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Designing Resource-on-Demand Strategies for

Dense WLANs
Fikru Getachew Debele, Michela Meo, Daniela Renga, Marco Ricca, and Yi Zhang

Abstract—Being cheap and easy to deploy, dense WLANs are
becoming the most popular solution to provide Internet access
in locations in which the population of users is large, as in
Campuses, large enterprises, etc. The large density of access
points (APs) comes from the need to have enough capacity to
carry the traffic generated at peak hours although, in these
scenarios, traffic varies a lot on a daily, weekly or seasonal
basis. During low or no traffic periods, APs are underutilized,
even if they are consuming energy almost in the same amount
as if they were fully loaded. Promising solutions to reduce this
form of energy waste consist in activating only the number of
APs that is strictly needed to carry the actual traffic; in other
words, to make capacity dynamically adaptive through Resource
on-Demand (RoD) strategies. In this paper, we investigate the
case of a portion of the dense WLAN in our Campus. Through
real trace analysis, we investigate users behavior in accessing
the WLAN and formulate a stochastic characterization of it. We
propose a simple model that describes RoD strategies and use
it to study the system performance that is evaluated in terms
of AP activity and inactivity periods, AP switching frequency,
and energy saving. Finally, we present some results obtained by
experimenting RoD strategies in a portion of the WLAN. Our
results show that RoD strategies for dense WLANs are feasible
and effective in trading-off the opposite needs to save some energy
and to guarantee a smooth network operation and high quality
of service.

Index Terms—Resource-on-Demand, dense WLANs, energy
saving, modeling, trace analysis.

I. INTRODUCTION

Wireless local area networks (WLANs) have become one

of the most popular solutions to provide reliable, portable and

high-speed Internet connectivity to end users [1]. In particular,

Dense WLANs, i.e., featuring thousands of access points (APs)

per square kilometer, are usually deployed where, as in public

locations or in large enterprises, a lot of users require WiFi

access to the Internet. In these locations, in order to provide

enough capacity for the large amount of traffic generated

by the users, the density of APs is high, much higher than

what needed for coverage only. However, depending on the

people behavior and habits, this large amount of capacity is

not needed all the time; typically there are long periods of

time during a day, or even whole days in a week, in which

there is not so much Internet traffic and APs become idle.

The power consumption of an idle AP is nearly the same

as at full load; thus, during low or no traffic periods, the

energy consumed by the AP is ”wasted”. Energy can be saved

by applying an AP switching on/off policy, so that only the

Fikru Getachew Debele, Michela Meo, Daniela Renga, Marco Ricca and
Yi Zhang are with the Dipartimento di Elettronica e Telecomunicazioni, Po-
litecnico di Torino, Torino, TO, 10129 Italy e-mail: name.lastname@polito.it.

adequate number of APs needed for serving the actual traffic

is activated. In an era of dramatic concerns about sustainability

of communication networks [2], we need to change from

an always on communication infrastructure to a Resource

on-Demand (RoD) paradigm [3]. In a similar way as what

we normally do with lighting (we switch on the light when

entering a room and switch it off when we leave), we must

get used to the idea that the communication infrastructure is

activated only when needed.

In a dense WLAN, the concept of RoD means that APs

dynamically switch on and off based on users’ need for

capacity. The strategies to decide AP switching have to trade-

off among opposite needs. Energy can be saved by activating

a small number of APs, but an adequate number of APs

have to be activated so as to guarantee proper levels of

quality of service, i.e., bandwidth per connection. Moreover,

frequent AP switching should be avoided to guarantee a

smooth network operation. In this paper, we focus on the

design, analysis and parameter setting of RoD strategies for

dense WLANs, investigating these trade-offs. In particular, we

consider a dense WLAN that provides WiFi Internet access in

our Campus; Politecnico di Torino (PoliTo), in which more

than 300 APs have been installed. These APs are powered

by Power over Ethernet (PoE) switches and managed by a

proprietary central controller that is able to configure, monitor

and collect statistics over the network utilization. As specified

in the AP manufacturer data sheet, a single device draws a

maximum power of 13 W [4]. In our experimental activity, we

observed a nominal power consumption of about 8 W. Using

this latter figure, at Campus wide the power consumption

contribution related to the dense WLAN corresponds to a total

of 2.4 kW. Furthermore APs are active 24 hours over 7 days

which implies that the estimated consumption over the whole

year is about 21 MWh. While the monetary cost of running the

WLAN is relatively low, in an era of sustainability concerns,

it is desirable that any energy waste is avoided. Reduction of

energy wastes reduce useless costs and has also the beneficial

effect of contributing to change people habit towards a more

parsimonious and aware use of energy.

In our work, we collected real traces, we analyze users’

behavior in accessing the network, we design RoD strategies

by modeling the system and we test them in a portion of

the operative network. Our experimental setup, from which

we collect traces and test RoD strategies, is established in

a study room inside the Campus and was already presented

in our previous work [5]. More in detail, our contribution is

organized in the following steps:

• First, from real traces, we investigate the behavior of the
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users in accessing the WLAN. We find that during the

day, except for transient periods early in the morning and

late in the afternoon, the user arrival rate is quite constant

and the interarrival time follows quite well an exponential

distribution. The distribution of session duration is more

complex, but to an acceptable level can be approximated

by an exponential distribution also.

• Second, we model the users’ behavior in the system

as an M/M/∞ queuing system and validate this model

by comparing theoretical results against observations of

the real system. The comparison shows a good match

between the theoretical model and measurement results.

• Third, based on the inferred model mentioned above, we

build a Markov chain in which the AP activation and de-

activation mechanisms are described. We solve the model

deriving a number of interesting metrics, such as the AP

activation time, the duration of the AP idle periods, and

the switching frequency. A deep investigation of these

metrics allows us to understand the performance of the

RoD strategies and to derive some indications on the

parameter setting and design of the strategies.

• Finally, we build experiments on our testbed and compute

the energy savings; we estimate the potential saving

that can be achieved with a wider deployment of RoD

strategies in the whole Campus WLAN.

This paper is organized as follows. Section II discusses

some related work. Section III presents the considered sys-

tem, while Section IV investigates WiFi users’ behavior and

demonstrate the fitting of the distribution of interarrival time

and session duration with exponential distributions. Models to

describe the system behavior and to define parameters setting

for RoD strategies in dense WLANs is presented in Section V.

RoD strategies’ performance is evaluated in Section VI, the

model is used to investigate the impact of the RoD parameters

on energy saving, system stability and the quality of service.

As a proof of concept of the operation of RoD strategy,

we present experimental results in Section VII. Finally we

conclude the paper in Section VIII.

II. RELATED WORK

In this paper, we focus on both system analysis through

traffic measurement and energy saving through resource on-

demand strategies. In this short discussion on the related work,

we therefore separately discuss the literature that is mostly

related to our work in these two fields.

Modeling the WiFi users’ behavior, typically based on traces

analysis collected from WLANs, has been studied for more

than 10 years since WLAN was beginning to be widely

deployed all over the world. However the large deployment of

APs was proposed from the constraint to provide bandwidth,

especially during peaks hours, to users. This direction brings

about the presence of a significant energy consumption and

suggest to investigate on energy-efficiency WLAN, that has

become a hot topic in the recent years. To better present

our work we focus on both system analysis through users’

characterization over the dense WLAN and the design of a

strategy able to adapt dynamically the AP switching on/off

in order to save energy. To the best of our knowledge,

our work address these two aspects together. Indeed, in [6]

authors investigated users’ characteristics in different public

locations, e.g., library in universities, cafeterias on the street,

etc, showing fittings of probability distributions of packets and

flows. Besides, authors of [7] proposed a Poisson-arrival model

and a Markov chain to analyze still the TCP and UDP traffic

in WLAN, for resource management by dynamic spectrum

access. In [8] the measurement of different types of traffic,

e.g. HTTP, P2P, SSH, etc., was investigated in public WLAN

hotspots. In [9] and [10] authors measured users characteristics

in the Campus WLAN of University of North Carolina, fitting

them with different distributions such as Poisson, BiPareto and

Lognormal. The authors in [11] analyzed the measured traffic

in WLAN, trying to eliminate redundant traffic to improve

the performance of the network. These related works give us

hints of how to measure, analyze, and model users behavior

in accessing the Campus dense WLANs. Furthermore, these

works did not consider the possibility of using the measure-

ment data for the purpose of energy saving, which has become

an important issue to take into account today.

For what concerns energy efficiency, our approach is based

on the RoD concept that has already been proposed for the

wireless access, in particular for cellular networks. In the field

of cellular networks, the work [12] introduced the idea of

switching on and off the Base Stations (BSs) of a mobile

network by scheduling their activity based on historical data

of traffic, while in other works, such as [13], [14], BSs

switching is decided based on real-time traffic measurements.

The idea is similar to what we are considering here, but the

implementation, as well as the constraints are quite different:

in our case, dense WLANs make use of a centralized controller

that can quite effectively take decisions, in the case of cellular

networks a particular care should be taken in the coordination

among BS decisions [15], [16]. For a survey on RoD strategies

for cellular and WiFi networks see also the survey in [17].

In the context of WiFi networks, among the first work to

specifically consider RoD in dense WLANs is [3]. Most

of the existing works related to energy-efficient WLAN are

based on theoretical and/or simulation analysis without real

experiments, e.g., [18]–[20], while we measure the real-time

user traffic and behaviors and take real-time decisions about

AP switching on/off based on measured data. There is only a

few work on implementing energy-efficient WLAN testbeds.

For instance, authors of [21] implemented an experimental

system to switch on/off WLAN APs by using wireless sensors

to detect new incoming users, and in [22] authors propose

a prototype using a station to wake on the WLAN when

all the APs are in the sleep mode. Our work is based on

a previous work [23] proposed by authors that belong to

our academic research group that proposed thresholds and

hysteresis windows for switching on/off APs in dense WLANs.

Moreover we deployed a RoD testbed in PoliTo Campus

production network, the outcome of that work was described

in [5], and all the measurement and experiment results in this

paper are obtained from this testbed. The testbed is located

in a dense WLAN where there are multiple APs covering

the same area so that one AP is always on for guaranteeing
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the coverage and detecting incoming users. Therefore, no

additional wireless sensors or devices are needed. Besides,

our testbed works with any kind of commercial APs that

support PoE without requiring any software and hardware

modifications inside the APs firmware.

III. SYSTEM DESCRIPTION

Enterprise as well as educational institution WiFi networks

are characterized by dense deploymentof APs to provide high-

capacity connectivity as well as wide coverage. The WiFi

network of PoliTo is one of such deployments: in highly dense

locations of our Campus, such as classrooms and libraries,

the AP density is as high as 0.02[AP/m2]; by comparison,

consider that in lightly loaded environments an AP can provide

a coverage of 2500m2 [24], [25], corresponding to a density of

about 0.0004[AP/m2], two orders of magnitude smaller than

in our case.

In this research activity, we focus on a study room equipped

with 3 APs that provide connectivity to up to 120 – 140

students at the same time. The needed capacity is high and

the connectivity provided by the 3 APs is fully overlapping.

The considered study room, similarly to other areas of the

PoliTo Campus WLAN, such as the library, and meeting

venues, exhibits particularly high demand for connectivity. The

methodology applied here is quite general and can be used for

studying other areas of the Campus WLAN with less demand

(for example, classrooms and offices). To analyze the system

under study, we collect traces from the 3 APs installed in the

study room. Traces are collected from a central control system

that manages the whole PoliTo WiFi network. Users need to be

authenticated with the control system to use the WiFi network.

Once a user is authenticated, the controller creates and saves

a session record corresponding to that particular user. The

session ends when the user logs out of the system or the WiFi

network is unreachable. A user session is represented as a

row in the trace with more than 20 fields of parameters. In

this study, for the purpose of system characterization, we are

only interested in the following fields:

• Association time

• Disassociation time

• Session duration

These data allow us to investigate the way in which users

access the APs, that is fundamental for the design of RoD

strategies. Users’ behavior and WiFi usage change on both

a daily basis as well as on longer time scales. To have a

deeper understanding, we focus on two different periods, that

are typical of the academic activity: a normal teaching period,

with lecturing activity and many students often coming in and

going out of the study room; and an exam period, with slightly

fewer users in the room. In particular, the trace analysis in this

work includes the following periods:

• Teaching period: traces are collected between October

27th, 2014 and December 19th, 2014

• Exam period: traces are collected between January 21st,

2015 and February 24th, 2015
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Fig. 1: Number of users in the system for the days of the

teaching period (Mean value in red)

IV. TRACE ANALYSIS

In this section, we investigate the behavior of the users in

the system under study through the traces collected in the

periods identified in previous section. Fig. 1 shows the daily

number of users associated to the three APs for working days

of the teaching period. Each gray curve corresponds to a day

and the solid red line represents the average number of users

in the system; each sample was measured on time intervals of

one second. The daily patterns are extremely repetitive, curves

are very similar to each other. In general, four phases can be

identified in a day:

• Idle phase, between 21:00 to 7:00 of the day after. No

users is in the room, actually the Campus is closed.

• Ramp-up transient phase, between 7:00 to 10:00. Users

are arriving in the room at a quite fast rate, the number of

users in the rooms grows quickly up to its typical value.

• Steady-state phase, between 10:00 and 18:00. The num-

ber of users varies around its typical value.

• Emptying transient phase, between 18:00 to 21:00. The

number of users decreases.

From the trace analysis we extract the two most important

parameters to characterize the users’ behavior:

• the interarrival time, i.e., the time between two consec-

utive user arrivals at the system;

• the session duration, i.e., the time spent by a user

associated to an AP.

We focus on these two parameters and characterize them as

random variables that can then be used for analytical modeling.

A. Users’ interarrival time

The trace analysis is performed at two observation granu-

larities. We start with a general understanding of the system

through a daily based trace analysis; then we observe and

model the system at a smaller granularity based on single

hours.

1) Daily analysis: To understand the evolution of users’

arrivals over the whole day, we present in Fig. 2 the total

number of users’ arrived in the system during a day. Every line
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Fig. 3: Total number of arrived users in steady-state phase of

the days of the teaching period.

corresponds to a single day of the teaching period dataset. The

figure reveals the same four daily phases that were identified

above: idle, ramp-up, steady-state and emptying. Interestingly,

during steady-state phase, the growth of users’ arrivals follows

an almost linear trend denoting a roughly constant arrival rate.

Combining this with the observation of Fig. 1, we can say that

at the steady-state phase the system is highly dynamic, with

users coming and going resulting in a total number of users

in the system that varies around a typical value.

To further investigate the steady-state phase, Fig. 3 reports

the total number of users arrived in the system for the steady-

state phase only. The zoom confirms that while there is

quite a different rate in different days, the rate tends to be

constant in the same day for the whole steady-state phase. The

users’ arrival rate during the steady-state phase of the teaching

periods varies in the range [0.0565,0.1116] [user/second] (or

[3.3896,6.6960] [user/minute]).

The behavior during the exam period is similar, but with

smaller typical values and smaller arrival rates. To summarize

this and, at the same time, compare the exam period with

the teaching period, we show in Fig. 4 the number of arrived

users for the days that exhibit the maximum and the minimum
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number of arrived users in both the considered periods. The

exam period exhibits the same qualitative behavior of the

teaching period (with the same four phases already discussed).

The arrival rate is smaller, with a reduction of about 30%

with respect to the teaching period. The range of arrival rates

in the exam period is in [0.0412,0.0943] [user/second] (or

[2.4689,5.6570] [user/minute]).

We now go deeper into our investigation and proceed with

a fitting of the random variable that represents the users’

interarrival time. We focus on the steady-state phase and

follow a twofold approach: 1) we study the statistics by curve

fitting over the whole observation window for single days, and

2) we repeat the curve fitting, fixing a day, and studying the

hourly behavior.

Given the large number of potential users arriving at the

system and the large variety of different patterns of users’

behavior, we formulate the hypothesis that, during the steady-

state phase, the arrival process can be represented by a Poisson

process. To validate this assumption, we compare the users’

interarrival times with instances of a exponentially distributed

random variable with mean value equal to the mean interarrival

time measured from the traces in an observation window.

Fig. 5 reports the Q-Q plot (quantiles of the empirical distribu-
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teaching period, one day between 10:00 and 11:00.

tion versus quantiles of the theoretical exponential distribution)

observed in the whole steady-state phase of one day of

the teaching period. The figure shows that the exponential

distribution is very well fitting the empirical distribution.

2) Hourly analysis: The hourly based trace analysis divides

the steady-state phase of a daily trace into hourly traces.

Fig. 6 reports the comparison of the theoretical and empirical

cumulative distribution function (CDF) of the interarrival time

in the hour between 10:00 and 11:00 (Oct 31, 2014), as

an example (other hours lead to similar results). The figure

validates the assumption that the interarrival time is well fitted

by an exponentially distributed random variable even at hourly

time granularity.

Fig. 7 shows the Q-Q plot of the empirical data against

the the theoretical exponential distribution with parameters

obtained from the empirical data in different hours of the

steady-state phase of the traces collected on Nov. 4th, 2014.

For the sake of clarity some hours are missing in this plot

(they are, however, quite similar to plots shown here). The

plots confirm that the fitting with the exponential distribution is

very good. We also mathematically quantified the claim using

a chi-square goodness-of-fit. We test the hypothesis that the

interarrival data comes from an exponential distribution. We

perform the chi-square test for hourly based traces collected

on Oct. 31st, 2014 at a significance level of 0.05 and report

the output in Table I. As shown in each column, the measured

deviation is always less than the critical value χ2
0.95,k−1

with
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Fig. 8: PDF of the session duration for the empirical data

and an exponentially distributed random variable; steady-state

phase in the a day of the teaching period (Nov. 3, 2014).

95% confidence interval and k − 1 degree of freedom. Thus,

the chi-square test does not reject the null hypothesis for

exponential distributed data.

B. Session duration

We proceed investigating the characteristics of session dura-

tions, the amount of time during which a user is associated to

an AP. Again, we start by focusing on the steady-state phase of

days in the teaching period and we investigate the distribution

both hour by hour and on a daily basis. The average session

duration observed over the whole teaching period is equal to

1176 seconds, i.e., about 20 minutes. Table II shows the mean

value of the session duration in different hours of the steady-

state phase of a single day (we consider Nov. 3rd, 2014) and

the mean computed by averaging observations in the whole

teaching period, and the whole exam period. The table shows

that there is quite a variability in different hours, reflecting the

different usage that students make of the room. Sessions are

typically longer in the morning and early afternoon, possibly

due to the students remaining long time in the study room.

Sessions are shorter in the afternoon and at lunch time. This

behavior, combined with the constant arrival rate that was

previously discussed, translate in the daily pattern of users in

the system that is reported in Fig. 1, with a gap at lunch time

and a reduction of the number of users from mid afternoon.

Clearly, when the average of the whole teaching period is

considered, variations are smoothed out. Besides, the exam
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TABLE I: Results of the chi-square goodness-of-fit test

10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00

χ2 3.101 3.686 3.662 2.404 4.143 1.883 4.143 0.621

χ2
0.95,k−1

12.592 7.815 9.488 7.815 9.488 9.488 9.488 5.991

TABLE II: Mean value of the session duration [second] for different hours of a day (Nov. 3, 2014) of the teaching period and

for the aggregation of all the data of the teaching and exam periods.

10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 Daily average

Nov. 3 1094 1069 641 1345 1212 839 833 992 982

teach. period 1043 1198 1093 1277 1356 1088 1007 1014 1176

exam period 1158 950 945 1251 1343 1019 1201 901 1072
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Fig. 9: CDF of the session duration for the empirical data and an exponentially distribution random variable: (a), (b) different

hours of a day of the teaching period (Nov. 3, 2014): (c), (d) different hours of a day of the exam period (Jan. 27, 2015)

period has an average value of 1072 seconds that is lower

than the average session duration of teaching period.

Fig. 8 shows the histogram of session duration in the

same day as before (Nov. 3rd, 2014) during the steady-state

phase. The histogram is compared with the probability density

function (PDF) of an exponentially distributed random variable

with the same mean. The plot is represented in a semi-log

scale. As expected, the exponential distribution is not fitting

that well the empirical data; with a decay that is faster than

in the real case.

For the same day, we also focus on the hourly distribution.

Fig. 9a-9b show the CDF for both empirical data and an

exponentially distributed random variable in two different

hours (12:00-13:00, 16:00-17:00) when the mean values of

session durations are different (see Table II). Again, the fitting

is acceptable but not that accurate. Similarly, Fig. 9c-9d show

the CDF for a day in the exam periods (Jan. 27, 2015).

The results are slightly different from the results in the day

in the teaching period. In the day of the exam period, the

users have higher probability to connect to the APs with

shorter duration, and the gap between the empirical data and

exponential distribution are larger than the day in the teaching

period. The distribution for other hours in the day and for

other days is quite similar to the case we are showing here.

We omit other figures for the sake of brevity.

V. DESIGNING ROD STRATEGIES

In this section, we propose simple analytical modeling

techniques that, starting from the analysis of the traces that was

previously presented, can be used to design RoD strategies, to

understand their performance, and to decide the best setting

of the parameters.

A. System Model and Validation

In the previous section, we characterized the system under

study focusing on users’ interarrival time and session duration.

In particular, we observed that users arrive in the target

study room according to a Poisson process with rate λ.

Our analysis reveals that the value of λ can change day by

day but, given a day, λ remains roughly the same over the

steady-state observation period that lies between 10:00 and

18:00. The session duration has, as expected, a more complex

behavior, with variations both day by day and within hours

of the same day. The distribution of the session duration

can be approximated by an exponential distribution but the

approximation is somehow inaccurate in some cases, typically

with heavier tail than exponential. Since the amount of time for

which a user accesses the network (i.e., the session duration)

can be assumed to be independent on the number of users

that are at the same time in the system and since there is no

limitation on the maximum number of users, we can model the

system as an M/M/∞ queuing system, where the customers

represent the students arriving in the room and associating to

the WiFi network and the service time represents the duration

of a session. Notice that the session duration is not well

approximated by an exponential distribution; however, some

important results on the M/M/∞ queue, such as the steady-

state distribution of the number of users in the system, are

independent of the distribution of the service time and depend

only on the average value. Let the average service time, i.e.,

the average session duration, be denoted by 1/µ. From well-

known results of queuing theory, the steady-state probability

πi that there are i customers in the queue is given by,

πi =
1

i!

(

λ

µ

) i

e−λ/µ (1)
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users in the system (10:00 – 11:00)

Before using it to design RoD strategies, we validate here

the proposed model. To do this, we compare the number of

users observed in the real system with the predictions obtained

by the model. As shown in previous section, we focus on both

daily and hourly behaviors. For the sake of simplicity, we show

only selected results but the conclusions that we derive from

the results hold also in, and can be extended to, other days.

As a first step, we observe the steady-state phase of a

given day and compute the distribution of the number of

users in the room and compare this distribution with the

one of the M/M/∞ queuing system, (1). Fig. 10 shows the

comparison of the CDF of the number of users as obtained

from the measurements and from the analytical model. For

all of them, both arrival rate and average session duration

are computed over the steady-state period. Observe the good

matching between the two curves that confirms the validity of

our approach and the accuracy of the model.

To further validate the model, we also extracted and com-

pared the hour by hour users distributions. Fig. 11 shows the

PDF for the hour between 10:00 and 11:00. Clearly, in this

case, at a finer granularity, the curve obtained from the real

traces is noisy when compared with the theoretical model, but,

again, the accuracy of the model is very good.

B. Modeling RoD strategies

Now, we use the model presented above to investigate,

design and define parameter setting for Resource on-Demand

(RoD) strategies in dense WLANs. Our algorithm of RoD is

based on the concepts presented in [23]. The capacity demand,

and hence the number of active access points (APs), is decided

based on the number of users that are associated to APs. This

means that when the number of users associated to APs grows

above a given threshold, a new AP is activated. A hysteresis

loop avoids frequent switching on/off of APs. The basic idea

of the hysteresis loop is that the threshold on the number of

associated users that we set for deciding to shut down APs is

lower than the threshold that we set for deciding to switch on

APs. To describe on/off strategies based on hysteresis loop,

we assume there is a cluster consisting N APs that provide

equivalent coverage in the area of interest. We define the

following notation:

• k: number of active APs in a cluster (k ≤ N)

• T
(k)

h
: high threshold for switching on an AP. This thresh-

old is set such that T
(k)

h
= kM, where M is the number

of users that an AP can handle with desirable QoS; M

is typically specified by the system administrators. When

the number of users grows from kM−1 to kM, if possible,

a new AP is activated.

• T
(k+1)

l
: low threshold for switching off an AP.

• ω: hysteresis width, such that T
(k+1)

l
= T

(k)

h
− ω. An AP

is switched off when the number of users decreases to

kM −ω.

The switching strategy for turning on/off an AP in a cluster

is as follows:

• if the cluster is in k active APs state, an additional AP

is activated if the number of users grows beyond the

cluster’s current high threshold T
(k)

h
;

• if the cluster is in k + 1 active APs state, an AP is turned

off if the number of users goes to the cluster’s current

low threshold T
(k+1)

l
= T

(k)

h
−ω;

• otherwise, retain the number of active APs.

Modeling our system as an M/M/∞ queuing system can

be useful to take decisions on the proper setting of some

parameters at the basis of the RoD strategy, such as the high

and low thresholds, T
(k)

h
and T

(k)

l
, according to which an
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Fig. 12: Markov chain description of hysteresis loop operation

TABLE III: Transition rates from state (i, k) for the MC

representing the system with hysteresis window

Destination state Rate Condition

(i + 1, k ) λ i , T
(k )

h
∨ k = N

(i + 1, k + 1) λ i = T
(k )
h
∧ k < N

(i − 1, k ) iµ i , T
(k−1)
h

− w ∨ k = 1

(i − 1, k − 1) iµ i = T
(k−1)

h
− w ∧ k > 1

AP is switched on or off, respectively, given that k APs are

already active. The size of the hysteresis window between

the two thresholds affects the system stability and the energy

consumptions in opposite ways: wider values provide higher

stability to the system but smaller energy savings, whereas

smaller values of the hysteresis window allow to achieve

higher energy savings at the price of a higher frequency of

switching on/off APs. Such hysteresis window must therefore

be dimensioned trading off these two effects and to this

purpose the M/M/∞ model can be exploited. Whereas the

high threshold should be statically fixed according to Quality

of Service (QoS) constraints, in order to always guarantee a

minimum amount of available bandwidth per user, the low

threshold (and therefore the hysteresis window width) can be

dynamically set in order to find a proper trade-off between

the energy savings and the frequency of the switching on/off

operation. The M/M/∞ queuing system can be seen as a

continuous time Markov chain, X (t) = {i = 0,1, · · · }, in which

state i represents the number of users in the system; arrivals

at rate λ correspond to users accessing the WiFi, departures

represent users finishing sessions. In the Markov chain, the

transition from any state i to state i+1 occurs at rate λ, while

the transition from i to state i − 1 occurs at rate iµ. While the

M/M/∞ queue can represent the users access to the network,

it is not adequate to derive some performance indicators that

are associated to the hysteresis window mechanisms, such as

the number of active APs. In particular, when i users are in

the system, with T
(k)

h
− ω < i < T

(k)

h
, we can either have

k or k + 1 active APs, depending on the past behavior, i.e.,

depending on whether the (k + 1)th AP was switched on

without having been switched off, or vice-versa. When the

evaluation of the number of active APs is necessary, a Markov

chain definition based on the number of users only is not

enough; the Markov chain state definition should be enhanced

with a state variable representing the number of active APs.

We, thus, define a new Markov chain with state (i, k), where k

represents the number of active APs. A portion of the Markov

chain is represented in Fig. 12 and the transitions from state

(i, k) are reported in Tab. III. For the solution of the MC we

use standard techniques after truncating the infinite state MC

to values whose probability is below 10−9.

C. AP operation

We now discuss how the model can be used to understand

AP operation under the RoD strategies. Data obtained from

our traces show that the value of the arrival rate, although

changing over days, is pretty constant over a whole single

day, during the steady-state phase; λ ranges between a min-

imum value of 0.0565 [user/second] to a maximum value of

0.1116 [user/second]. This means that our M/M/∞ model can

be applied using a different value of λ for each day, and

that the mean number of users in the system (ρ=λ/µ) ranges

between 52.7 and 101.8 users. The study of the continuous

time Markov chain modeling allows us to investigate the

behavior of the system when the described RoD strategy is

applied under different combinations of T
(k)

h
and ω. First, we

focus on the effect of these parameters on the patterns of AP

activity. The following indicators are evaluated:

• Active time: average duration of a period of activity of

the AP. Given that there are k active APs, it can be defined

as the time elapsed from the instant in which a new AP,

the (k+1)th AP, is switched on to the instant in which that

AP is switched off again. In the Markov chain, such time

can be computed as the average first passage time [26]

from state (T
(k)

h
, k + 1) to state (T

(k+1)

l
, k).

• Off time: average time spent in off state by an AP, that is

also the time needed for an AP that has been switched off

to be switched on again. In this case, it can be computed

as the average first passage time from the state (T
(k)

l
, k −

1) to state (T
(k−1)

h
, k) in the Markov chain.

The values of active and off times are important to properly

set the hysteresis window width. Indeed, the energy saving
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Fig. 13: Average active time versus hysteresis window width

for different values of ρ, fixed T
(k)

h
= 80 users; teaching period.

is proportional to the duration of the off time and off and

active times affect the switching frequency of the AP, and,

hence, the stability of the system. In what follows, we show

and discuss the active and off times only for the AP that is

the most frequently switched on and off. Indeed, when the

system is operating with N APs at a given value of load ρ =

λ/µ, the number of active APs varies in a range that is quite

limited; some APs are always on and one AP switches on

and off to absorbs peaks of traffic. For example, if the mean

number of users is 80, and M is set to 20, so that the high

thresholds are set to M · k = 20 · k, three APs are always

active and a fourth AP is dynamically switched on and off

following demand fluctuations. The active time and the off

time have been evaluated under different combinations of T
(k)

h

(ranging from 50 to 100 users) and ω (from 5 to 30 users)

and under different mean values of the number of users in

the system, corresponding to different days in the teaching

and exam periods. In general, the days in the teaching period

show higher values of ρ, in the range [68.6,101.8] users, with

respect to the exam period, in the range [52.7,94.8] users.

Given ρ, the values of T
(k)

h
and ω influence the duration of the

active time. We start by focusing on the effect of ω. Figs. 13

and 14 show the active time for increasing values of ω, when

T
(k)

h
= 80 users. Different curves refer to different days, i.e.,

different values of ρ, of either the exam or the teaching period.

In Fig. 13 (teaching period) the highest and lowest curves

correspond to those days whose values of ρ are the minimum

and the maximum one, respectively. The AP active time grows

with ρ, because the higher capacity demand calls for longer

activity periods of the AP. The active time grows also with ω,

since to reduce the switching frequency the hysteresis window

makes AP activity times longer. Confirming this, the average

active time tends to increase even more slowly with ω in the

case with ρ ≈ 57 users, corresponding to the day with a low

value of ρ, that is registered during the exam period. This can

be observed as well in Fig. 14, where the curves of the average

active time for the maximum and the minimum values of ρ

are plotted both for the teaching period (blue curves) and for

the exam period (red curves).

The duration of the active time should be larger than the
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Fig. 14: Average active time (for the maximum and the

minimum values of ρ) versus the hysteresis window width

with fixed T
(k)

h
= 80 users during the teaching period (blue

curves) and the exam period (red curves).
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Fig. 15: Average off time versus hysteresis window width for

different values of ρ, fixed T
(k)

h
=80 users; teaching period.

minimum time needed for an AP to complete the switching

on process. In particular, for a given value of ρ and a fixed

T
(k)

h
, settings of ω determining an active time shorter than 5

minutes (a conservative estimation of the AP switching time)

should be avoided.

In a similar way to the active time, the off time is affected by

the values of T
(k)

h
, ω and ρ. Fig. 15 shows the off time versus

the hysteresis window width for different values of ρ given a

fixed T
(k)

h
= 80 users. Also in this case, the off time increases

as ω grows larger. However, the growth is much slower than

for the active time, with the off time being smaller than one

hour in most of the cases. Moreover, the off time increases

as ρ decreases. The evaluation of the off time is particularly

important since the energy savings are proportional to its

duration. Furthermore, also in this case, the off time should

be long enough (e.g., a conservative 5 minutes) to allow the

AP to fully switch off; the minimum value of ω for a given

setting of T
(k)

h
and ρ should be defined accordingly.

We now consider the average number of switching events

over the steady-state period, that we denote by ess , and that
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Fig. 16: Average number of switching events over the steady-

state period with respect to the hysteresis window width for

different ρ with fixed T
(k)

h
= 80 users; teaching period.

can be defined as the number of switching on and switching

off operations performed over the steady-state period (8 hours

from 10:00 to 18:00). Again, we will consider only the

switching events of the AP devoted to absorb peaks of demand.

The frequency of switching on events per second ( fon) can

be computed as:

fon = Π(T
(k )

h
−1,k)

· λ (2)

where Π
(T

(k )

h
−1,k)

is the steady-state probability of being in the

state (T
(k)

h
− 1, k) and λ is the arrival rate. The frequency of

switching off operations per second ( fo f f ) is given by:

fo f f = Π(T
(k+1)

l
+1,k+1)

· (T
(k+1)

l
+ 1) · µ (3)

where Π
(T

(k+1)

l
+1,k+1)

is the steady-state probability of being in

the state to (T
(k+1)

l
+1, k+1) with the AP switched on and µ is

the service rate. Although there are additional switching events

during the ramp-up and the emptying period, only the steady-

state period has been considered, since our model is describing

the system in the steady-state phase. Combining (2) and (3),

the average number of switching events over the steady-state

period, ess , for the considered AP is:

ess =
(

fo f f + fon
)

· (60 · 60 · 8) (4)

where the last factor translates a frequency in seconds into

number of events in the steady-state period. Fig. 16 reports

the values of ess , (4) versus increasing values of ω for T
(k)

h
=

80 users and for different values of ρ. In general, as ω becomes

larger, the ess decreases. However, for values of ρ in a range

higher than the considered T
(k)

h
(for ρ > 80 users), as ρ

increases the ess decreases. On the contrary, for values of

ρ lower than 80 users, for small values of ω, ess decreases

with the hysteresis window width more slowly than it does for

wider values of ω; as a consequence, in this case ess increases

with ρ only for large values of ω, whereas for small ω values,

ess decreases as ρ increases. Fig. 17 shows the variation of

ess versus ω and for increasing values of T
(k)

h
, considering a

fixed ρ of 85 users. For very high or very low values of T
(k)

h
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Fig. 17: Average number of switching events over the steady-

state period with respect to the hysteresis window width for

different values of T
(k)

h
with fixed ρ = 85 users.

with respect to the values of ρ, ess is close to 0 events over

the steady-state period for any value of ω.

VI. PERFORMANCE EVALUATION

This section introduces some results about energy saving

that can be obtained with the application of the RoD strategies.

Some scenarios are considered to perform a comprehensive

analysis of the system parameter setting, to trade-off energy

saving and system stability and, finally, to assess the impact

of RoD strategies on QoS provided to users.

A. Parameter setting for energy saving

We now focus on the impact of the RoD parameters on

energy saving. With respect to the case in which all the

available APs are always kept on regardless the users’ demand,

variable amounts of energy saving can be achieved when the

RoD strategy is applied to a given dense WLAN scenario.

Without any RoD strategy all APs are always active and

consuming energy, while under a RoD strategy this is what

may happen in the steady-state period in terms of energy

consumption:

• there may be some APs that are constantly on providing

capacity for normal usage and they are responsible of a

constant amount of energy consumption;

• some APs are constantly in an off state, since they are not

needed according to the current system load; these APs

do not consume energy, providing a static energy saving;

• one or more APs providing capacity for peaks of service

demand are switched on or off from time to time fol-

lowing the users’ demand and thus allowing a dynamic

energy saving.

The analysis of the results about the active/off time and

the average number of switching events over the steady-state

period is important for quantifying energy saving. In particular,

for a given scenario, the energy that can be saved thanks

to the RoD strategy highly depends on the setting of T
(k)

h

and ω but also on the variability of the load of the system

in terms of average number of users (the users’ demand).



11

0

60

120

180

240

5 10 15 20 25 30

A
ct

iv
e 

T
im

e 
[m

in
]

ω

Th
(k)

50 100
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(k)

h
.

Fig. 18 shows the active time versus ω for different values

of T
(k)

h
, considering a single day (i.e., for a constant value of

ρ ≈ 87 users). As ω grows, the active time becomes larger;

also, for decreasing values of T
(k)

h
, higher values of the active

time are observed. Furthermore, for T
(k)

h
much higher than

the considered ρ, the curves representing the active time tend

to be lower and to grow more slowly; on the contrary, for

T
(k)

h
much smaller than the considered value of ρ, the curves

representing the active time are higher and show a steeper

growth. The off time exhibits an opposite behavior, as it can be

seen from Fig. 19 showing the off time versus ω for different

values of T
(k)

h
, and constant values of ρ ≈ 87 users. The

off time decreases with decreasing values of T
(k)

h
and slowly

increases while higher values of ω are set. Finally, for T
(k)

h

much higher than the considered ρ, the curves representing the

off time grow slightly faster, whereas for T
(k)

h
smaller than the

considered ρ, the active time shows a very flat growth.

These results indicate that the finest regulation of energy

saving can be obtained on those APs operating with a value

of T
(k)

h
which is pretty close to the average number of users

in the system. Therefore, if the value of T
(k)

h
based on which

an AP is switched on is much higher than the current average

number of users in the system, the active time is small and

the off time is large, meaning that the AP remains off most

of the time without significantly contributing to the energy

consumption of the system. In an opposite way, if the value

of T
(k)

h
based on which an AP is switched on is much lower

than the current average number of users in the system, the

active time is long and the off time short, meaning that that

AP will be in an on state most of the time and very unlikely it

will be turned off, thus contributing to the constant portion of

energy consumption during the considered steady-state period

(constant energy consumption) and no energy saving can be

obtained in this case. When the T
(k)

h
value is closer to the

average number of users in the system the active time and

the off time will show intermediate values allowing that AP

to be switched on and off from time to time and the tuning

of ω may enable to regulate the percentage of energy saving

that can be obtained in relation to that AP with respect to

the configuration with all the AP always on (dynamic energy
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Fig. 20: Average number of switching events over the steady-

state period with respect to increasing values of T
(k)

h
for

different ρ with fixed ω = 5 in the teaching period.

saving). This is also confirmed by the values of the the average

number of switching events over the steady-state period plotted

with respect to all the possible T
(k)

h
values with fixed ω and

for different values of ρ shown in Fig. 20. The ess shows a

peak value for each ρ right in correspondence of those T
(k)

h

values close to ρ: the AP in that case is switched on or off

frequently and during the off state energy can be dynamically

saved. For T
(k)

h
higher or lower than ρ the the average

number of switching events over the steady-state period tends

to progressively decrease: in the first case because the AP

is rarely turned on (no considerable amounts of energy are

consumed), whereas in the latter case because the AP remains

on most of the time (no significant amounts of energy can be

saved in this case).

B. Trading off energy consumption and system stability

We investigate now the trade-off between energy saving and

system stability. To do so, some specific scenarios are con-

sidered. We consider different values of the number of users

handled by each AP, typically set by the system administrator

depending on the desired level of QoS. Different values of the
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Fig. 21: Energy cost due to the hysteresis window in the four scenarios versus ω in two different days.

number of available APs have also been considered, resulting

in the following four scenarios:

• scenario A: M=20 users, N=5 APs;

• scenario B: M=20 users, N=6 APs;

• scenario C: M=25 users, N=5 APs;

• scenario D: M=30 users, N=4 APs.

These settings translate into different values of T
(k)

h
= kM

for each scenario. To investigate the trade-off between system

stability and energy saving under the RoD strategy, we quan-

tify the additional energy that is consumed by introducing the

hysteresis window with respect to the case in which there is

no hysteresis window (ω=0), that represents the minimum cost

case. We focus on the AP that provides peak capacity and is

responsible of the dynamic energy saving; let us denote it by

k. We define the energy cost due to the hysteresis window,

Cω , as the ratio between the fraction of time during which

the AP is on and it is in the hysteresis window, Fω , over the

fraction of time during which the AP is on when ω=0, Fon :

Cω =
Fω

Fon

(5)

From the Markov chain we can compute:

Fon =

∞
∑

i=T
(k−1)

h

Π(i,k) (6)

and

Fω =

T
(k−1)

h
−1

∑

i=T
(k−1)

h
−ω+1

Π(i,k) (7)

Fon in (6) represents a cost for the AP being on, independently

on the hysteresis window, while in (7) Fω is the cost during

the periods in which the system is in the hysteresis window.

First, a day with a high value of ρ (ρ ≈ 97 users) has been

analyzed. Being the load quite high, N − 1 APs are active

most of the time for all the scenarios. Therefore, the N th AP

is the one providing peak capacity and being responsible of the

dynamic energy saving. The values of the energy cost Cω , (5),

in the four scenarios are reported in Fig. 21a. Clearly, Cω

increases with ω and it ranges from a minimum of 0.014 (only

1.4% of additional cost) to a maximum of 1.189 (more than

100% additional cost). The highest values of Cω are observed

in the scenarios B and C, both with T
(N−1)

h
=100 users, that

is very close to the mean number of users. Finally, a faster

growth of Cω with ω is observed for increasing values of

T
(N−1)

h
. These results have been compared with those obtained

for the same AP in the same scenarios for a lower load,

namely, ρ ≈ 83 users, see Fig. 21b. The behavior is similar

to the previous case with a cost to be paid for introducing

the hysteresis window that is larger in relative terms (up to 5

times). Notice, however, that in absolute terms the probability

that the AP is active is much lower due to the low user demand.

The width of ω should therefore be set carefully, since it

affects the cost in terms of additional energy consumption

of the system. The same scenarios have been considered to

estimate the average daily energy consumption of the whole

system under the RoD strategy and to compare it with the

average daily energy consumption without any RoD algorithm.

In particular, the average energy saving per week day has been

computed in percentage as:

S =

(

1 −
ERoD

E

)

· 100 (8)

where ERoD is the energy consumption of all APs in the

cluster under the RoD strategy whereas E is the energy

consumed when all APs are always kept active. Table IV

reports the average energy saving per working day defined in

(8) in two cases (ρ ≈ 83 users and ρ ≈ 57 users) under the four

scenarios. The average energy consumption is significantly

reduced in all cases with respect to the absence of any RoD

strategy (up to 59.1% of power can be saved) and, clearly, the

reduction is more evident for small values of ω. Furthermore,

the percentage of saving that can be achieved is larger when

the average number of users is lower; in case of ρ ≈ 57 users

(corresponding to the exam period), saving is up to 59.1% in

scenario B. These results are very promising in perspective,

in view of the possible deployment of the RoD strategy on

the whole Campus, especially considering that in this study

we were focusing on periods of high activity in the Campus.
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TABLE IV: Average energy saving (%) per working day

Hysteresis window (ω)

Scenarios 5 10 15 20 25

ρ = 83

A 36.74 35.6 34.55
B 46.8 45.6 44.35
C 44.4 44.1 43.7 43.1
D 41.7 40.3 38.6 36.61 34.4

ρ = 57

A 51.2 49.5 47.7
B 59.1 57.5 55.83
C 57.5 56.64 56 55.6
D 53.5 51.5 49.2 47.2 46.13
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Fig. 22: Average bandwdith per user, in N = 4 APs scenarios.

During summer, exam periods, vacations, the activity in the

Campus is reduced and the expected savings are even larger.

C. Available bandwidth per user

In the previous sections, we mainly focused on energy

saving and system stability. We now consider the potential

impact of RoD strategies on the QoS provided to users that

we evaluate in terms of average available bandwidth per user,

denoted as Bu , that can be computed as:

Bu =

∞
∑

i=0

N
∑

k=1

Π(i,k) · k · BAP

i
(9)

where BAP is the maximum throughput per AP. Clearly, due

to protocol overheads and access protocol characteristics, the

maximum throughput that can be achieved with an AP is much

lower than the maximum nominal bit-rate, which in our case

is equal to 54 Mb/s. Thus, to estimate the value of BAP we

performed several tests on the APs usage in our Campus and

estimated a value of BAP equal to 15 Mb/s.

Fig. 22 shows the results obtained in a scenario in which

up to N = 4 APs can be activated. Different values of the

parameters M and ω are considered. The red curve represents

the available bandwidth for the always on case, i.e., when

all the 4 APs are always active. The figure shows that when

RoD strategies are adopted, the available bandwidth per user

is smaller than in the all-on case. However, for low values

of M, the average bandwidth per user is not considerably

smaller: the RoD strategy is not aggressive, APs are switched

on when relative few users are in the system. Conversely, the

cases of large values of M correspond to cases in which it

Fig. 23: Trace collection and experimental environment.

is accepted that many users share the same AP, and, hence,

the available bandwidth per user results smaller than in the

all-on case. Notice, however, that the setting of M is defined

by the network administrator that chooses, as QoS constraint,

the minimum value of available bandwidth that is acceptable.

The figure shows that once this constraint is defined through

the setting of M, the setting of ω and the value of the load ρ

do not have a significant impact on it and the QoS constraint

can be easily met.

VII. EXPERIMENTAL SETUP

As detailed in Section V, one of the outcomes of RoD

design is the threshold settings. These settings determine the

energy saving efficiency, the APs switching frequency, the

stability of the network and QoS provided to users. As a proof

of concept, in this section we demonstrate the effectiveness and

impact on QoS of RoD strategies using a production network.

A. Experimental results

We perform experiments in the study room from which

we collected our traces. The experimental set up is shown in

Fig. 23. The room is equipped with 3 APs which are connected

to a PoE capable switch that enables us to remotely control

the switching on/off of the APs; based on threshold settings,

from a control center (CC) which runs the RoD algorithm.

Once a decision is made by the RoD algorithm, the CC

controls (switches on/off) the PoE ports that power the APs by

sending an snmpset command to the switch. The CC makes

its decision based on session information obtained from the

Cisco Wireless Control System (WCS) [27]; a management

system that receives associated clients session statistics and

that controls the PoliTo WiFi network. The CC polls the WCS

for this information every 5 minutes, see Section VII-B for a

discussion on the impact of the polling time.

Fig. 24a depicts the power consumption of the testbed for

the following RoD settings: M = 50 and ω = 10. The figure
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Fig. 24: Testbed power consumption and available network capacity.

shows that our threshold based RoD strategy well adapts the

network capacity to clients demand. The small inset figure

zooms in a specific day (March 9th) power consumption. It can

be seen that in the idle period, during weekends and overnight,

only one AP is required to satisfy the demand since there are

few or no users in the system. During ramp-up and emptying

periods, early in the morning and late in the afternoon, as

the demand increases/decreases the RoD algorithm switches

on/off the second AP to adapt the capacity to the demand. In

the steady state (10:00 - 18:00), the capacity adaptation is more

dynamic since the number of users in the study room varies

around the typical value. The average energy saving over a

week period, computed as in (8), is about 58.6%. This saving

increases to 68.9% during weekends. The results confirm the

saving that was already estimated in the previous section and

the potential of the RoD approach when applied and extended

to the whole Campus.

As discussed in the previous section, by reducing the

available capacity, RoD strategies have an impact on the

available bandwidth per user and, hence, a potential effect

on the QoS provided to users. While it is not possible to

estimate the demand of capacity from the users, to assess

this impact, Fig. 24b compares the available network capacity

with the throughput for the RoD strategy deployed in our

testbed; the number of associated users is also reported. The

throughput is estimated as the ratio of the aggregate traffic

exchanged by the APs over a 5 minute time windows. The

figure clearly shows that the network capacity follows the

number of associated users and the provisioned capacity is

always quite larger than the throughput, meaning that probably

the users do not undergo quality of service degradation during

the experiment. In general, the QoS perceived by the users

depends also on the characteristics of the generated traffic, its

volume and its burstiness.

To investigate these characteristics, we have analyzed the

amount of traffic transmitted and received by the APs with a

single user. These results are shown in Fig. 25, in which we

have computed the CDF of the data per session. The figure

refers to the five working days of a single week, each of them

is represented by a line of a different color. Many sessions

carry very little traffic: 40% of the sessions exchange less

than 100 KB of data. Moreover, most of the data exchanged

during a single session (i.e., more that 95%) has a size that

is smaller than 100 MB. It is important to remark that this is

the volume of data sent and received by a single user with the

WiFi network. Combining these values with the quite long
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session durations that were observed in Sec. IV, it emerges

that, in our Campus scenario, the capacity demand per user is

relatively low, since users generate little traffic and many users

that are associated in the same moment do not generate traffic.

In other scenarios, the situation might be different. Hence, the

evaluation of QoS and the proper setting of the parameters

needed to meet QoS constraints should be specifically defined

scenario by scenario.

B. Implementation issues

We now discuss possible implementation issues, drawbacks

and potential critical aspects of the deployment of RoD

strategies.

1) Client disconnection: The principle behind a RoD strat-

egy is to scale network resources to clients’ capacity demand.

In a dense WLAN where multiple APs provide similar cov-

erage, RoD strategies switch on/off APs to match the time

varying clients’ capacity demand with the network capacity.

When switching off an AP, there is the possibility that sessions

connected through the AP are abruptly interrupted, causing

some service deterioration. Thus, before switching off an

AP, clients should be gracefully roamed to other active APs.

This can be done in different ways depending on the actual

implementation of the system. One possibility, whenever the

implementation allows it, is that the network can proactively

request a user to handover to another AP. Alternatively, the AP

that is supposed to be switched off should undergo a gradual

AP transmission power reduction that encourages clients to

move to neighboring APs with better SNR. Once clients have

roamed to neighboring APs, an AP can be switched off thus

avoiding client disconnection. In our testbed scenario, since

the WCS implements proprietary solutions, we could not

change the configuration and operation of the WCS and, for

this reason, we could not implement none of the solutions

mentioned above.

2) System polling interval: The WCS monitors and updates

the state of the network in real time. As soon as a user

associates or disassociates, the WCS updates the network

status information. Switching decisions can thus be taken

instantaneously, as soon as the number of associated users goes

above or below the predefined thresholds, only if the switching

decisions are taken by the WCS. As previously mentioned, in

our experimental setup we could not integrate the switching

decision engine into the WCS and we had, instead, to make

use of a CC that polls the WCS status according to some

polling intervals that we defined to be equal to 5 minutes. The

rational behind the choice of a 5 minutes polling interval is the

following. In our implementation, the AP requires between 2

to 3 minutes to transit from a complete shutdown state to a full

active state. Furthermore, to start the service, the APs need to

register to the WCS which takes one or two more minutes.

Thus, the switching on frequency should not be higher than a

possible switch on every 4 to 5 minutes. Given this physical

limitation, the CC uses the default 5 minutes SNMP polling

window to collect the required statistics from the WCS.

3) AP lifetime: One of the common concerns about RoD

strategies based on device switching is that frequent status

changes might be harmful to the device, possibly causing

some reduction of its lifetime. There exists in the literature

some models for estimating the number of cycles to fail

of an electronic device; for example, the very well-known

Coffin-Manson model describes how repeated thermal cycles

induce a cyclical stress that tends to weaken materials and has

been successfully used for mechanical failure, material fatigue

failure or material deformation [28]–[31]. To the best of our

knowledge no specific study has been done for WiFi APs.

However, in our experience with the experimental activity, that

has been going on for more than 1.5 years and that requires

an average number of switching on/off events per AP per day

of about 3, we never experienced device tear down or any

technical glitches as a result of AP switching on/off. Notice

also that the results presented in the paper show that, through

proper parameter setting, the number of switching events can

be controlled and maintained small.

VIII. CONCLUSIONS

Resource on-demand (RoD) is a viable approach to save

energy in dense WLANs where large number of APs are

deployed to have enough capacity to satisfy peak users’ service

demand. RoD strategies scale the network capacity to the

demand by switching off extra capacity during low load period

and switching on APs as the demand increases.

The effectiveness of a RoD strategy depends on its

parameters setting; and, in particular, on the AP activa-

tion/deactivation thresholds. These settings determine the sta-

bility of the network, the amount of achievable saving and

the QoS provided to users. To analyze the right settings of

these parameters and its impact on network performance, we

modeled a dense campus WLAN with the model parameters

derived from production network traces. We also verified the

model by fitting its behavior to the actual behavior of the pro-

duction network. Based on the inferred model, we presented a

detailed investigation on RoD threshold and hysteresis window

settings and we derived guidelines of their setting. We also

conducted experiments on the production network from which

we collected traces as a proof of concept of RoD strategy and

discussed some implementation issues. The analysis has been
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done for two different academic periods; teaching and exam

periods, to help us provide an all inclusive observation of the

system.

From the analysis, through both the model and the exper-

iments, we observed that high values of the AP activation

threshold imply large energy saving, while the hysteresis

window width should be carefully set so as to jointly guarantee

high saving, a smooth network operation and desired levels of

available bandwidth per user.

The estimated and tested saving is large and the practical

implementation of the RoD approach is simple and does

not require any specific hardware facilities. The approach is

therefore extremely promising. This study opens the pave to

extend the approach to the whole Campus. On a large scale,

the savings are expected to be even more significant, since

there are large areas of the Campus that are less used than the

considered study room, and there are long periods of vacations

with very low network utilization.
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