10.6 / 5.7 11.7 / 3.9 3.5 / 1.8
upper win. – left wall 7.2 / 9.7 4.8 / 7.3 2.1 / 4.8This figure "ruedisser.jpg" is available in "jpg"
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