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Abstract—In this paper, we consider the asymptotic and finite-
length performance of block Markov superposition transmis
sion (BMST) of short codes, which can be viewed as a new w0
class of spatially coupled (SC) codes with the generator mates
of short codes (referred to asbhasic codes) coupled. A modified
extrinsic information transfer (EXIT) chart analysis that takes  ,(
into account the relation between mutual information (MI) —>|ENC G D
and bit-error-rate (BER) is presented to study the convergace v
behavior of BMST codes. Using the modified EXIT chart analyss,
we investigate the impact of various parameters on BMST code
performance, thereby providing theoretical guidance for design-
ing and implementing practical BMST codes suitable for slidng
window decoding. Then, we present a performance comparison
of BMST codes and SC low-density parity-check (SC-LDPC)
codes on the basis of equal decoding latency. Also presented short codes [16,17], for example, is equivalent to spatial
a comparison of computational complexity. Simulation resits coupling of the subgraphs that specify the generator neatric

show that, under the equal decoding latency constraint, BM$ . .
codes using the repetitign code as thge basic)éode can outparh O_f the short _COdeS' From this perSpeCt'Ve’ BMST .COdeS are
(3,6)-regular SC-LDPC codes in the waterfall region but have a Similar to braided block/convolutional codes [18-20]jrstase
higher computational complexity. codes [21], and SC turbo codes [22]. An encoder of a BMST
Index Terms—Block Markov superposition transmis- code with encoding memorny. is Shown.in Fig. 1, where a
sion (BMST), capacity-approaching codes, extrinsic infamation BMST code can also be viewed as a SerlaIIy concatenated code
transfer (EXIT) chart analysis, sliding window decoding, gatial ~ with a structure similar to repeat-accumulate-like cod&s-|
coupling. 25]. The outer code is a short code, referred to asbsic
code (not limited to repetition codes), that introduces redun-
. INTRODUCTION dancy, while the inner code is a rate-one block-oriented-fee
Low-density parity-check (LDPC) block codes (LDPC_forward co_nvolutional code (instead of a bit-origntgd anal
. o . . . ator) that introduces memory between transmissions. &lenc
BCs) [1], combined with iterative belief propagation (BP des tvpically have very simple encoding alaorithms
decoding, are a class of capacity-approaching codes MST codes ypically have very simp INg algornthms.
0 decode BMST codes, a sliding window decoding algorithm

IdeenC(iglFZ% ?mg;)i(ggl ?atr(')r:gﬁ ?s?; Orr(;lzir:'nteﬁélyev;/f'g:m%%cwith a tunable decoding delay can be used, as with SC-LDPC
9 AP PP P 9 P codes [26]. The construction of BMST codes is flexible [27,

of LDPC-BCs is coupling together a seriesioiisjoint graphs 28], in the sense that it applies to all code rates of interest

that specify the parity-check matrix of an LDPC-BC into g G, iierya (0,1). Further, BMST codes have near-cdpaci

single coupled chain, thereby producing a spatially caiiple erformance (observed by simulation) in the waterfall oagi

LDPC (SC-LDPC) code. It has been shown in [3-6] that Se(;'rdthe bit-error-rate (BER) cruve and an error floor (preelict

LDPC code ensembles exhibit a phenomenon called “thresh% . :
o . X . y analysis) that can be controlled by the encoding memory.
saturation”, which allows them to achieve the maximum

a posteriori (MAP) thresholds of their underlying LDPC- On an additive white Gaussian noise channel (AWGNC),

BC ensembles on memoryless binary-input symmetric-outgllf Well-known extrinsic information transfer (EXIT) char
channels under BP decoding, and thus to achieve capacity@5\3!Ysis [29] can be used to obtain the iterative BP decoding
increasing the density of the parity-check matrix. Due tirth thresht_)ld of LDPC-BC ensembles. In [30], a novel EXIT chart
excellent performance, SC-LDPC codes have recently redeif"2lysis was used to evaluate the performance of protograph
a great deal of attention in the literature (see, e.g., [Japfl Pased LDPC-BC ensembles, and a similar analysis was used
the references therein). to find the thresholds of-ary SC-LDPC codes with sliding

The concept of spatial coupling is not limited to LDPCNindOW decoding in [31]. Unlike LDPC codes, the asymptotic

codes. Block Markov superposition transmission (BMST) ¢fER 0f BMST codes with window decoding cannot be better
than a corresponding genie-aided lower bound [16]. Thus,
This work was partially supported by thed73 Program (No. conventional EXIT chart analysis cannot be applied diyetctl
The authors are with the Department of Electronics and Conization . h .
Engineering, Sun Yat-sen University, Guangzhou, GD 510aDeina (e- analysis, that takes into account the relation between ahutu

mail: hkech@mail2.sysu.edu.cn; maxiao@mail.sysu.@)lu.c information (MI) and BER, to study the convergence behavior

Fig. 1. Encoder of a BMST code with encoding memeory where the
information sequence.(*!) at time ¢ is encoded into the sub-codewoed?)
for transmission.
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of BMST codes and to predict the performance in the waterfall Though any code (linear or nonlinear) with a fast encoding
region of the BER curve. Simulation results confirm that thalgorithm and an efficient soft-in soft-out (SISO) decoding
modified EXIT chart analysis of BMST codes is supported bglgorithm can be taken as the basic code, we focus in thigpape
their finite-length performance behavior. We also investg on the use of thé3-fold Cartesian product of a repetition (R)
the relationship between the basic code structure, theditego code (denoted by RN, 1]) or a single parity-check (SPC)
delay, and the decoding performance of BMST codes when ttede (denoted by SPQV, N —1]) as the basic code, resulting
decoding latency is fixed. Finally, we present a computafionn a BMST-R code (denoted by BMST-RV, 1]) or a BMST-
complexity comparison of BMST codes and SC-LDPC cod&PC code (denoted by BMST-SRE, N — 1)), respectively.
on the basis of equal decoding latency. Note that the overall code length of the basic code in thig cas
The rest of the paper is structured as follows. In Section I§ » = BN and the overall dimension is= B or B(N —1).
we give a brief review of BMST codes. In Section Ill, we dis-
cuss the relation between BMST codes and protograph-based,,. .. .
SC-LDPC codes. In Section 1V, we propose a modified EXI .d3|d|ng Window Decoding of BMST Codes
chart analysis of BMST codes. In Section V, we investigate BMST codes can be represented by a Forney-style factor
the impact of various parameters on BMST code performan@aph, also known as a normal graph [33], where edges rep-
Then, in Section VI, we present a performance comparist@sent variables and vertices (nodes) represent cortstraiih
of BMST codes and SC-LDPC codes on the basis of equeflges connected to a node must satisfy the specific cortstrain
decoding latency. A computational complexity comparisén @f the node. A full-edge connects to two nodes, while a half-
BMST codes and SC-LDPC codes is also given in Section \adge connects to only one node. A half-edge is also connected

Finally, some concluding remarks are given in Section VII. to a special symbol, called a “dongle”, that denotes cogplin
to other parts of the transmission system (say, the chanmnel o

the information source) [33]. There are four types of nodes i
the normal graph of BMST codes.

« Node[+] All edges (variables) connected to nofde]

Il. REVIEW OF BMST CODES
A. Encoding of BMST Codes

Consider a BMST code using a rale= k/n binary basic
code %[n, k] of lengthn and dimensiork. Let u = (u(®,
u®, ... ulE=V) be L blocks of data to be transmitted, where
u(®) € F5. Here, L is called thecoupling length. The encoding
algorithm of a BMST code with encoding memorgo(pling

must sum to the all-zero vector. The message updating
rule at nodg +] is similar to that of a check node in the
factor graph of a binary LDPC code. The only difference
is that the messages on the half-edges are obtained from
the channel observations.

width) m is described as follows (see Fig. 1), whd® (0 < . Node: The nod represents théth interleaver,

1 <m) arem + 1 interleavers of sizen. which interleaves or de-interleaves the input messages.
Algorithm 1: Encoding of BMST Codes « Node[=]: All edges (variables) connected to nofde]
. Initialization: Fort < 0, setv() = 0 ¢ Fy. must take the same (binary) values. The message updgting
« Loop: Fort = 0,1, -, L—1, rule at nod¢ =] is the same as that of a variable node in

. . . the fact h of a bi LDPC code.
1) Encodeu® into v ¢ F3 using the encoding © tactor grapn ot a hinary code

algoritm of the basic code’; + Node[G} Al edges (variabies) connected (o nols]
2) For0 < i < m, interleavev*=") using thei-th

interleaveriT: into w9 The message updating rule at n can be derived
3) Computec(® Z: S ’w(“') which is taken as accordingly, where the messages on the half-edges are
the #-th block of trg%?nqlission ' associated with the information source.

« Termination: Fort = L. L+ 1, ---, L +m — 1, set The normal graph of a B_MST code_ can be divided into
u® — 0 € F% and compute:™® following Loop. layers, where each layer typically consists of a node of type
2 , a node of typg=], m nodes of typ, and a node of
Remark: To force the encoder of BMST codes to the zergype[+] (see Fig. 2). The result is a high-level normal graph,
state at the end of the encoding process, a tail consistidfiere each edge represents a sequence of random variables.
of m blocks of thek-dimensional all-zero vector is added ooking into the details, we can see that, at each layerether
This is different from SC-LDPC code encoders, where the tajte n, nodes[=] of degreem + 2, n nodes of degree

is usually non-zero and depends on the encoded informatg(;Ln_i_2 (including half edges), an# node corresponding

bits (see Section IV of [32]). As a result, the termination, {ha short code (RN, 1] or SPC[N, N —1] in this paper).
procedure for BMST codes is much simpler than for SC-LDPC Similar to SC-LDPC codes, an iterative sliding window

codes.
The rate of the BMST code is

Lk L
L+m)n L+m

decoding algorithm with decoding delay working over
a subgraph consisting of + 1 consecutive layers can be
implemented for BMST codes. An example of a window
decoder with decoding delay = 2 operating on the normal

R, 1)

Rpmst = (

which is slightly less than the rai@ = k/n of the basic code. | _ _
H imilar to SC-LDPC d thi te | b Using codes constructed by time-sharing between the R audi¢ghe SPC
owever, similar 1o - codes, this rate 10Ss PECOMERe a5 the basic code, one can construct BUST-RSPC codesvide range

vanishingly small ag, — ~o. of code rates. For more details, see [28].
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ENCODING MEMORIES FORBM;el\'BCLOEDlES REQUIRED TO APPROACH THE
CORRESPONDINGSHANNON LIMITS AT GIVEN TARGET BERS
Encoding memoryn Target BER
1073107 [ 107° ] 107
BMST-R [2, 1 4 6 8 10
BMST-R [4,1 5 8 10 13
BMST-R [8, 1] 6 9 11 | 14
BMST-SPC[4, 3] 2 3 4 5

Fig. 2. Example of a window decoder with decoding defay: 2 operating

on the normal graph of a BMST code with = 1 at timest = 0 (solid i i
blue) andt = 1 (dotted red). For each window position/time instant, the 3) Find the Shannon limit for the code rate, denoted by

first (left-most) decoding layer is called the target layer. Yim, . )
4) Determine the encoding memony by

Ttarget —Vlim
graph of a BMST code withn = 1 is shown in Fig. 2. m = [10 S - ﬂ, ()
For each window position, the forward-backward decoding
algorithm is implemented for updating the messages layer-b
layer within the decoding windowDecoding proceeds until a ) o
fixed number of iterations has been performed or some givenl '€ @bove procedure requires no optimization and hence
stopping criterion is satisfied, in which case the windovitshi €0 be easily implemented given that the performance curve
to the right by one layer and the symbols corresponding to tfgasic (1) is available, as is the usual case for short codes.

layer shifted out of the window are decoded. The first laydis effectiveness has been confirmed by construction exzsnpl
in any window is called thearget layer. in [16,17,27,28]. The encoding memories for some BMST

codes required to approach the corresponding Shannors limit
at given target BERs are shown in Table I. As expected, the

C. Genie-Aided Lower Bound on BER lower the target BER is, the larger the required encoding
Let p, = femst(75) represent the performance of a BMSTmemorym is.

code with encoding memory (coupling width) and coupling

length L, wherep, is the BER andy, £ E, /Ny represents m

the received bit signal-to-noise ratio (SNR) on an AWGNC

in dB, and Ietpb = fBasic('Yb) represent the performance of In this section, we show that BMST codes can be viewed

the basic code. By assuming a genie-aided decoder, we @& class of SC codes, using an algebraic description as well

obtain a lower bound on the performance of BMST codd$ @ graphical representation, and we compare the struafture
given by (see [16]) BMST codes to SC-LDPC codes.

where [2] represents the smallest integer greater than
or equal tox.

. BMST CoDES AS ACLASS OFSC CODES

> fBasic (b + 1010 +1)—10lo 1+m/L)), . .
Fonst (%) 2 fBasic O gio(m+1) guo(l+m/ ()%) A. Matrix Representation

where the terml0log,, (m + 1) depends on the encoding To describe an SC-LDPC code ensemble with coupling
memory m and the term10log,,(1+ m/L) is due to the width (syndrome former memory) m and coupling lengti’,
rate loss. In other words, a maximum coding gain over thee start with an(L + m)(N — K) x LN matrix

basic code ofl0log;,(m+1) dB in the low BER (high SNR) " B,

region is achieved for largé. Intuitively, this bound can be B. B
understood by assuming that a codeword in the basic code is _1 0
transmittedn + 1 times without interference from other layers. : B,
B=|B, : . By |, 4

D. Design of Capacity Approaching BMST Codes

Aided by the genie-aided lower bound, we can construct
good codes at a target BER with any given code rate of interest . :
by determining as follows the required encoding memary B, |

1) Take a code with the given rate as the basic code. Mere all of the m + 1 component submatrices
approach channel capacity, we set the code length Bo,Bi,....B,, have non-negative integer entries and

10000; size(N — K) x N. To construct an SC-LDPC code with good

2) From the performance curvés..i. (75) of the basic .
. . ) erformance, we can replace each non-zero én in B
code, find the require®, /Ny = sarget t0 achieve the P P 0

target BER; 3The basic code considered in this paper is a Cartesian prodiacshort
code, where each codeword is indeed a cascad#s#parate and independent
2For more details on the decoding algorithm of BMST codes, eferrthe  codewords from the short code. Thus, the performance of dsi lzode can
reader to Section IlI of [16]. easily be obtained, which is the same as that of the involvedt £ode.

Bm Bl
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with a sum ofb nonoverlapping randomly selectéd x M @ ® O © O -
permutation matrices and each zero entry Bh with the
M x M all-zero matrix, where is typically a small integer (&) oz, () ® @& ®
and M is typically a large integer. The resulting SC-LDPC
parity-check matrixH sc of size (L +m)(N—K)M x LN M
is given by S S 0 O O
Hse = ® 0 ®) A e
[ Ho(0) 1
H.(1) Ho(1) ® - 0 (+) OEEINO (5 /
: H,y (2
@2 ® - OFOF® - ® @
Hm(m) : - HO(L - 1) ) (5)
H,(m+1) . HL) © -0 6 OO0
: 0 1+1 12 L] L
I Ho(L+m—1)) ©

. Fig. 3. (a) A protograph corresponding to the submaBix, (b) L uncoupled
where the blank spaces iHg¢ correspond to zeros and theprotographs, each of which corresponds to the submagix and (c) a

submatricesH»(t + z) have size(N _ K)M x NM. for 0 < protograph corresponding to an SC-LDPC code ensemble withling length
) ! ' — L and coupling widthm = 1.
i<mand0<t¢t<L-—1.

B. Graphical Representation

In contrast to SC-LDPC codes, it is convenient to de- SC.LDPC code ensembles are often described in terms of
scribe BMST codes using generator matrices. & be g protograph, where aedge-spreading operation is applied
the generator matrix of a short code with dimensi§nand to couple a sequence of disjoint block code protographs into
length V. To describe a BMST code ensemble with coupling single chain [6]. Usually, no extra edges are introduced
width (encoding memory) m and coupling lengtf,, we start during the coupling process. In this paper, we describe the
with the L x (L + m) matrix coupling process from a new perspective, where extra edges

1 1 --- 1 are allowed to be added. We believe that this new treatment is
1 1 - 1 more general. For example, SC turbo codes [22] are obtained
A— . ) ) ) ©6) by adding edges to connect each turbo code graph to one or
a oo e ’ more nearby graphs in the chain. Based on this perspective,
L1 -1 we can redescribe SC-LDPC codes as follows.
rr -1 We start with a protograph for the submati#, = [B; ],
which has constant weight: + 1 in each row. This matrix Which hasN variable nodes anty — K check nodes, where the

A plays a similar role for constructing BMST codes as thisth check node is connected to tji¢h variable node by3; ;
matrix B does for constructing SC-LDPC codes. To construlges. A short-hand protograph correspondingas shown

a BMST code with good performance, each nonzero entfy Fig. 3(a), where the nod@ representsV variable nodes,
Aj;ri (0<j<L—1and0<i<m)in A is replaced with the node® representsV — K check nodes, and the edge

a matrix GIT;, where Gy represents a collection of B; ; edges. To distinguish,
the edgeBy is referred to as auper-edge of type By, while
G = diag{Go, - ,Go} (7)  the conventional edge in the full protograph is referredgo a
B a simple edge. The short-hand protograph is then replicated

is the generator matrix of thB-fold Cartesian product of the L imes, as shown in Fig. 3(b), meaning that the sequence
short code, thdl; (0 < i < m) arem -+ 1 randomly selected of transmltte_zq (_:odewords satisfy independently th_e cairgtr
NB x NB permutation matrices, and the Cartesian produffo- TheL disjoint graphs are then coupled by addingiper-
orderB is typically large. The resulting BMST code has lengtfd9€ 0f type B; to bridge the variable nod® at timet and the

(L +m)NB and dimension.k B, and the generator matrix check node® attimet+i, for0 <¢ < L—1andl <i <m,
Gust is given by resulting in a single coupled chain corresponding to an SC-

LDPC code ensemble with coupling lengthand coupling

GpusT = memorym. An example of an SC-LDPC code ensemble with
GIl, GII, --- GII,, coupling memorym = 1 is shown in Fig. 3(c). When lifting,
GII, GII, e GII,, eachsimple edge (not super-edge) is replaced by a bundle of

M edges (permutation within the bundle is assumed), regultin
' ' ' in an SC-LDPC code with length/N M.
GII, GII, - GIIn Similarly, BMST codes start with a protograph for the
(8) generator matrixGo = [G; ], which has K [=] nodes
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matrices. We also see that the generator maf¥ix st Of
BMST codes is similar in form to the parity-check matrix
H g of SC-LDPC codes. SC-LDPC codes introduce memory
by spatially coupling the basic parity-check matricék),
while BMST codes introduce memory by spatially coupling
the basic generator matricésy. Further, we see from Fig. 3
and Fig. 4 that during the construction of both SC-LDPC
Cowpling codes and BMST codes, the memory is introduced by coupling
the disjoint graphs together in a single chain, which is the
fundamental idea of spatial coupling. Thus, BMST codes can
be viewed as a class of SC codes.

Copying

%

IV. EXIT CHART ANALYSIS OF BMST CODES

Given the basic code with generator maifi%, we can con-
struct a sequence of BMST codes by choosing the Cartesian
product orderB = 1,2, ---. Now assume that the interleavers
are chosen uniformly and at random for each transmission.
Then we have a sequence of code ensembles. The aim of EXIT
chart analysis is to predicte the performance behavior ef th
BMST codes a3 — ~o. In this section, we first discuss the
issue that prevents the use of conventional EXIT chart aisly
for BMST codes, and then we provide a modified EXIT chart
analysis to study the convergence behavior of BMST codes
with window decoding.

We consider binary phase-shift keying (BPSK) modulation
Fig. 4. (a) A protograph representing the basic code witregeior matrix  Over the binary-input AWGNC. To describe density evolution
Go, (sz unctchizged ?Ce;si; prr%ttggrraapnsycgﬁzz fgn\é\/i?]ichtgoge;r'\)/?ggbggdtit is convenient to assume that the all-zero codeword is
bl it counling lengaln o Eoup“ng e ) Zand (@ an etra.nsmltted and to represent the messages as log-likelihoo
equivalent protograph corresponding to the same BMST codengble with  atios (LLRs). The threshold of protograph-based LDPC sode
coupling lengthZ and coupling widthm = 1. can be obtained based on a protograph-based EXIT chart anal-

ysis [30, 31] by determining the minimum value of the SNR
) E, /Ny such that the Ml between theeposteriori message at
and N nodes, where the-th [=] node is connected 10 5 yariable node and an associated codeword bit (referred to
the j-th node if and only ifG;; = 1. A short-hand aq thea pogteriori MI for short) goes to 1 as the number
ograph corresponding Gy is shown in Fig. 4(a), where of jterations increases, i.e., the BER at the variable nodes
t

Equivalent

(d)

represents auper-edge of type Go. The protograph is tends to zero as the number of iterations tends to infinity.
en replicatedl, times, as shown in Fig. 4(b), which canat g first glance, a similar iterative sliding window decaglin
be considered as transmitting a sequence of codewords freRyT chart analysis algorithm can be implemented over the
the basic code corresponding to the generator mal#ix normal graph (see Fig. 4(d)) of the BMST code ensemble to
independently at time instants= 0, 1, ---, L — 1. The L syydy the convergence behavior of BMST codes. However,
disjoint graphs are coupled by addingsaper-edge of type a5 shown in (2), the high SNR performance of BMST codes
G, to bridge the[=] node at timet and the[+ | node at yith window decoding cannot be better than the correspandin
time ¢+, for 1 <4 < m, resulting in a single coupled chaingenje-aided lower bound, which means that ghposteriori
corresponding to a BMST code ensemble with coupling lengi) of BMST codes cannot reach 1 as the number of iterations
L and coupling memoryn. An example of a BMST code tengs to infinity. Thus, the conventional EXIT chart anaysi
ensemble with coupling memory = 1 is shown in Fig. 4(c), cannot be applied directly to BMST codes. Fortunately, this
whose equivalent form is shown in Fig. 4(d). When liftingg thcan he amended by taking into account the relation between
super-edge of type G bridging the[=]node at tim& and the ;| and BER [29]. Specifically, we need the convergence
node at timel +4, for0 <t < L —1and0 <i<m, iS check at nod as described below in Algorithm 2.
replaced by auper-edge of type GII;, resulting in a BMST For convenience, the MI between thepriori input and the

code with length(L + m)N B. corresponding codeword bit is referred to as #hpriori MI,
the MI between theextrinsic output and the corresponding
C. Smilarities and Differences codeword bit is referred to as thexrinsic Ml, and the

From the previous two subsections, we see that both Ml between the channel observation and the corresponding

LDPC codes and BMST codes can be derived from a Smgﬁdeword bit is referred to as tfuhannel MI.
matrix by replacing the entries with properly-defined sub- Algorithm 2: Convergence Check at No
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o Let 7,4 denote the priori Ml and Ir denote thextrinsic
MI. Then thea posteriori Ml I5p is given by

Inp = J(VIITU)R+ 7 MUR)P),  (9)

where theJ(-) andJ~!(-) functions are given in [34]] 4
is thea priori MI, and Iz is theextrinsic MI. As shown
in Section IlI-C of [29], supposing that the posteriori
Ml is Gaussian, an estimate of the BBR; is then given

by

DPest = Q (J_l(l - IAP)/2) 5 (10)
where
1 ° t2
Q(x) = E/z exp <—5> dt. (11)

success, in the limit of large code lengths (i.B..—~ c0).

V. IMPACT OF PARAMETERS ONBMST CODES

In this section we study the impact of various parame-
ters (coupling widthm, Cartesian product ordé?, and decod-
ing delayd) on BMST codes. Three regimes are considered:
(1) fixedm and B, increasingi, (2) fixedm andd, increasing
B, and (3) fixedB, increasingmn (and hencei).

All simulations are performed assuming BPSK modulation
and an AWGNC. In the computation of the asymptotic window
decoding thresholds of BMST codes, we set a maximum
number of iterationsl,,.x = 1000. We will refer to the
iterative decoding thresholdz, / Ny)™ simply asE;,/ Ny when
it does not lead to ambiguity. In the simulations of finitedéh

o If the estimated BERp..; is less than some preselectegherformancem + 1 random interleavers (randomly generated
target BER, a local decoding success is declared; othbut fixed) of sizen = NB are used for encoding. The

wise, a local decoding failure is declared.

iterative sliding window decoding algorithm [16, Algonith3]

For a fixed SNRE}, /Ny, the channel bit LLR correspondingfor BMST codes is performed using a layer-by-layer updating
to the binary-input AWGNC is Gaussian with variance [29] Schedule with a maximum iteration number of 18, and the

E,

2
Oen = 8RBMST

entropy stopping criterion [16, 35] with a preselected shdd
of 1079 is employed.

where Rpmst IS the rate of the BMST codes. The channeA Fixed m and B, Increasing d

Ml is then given by

E
Ip =J(on)=J <\/8RBMSTFZ)> .
0

(13)

Example 1 (Asymptotic Performance): Consider
Rpumst = 0.49 BMST-R [2, 1] code ensemble withn = 8
and L = 392. We calculate its window decoding thresholds
with different preselected target BERs and different daugpd

a

The modified EXIT chart analysis algorithm of BMST COdeSdelays. The calculated thresholds in terms of the SNRN,

similar to the protograph-based EXIT chart analysis athari

of SC-LDPC codes [31], can now be described as follows.

Algorithm 3: EXIT Chart Analysis of BMST Codes with
Window Decoding

« Initialization: All messages over those half-edges (con-

nected to the channel) at nodps| are initialized as

I, according to (13), all messages over those half-edges?)

(connected to the information source) at no are

initialized as 0, and all messages over the remaining
(inter-connected) full-edges are initialized as 0. Set a3)

maximum number of iterationf, ax.
« Sliding window decoding: For each window position,

thed + 1 decoding layers perform MI message process-

ing/passing layer-by-layer according to the schedule

—>E|—>—>E|—>.
After a fixed number of iterationd, .., perform a
convergence check at no using Algorithm 2.

versus the preselected target BERs together with the lower
bound are shown in Fig. 5(a), where we observe that

1) In the waterfall region (above a critical BER), the

thresholds remain almost constant. However, once the

critical BER is reached, the thresholds increase as the
target BER decreases.

For a small decoding delay (sdy= m), the thresholds

do not achieve the lower bound even in the high SNR

region.

For a larger decoding delay (roughly= 2m ~ 3m),

the thresholds correspond to the lower bound in the

high SNR region, suggesting that the window decoding

algorithm with decoding delay > 2m ~ 3m is near
optimal for BMST codes.

4) The error floor region threshold improves as the decod-
ing delay d increases, but it does not improve much
further beyond a certain decoding delay (roughily=
2m ~ 3m).

If a local decoding failure is declared, then window Similar behavior has also been observed for BMST-SPC
decoding terminates; otherwise, a local decoding succ&§sle ensembles, as shown in Fig. 5(b), where the thresholds
is declared, the window position is shifted, and decodirf @ rate Rgmst = 0.74 BMST-SPC[4, 3] code ensemble
continues. A complete decoding success for a specifienstructed withm = 4 and L = 296 and decoded with
channel parametef, /N, and target BER is declared if different decoding delayd are depicted.

and only if all target layers declare decoding successes. The window decoding thresholds, corresponding to a pres-

Now we can denote the iterative decoding thresho
(Ey/No)* of BMST code ensembles for a preselected targ

BER as the minimum value of the channel paraméigf N,

%lected target BERof 10~°, for the (3, 6)-regular SC-LDPC
gt)de ensemble withn = 1 and the BMST-R(2,1] code

“We choose a BER of0~° for comparison because it represents a target

which allows the decoder of Algorithm 3 to output a decodinBER commonly used in many practical applications.
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' k\ *, %, certain point (roughlyl = 16).
1 A ~ ~ . . .
1679 t, . "‘\*\ "‘~v~ /] These results are consistent with the asymptotic threshold
;" V‘\v performance analysis shown in Fig. 5(a).
10°.! pEC ] Similar behavior has also been observed for BMST-SPC
! "‘\* V\v code ensembles, as shown in Fig. 7(b), where the simulated
10—15; 5 w S h 5 h 4 decoding performance of a rafegyisT = 0.74 BMST-SPC

25 3
Threshold Ey,/N, (dB)
(b)

[4, 3] code constructed wittm = 4, L = 296, and B = 1200,
and decoded with different decoding delai$s depicted.

Fig. 5. Window decoding thresholds in terms6f/No (dB) with different
target BERs and different decoding delays for (a) a mgyisT = 0.49
BMST-R [2, 1] code ensemble witm = 8 and L = 392, and (b) a rate
Rpumst = 0.74 BMST-SPC[4, 3] code ensemble witih = 4 and L = 296.

B. Fixed m and d, Increasing B

Example 3 (Finite-Length Performance): Consider
Rpnvst = 0.49 BMST-R [2,1] codes withm = 8 and
L =

rate

392. The BER performance of BMST-R codes

constructed with different Cartesian product orddss is

ensemble withm = 8 as a function of decoding delay is

shown in Fig. 8, where we observe that

shown in Fig. 6. We see that, similar to the SC-LDPC code 1) Similar to SC-LDPC codes, where increasing the lift-

ensemble, the threshold of the BMST code ensemble improves
as the decoding delay increases and it becomes better than
that of the SC-LDPC code ensemble beyond a certain decoding
delay (roughlyd = 10).

Example 2 (Finite-Length Performance): Consider  rate
Rpumst = 0.49 BMST-R [2,1] codes withm = 8 and
L = 392. The BER performance of BMST-R codes decoded
with different decoding delayg is shown in Fig. 7(a), where
we observe that 2)

1) The BER performance of BMST-R codes decoded with
different delaysd matches well with the corresponding
window decoding thresholds in the high SNR region. 3)

2) The BER performance in the waterfall region improves
as the decoding delay increases, but it does not

ing factor M improves waterfall region performance,
increasing the Cartesian product ordBr of BMST
codes also improves waterfall region performance. As
expected, this improvement saturates for sufficiently
large B. For example, the improvement at a BER of
10—° from B = 1000 to B = 2000, both decoded with

d = 16, is about 0.17 dB, while the improvement de-
creases to about 0.06 dB frof = 3000 to B = 4000.
The BER performance of BMST-R codes matches well
with the corresponding window decoding thresholds in
the error floor region.

The error floors, which are solely determined by the
encoding memorym (see Section 1I-C), cannot be
lowered by increasing3.

improve much further beyond a certain decoding de- Remark: We found from simulations that, in the error

lay (roughlyd = 10).

floor region, the gap between finite-length performance and
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Fig. 7. Simulated decoding performance of BMST codes detosith Fig. 8. Simulated decoding performance of régnsT = 0.49 BMST-R

different decoding delayd. The corresponding window decoding thresholdg2, 1] codes with different Cartesian product ordétsThe encoding memory
and the lower bound are also plotted. (a) R&gnsT = 0.49 BMST-R  m = 8 and the coupling length, = 392. The codes are decoded with
[2,1] codes with encoding memony: = 8 and coupling length = 392.  (a) decoding delayl = 8, and (b)d = 16. The corresponding window
The Cartesian product orders of the two BMST-R codesfare- 750 and decoding thresholds and the lower bound for BMST-R codel mit= 8 are
B = 1500, respectively. (b) A rateRgysT = 0.74 BMST-SPC(4, 3] code  also plotted.

with encoding memorym = 4, coupling lengthL = 296, and Cartesian
product orderB = 1200.

thresholds in terms of the SNR, /N, versus the preselected
target BERs together with the lower bounds are shown in
Fig. 9(a), where we observe that

1) For a high target BER (roughly abov6—3), the thresh-
old with a sufficiently large decoding delay degrades
slightly as the encoding memony. increases, due to
errors propagating to successive decoding windows.

2) The error floor can be lowered by increasing the encod-
ing memorym (and hence the decoding deldy.

Similar behavior has also been observed for BMST-SPC
code ensembles, as shown in Fig. 9(b), where the thresholds
of a family of rate Rgmst = 0.74 BMST-SPC [4, 3] code
ensembles are depicted.

Example 5 (Finite-Length Performance): Consider  rate
Example 4 (Asymptotic Performance): Consider a family Rpmst 0.49 BMST-R [2,1] codes constructed with

of Rpmst = 0.49 BMST-R [2, 1] code ensembles with differ- encoding memoriesn = 4, 6, 8, and 10, and Cartesian
ent encoding memories. The calculated window decodingproduct ordersB = 750 and B = 1500. The simulated BER

window decoding thresholdE,/Ny)" is less than 0.02 dB.
For example, the values df;, /N, needed to achieve a BER
of 1075 for a BMST-R|[2, 1] code withm = 8, very extremely
large Cartesian product order (sdy,= 4000), and decoding
delay d = 8 is 1.087 dB, while the calculated window
decoding threshold for a preselected target BERI@f® of
the BMST-R [2, 1] code ensemble withn = 8 andd = 8

is (Ey/No)" 1.069. This result again demonstrates that

the finite-length performance is consistent with the asyipt
performance analysis.

C. Fixed B, Increasing m (and hence d)
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@ Fig. 10. Simulated decoding performance of r&gyst = 0.49 BMST-R
10° : —— . [2,1] codes constructed with different encoding memoriesand decoded
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1073 : 1675 168 1 section, we first compare the performance of BMST codes and
AT ~ 3 . .
& . : P Smneg SC-LDPC codes when the two decoding latencies are equal.
TR RTINS, |/ Then a computational complexity comparison is presented.
""" a3 R e
Vo TTeeAlL_ T °- We restrict consideration t(3, 6)-regular SC-LDPC codes
-5 - iy o . . .
10 Byl : TAiing : 3 with coupling widthm = 1, where two component subma-
] Cm TThal, o LN 1 tricesBy = [2 1] and B; = [1 2] are used, due to their
10 s & G T ..., superior thresholds and finite-length performance withdeim
o eeme *'~~,._~ 1 decoding when the decoding delay is relatively small (see,
10 % , o 5 *3 3c  €.g., [15,31]). For the BMST codes, we consider BMST-R
Threshold /Ny (dB) [2,1] codes with encoding memory = 8, due to their near-
(b) capacity performance in the waterfall region and relagivel
) ) ) ) ) low error floor (see Section V). In the simulations, the itera
Fig. 9. Window decoding thresholds in terms @&,/No)* (dB) with

different target BERs for two BMST code ensemble familieshvdifferent tive sliding V\_/meW decoding aIg_orlthm fOI‘.SC-LDPC COde_S

encoding memories. (a) BMST-R[2, 1] code ensemble and (b) BMST-SPcuses the uniform parallel (flooding) updating schedule with
[4,3] code ensemble. a maximum iteration number of 100, while for the BMST
codes, window decoding is performed using the layer-bgifay

) o ) ] updating schedule with a maximum iteration number of 18.

performance with sufficiently large decoding delay is showfy,q entropy stopping criterion [16, 35] is employed for both

in Fig. 10, where we observe that window decoding algorithms with a preselected threshold of
1) The BER performance in the waterfall region degradgeg—6.

slightly as the encoding memory. increases, due 10 The decoding latency of the sliding window decoder, in
errors propagating to successive decoding windows. temg of bits, is given by [15]

2) The error floor of the BER curves is lowered by increas-

ing the encoding memony (and hence the decoding Tsc = 2M (dsc +1) (14)
delay d). _ _ ) for the (3, 6)-regular SC-LDPC codes, and

These results are consistent with the asymptotic perfoceman

analysis shown in Fig. 9(a). Temst = 2B(dpmst + 1) (15)

for the BMST-R[2, 1] codes, wherelsc and dgyst are the
PERFORMANCE AND COMPLEXITY COMPARISON OF  decoding delays of the SC-LDPC codes and BMST codes,

SC-LDPC @WDES ANDBMST CODES respectively. When the parametel$, B, dsc, and dpyvst

In addition to decoding performance, the latency introduceatisfy B = M (dsc + 1)/(dpmsT + 1), the decoding latency

by employing channel coding is a crucial factor in the desigsf BMST-R [2, 1] codes is the same as that (&, 6)-regular
of a practical communication system. For example, miningzi SC-LDPC codes. In our simulations, we consider decoding
latency is very important in applications such as persondglay dsc = 5 (i.e., window sizeW = dgsc + 1 = 6), which
wireless communication and real-time audio and video. i ths a good choice for the SC-LDPC codes to achieve optimum

VI.
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Fig. 11.  Simulated decoding performance of BMSTR1] codes with Fig. 12.  RequiredE;/No to achieve a BER ofl0—5 for (3, 6)-regular

encoding memoryn = 8 compared to(3, 6)-regular SC-LDPC code with | ppC-BCs, (3, 6)-regular SC-LDPC codes, and BMST{R, 1] codes as a
coupling widthm = 1. The values ofB anddgwmst for the BMST-R codes  function of decoding latency.

are chosen in such a way that the decoding latencies of attdtles are the

same.
115 =0 Decoding latency of 10800 bits
-+ Decoding latency of 23760 bits
performance when the decoding latency is fixed [15]. % Decoding latency of 27720 bits
11l 4 ‘ ; |
A. Performance Comparison DO
In Fig. 11, BMST-R[2,1] codes are compared 13,6)- 105 |
regular SC-LDPC codes, where the values of the Cartesii= RN
product orderB and decoding delayipyst for the BMST- = Ol o----mT T @
R codes are chosen such that the two decoding latenc= 1 NN : Lt 1
TemsT and Tsc are the same. We see that the BMST-F Y E,,«—“’
codes outperform the SC-LDPC code in the waterfall regio R R
but have a higher error floor. From Fig. 11, we also se 2% N 1
that, in the waterfall region, the BMST-R code constructe R -V
with a larger Cartesian product ord& and decoded with a 0.9 ‘ ‘ ‘ ‘
smaller decoding delaygysTt = 9 outperforms the BMST- 8 9 10 11

. . Decoding delay d
R code constructed with a smallé? and decoded with a ceodis ety

larger decoding delaylsmsT = 14 but has a higher error rig. 13.  Requiredz;, /Ny to achieve a BER ofl0~5 for BMST-R [2, 1]

floor (both have the same decoding latency). In other wordsges with different decoding delaggvst and decoding latencies of 19800,

selecting a smalledgnsT, which is typically detrimental to 23760 and 27720 bits.

decoder performance, is compensated for by allowing adarge

B, which improves code performance. For example, at a BER

of 10~5, the BMST-R code withB = 1000 and decoded improves code performance.) However, under an equal decod-

with decoding delaylgyst = 14 gains0.05 dB compared ing latency assumption, increasing the decoding défaysr

to the equal latency SC-LDPC code wiftf = 2500, while or the Cartesian product ordét does not always lower the

the gain increases @15 dB by using the BMST-R code with £»/No required to achieve a BER af)~°. For example, when

B = 1500 and dgymsT = 9. the decoding latency i44850 bits, the performance of the
The E;,/N, required to achieve a BER df0—° for equal BMST-R code withB = 825 and decoded withlgnst = 8

latency (3, 6)-regular LDPC-BCs, (3,6)-regular SC-LDPC is better than that of the BMST-R code with = 675 and

codes, and BMST-R2, 1] codes as a function of decodingdecoded withdgmst = 10. However, if we increase the

latency is shown in Fig. 12, where we observe that botatency to 19800 bits, the code with the Cartesian product

the BMST-R codes and the SC-LDPC codes perform signfrder B = 825 and decoded with a largefsyst = 11 still

icantly better than the LDPC-BCs. Also, the performance @utperforms the code witlB = 1100 and decoded with a

the BMST-R codes (with fixed Cartesian product ordgy smallerdpyst = 8. This raises the interesting question of

improves as the decoding deldyyist (and hence the latency) how to chooseB and dgyvst in order to achieve the best

increases, but it does not improve much further beyondpgrformance when the decoding latency of the sliding window

certain decoding delay (roughWgyst = 10). (Note again decoder for BMST-R codes is fixed.

that increasing the decoding deldy\st improves decoder  We also see from Fig. 12 that, for a fixed decoding latency

performance and increasing the Cartesian product oRlerroughly less than 15000 bits, to achieve a BER16f°,
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dpmsT = 8 is a good choice for optimum performance. This Now consider &3, 6)-regular SC-LDPC code with lifting

is due to the fact that the interleavers, which break sharesy factor M and decoding delaysc (the corresponding decoding

in the normal graph of BMST codes, especially when th&indow size W = dgc + 1). Let Isc denote the average
interleavers of sizew = NB are generated randomly, playnumber of iterations required to decode a target layer for
a crucial role in iterative decoding [16]. That is, the lartfee  SC-LDPC codes. Note that the numbers of operations at a
Cartesian product ordeB is, the better the performance ofvariable node and a check node @, 6)-regular SC-LDPC
BMST codes becomes. However, the valudipf Ny required codes are 3 and 6, respectively. The average computational
to achieve a BER ot0~° for BMST-R [2, 1] codes decoded complexity (also measured by the total number of operafions
with a fixed decoding delaygyist is bounded below by its per window is then given by

corresponding window decoding threshold (see Section V-B)

Fig. 13 shows theFE,/N, values required for BMST-R O (3Tsc + 6T50/2) Isc = O (6Tsclsc) (19)
[2,1] codes to achieve a BER @6~° with different decoding where Ts¢ is the decoding latency. Note that the number
delaysdgmst and larger decoding latencies of 19800, 2376@f decoded (target) bits for the window decoder at each
and 27720 bits. Here we see that the required values the instant isTsc/(dsc + 1), and thus the computational
Ey /Ny for the BMST-R [2,1] codes withdgmst = 8 are  complexity per decoded bit for @, 6)-regular SC-LDPC code
the same and approach the corresponding window decodisg
threshold (as remarked in Section V-B). In this case, howeve 0 (6Tsc) Iso
we also observe that the required valuesFyf N, continue Tsc/(dsc + 1)
to decreases until roughysvst = 9 ~ 10, and then they  Table Il shows the average computational complexity per
increase gradually as the decoding detayst increases decoded bit of the(3,6)-regular SC-LDPC code and the
further. This increase results from the fact that the imptbv BMST-R [2, 1] codes used in Fig. 11 that achieve a BER of
decoder performance obtained by increasifigisT is not 10> with a decoding latency of 30000 bits. The simulation
compensating for the decrease in code performance as & resgtameters\f, B, m, dgmst, dsc, Ivmst andIsc are also
of the smaller Cartesian product ord®:. Thus, for larger included. We observe that, though the average number of
decoding latencies (up to 35000 bitgsnvst = 9 is @ good jterations/pust for the BMST code is significantly less than
choice for optimum performance. Isc for SC-LDPC code, the computational complexity per

decoded bhit for the BMST codes is higher than for the SC-
LDPC code. However, the BMST codes outperform the SC-
B. Complexity Comparison LDPC code in the waterfall region (see Fig. 11 in Section VI-

As shown in [16], we can measure the computationd): ThiS means that BMST-i2, 1] codes, compared 13, 6)-

complexity of BMST codes by the total number of operation&€9ular SC-LDPC codes, obtain performance gains at a cost
Consider a BMST-RN, 1] code or a BMST-SPEN, N — 1]  ©f higher computational complexity.
code with Cartesian product ordg® and decoding delay VIl. CONCLUSIONS

gg?}ﬂgﬁé hi;g‘p té’glhdgggéziazel ;yueTEZ;g poat)r:IaetII%r:)Sd :; a In this paper, we described BMST codes using both an alge-
' ] [ braic description and a graphical representation for thpqae
=} NB .parallllel nolde, and : node of tyrp])The of showing that BMST codes can be viewed as a class of SC
computational complexity for each noffe |, each no €] codes. Then, based on a modified EXIT chart analysis and
and each nodeG| is O(m + 2), O(m + 1), and O(NB), finite-length computer simulations, we investigated thpat
respectively. Thus, the total number of operations for eaghseveral parameters (coupling width, Cartesian prodratem

=0 (6(dsc + 1)Isc) - (20)

decoding layer update is given by and decoding delay) on the performance of BMST codes. We
then examined the relationship between the Cartesian ptodu

NB- Opt (EI) +NB-Opt () +Opt () order, the decoding delay, and the decoding performance of
=NB(m+2)+NB(m+1)+ NB=NB(@2m+4). BMST codes for fixed decoding latency in comparison to SC-

q h ber of | . (16) . LDPC codes, and a comparison of computational complexity
Let Ipust denote the average number of iterations requirgeh,s g, presented. It was observed that, under the equal

to decode a target layer for BMST codes. Since each iteratigh. o jing |atency constraint, BMST codes using the repetiti
requires both a forward recursiotigyst layer-updates) and a 1, 1] code (BMST-R[2, 1] code) as the basic code can out-
backward recursionfgs layer-updates), the total (averageLérform (3,6)-regular SC-LDPC codes in the waterfall region
computational complexity per window is given by but have a higher error floor and a larger decoding complexity
O(NB(2m + 4) x 2dpust)IBMmST An interesting future research topic to complement the work
reported here is to embed a partial superposition strategy i

= O(NB(4m + 8)dpmst)IBMmsT. , .
Note that the number of decoded (target) bits for the Windotvh/? code design to further improve the performance of the

decoder at each time instanti&B, and thus the computationalOrlglnal BMST codes for a given decoding latency.
complexity per decoded bit for a BMST code is ACKNOWLEDGMENT

O(NB(4m + 8)dpmst)IBMmsT/ (N B) (18) The authors would like to thank Prof. Daniel J. Costello, Jr.
= O ((4m + 8)dmsTIBMST) - for his helpful comments, polishing this paper, and invhlaa

(17)
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TABLE Il

12

COMPUTATIONAL COMPLEXITY PER DECODED BIT OF A(3, 6)-REGULAR SC-LDPCCODE AND BMST-R[2, 1] CODES THAT ACHIEVE ABEROF 10~
WITH DECODING LATENCY OF30000BITS

Codes M\B m dSC\dBMST ISC\IBMST Complexity
SC-LDPC 2500 1 5 9.65 347.4

BMST 1000 8 14 2.03 1136.8

BMST 1500 8 9 3.20 1152.0

contributions as a co-author of the conference version ief th17] C. Liang, X. Ma, Q. Zhuang, and B. Bai, “Spatial coupliofjgenerator
paper [36]. They would also like to thank Mr. Chulong Liang

from Sun Yat-sen University for helpful discussions.
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