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Abstract

An extension of polar codes is proposed, which allows some of the
frozen symbols, called dynamic frozen symbols, to be data-dependent. A
construction of polar codes with dynamic frozen symbols, being subcodes
of extended BCH codes, is proposed. The proposed codes have higher
minimum distance than classical polar codes, but still can be efficiently
decoded using the successive cancellation algorithm and its extensions.
The codes with Arikan, extended BCH and Reed-Solomon kernel are con-
sidered. The proposed codes are shown to outperform LDPC and turbo
codes, as well as polar codes with CRC.

1 Introduction

Polar codes were recently shown to be able to achieve the capacity of binary
input memoryless output-symmetric channels [1]. Low-complexity construction,
encoding and decoding algorithms are available for polar codes. However, the
performance of polar codes of moderate length appears to be quite poor. This
is both due to suboptimality of the successive cancellation (SC) decoding algo-
rithm and low minimum distance of polar codes. The first problem can be solved
by employing list/stack SC decoding techniques [2–7], which far outperform the
SC algorithm. Alternatively, one can use the belief propagation algorithm [8].
Its performance, however, is still inferior to list/stack SC decoding.

The second problem can be solved by constructing a generalized concate-
nated code with inner polar codes [9–11], or employing a serial concatenation of
an error detecting or error correcting code and a polar code [2, 8, 12–14]. How-
ever, in the second case it is not clear how the parameters of the outer codes
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affect the minimum distance and finite-length performance of the concatenated
code.

It was shown recently that a sequence of linear codes achieves capacity on
a memoryless erasure channel under MAP decoding if their blocklengths are
strictly increasing, rates converge to some r ∈ (0, 1), and the permutation group
of each code is doubly transitive [15,16]. This class of codes includes Reed-Muller
(RM) and extended primitive narrow-sense BCH (EBCH) codes. Observe that
RM codes can be considered as a special case of polar codes. On the other
hand, EBCH codes are known to have much higher minimum distance than
comparable RM codes, and are therefore likely to provide better finite length
performance. However, there are still no efficient MAP decoding algorithms for
these codes.

It was suggested in [17] to construct subcodes of RM codes, which can be
efficiently decoded by a recursive list decoding algorithm. In this paper we
generalize this approach, and propose a code construction ”in between” polar
codes and EBCH codes. The proposed codes can be efficiently decoded using
the techniques developed in the area of polar coding, but provide much higher
minimum distance, which can be accurately controlled. The obtained codes
outperform state-of-the art LDPC, turbo and polar codes. More specifically, in
Section 3 we introduce an extension of generalized concatenated codes (GCC),
called interlinked generalized concatenated codes (IGCC). Recursive application
of this construction enables one to represent a linear block code in a form which,
in principle, enables its decoding by the SC algorithm (Section 4). This form,
called polar codes with dynamic frozen symbols, can be considered as a gener-
alization of polar codes. We show that EBCH codes are particularly well suited
for such representation, although their SC decoding is still not very efficient.
Furthermore, we present a special case of IGCC, called polar subcodes, with
good performance under the SC algorithm and its derivatives (Section 5). The
proposed codes are subcodes of EBCH codes. We consider polar subcodes with
Arikan, EBCH and Reed-Solomon kernel. Simulation results presented in Sec-
tion 6 show that the proposed codes outperform state-of-the-art polar, LDPC
and turbo codes.

2 Background

2.1 Generalized concatenated codes

A generalized concatenated code (GCC) [18] over Fq is defined using a family
of nested inner (n, ki, di) codes Ci : C0 ⊃ C1 ⊃ · · · ⊃ Cν−1, and a family of outer
(N,Ki, Di) codes Ci, where the i-th outer code is defined over Fqki−ki+1 , 0 ≤ i <
ν, kν = 0. It will be assumed in this paper that ki = ki+1 + 1, ν = n. Let G be
a n× n matrix, such that its rows i, . . . , n− 1 generate code Ci. GCC encoding
is performed as follows. First, partition a data vector into n blocks of size
Ki, 0 ≤ i < n. Second, encode these blocks with codes Ci to obtain codewords
(c̃i,0, . . . , c̃i,N−1). Finally, multiply vectors (c̃0,j , . . . , c̃n−1,j), 0 ≤ j < N, by
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Figure 1: Encoding with a generalized concatenated code
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Figure 2: Multistage decoding

G to obtain a GCC codeword (c0,0, . . . , cn−1,0, c0,1, . . . , cn−1,N−1). Figure 1
illustrates this construction. A GCC generator matrix can be obtained as

G =




G(0) ⊗ G0,−

G(1) ⊗ G1,−

...

G(n−1) ⊗ Gn−1,−


 ,

where G(i) is a generator matrix of Ci, and Gi,− denotes the i-th row of G.
It is possible to show that this encoding method results in a (Nn,

∑n−1
i=0 Ki,≥

mini diDi) linear block code.
GCC can be decoded with a multistage decoding (MSD) algorithm [19–21].

For i = 0, 1, . . . , N − 1, this algorithm takes as input noisy instances yt,j of
codeword symbols ct,j , 0 ≤ t < n, 0 ≤ j < N , successively computes estimates
of c̃i,j using a SISO decoder of Ci, and passes these estimates to a decoder of
Ci to recover the corresponding codeword. Then it proceeds with decoding of
Ci+1 and Ci+1, as shown in Figure 2. The performance of the MSD algorithm
depends strongly on parameters of outer codes. An extensive survey of various
methods for their selection can be found in [21].

2.2 Polar codes

(n = lm, k) polar code over Fq is a linear block code generated by k rows of ma-
trix A = Bl,mF⊗m

l , where Bl,m is the digit-reversal permutation matrix, Fl is a

l× l matrix called kernel (e.g. F2 =

(
1 0
1 1

)
is the Arikan kernel), and ⊗m de-

notesm-times Kronecker product of the matrix with itself [1]. The digit-reversal

permutation maps integer i =
∑m−1

j=0 ij l
j, 0 ≤ ij < l, onto

∑m−1
j=0 ij l

m−1−j. The
particular rows to be used in a generator matrix are selected so that the error
probability under the below described successive cancellation (SC) decoding al-
gorithm is minimized. Hence, a codeword of a classical polar code is obtained
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as c = uA, where ui = 0, i ∈ F , and F ⊂ {0, . . . , n− 1} is the set of n−k frozen
symbol indices. It is possible to show that matrix A transforms the original

binary input memoryless output-symmetric channel W
(0)
1 (y|c) into bit subchan-

nels W
(i)
n (yn−1

0 , ui−1
0 |ui), the capacities of these subchannels converge with m

to 0 or 1 symbols per channel use, and the fraction of subchannels with capacity

close to 1 converges to the capacity of W
(0)
1 (y|c). Here ats = (as, . . . , at), and

y0, . . . , yn−1 are the noisy symbols obtained by transmitting codeword sym-
bols c0, . . . , cn−1 over a binary input memoryless output-symmetric channel

W
(0)
1 (y|u).
The SC decoding algorithm at phase i computes W

(i)
n (yn−1

0 , ui−1
0 |ui), ui ∈ Fq

(or W
(i)
n (ui

0|yn−1
0 ), which is more convenient for implementation), and makes

decisions

ûi =

{
argmaxui∈Fq

W
(i)
n (ui

0|yn−1
0 ), i 6∈ F

0, otherwise.
(1)

This decision is used at subsequent steps instead of the true value of ui to de-
termine the values of ui+1, . . . , un−1. It was shown in [1] that these calculations
can be implemented with complexity O(n log n). For example, in the case of
l = 2, q = 2 these probabilities can be computed as

W (2i)
n (u2i

0 |yn−1
0 ) =

1∑

u2i+1=0

W
(i)
n
2
(u2i+1

0,even ⊕ u2i+1
0,odd|y

n
2 −1
0 )W

(i)
n
2
(u2i+1

0,odd|yn−1
n
2

)
(2)

W (2i+1)
n (u2i+1

0 |yn−1
0 ) =

W
(i)
n
2
(u2i+1

0,even ⊕ u2i+1
0,odd|y

n
2 −1
0 )W

(i)
n
2
(u2i+1

0,odd|yn−1
n
2

).
(3)

For q = 2 the Bhattacharyya parameters Zn,i of the bit subchannelsW
(i)
n (yn−1

0 , ui−1
0 |ui)

satisfy [22]

Z
∆j

n/l,i ≤ Zn,il+j ≤ 2l−jZ
∆j

n/l,i, (4)

where Z1,0 is the Bhattacharryya parameter of the original binary memoryless
symmetric channel, and ∆i, 0 ≤ i < l, are partial distances of matrix Fl. Similar
bounds are provided in [23] for q > 2. For the case of l = 2 (Arikan kernel), one
can obtain more precise estimates as [1, 24]

Zn/2,i

√
2− Z2

n/2,i ≤ Zn,2i ≤2Zn/2,i − Z2
n/2,i (5)

Zn,2i+1 =Z2
n/2,i. (6)

Furthermore, for the case of the binary erasure channel, one has Zn,2i = 2Zn/2,i−
Z2
n/2,i.

Let Pi = 1 − P {Ci|C0, . . . , Ci−1} be the error probability of symbol ui

under SC decoding, where Ci is the event corresponding to correct estimation
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of symbol ui. Then the SC decoding error probability is given by

P = 1−
∏

i/∈F

(1− Pi). (7)

Efficient techniques are available for computing Pi in the case of Arikan kernel
[9, 25]. The standard way to construct practical polar codes is to select F as
the set of n− k indices i with the highest error probability Pi.

For any s, 0 < s ≤ m, polar codes can be considered as GCC with inner
codes generated by the rows of matrix F⊗s

l , and outer codes generated by some

submatrices of F
⊗(m−s)
l . The SC decoding algorithm can be considered as

an instance of the MSD method, where symbol-by-symbol decoding of outer
codes is used. It was shown in [9] that significant performance improvement
can be achieved by employing near-ML decoding algorithms for outer codes.
Even better performance can be obtained by employing list or stack decoding
algorithms [2–6]. These algorithms keep track of a number of vectors ûi−1

0 , and
at each step increase the length of one or more of these vectors by 1, and compute

probabilities W
(i)
n (ûi

0|yn−1
0 ) (or related values). Vectors with low probabilities

are discarded, so that there are at most L vectors of length i for each i. The
worst-case complexity of these algorithms is O(Ln logn).

2.3 BCH codes

An (n = qm, k,≥ d) extended primitive narrow-sense BCH (EBCH) code is

a set of vectors cn−1
0 ∈ Fn

q , such that
∑n−1

i=0 cix
j
i = 0, 0 ≤ j < d − 1, where

(x0, . . . , xn−1) is a vector of distinct values of Fqm , called code locators. Setting
x0 = 0, xi = αi−1, 1 ≤ i < n, results in an extended cyclic code with genera-
tor polynomial g(x) = LCM(M1(x), . . . ,Md−2(x)), where Mi(x) is a minimal
polynomial of αi, and α is a primitive element of Fqm . However, in this paper,
unless stated otherwise, it will be assumed that xi are arranged in the standard
digit order, where xi =

∑m−1
j=0 Xi,jβj , i =

∑m−1
j=0 Xi,jq

j , Xi,j ∈ {0, . . . , q − 1},
and β0, . . . , βm−1 is some basis of Fqm .

3 Interlinked Generalized Concatenated Codes

3.1 The construction

In this section we present an extension of the generalized concatenated codes,
called interlinked GCC (IGCC). This extension can be used to represent a broad
class of linear block codes. It enables one to decode such codes using the tech-
niques developed in the area of generalized concatenated and multilevel coding.
These decoding algorithms, however, are not guaranteed to perform well for an
arbitrary IGCC. But it will be shown below how to construct IGCC with good
performance under MSD (actually, SC) and its list extensions.

Interlinked GCC encodes the subvector u(i) ∈ F
Ki
q of the data vector not

with the outer code Ci, as in the classical GCC, but with its coset given by
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Figure 3: Interlinked generalized concatenated code

Ci +
(∑i−1

s=0 u
(i)M (s,i)

)
, where M (s,i) ∈ FKs×N

q are some matrices, as shown

in Figure 3. This results in a linear block code of length Nn and dimension∑n−1
i=0 Ki. It is, however, quite difficult to estimate the minimum distance of

the obtained code. Obviously, for any pair of non-negative integers η, k : η > k,
if there exists a (η, k, d) GCC, then there also exists a (η, k,≥ d) IGCC.

The MSD algorithm can be used to decode IGCC. However, one needs to
perform decoding not in outer codes, but in their cosets. This can be done with
any decoder for Ci, provided that its input LLRs are appropriately adjusted.

3.2 Generalized Plotkin decomposition of linear codes

As a special case of IGCC, which corresponds to the case of inner codes gen-

erated by rows of G = F2 =

(
1 0
1 1

)
, we consider an extension of the classical

Plotkin construction. This extension will be used below to derive a generaliza-
tion of Arikan polar codes.

Theorem 1. Any linear (2n, k, d) code C has a generator matrix given by

G =

(
Ik1 0 Ĩ
0 Ik2 0

)

G1 0
G2 G2

G3 G3


 , (8)

where Il is a l× l identity matrix, Gi, 1 ≤ i ≤ 3, are ki×n matrices, k = k1+k2,
and Ĩ is obtained by stacking a (k1−k3)×k3 zero matrix and Ik3 , where k3 ≤ k1.

Proof. Let G̃ =
(
G′ G′′

)
, where G′ and G′′ are some k × n matrices, be a

generator matrix of the code, and let H̃ =
(
H ′ H ′′

)
be the corresponding

parity check matrix. Let G2 be a maximum rank solution of matrix equation
G2(H

′ + H ′′)T = 0. Gaussian elimination can be used to construct matrix

G = QG̃ =



G5 0
G4 G3

G2 G2


, such that Q is an invertible matrix, rows of G3 are

6



u15
0




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1







1 0 0
1 1 1
1 α α

3

1 1 + α (1 + α)3

1 α
2 1 + α+ α

2 + α
3

1 1 + α
2 1 + α

1 α(1 + α) 1 + α
2

1 1 + α+ α
2 1 + α+ α

2 + α
3

1 α
3 1 + α

2

1 1 + α
3 1 + α

1 α(1 + α
2) 1

1 1 + α+ α
3 1

1 α
2(1 + α) 1 + α

1 1 + α
2 + α

3
α
3

1 α(1 + α+ α
2) 1 + α

2

1 1 + α+ α
2 + α

3
α
3




= 0.

linearly independent with rows of G2, and k = k2 + k3 + k5. It can be seen that

G =



Ik5 0 0 0
0 Ik3 0 Ik3

0 0 Ik2 0







G5 0
G4 −G3 0

G2 G2

G3 G3


 . (9)

Then the statement follows by setting G1 =

(
G5

G4 −G3

)
.

Another way to construct G1 is to compute G′ +G′′, and eliminate linearly
dependent rows from the obtained matrix.

Classical Plotkin concatenation of two codes corresponds to the case of k3 =
0, so the representation of a generator matrix in the form (8) will be referred
to as a generalized Plotkin decomposition (GPD) of G or the corresponding
code C. Applying the GPD to equivalent codes may result in codes C1, C2 with
different dimensions and performance.

Example 1. Consider a (16, 7, 6) EBCH code generated by

G =




1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0




.
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Its GPD is given by G1 =



0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 0
1 1 1 1 1 1 1 1


 , G2 =




1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


 , G3 =

(
0 0 0 1 1 0 0 0
1 1 0 1 1 0 0 0

)
.

GPD enables one to perform hard-decision decoding of code C as follows.
Let Ci be the code generated by Gi. Consider a noisy codeword (y′|y′′) =
(c′|c′′) + (e′|e′′), where e = (e′|e′′) is an error vector. Compute z = y′ + y′′ =
(c′ + c′′) + (e′ + e′′). One can decode z in C1 to identify information vector u′

and codeword c′ + c′′ = u′G1. If this step is completed successfully, one can
compute ỹ′ = y′ − u′(G1 + ĨG3) and ỹ′′ = y′′ − u′ĨG3, and try to decode these
vectors in C2. This algorithm can be easily tailored to implement soft-decision
decoding.

One can see from (8) that C2 has minimum distance d2 ≥ d/2. However,
d1 can be very low. Hence, the above described algorithm may fail to correct
even t ≤ ⌊(d− 1)/2⌋ errors. A workaround for this problem is to employ list
decoding for C1 to identify a number of possible vectors u′, for each of them
decode the corresponding vectors ỹ′, ỹ′′ in C2, and select the codeword (c′|c′′)
closest to the received sequence.

GPD may be also applied recursively. This results in codes of length 1 and
dimension at most 1, as discussed below.

4 Dynamic Frozen Symbols

4.1 Representation of a linear code for SC decoding

Consider an (n = lm, k, d) code C over Fq with check matrix H . Let A =
Bl,mF⊗m

l be a matrix of an n×n polarizing transformation. Since A is invertible,
any vector of length n can be obtained as an output cn−1

0 = un−1
0 A of the

polarizing transformation. Let us investigate the constraints which need to
be imposed on un−1

0 , so that the output of the polarizing transformation is a
codeword of C.

These constraints are given by the equation un−1
0 AHT = 0. By applying

Gaussian elimination, one can construct the constraint matrix V = QHAT ,
where Q is an invertible matrix, such that all rows of V end in distinct columns,
i.e. the values ji = max {t|Vi,t 6= 0} , 0 ≤ i < n − k are distinct. It can be
assumed without loss of generality that Vi,ji = −1. Let F = {ji|0 ≤ i < n− k}.
Then one obtains

uji =

ji−1∑

s=0

usVi,s, 0 ≤ i < n− k. (10)

These equations can be considered as a generalization of the concept of frozen
symbols, i.e. constraints of the form uji = 0, ji ∈ F , used in the construction
of polar codes. Observe that symbols uji , ji ∈ F can take arbitrary values,

8



which, however, depend on the values of some other symbols with smaller in-
dices. Therefore, symbols uji given by (10) will be referred to as dynamic frozen
symbols.

Example 2. Consider (16, 7, 6) EBCH code C over F2. The generator polyno-
mial of the corresponding non-extended code has roots α, α3 and their conjugates,
where α is a primitive root of x4 + x3 + 1. The constraints on vector u15

0 , such
that u15

0 A ∈ C, are given by the equation at the top of this page. Multiplying ma-
trices, expanding their elements in the standard basis and applying elementary
linear operations, one obtains

u15
0




0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




T

= 0

This means that u0 = u1 = u2 = u4 = u8 = 0, and u6 = u3, u9 = u5,
u10 = u3 + u5, u12 = u10. Symbols u3, u5, u7, u11, u13, u14, u15 are non-frozen.

Observe that any linear code of length lm can be represented by a system of
equations (10). This enables one to employ the SC decoding algorithm and its
variations for decoding of arbitrary linear codes of length lm. That is, one can
successively make decisions

ûi =

{
argmaxui∈Fq

W
(i)
n (ui

0|yn−1
0 ), i 6∈ F∑i−1

s=0 usVti,s, otherwise,
(11)

where ti is an integer, such that jti = i. Observe that if ui−1
0 are the correct

values of the input symbols of the polarizing transformation, the probability of
symbol error Pi in this case remains the same as in the case of classical polar
codes. Hence, the error probability of the considered code under SC decoding
can be still computed via (7).

The set F of dynamic frozen symbol indices for a generic linear code is not
guaranteed to contain all symbols with high error probability. Hence, for most
linear codes the SC decoding error probability, given by (7), far exceeds the error
probability of other decoding algorithms. Substantially better performance can
be obtained by employing list or stack SC decoding techniques. However, the
list size (i.e. the decoding complexity) needed to obtain near-ML performance,
in general, increases exponentially with code dimension.

The complexity of computing W
(i)
n (ui

0|yn−1
0 ) is exactly the same as in the

case of classical polar codes, i.e. O(n log n). However, evaluation of the expres-
sion (10) may increase the decoding complexity to O(n2).
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4.2 Extended BCH codes and Arikan kernel

Let us investigate in more details the structure of the set of dynamic frozen
symbol indices of binary extended primitive narrow-sense BCH (EBCH) codes
for the case of Arikan polarizing transformation. Observe that in this case con-
struction of the system of equations (10) can be viewed as a recursive application
of the GPD to the considered code.

It was shown in [26–28] that a punctured RM code of order r and length
2m is equivalent to a cyclic code with generator polynomial g(x) having roots
αi : 1 ≤ wt(i) < m− r, 1 ≤ i ≤ 2m − 2, where α is a primitive element of F2m ,
and wt(i) is the number of non-zero digits in the binary expansion of integer
i. Furthermore, it was shown in [29] that an EBCH code C′ of length 2m with
design distance d ≥ δ(r,m) + 3 is a subcode of the RM code of order m− r− 1,
where

δ(r,m) = max
i:wt(i)=r

min
{
i2j mod (2m − 1)|0 ≤ j < m

}
.

A recursive expression for δ(r,m) is derived in [29]. One can consider a RM code
of order m − r − 1 as a polar code with the set of frozen symbol indices F ′′ =
{i|wt(i) ≤ r}. Hence, the set of dynamic frozen symbol indices F ′ for the EBCH

code includes F ′′. It can be seen from (5)–(6) that Zn,i = O(Z2wt(i)

1,0 ). Hence,
the set of frozen symbols for EBCH codes includes all those ones, such that their
Bhattacharyya parameters (and error probability Pi ≤ 1

2Zn,i) decrease slowly
while decreasing the Bhattacharyya parameter Z1,0 of the original channel. Most
of these symbols have high error probability Pi.

The above statement is true only if one employs standard digit ordering.
That is, each coordinate ci of a codeword (c0, . . . , cn−1) can be associated with
some xi ∈ F2m , so that all xi are distinct, and all codewords satisfy check
equations

n−1∑

i=0

cix
j
i = 0, 0 ≤ j < d− 1. (12)

The standard digit ordering is given by xi =
∑m−1

j=0 Xi,jβj , where i =
∑m−1

j=0 Xi,j2
j, Xi,j ∈

{0, 1}, and β0, . . . , βm−1 is some basis of F2m . In what follows, more detailed
characterization of the set of dynamic frozen symbols for EBCH codes will be
derived.

Let
Ct =

{
t2i mod 2m−1|0 ≤ i < mt, t2

mt ≡ t mod 2m − 1
}

be a cyclotomic coset generated by t. Let Q be the set of minimal cyclotomic
coset representatives. It can be seen that all elements of a cyclotomic coset have
the same weight. Therefore

∑

s∈Q
wt(s)=r

ms =

(
m

r

)
.
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Theorem 2. Consider a (2m, k, d) extended primitive narrow-sense BCH code
over F2. Let S = {i ∈ Q|0 ≤ i < d− 1}. Let Nt be the number of dynamic frozen
symbols ui for this code, such that wt(i) = t. Then Nt =

∑
s∈St

ms, where
St = {s ∈ S|wt(s) = t}, and ms is the size of the cyclotomic coset generated by
s.

Proof. Consider parity check equation (12). Let xi =
∑m−1

s=0 Xi,sβs, Xi,s ∈
{0, 1}. Then

xj
i =

(
m−1∑

s=0

Xi,sβs

)j

=

(
m−1∑

s=0

Xi,sβs

)∑m−1
t=0 jt2

t

=
m−1∏

t=0

(
m−1∑

s=0

Xi,sβ
2t

s

)jt

=
∑

wt(em−1
0 )≤wt(j)
es∈{0,1}

vj;em−1
0

m−1∏

s=0

Xes
is ,

where vj;em−1
0

∈ F2mj are some coefficients. Hence, any codeword cn−1
0 satisfies

0 =
∑

wt(em−1
0 )≤wt(j)
es∈{0,1}

vj;em−1
0

n−1∑

i=0

ci

m−1∏

s=0

Xes
is , j ∈ S̃,

where S̃ =
{
j2l|j ∈ S, 0 ≤ l < mj , j2

mj ≡ j mod 2m − 1
}
.

It can be seen that the i-th row of A = B2,mF⊗m
2 is a sequence of values of

various monomialsX(a) =
∏m−1

s=0 X
am−1−s
s , as ∈ {0, 1} at point (Xi,0, . . . , Xi,m−1) ∈

Fm
2 . Hence, ue′ =

∑n−1
i=0 ci

∏m−1
s=0 Xes

i,s is the value of the e′-th element of the

input vector of the polarizing transformation, where e′ =
∑m−1

s=0 es2
m−1−s,

es ∈ {0, 1}, and un−1
0 = cn−1

0 A, so that

0 =
∑

wt(em−1
0 )≤wt(j)

vj;em−1
0

ue′ , j ∈ S̃

Any such equation gives rise to mj equations with coefficients in F2. Observe

that there are M̃t =
∑ρ

i=t

∑
s∈Si

ms equations, which involve symbols ue′ : t ≤
wt(e′) ≤ ρ, where ρ = max0≤j<d−1 wt(j). Hence, the number M̂t =

∑ρ
i=t Nt of

dynamic frozen symbols ui : t ≤ wt(i) ≤ ρ, is upper bounded by M̃t. It can be

also seen that M̂0 = M̃0.
The equality N0 = 1 = m0 holds for any EBCH code with d ≥ 2. Assume

that Nt =
∑

s∈St
ms for all t < t0, so that M̂t0 = M̃t0 . Since M̂t0+1 = M̂t0 −

Nt0 ≤ M̃t0+1 = M̃t0 −
∑

s∈St0
ms, one obtains Nt0 ≥∑s∈St0

ms. Assume that

this inequality is strict.
Any codeword of the considered EBCH code can be represented as a vector

of values of polynomial

f(x) =
∑

t∈Q\S

Trmt
(γtx

n−1−t) (13)
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Figure 4: Performance of list/stack SC decoding of extended BCH codes

in distinct points xi ∈ F2m , where γi ∈ F2mi , Trm(x) =
∑m−1

i=0 x2i . This
polynomial can be represented in multivariate form as

f(X0, . . . , Xm−1) =
∑

t∈Q\S

Trmt


γt

m−1∏

j=0

(
m−1∑

l=0

β2j

l Xl

)1−tj



=
∑

e0,...,em−1∈{0,1}

ue′

m−1∏

l=0

X1−el
l (14)

where t =
∑m−1

j=0 tj2
j, tj ∈ {0, 1}, so that ci = f(xi) = f(Xi,0, . . . , Xi,m−1).

Observe that the e′-th row of matrix A can be considered as a table of values
of
∏m−1

l=0 X1−el
l in various points of Fm

2 . Hence, ue′ can be considered as input
symbols of the polarizing transformation.

Hence, the set of polynomials f(X0, . . . , Xm−1) corresponding to the con-
sidered code contains Kt0 =

(
m
t0

)
−∑s∈St0

ms linearly independent polynomials

given by (14) of degree m− t0. Observe also that the forms of degree m− t0 of
these polynomials are also linearly independent. However, this is not possible
since, by assumption, there are Nt >

∑
s∈St0

ms constraints on the coefficients

of these forms. The obtained contradiction proves the theorem.

The particular set of dynamic frozen symbol indices F ′ of the EBCH code
depends on the basis being used. One may enumerate different bases of F2m and
select the one which minimizes the SC decoding error probability (7). Similar
approach was used in [30, 31] to obtain trellis diagrams of EBCH codes.

Theorem 2 and the existence of a RM supercode suggest that the SC algo-
rithm and its variations may work for EBCH codes. Unfortunately, experiments
show that this is true only for small n. Figure 4 illustrates the performance
of EBCH codes under list/stack SC algorithm with list size L and box-and-
match [32] algorithm with reprocessing order t, as well as Arikan polar codes.
It can be seen that Arikan polar codes far outperform extended BCH codes in

12



the case of list size L equal to 1 (i.e. classical SC decoding). However, higher
minimum distance results in significant performance gain of EBCH codes under
box-and-match near-ML decoding algorithm. Huge list size L is needed in order
to obtain comparable performance under list/stack SC decoding, while Arikan
polar codes achieve the near-ML performance already for L = 4.

5 Polar subcodes

It is possible to show that the minimum distance of polar codes with Arikan
kernel is given by O(

√
n) [33]. This results in quite poor ML decoding perfor-

mance.
Exact performance analysis of the list/stack SC decoding algorithm, which

is commonly used to implement near-ML decoding of polar codes, still remains
an open problem. It was empirically observed that in the low-SNR region codes
with lower SC decoding error probability provide lower error probability under
list SC decoding. However, in the high-SNR region the performance of list/stack
SC decoding algorithm depends mainly on code minimum distance. Therefore,
we propose to explicitly construct codes with a given minimum distance, which
would minimize the SC decoding error probability.

Definition 1. Consider a q-ary input memoryless output symmetric channel
W (y|c) and an (n = lm, k′, d) code C′ over Fq, called parent code. Let F ′

be the set of dynamic frozen symbol indices of C′ for the case of kernel Fl.
An (n, k ≤ k′,≥ d) polar subcode C of code C′ is defined as the set of vectors
cn−1
0 = un−1

0 Bl,mF⊗m
l , where un−1

0 simultaneously satisfies the dynamic freezing
equations (10) for code C′, and additional constraints us = 0 for k′ − k indices
s /∈ F ′ with the highest error probabilities Ps for a given channel W (y|c).

Encoding of polar subcodes can be performed as

c = xWA, (15)

where x is an information vector, W is a matrix, such that WV T = 0, and
V is the dynamic freezing constraint matrix. This can be considered as pre-
coding the data with some outer code with generator matrix W , and encoding
its codeword with a polar code. However, we do not explicitly specify an outer
code for this construction. Instead, we require that the obtained codeword c
should belong to the parent code with sufficiently high minimum distance.

Polar codes with CRC [2] and LDPC outer codes [8] can be considered as a
special case of the proposed construction. However, these codes employ ad-hoc
constraints (10). Therefore, it is difficult to control their minimum distance.

It must be recognized that the SC decoding error probability P given by
(7) of a polar subcode cannot be less than the SC decoding error probability
of a classical polar code of the same length and dimension, constructed for the
same channel using the same kernel Fl. Therefore, polar subcodes provide no
advantage with respect to classical polar codes if SC decoding is used. How-
ever, significant performance gain under list/stack SC decoding can be obtained.
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Experiments show that for given values of n, k, d polar subcodes with lower P
provide lower list/stack SC decoding error probability. Hence, one should select
C′ so that its set F ′ includes as many as possible indices ji corresponding to
symbols with high error probability Pji .

5.1 Arikan kernel

5.1.1 The construction

We propose to employ EBCH codes as parent ones in the proposed construction
of polar subcodes. Theorem 2 implies that the indices of the most of the frozen
symbols of EBCH codes have low weight. Bounds (5)–(6) imply that the Bhat-

tacharyya parameter of the i-th bit subchannel is given by Zn,i = O(Z2wt(i)

1,0 ).
Hence, employing EBCH codes as parent ones in the proposed construction en-
ables one to avoid freezing of bit subchannels with low Zn,i. This improves the
performance of the obtained code under SC decoding and its variations.

Observe that increasing minimum distance of the parent code causes more
bit subchannels with low Zn,i to be frozen. In order to keep code dimension k
fixed, one needs to unfreeze some bits subchannels with high Zn,i. This results
in higher SC decoding error probability. This can be compensated to a certain
extent by employing list SC decoding and its variations with larger list size.
Unfortunately, there are still no analytical techniques for finding a trade-off
between the performance and decoding complexity. We have to use simulations
in order to find optimal values of the code minimum distance.

Example 3. Let us construct a (16, 6, 6) polar subcode of (16, 7, 6) EBCH
code considered in Example 2, by optimizing it for the case of the binary era-
sure channel with erasure probability Z1,0 = 0.5. The vector of bit subchan-
nel Bhattacharyya parameters (i.e. symbol erasure probabilities) equals Z16 =
(0.999, 0.992, 0.985, 0.77, 0.96, 0.65, 0.53, 0.1, 0.9, 0.47, 0.35, 3.7 · 10−2, 0.23, 1.5 ·
10−2, 7.8 · 10−3, 1.5 · 10−5). Here the values corresponding to dynamic frozen
symbols of the EBCH code are underlined. It can be seen that u3 has the highest
erasure probability 0.77 among not yet frozen symbols. Therefore, we propose to
introduce an additional constraint u3 = 0. This is equivalent to removing the
first row from matrices G1 and G3 presented in Example 1.

Example 4. Consider construction of a (1024, 512) code. There exists a (1024, 513, 116)
EBCH code, which cannot be decoded efficiently with (list) SC decoder. On
the other hand, the classical polar code optimized for AWGN channel with
Eb/N0 = 2dB has minimum distance 16. One can take a (1024, 893, 28) EBCH
parent code C′ : RM(5, 10) ⊂ C′ ⊂ RM(8, 10) and freeze 381 additional bit
subchannels to obtain a (1024, 512,≥ 28) polar subcode with dynamic frozen
symbols. The specification of the obtained code includes only f = 20 non-trivial
equations (10) with T = 111 terms, so the cost of evaluation of dynamic frozen
symbols is negligible compared to the cost of multiplication by matrix A.

Observe that the SC decoding error probability P of a (n, k, d) polar sub-
code of any code cannot be less than the SC decoding error probability P for a
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classical (n, k) polar code constructed for the same channel using the same ker-
nel. However, the performance of a polar subcode under list/stack SC decoding
with sufficiently large list size L may be substantially better. It was empirically
observed that the size of the list L needed to obtain such gain increases with
P . Hence, one needs to quantify the value of P/P needed to obtain a given
minimum distance d. However, it would be easier to characterize the rate of a
polar subcode with a given minimum distance, such that it has the same SC
decoding error probability as a given classical polar code of the same length.

Let C be a polar code with kernel F2 of rate ρ(z), such that all symbols
with Zn,i < z are not frozen. Consider now an (n, k, d) polar subcode C of
rate ρ(z, d) = k/n, obtained from a (n = 2m, k′ = β(m, d)n, d) EBCH code
C′ by freezing all symbols ui with Zn,i ≥ z. The set of non-frozen symbols

of code C can be represented as ∆(d, z) = ∪m−1
r=0

(
∆(r,m, z) \ F ′

d,r

)
, where

∆(r,m, z) = {i|0 ≤ i < 2m,wt(i) = r, Z2m,i < z}, and F ′
d,r is the set of dynamic

frozen symbol indices ue of C′, such that wt(e) = r.
It is quite difficult to find |∆(r,m, z)| analytically, although it can be com-

puted in polynomial time for any specific binary input output symmetric mem-
oryless channel and values r,m [25]. Therefore, we propose to approximate it
by employing an asymptotic expression for the fraction of common non-frozen
symbols of a RM code of rate R(m−r,m) = 2−m

∑m−r
j=0

(
m
j

)
and a polar code of

length n = 2m and rate ρ. This value was shown in [34] to converge with m → ∞
to φ(ρ, r,m) = Cmin

(
ρ
C , R(m− r,m)

)
, where C is the capacity of the consid-

ered channel. Hence, the 2−m|∆(r,m, z)| ≈ φ(ρ(z), r,m)− φ(ρ(z), r + 1,m).
Therefore, one obtains

|∆(r,m, z) \ F ′
d,r| ≥ max(0, |∆(r,m, z)| − |F ′

d,r|), (16)

so that

ρ(z, d) ≥ 2−m
m∑

r=0

max(0, |∆(r,m, z)| − |F ′
d,r|)

≈
m∑

r=0

max
(
0, φ(ρ(z), r,m)− φ(ρ(z), r + 1,m)−Nr2

−m
)
,

where Nr is given by Theorem 2.
Figure 5 illustrates this bound together with the actual rate of (n, k, d) polar

subcodes of EBCH codes of length n = 1024. The dimension k of these subcodes
was selected so that they achieve approximately the same successive cancellation
decoding error probability at Es/N0 = −1 dB as the classical Arikan polar code
(1024, 512, 16) constructed for the same value of Es/N0. It can be seen that the
bound is quite loose. This is both due to (16), which assumes that all dynamic
frozen symbols induced by the EBCH code correspond to subchannels with the
lowest possible Bhattacharyya parameters, and application of an asymptotic
expression for approximation of |∆(r,m, z)|.
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Figure 5: Rate of polar subcodes of length 1024

It can be seen that the degradation of polar subcode rate with respect to a
classical polar code is negligible for d up to twice the minimum distance of the
original polar code.

5.1.2 Encoding and Decoding Complexity

Encoding of the proposed polar subcodes of binary EBCH codes can be per-
formed via (15) with complexity CW + 1

2n logn, where CW = T − f is the cost
of multiplication by matrix W , T is the number of terms in the right-hand side
of non-trivial equations (10), and f ≤

∑
t Nt is the number of such equations.

Systematic encoding can be implemented using the approach introduced in [35]
with complexity CW + n logn.

Theorem 2 implies that the set of dynamic frozen symbol indices for a parent
EBCH code includes only the ones with sufficiently small weight. Furthermore,
one can see that a dynamic freezing equation for symbol ui cannot involve
symbols uj : wt(j) > wt(i). On the other hand, most of the constraints us = 0,
imposed on bit subchannels with high error probability Ps, correspond to low-
weight integers s. This causes f to be much less than the value

∑
t Nt predicted

by Theorem 2 for the parent code, so that matrix W appears to be sparse. This
was illustrated in Example 4. Hence, the encoding complexity of the proposed
polar subcodes does not exceed that of polar codes with f -bit CRC.

Decoding of polar subcodes can be performed using the same algorithms as
classical polar codes, which should be augmented with a subroutine for evalua-
tion of dynamic frozen symbols. Hence, the number of operations with proba-
bilities or log-likelihood ratios remains the same as in the case of classical polar
codes. However, the cost of bit manipulations increases at least by O(CW ). For
example, in the case of Tal-Vardy list decoding algorithm and its derivatives, the
values uj, which are needed for evaluation of the dynamic frozen symbols, are
not stored explicitly. One should either introduce for each path an additional
array of size f , where the values of dynamic frozen symbols are accumulated, or
recover uj from intermediate values. In the first case the decoding complexity
increases by fLn+CWL bit operations, where L is the list size, since the addi-
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tional arrays need to be copied while cloning the paths. In the second case the
complexity depends on the specific structure of dynamic freezing constraints.

The sequential decoding algorithm [5] and its block generalization [36] were
shown to be able to decode polar codes with very low average complexity and
good performance. These algorithms can be naturally used in the case of polar
subcodes.

5.2 Improved polar subcodes with Arikan kernel

Let us consider a (n = 2m, k, d) polar subcode constructed as described in
Section 5.1. It can be represented as an IGCC with outer codes of length
2s, s < m. It appears that most outer codes obtained in this way are classical
Arikan polar codes with quite low minimum distance and high decoding error
probability. Therefore we propose to employ the approach suggested in [37].
Namely, we impose the requirement on outer codes to be (2s, ki, di) EBCH codes
(or their subcodes). The parameters ki, di are selected in order to minimize the
MSD error probability, which is given by

P = 1−
2m−s−1∏

i=0

(1− πi)

under the constraint
∑2m−s−1

i=0 ki = k. Here πi denotes the decoding error
probability of the code utilized at the i-th level of the IGCC. These probabilities
can be estimated, for example, using the tangential sphere bound [38] together
with density evolution [25] or Gaussian approximation [9].

The obtained IGCC can be also represented via a system of equations (10).
The corresponding matrix V is given by

V =




V ′

V0 0 . . . 0
0 V1 . . . 0
...

...
. . .

...
0 0 . . . V2m−s−1




,

where V ′ is a constraint matrix for a parent (2m,K ≥ k, d) EBCH code, and Vi

are constraint matrices for outer (2s, ki, di) codes.
The codes obtained in this way are supposed to be decoded by the block

sequential decoding algorithm [36] with block size at least 2s. This algorithm
employs the fast tree-trellis list Viterbi algorithm [39] for decoding of outer codes
of the IGCC. However, more efficient decoding techniques can be designed for
specific outer codes.

The proposed approach can be considered as a generalization of the construc-
tion suggested in [40]. The Mondelli-Hassani-Urbanke codes can be considered
as GCC with inner Arikan codes and outer RM or polar codes. Since EBCH
codes provide higher minimum distance, one may expect the improved polar
subcodes to provide better performance.
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Figure 6: Extended BCH kernel F32

5.3 Polar subcodes with EBCH kernel

For l = 2µ an extended BCH kernel can be obtained as matrix Fl, where
((Fl)i+1,1, . . . , (Fl)i+1,l−1) is a vector of coefficients of xjgi′(x), where gi′(x)
is a generator polynomial of a (l− 1, l− 1− i′) BCH code, and j is the smallest
non-negative integer, such that i = j+ i′. Furthermore, one has (Fl)0,0 = 1 and

(Fl)i+1,0 =
∑l−1

j=1(Fl)i+1,j . Figure 6 presents an example of the EBCH kernel.
Let C(q, s,m, J) be a code over Fq of length qsm, which consists of evaluation

vectors ofm-variate polynomials 1
(qs−1)mA(x0, . . . , xm−1), such that all their co-

efficients Aj0,...,jm−1 are equal to zero for (j0, . . . , jm−1) ∈ J , in various points
(x0, . . . , xm−1) ∈ Fm

qs . Let L(h) = {(j0, . . . , jm−1)|0 ≤ ji < qs,
∑

i ji > h}, and
L∗(h) =

{
j =

∑m−1
i=0 jiq

si|(j0, . . . , jm−1) ∈ L(h)
}
. It was shown in [41] that

codes C(q, s,m,L(h)) and C(q, sm, 1, L∗(h)) are equivalent. That is, these codes
can be considered as GCC with inner and outer extended cyclic codes. Further-
more, outer codes in this construction can be recursively decomposed in the
same way. This implies that an EBCH code has a supercode, which is equiv-
alent to a GCC with inner and outer extended cyclic codes. This is similar to
the fact of existence of a RM supercode for any EBCH code, which was used
above to show that EBCH codes have “not so bad” set of dynamic frozen symbol
indices in the case of Arikan polarizing transformation.

Therefore, we propose the following code construction. Let C′ be an (2µm, k′, d)

EBCH code, such that its t-th locator is xt =
∑m−1

j=0 βtjγj , where (γ0, . . . , γm−1)

is a basis of F2µm considered as a vector space over F2µ , t =
∑m−1

j=0 tj2
µj , 0 ≤

tj < 2µ, and βi is the i-th element of F2µ . The above described construction of
EBCH kernel corresponds to the case β0 = 0, βi = αi−1, 1 ≤ i < 2µ, where α is
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Figure 7: Performance of polar subcodes with Arikan kernel of length 1024

a primitive element of F2µ . Then one can construct polar subcode of C′ using
the polarizing transformation A = Bl,mF⊗m

l .
The proposed construction requires one to be able to compute symbol error

probabilities Pi. To the best of our knowledge, there are still no analytical
techniques for solving this problem, except for the case of the binary erasure
channel [42]. Therefore, we use simulations to obtain these values.

The obtained polar subcode can be considered as an instance of the IGCC in-
troduced in Section 3. Indeed, let us consider a subset Fs = {ji ∈ F| ⌊ji/l⌋ = s}
of the set of dynamic frozen symbol indices corresponding to the s-th block,
0 ≤ s < lm−1, and let V (s) be the corresponding |Fs| × lm submatrix of V . It
can be assumed without loss of generality that V (s) has an identity submatrix
in columns with indices in Fs, so that V (s) = (∆s| (Σs|I)Πs︸ ︷︷ ︸

|Fs|×l

|0), where Πs is a

l× l permutation matrix, and ∆s,Σs are some matrices. Therefore, one obtains
a system of equations

uslm−1+l−1
slm−1 ((Σs|I)Πs)

T = uslm−1−1
0 ∆T

s .

Its solution is given by

uslm−1+l−1
slm−1 = v(I|Σs)Πs + uslm−1−1

0 ∆T
s (0|I)Πs,

where v is an arbitrary vector in F
l−|Fs|
2 . Hence, instead of successive decod-

ing of symbols uslm−1 , . . . , uslm−1+l−1 according to (11), one can recover them
jointly by decoding in a coset xs +Cs, where Cs is a code generated by matrix

(I|Σs)ΠsFl, and xs = uslm−1−1
0 ∆T

s (0|I)ΠsFl, as shown in Figure 2. This enables
one to improve the performance and/or reduce the decoding complexity.

5.4 Reed-Solomon kernel

The results of [41] allow us to extend the proposed construction of polar subcodes
of EBCH codes to the case of Reed-Solomon (RS) kernel over Fq. The RS kernel
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is given by matrix Fl, where (Fl)i,j = βl−1−i
j , and βj are some distinct elements

of Fq, l ≤ q. It was shown in [23] that for l ≤ q the Reed-Solomon kernel provides
the highest possible polarization rate. However, polar codes with RS kernel still
suffer from low minimum distance.

In order to obtain a code with better performance, one can set l = q and
represent an (n = qm, k′, d) EBCH code of length qm over Fq, such that its t-th

locator is xt =
∑m−1

j=0 βtjγj , where (γ0, . . . , γm−1) is a basis of Fqm considered as

a vector space over Fq, t =
∑m−1

j=0 tjq
j , 0 ≤ tj < qm, via a system of equations

(10), and introduce additionally k′−k static freezing constraints ui = 0 for non-

frozen subchannels W
(i)
n with the highest error probability. Again, simulations

have to be used for performance evaluation of bit subchannels. The obtained
codes can be decoded using the techniques presented in [6, 43].

Example 5. Consider construction of a (16, 8, 6) polar subcode over F4. The
4× 4 Reed-Solomon kernel is given by

F4 =




0 1 1 1
0 1 β + 1 β
0 1 β β + 1
1 1 1 1


 ,

where β is a primitive element of F4. The check matrix of the (16, 9, 6) parent
EBCH code is

H =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 β β2 0 1 β β2 0 1 β β2 0 1 β β2

0 0 0 0 1 1 1 1 β β β β β2 β2 β2 β2

0 1 β2 β β β2 1 0 1 0 β β2 β2 β 0 1
0 0 0 0 1 1 1 1 β2 β2 β2 β2 β β β β
0 1 1 1 β 1 0 β β β 1 0 β 0 β 1
0 0 0 0 β2 β2 β β β2 β β2 β β2 β β β2




This corresponds to the following constraint matrix for the polarizing transfor-
mation A = B4,2F

⊗2
4 :

V =




0 0 0 0 0 0 1 0 0 β2 0 0 1 0 0 0
0 0 0 β2 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

In the case of transmission of a binary image of the output of the polarizing
transformation A over the AWGN channel with Es/N0 = −1 dB, the symbol er-
ror probabilities were found to be (0.74, 0.7, 0.55, 0.27, 0.58, 0.33, 0.12, 0.02, 0.23, 0.04, 4·
10−3, 2 ·10−4, 0.03, 4 ·10−4, 3 ·10−6, < 10−6). Hence, we propose to set addition-
ally u5 = 0.
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Figure 8: Decoding complexity for polar subcodes with Arikan kernel

6 Numeric results

In this section we present simulation results illustrating the performance of pro-
posed polar subcodes of EBCH codes in the case of AWGN channel and BPSK
modulation. For comparison, we present also the results for the case of classical
polar codes with the corresponding kernels, polar codes with Arikan kernel and
CRC-16 (Arikan-CRC) [2], LTE turbo code, as well as LDPC codes specified
in WiMAX and CCSDS standards. For polar subcodes with Arikan kernel we
have used the block sequential (BS(s)) [36] decoding algorithm1, where 2s is the
length of outer codes in the IGCC representation of the corresponding polar
subcode. For polar codes with the BCH kernel, the sequential decoding algo-
rithm [7] was used, which is based on the order-statistics soft-input hard-output
decoding of the component codes. Both probability-domain implementation of
the Tal-Vardy list decoding algorithm (TV) and the block sequential decoding
algorithm were used for decoding of polar codes with Arikan kernel an CRC.
Observe that in the case of polar codes with CRC the block sequential decoding
algorithm provides slightly worse performance compared to the original Tal-
Vardy algorithm, but has much lower complexity. Belief propagation algorithm
with flooding schedule was used for decoding of LDPC codes.

Figure 7 illustrates the performance of codes2 of length ≈ 1024. It can be
seen that polar subcodes of EBCH codes provide significant performance gain
with respect to the classical polar codes of the same code length and dimension.
Furthermore, they outperform polar codes with Arikan kernel and CRC. Observe
that increasing s in the case of the block sequential decoding algorithm, i.e.
employing in the decoder a representation of a polar subcode as an IGCC with
longer outer codes, results in better performance. The best performance is
achieved by improved polar subcodes, where outer EBCH codes of length 32

1For s ≤ 3 the block sequential decoding algorithm provides slightly inferior performance
compared to the probability-domain implementation of the Tal-Vardy list decoding algorithm
with the same list size L, but requires much smaller number of arithmetic operations.

2In order to ensure reproducibility of the results, we have set up a web site
http://dcn.icc.spbstu.ru/index.php?id=polar containing the specifications of the considered
polar subcodes with Arikan kernel.
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Figure 9: Performance of codes of length 2048

were selected so that the MSD error probability of the corresponding IGCC is
minimized.

Figure 8 illustrates the average number of summation operations performed
by the block sequential and belief propagation decoding algorithms for the case
of polar subcodes and LDPC codes, respectively. Observe that decoding polar
subcodes requires slightly lower average number of operations compared to polar
codes with CRC, since the dynamic freezing constraints prevent the sequential
decoder from constructing wrong paths up to the final phase of decoding.

It can be also seen that for s = 3 decoding of polar codes requires 10 times
less operations compared to LDPC codes. For s = 5 the complexity becomes
comparable. Furthermore, the average number of operations for the case of
L = 256, s = 3 is less than in the case of L = 32, s = 5. From these results one
may conclude that it is more advantageous to increase L instead of s. However,
increasing s enables one to use the improved construction of polar subcodes.
We also believe that the block sequential decoding algorithm can be further
simplified by employing more efficient decoding algorithms for outer EBCH
codes.

Figure 9 presents the performance of codes of length 2048. It can be seen
that the proposed improved polar subcodes with Arikan kernel provide sub-
stantially better performance compared to the case of LDPC and turbo codes.
Observe that increasing minimum distance of the polar subcode results in bet-
ter performance in the high SNR region. For comparison, we provide also the
results for the MHU construction, reproduced from [40]. As it may be expected,
the improved polar subcode, which employs EBCH outer codes, provides better
performance than the MHU code, which employs outer RM and Arikan polar
codes. For comparison, we report also results for the case of a GCC with outer
EBCH codes of length 32, which was obtained as described in [37], and decoded
with the block sequential algorithm. It appears that some of the outer codes
of the IGCC corresponding to the improved polar subcode, which correspond
to good bit subchannels, have higher rate, while those corresponding to bad bit
subchannels have lower rate than in the case of the classical GCC optimized for
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Figure 10: Performance of codes with non-Arikan kernels

the same SNR. This causes the performance of the improved polar subcode to
be better than that of the classical GCC.

Figure 10(a) presents the performance of codes with the EBCH kernel F32.
It can be seen that these codes outperform those with Arikan kernel. For the
case of polar subcodes, even better performance can be obtained by increasing
the list size L at the cost of higher decoding complexity. Figure 10(b) presents
the performance of the binary image of polar codes and polar subcodes with
4 × 4 Reed-Solomon kernel over F22 . It can be seen that classical polar codes
with Reed-Solomon kernel have quite low minimum distance, similarly to the
case of Arikan kernel, but still provide better performance compared to a polar
code with Arikan kernel with comparable parameters. In both cases employing
the proposed construction of polar subcodes of EBCH codes results in improved
minimum distance and even better performance compared to the codes pre-
sented in Figures 7(a) and 9(b).

7 Conclusions

In this paper the construction of polar subcodes of linear block codes was in-
troduced, which is based on the concept of dynamic frozen symbols. It enables
one to obtain codes with higher minimum distance than classical polar codes,
which can still be efficiently decoded using the derivatives of the list successive
cancellation algorithm. Although we do not have a proof that the proposed
codes achieve the channel capacity, they were shown to outperform some of the
existing LDPC and turbo codes of moderate lengths. Many existing construc-
tions based on polar codes, such as polar codes with CRC, can be considered as
a special case of the proposed polar subcodes.

Unfortunately, due to lack of analytical techniques for predicting the perfor-
mance of list/stack SC decoding algorithms, heuristical methods were used in
this paper to construct the codes. Any progress in the performance analysis of
these algorithms may lead to design of better codes. Another way to improve
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the performance of the proposed codes is to use longer outer EBCH codes. This,
however, requires development of efficient list soft decision decoding algorithms
for them.

Furthermore, an extension of the concept of generalized concatenated codes
was provided, as well as a new method for representing linear block codes in a
form, which enables application of the SC algorithm and its variations for their
decoding. This approach enables one to construct polar subcodes with improved
performance, as well as a more efficient decoding algorithm for them. It allows
also near-ML decoding of short Reed-Solomon codes [44–46].
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