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Abstract—In this paper, we consider the asymptotic and finite-
length performance of block Markov superposition transmis-
sion (BMST) of short codes, which can be viewed as a new
class of spatially coupled (SC) codes with the generator matrices
of short codes (referred to asbasic codes) coupled. A modified
extrinsic information transfer (EXIT) chart analysis that takes
into account the relation between mutual information (MI)
and bit-error-rate (BER) is presented to study the convergence
behavior of BMST codes. Using the modified EXIT chart analysis,
we investigate the impact of various parameters on BMST code
performance, thereby providing theoretical guidance for design-
ing and implementing practical BMST codes suitable for sliding
window decoding. Then, we present a performance comparison
of BMST codes and SC low-density parity-check (SC-LDPC)
codes on the basis of equal decoding latency. Also presentedis
a comparison of computational complexity. Simulation results
show that, under the equal decoding latency constraint, BMST
codes using the repetition code as the basic code can outperform
(3, 6)-regular SC-LDPC codes in the waterfall region but have a
higher computational complexity.

Index Terms—Block Markov superposition transmis-
sion (BMST), capacity-approaching codes, extrinsic information
transfer (EXIT) chart analysis, sliding window decoding, spatial
coupling.

I. I NTRODUCTION

Low-density parity-check (LDPC) block codes (LDPC-
BCs) [1], combined with iterative belief propagation (BP)
decoding, are a class of capacity-approaching codes with
decoding complexity that increases only linearly with block
length [2]. A practical approach to improving the performance
of LDPC-BCs is coupling together a series ofL disjoint graphs
that specify the parity-check matrix of an LDPC-BC into a
single coupled chain, thereby producing a spatially coupled
LDPC (SC-LDPC) code. It has been shown in [3–6] that SC-
LDPC code ensembles exhibit a phenomenon called “threshold
saturation”, which allows them to achieve the maximum
a posteriori (MAP) thresholds of their underlying LDPC-
BC ensembles on memoryless binary-input symmetric-output
channels under BP decoding, and thus to achieve capacity by
increasing the density of the parity-check matrix. Due to their
excellent performance, SC-LDPC codes have recently received
a great deal of attention in the literature (see, e.g., [7–15] and
the references therein).

The concept of spatial coupling is not limited to LDPC
codes. Block Markov superposition transmission (BMST) of
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Fig. 1. Encoder of a BMST code with encoding memorym, where the
information sequenceu(t) at time t is encoded into the sub-codewordc(t)

for transmission.

short codes [16, 17], for example, is equivalent to spatial
coupling of the subgraphs that specify the generator matrices
of the short codes. From this perspective, BMST codes are
similar to braided block/convolutional codes [18–20], staircase
codes [21], and SC turbo codes [22]. An encoder of a BMST
code with encoding memorym is shown in Fig. 1, where a
BMST code can also be viewed as a serially concatenated code
with a structure similar to repeat-accumulate-like codes [23–
25]. The outer code is a short code, referred to as thebasic
code (not limited to repetition codes), that introduces redun-
dancy, while the inner code is a rate-one block-oriented feed-
forward convolutional code (instead of a bit-oriented accumu-
lator) that introduces memory between transmissions. Hence,
BMST codes typically have very simple encoding algorithms.
To decode BMST codes, a sliding window decoding algorithm
with a tunable decoding delay can be used, as with SC-LDPC
codes [26]. The construction of BMST codes is flexible [27,
28], in the sense that it applies to all code rates of interest
in the interval (0,1). Further, BMST codes have near-capacity
performance (observed by simulation) in the waterfall region
of the bit-error-rate (BER) cruve and an error floor (predicted
by analysis) that can be controlled by the encoding memory.

On an additive white Gaussian noise channel (AWGNC),
the well-known extrinsic information transfer (EXIT) chart
analysis [29] can be used to obtain the iterative BP decoding
threshold of LDPC-BC ensembles. In [30], a novel EXIT chart
analysis was used to evaluate the performance of protograph-
based LDPC-BC ensembles, and a similar analysis was used
to find the thresholds ofq-ary SC-LDPC codes with sliding
window decoding in [31]. Unlike LDPC codes, the asymptotic
BER of BMST codes with window decoding cannot be better
than a corresponding genie-aided lower bound [16]. Thus,
conventional EXIT chart analysis cannot be applied directly to
BMST codes. In this paper, we propose a modified EXIT chart
analysis, that takes into account the relation between mutual
information (MI) and BER, to study the convergence behavior
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of BMST codes and to predict the performance in the waterfall
region of the BER curve. Simulation results confirm that the
modified EXIT chart analysis of BMST codes is supported by
their finite-length performance behavior. We also investigate
the relationship between the basic code structure, the decoding
delay, and the decoding performance of BMST codes when the
decoding latency is fixed. Finally, we present a computational
complexity comparison of BMST codes and SC-LDPC codes
on the basis of equal decoding latency.

The rest of the paper is structured as follows. In Section II,
we give a brief review of BMST codes. In Section III, we dis-
cuss the relation between BMST codes and protograph-based
SC-LDPC codes. In Section IV, we propose a modified EXIT
chart analysis of BMST codes. In Section V, we investigate
the impact of various parameters on BMST code performance.
Then, in Section VI, we present a performance comparison
of BMST codes and SC-LDPC codes on the basis of equal
decoding latency. A computational complexity comparison of
BMST codes and SC-LDPC codes is also given in Section VI.
Finally, some concluding remarks are given in Section VII.

II. REVIEW OF BMST CODES

A. Encoding of BMST Codes

Consider a BMST code using a rateR = k/n binary basic
codeC [n, k] of length n and dimensionk. Let u = (u(0),
u(1), · · · , u(L−1)) beL blocks of data to be transmitted, where
u(t) ∈ F

k
2 . Here,L is called thecoupling length. The encoding

algorithm of a BMST code with encoding memory (coupling
width) m is described as follows (see Fig. 1), whereΠi (0 ≤
i ≤ m) arem+ 1 interleavers of sizen.

Algorithm 1: Encoding of BMST Codes

• Initialization: For t < 0, setv(t) = 0 ∈ F
n
2 .

• Loop: For t = 0, 1, · · · , L− 1,

1) Encodeu(t) into v(t) ∈ F
n
2 using the encoding

algorithm of the basic codeC ;
2) For 0 ≤ i ≤ m, interleavev(t−i) using thei-th

interleaverΠ i into w(t,i);
3) Computec(t) =

∑

0≤i≤m w(t,i), which is taken as
the t-th block of transmission.

• Termination: For t = L, L + 1, · · · , L + m − 1, set
u(t) = 0 ∈ F

k
2 and computec(t) following Loop.

Remark: To force the encoder of BMST codes to the zero
state at the end of the encoding process, a tail consisting
of m blocks of thek-dimensional all-zero vector is added.
This is different from SC-LDPC code encoders, where the tail
is usually non-zero and depends on the encoded information
bits (see Section IV of [32]). As a result, the termination
procedure for BMST codes is much simpler than for SC-LDPC
codes.

The rate of the BMST code is

RBMST =
Lk

(L +m)n
=

L

L+m
R, (1)

which is slightly less than the rateR = k/n of the basic code.
However, similar to SC-LDPC codes, this rate loss becomes
vanishingly small asL → ∞.

Though any code (linear or nonlinear) with a fast encoding
algorithm and an efficient soft-in soft-out (SISO) decoding
algorithm can be taken as the basic code, we focus in this paper
on the use of theB-fold Cartesian product of a repetition (R)
code (denoted by R[N, 1]) or a single parity-check (SPC)
code (denoted by SPC[N,N−1]) as the basic code, resulting
in a BMST-R code (denoted by BMST-R[N, 1]) or a BMST-
SPC code (denoted by BMST-SPC[N,N − 1]), respectively.1

Note that the overall code length of the basic code in this case
is n = BN and the overall dimension isk = B or B(N − 1).

B. Sliding Window Decoding of BMST Codes

BMST codes can be represented by a Forney-style factor
graph, also known as a normal graph [33], where edges rep-
resent variables and vertices (nodes) represent constraints. All
edges connected to a node must satisfy the specific constraint
of the node. A full-edge connects to two nodes, while a half-
edge connects to only one node. A half-edge is also connected
to a special symbol, called a “dongle”, that denotes coupling
to other parts of the transmission system (say, the channel or
the information source) [33]. There are four types of nodes in
the normal graph of BMST codes.

• Node + : All edges (variables) connected to node+
must sum to the all-zero vector. The message updating
rule at node + is similar to that of a check node in the
factor graph of a binary LDPC code. The only difference
is that the messages on the half-edges are obtained from
the channel observations.

• Node Πi : The nodeΠi represents thei-th interleaver,
which interleaves or de-interleaves the input messages.

• Node = : All edges (variables) connected to node=
must take the same (binary) values. The message updating
rule at node = is the same as that of a variable node in
the factor graph of a binary LDPC code.

• Node G : All edges (variables) connected to nodeG
must satisfy the constraint specified by the basic codeC .
The message updating rule at nodeG can be derived
accordingly, where the messages on the half-edges are
associated with the information source.

The normal graph of a BMST code can be divided into
layers, where each layer typically consists of a node of type
G , a node of type= , m nodes of typeΠ , and a node of

type + (see Fig. 2). The result is a high-level normal graph,
where each edge represents a sequence of random variables.
Looking into the details, we can see that, at each layer, there
are n nodes = of degreem + 2, n nodes + of degree

m+2 (including half edges), andB nodes G0 corresponding
to the short code (R[N, 1] or SPC[N,N − 1] in this paper).

Similar to SC-LDPC codes, an iterative sliding window
decoding algorithm with decoding delayd working over
a subgraph consisting ofd + 1 consecutive layers can be
implemented for BMST codes. An example of a window
decoder with decoding delayd = 2 operating on the normal

1Using codes constructed by time-sharing between the R code and the SPC
code as the basic code, one can construct BMST-RSPC codes fora wide range
of code rates. For more details, see [28].
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Fig. 2. Example of a window decoder with decoding delayd = 2 operating
on the normal graph of a BMST code withm = 1 at timest = 0 (solid
blue) andt = 1 (dotted red). For each window position/time instant, the
first (left-most) decoding layer is called the target layer.

graph of a BMST code withm = 1 is shown in Fig. 2.
For each window position, the forward-backward decoding
algorithm is implemented for updating the messages layer-by-
layer within the decoding window.2 Decoding proceeds until a
fixed number of iterations has been performed or some given
stopping criterion is satisfied, in which case the window shifts
to the right by one layer and the symbols corresponding to the
layer shifted out of the window are decoded. The first layer
in any window is called thetarget layer.

C. Genie-Aided Lower Bound on BER

Let pb = fBMST(γb) represent the performance of a BMST
code with encoding memory (coupling width)m and coupling
lengthL, wherepb is the BER andγb , Eb/N0 represents
the received bit signal-to-noise ratio (SNR) on an AWGNC
in dB, and letpb = fBasic(γb) represent the performance of
the basic code. By assuming a genie-aided decoder, we can
obtain a lower bound on the performance of BMST codes
given by (see [16])

fBMST(γb)≥fBasic(γb+10log10(m+1)−10log10(1+m/L)),
(2)

where the term10 log10 (m+ 1) depends on the encoding
memory m and the term10 log10(1+ m/L) is due to the
rate loss. In other words, a maximum coding gain over the
basic code of10 log10(m+1) dB in the low BER (high SNR)
region is achieved for largeL. Intuitively, this bound can be
understood by assuming that a codeword in the basic code is
transmittedm+1 times without interference from other layers.

D. Design of Capacity Approaching BMST Codes

Aided by the genie-aided lower bound, we can construct
good codes at a target BER with any given code rate of interest
by determining as follows the required encoding memorym.

1) Take a code with the given rate as the basic code. To
approach channel capacity, we set the code lengthn ≥
10000;

2) From the performance curvefBasic (γb) of the basic
code, find the requiredEb/N0 = γtarget to achieve the
target BER;

2For more details on the decoding algorithm of BMST codes, we refer the
reader to Section III of [16].

TABLE I
ENCODING MEMORIES FORBMST CODES REQUIRED TO APPROACH THE

CORRESPONDINGSHANNON LIMITS AT GIVEN TARGET BERS

Encoding memorym
Target BER

10−3 10−4 10−5 10−6

BMST-R [2, 1] 4 6 8 10
BMST-R [4, 1] 5 8 10 13
BMST-R [8, 1] 6 9 11 14

BMST-SPC[4, 3] 2 3 4 5

3) Find the Shannon limit for the code rate, denoted by
γlim;

4) Determine the encoding memorym by

m =
⌈

10
γtarget−γlim

10 − 1
⌉

, (3)

where ⌈x⌉ represents the smallest integer greater than
or equal tox.

The above procedure requires no optimization and hence
can be easily implemented given that the performance curve
fBasic (γb) is available, as is the usual case for short codes.3

Its effectiveness has been confirmed by construction examples
in [16, 17, 27, 28]. The encoding memories for some BMST
codes required to approach the corresponding Shannon limits
at given target BERs are shown in Table I. As expected, the
lower the target BER is, the larger the required encoding
memorym is.

III. BMST CODES AS ACLASS OFSC CODES

In this section, we show that BMST codes can be viewed
as a class of SC codes, using an algebraic description as well
as a graphical representation, and we compare the structureof
BMST codes to SC-LDPC codes.

A. Matrix Representation

To describe an SC-LDPC code ensemble with coupling
width (syndrome former memory) m and coupling lengthL,
we start with an(L+m)(N −K)× LN matrix

B =

















B0

B1 B0

... B1
. . .

Bm

...
. . . B0

Bm

. . . B1

. . .
...

Bm

















, (4)

where all of the m + 1 component submatrices
B0,B1, . . . ,Bm have non-negative integer entries and
size(N−K)×N . To construct an SC-LDPC code with good
performance, we can replace each non-zero entryb 6= 0 in B

3The basic code considered in this paper is a Cartesian product of a short
code, where each codeword is indeed a cascade ofB separate and independent
codewords from the short code. Thus, the performance of the basic code can
easily be obtained, which is the same as that of the involved short code.
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with a sum ofb nonoverlapping randomly selectedM × M
permutation matrices and each zero entry inB with the
M ×M all-zero matrix, whereb is typically a small integer
and M is typically a large integer. The resulting SC-LDPC
parity-check matrixHSC of size(L+m)(N−K)M×LNM
is given by

HSC =
















H0(0)
H1(1) H0(1)

... H1(2)
. . .

Hm(m)
...

. . . H0(L − 1)

Hm(m+ 1)
. . . H1(L)
. . .

...
Hm(L+m− 1)

















, (5)

where the blank spaces inHSC correspond to zeros and the
submatricesH i(t+ i) have size(N −K)M ×NM , for 0 ≤
i ≤ m and0 ≤ t ≤ L− 1.

In contrast to SC-LDPC codes, it is convenient to de-
scribe BMST codes using generator matrices. LetG0 be
the generator matrix of a short code with dimensionK and
lengthN . To describe a BMST code ensemble with coupling
width (encoding memory) m and coupling lengthL, we start
with theL× (L+m) matrix

A =










1 1 · · · 1
1 1 · · · 1

. . .
. . .

. . .
. . .

1 1 · · · 1
1 1 · · · 1










, (6)

which has constant weightm + 1 in each row. This matrix
A plays a similar role for constructing BMST codes as the
matrixB does for constructing SC-LDPC codes. To construct
a BMST code with good performance, each nonzero entry
Aj,j+i (0 ≤ j ≤ L− 1 and0 ≤ i ≤ m) in A is replaced with
a matrixGΠ i, where

G = diag{G0, · · · ,G0
︸ ︷︷ ︸

B

} (7)

is the generator matrix of theB-fold Cartesian product of the
short code, theΠi (0 ≤ i ≤ m) arem+1 randomly selected
NB × NB permutation matrices, and the Cartesian product
orderB is typically large. The resulting BMST code has length
(L +m)NB and dimensionLKB, and the generator matrix
GBMST is given by

GBMST =







GΠ0 GΠ1 · · · GΠm

GΠ0 GΠ1 · · · GΠm

. . .
. ..

. . .
. ..

GΠ0 GΠ1 · · · GΠm







.

(8)

0 0 0

t t

0 0

L-

0 0 00 0

0

t

t t L-t L

1 1 1

Fig. 3. (a) A protograph corresponding to the submatrixB0, (b)L uncoupled
protographs, each of which corresponds to the submatrixB0, and (c) a
protograph corresponding to an SC-LDPC code ensemble with coupling length
L and coupling widthm = 1.

B. Graphical Representation

SC-LDPC code ensembles are often described in terms of
a protograph, where anedge-spreading operation is applied
to couple a sequence of disjoint block code protographs into
a single chain [6]. Usually, no extra edges are introduced
during the coupling process. In this paper, we describe the
coupling process from a new perspective, where extra edges
are allowed to be added. We believe that this new treatment is
more general. For example, SC turbo codes [22] are obtained
by adding edges to connect each turbo code graph to one or
more nearby graphs in the chain. Based on this perspective,
we can redescribe SC-LDPC codes as follows.

We start with a protograph for the submatrixB0 = [Bi,j ],
which hasN variable nodes andN−K check nodes, where the
i-th check node is connected to thej-th variable node byBi,j

edges. A short-hand protograph corresponding toB0 is shown
in Fig. 3(a), where the node=© representsN variable nodes,
the node +© representsN − K check nodes, and the edge
B0© represents a collection of

∑
Bi,j edges. To distinguish,

the edgeB0© is referred to as asuper-edge of typeB0, while
the conventional edge in the full protograph is referred to as
a simple edge. The short-hand protograph is then replicated
L times, as shown in Fig. 3(b), meaning that the sequence
of transmitted codewords satisfy independently the constraint
B0. TheL disjoint graphs are then coupled by adding asuper-
edge of typeBi to bridge the variable node=© at timet and the
check node+© at timet+i, for 0 ≤ t ≤ L−1 and1 ≤ i ≤ m,
resulting in a single coupled chain corresponding to an SC-
LDPC code ensemble with coupling lengthL and coupling
memorym. An example of an SC-LDPC code ensemble with
coupling memorym = 1 is shown in Fig. 3(c). When lifting,
eachsimple edge (not super-edge) is replaced by a bundle of
M edges (permutation within the bundle is assumed), resulting
in an SC-LDPC code with lengthLNM .

Similarly, BMST codes start with a protograph for the
generator matrixG0 = [Gi,j ], which hasK = nodes
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Fig. 4. (a) A protograph representing the basic code with generator matrix
G0, (b) L uncoupled basic protographs, each of which corresponds to the
generator matrixG0, (c) a protograph corresponding to a BMST code
ensemble with coupling lengthL and coupling widthm = 1, and (d) an
equivalent protograph corresponding to the same BMST code ensemble with
coupling lengthL and coupling widthm = 1.

and N + nodes, where thei-th = node is connected to
the j-th + node if and only if Gi,j = 1. A short-hand
protograph corresponding toG0 is shown in Fig. 4(a), where
G0 represents asuper-edge of type G0. The protograph is

then replicatedL times, as shown in Fig. 4(b), which can
be considered as transmitting a sequence of codewords from
the basic code corresponding to the generator matrixG0

independently at time instantst = 0, 1, · · · , L − 1. The L
disjoint graphs are coupled by adding asuper-edge of type
G0 to bridge the = node at timet and the + node at
time t+ i, for 1 ≤ i ≤ m, resulting in a single coupled chain
corresponding to a BMST code ensemble with coupling length
L and coupling memorym. An example of a BMST code
ensemble with coupling memorym = 1 is shown in Fig. 4(c),
whose equivalent form is shown in Fig. 4(d). When lifting, the
super-edge of typeG0 bridging the = node at timet and the
+ node at timet+ i, for 0 ≤ t ≤ L− 1 and0 ≤ i ≤ m, is

replaced by asuper-edge of typeGΠi, resulting in a BMST
code with length(L+m)NB.

C. Similarities and Differences

From the previous two subsections, we see that both SC-
LDPC codes and BMST codes can be derived from a small
matrix by replacing the entries with properly-defined sub-

matrices. We also see that the generator matrixGBMST of
BMST codes is similar in form to the parity-check matrix
HSC of SC-LDPC codes. SC-LDPC codes introduce memory
by spatially coupling the basic parity-check matricesB0,
while BMST codes introduce memory by spatially coupling
the basic generator matricesG0. Further, we see from Fig. 3
and Fig. 4 that during the construction of both SC-LDPC
codes and BMST codes, the memory is introduced by coupling
the disjoint graphs together in a single chain, which is the
fundamental idea of spatial coupling. Thus, BMST codes can
be viewed as a class of SC codes.

IV. EXIT C HART ANALYSIS OF BMST CODES

Given the basic code with generator matrixG0, we can con-
struct a sequence of BMST codes by choosing the Cartesian
product orderB = 1, 2, · · · . Now assume that the interleavers
are chosen uniformly and at random for each transmission.
Then we have a sequence of code ensembles. The aim of EXIT
chart analysis is to predicte the performance behavior of the
BMST codes asB → ∞. In this section, we first discuss the
issue that prevents the use of conventional EXIT chart analysis
for BMST codes, and then we provide a modified EXIT chart
analysis to study the convergence behavior of BMST codes
with window decoding.

We consider binary phase-shift keying (BPSK) modulation
over the binary-input AWGNC. To describe density evolution,
it is convenient to assume that the all-zero codeword is
transmitted and to represent the messages as log-likelihood
ratios (LLRs). The threshold of protograph-based LDPC codes
can be obtained based on a protograph-based EXIT chart anal-
ysis [30, 31] by determining the minimum value of the SNR
Eb/N0 such that the MI between thea posteriori message at
a variable node and an associated codeword bit (referred to
as thea posteriori MI for short) goes to 1 as the number
of iterations increases, i.e., the BER at the variable nodes
tends to zero as the number of iterations tends to infinity.
At a first glance, a similar iterative sliding window decoding
EXIT chart analysis algorithm can be implemented over the
normal graph (see Fig. 4(d)) of the BMST code ensemble to
study the convergence behavior of BMST codes. However,
as shown in (2), the high SNR performance of BMST codes
with window decoding cannot be better than the corresponding
genie-aided lower bound, which means that thea posteriori
MI of BMST codes cannot reach 1 as the number of iterations
tends to infinity. Thus, the conventional EXIT chart analysis
cannot be applied directly to BMST codes. Fortunately, this
can be amended by taking into account the relation between
MI and BER [29]. Specifically, we need the convergence
check at node G0 , as described below in Algorithm 2.
For convenience, the MI between thea priori input and the
corresponding codeword bit is referred to as thea priori MI,
the MI between theextrinsic output and the corresponding
codeword bit is referred to as theextrinsic MI, and the
MI between the channel observation and the corresponding
codeword bit is referred to as thechannel MI.

Algorithm 2: Convergence Check at NodeG0
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• Let IA denote thea priori MI and IE denote theextrinsic
MI. Then thea posteriori MI IAP is given by

IAP = J(
√

[J−1(IA)]2 + [J−1(IE)]2), (9)

where theJ(·) andJ−1(·) functions are given in [34],IA
is thea priori MI, and IE is theextrinsic MI. As shown
in Section III-C of [29], supposing that thea posteriori
MI is Gaussian, an estimate of the BERpest is then given
by

pest = Q
(
J−1(1− IAP)/2

)
, (10)

where

Q(x) =
1√
2π

∫ ∞

x

exp

(

− t2

2

)

dt. (11)

• If the estimated BERpest is less than some preselected
target BER, a local decoding success is declared; other-
wise, a local decoding failure is declared.

For a fixed SNREb/N0, the channel bit LLR corresponding
to the binary-input AWGNC is Gaussian with variance [29]

σ2
ch = 8RBMST

Eb

N0
, (12)

whereRBMST is the rate of the BMST codes. The channel
MI is then given by

Ich = J (σch) = J

(√

8RBMST
Eb

N0

)

. (13)

The modified EXIT chart analysis algorithm of BMST codes,
similar to the protograph-based EXIT chart analysis algorithm
of SC-LDPC codes [31], can now be described as follows.

Algorithm 3: EXIT Chart Analysis of BMST Codes with
Window Decoding

• Initialization: All messages over those half-edges (con-
nected to the channel) at nodes+ are initialized as
Ich according to (13), all messages over those half-edges
(connected to the information source) at nodesG0 are
initialized as 0, and all messages over the remaining
(inter-connected) full-edges are initialized as 0. Set a
maximum number of iterationsImax.

• Sliding window decoding: For each window position,
the d+ 1 decoding layers perform MI message process-
ing/passing layer-by-layer according to the schedule

+ → = → G0 → = → + .

After a fixed number of iterationsImax, perform a
convergence check at nodeG0 using Algorithm 2.
If a local decoding failure is declared, then window
decoding terminates; otherwise, a local decoding success
is declared, the window position is shifted, and decoding
continues. A complete decoding success for a specific
channel parameterEb/N0 and target BER is declared if
and only if all target layers declare decoding successes.

Now we can denote the iterative decoding threshold
(Eb/N0)

∗ of BMST code ensembles for a preselected target
BER as the minimum value of the channel parameterEb/N0

which allows the decoder of Algorithm 3 to output a decoding

success, in the limit of large code lengths (i.e.,B → ∞).

V. I MPACT OF PARAMETERS ONBMST CODES

In this section we study the impact of various parame-
ters (coupling widthm, Cartesian product orderB, and decod-
ing delayd) on BMST codes. Three regimes are considered:
(1) fixedm andB, increasingd, (2) fixedm andd, increasing
B, and (3) fixedB, increasingm (and henced).

All simulations are performed assuming BPSK modulation
and an AWGNC. In the computation of the asymptotic window
decoding thresholds of BMST codes, we set a maximum
number of iterationsImax = 1000. We will refer to the
iterative decoding threshold(Eb/N0)

∗ simply asEb/N0 when
it does not lead to ambiguity. In the simulations of finite-length
performance,m+1 random interleavers (randomly generated
but fixed) of sizen = NB are used for encoding. The
iterative sliding window decoding algorithm [16, Algorithm 3]
for BMST codes is performed using a layer-by-layer updating
schedule with a maximum iteration number of 18, and the
entropy stopping criterion [16, 35] with a preselected threshold
of 10−6 is employed.

A. Fixed m and B, Increasing d

Example 1 (Asymptotic Performance): Consider a
RBMST = 0.49 BMST-R [2, 1] code ensemble withm = 8
andL = 392. We calculate its window decoding thresholds
with different preselected target BERs and different decoding
delays. The calculated thresholds in terms of the SNREb/N0

versus the preselected target BERs together with the lower
bound are shown in Fig. 5(a), where we observe that

1) In the waterfall region (above a critical BER), the
thresholds remain almost constant. However, once the
critical BER is reached, the thresholds increase as the
target BER decreases.

2) For a small decoding delay (sayd = m), the thresholds
do not achieve the lower bound even in the high SNR
region.

3) For a larger decoding delay (roughlyd = 2m ∼ 3m),
the thresholds correspond to the lower bound in the
high SNR region, suggesting that the window decoding
algorithm with decoding delayd ≥ 2m ∼ 3m is near
optimal for BMST codes.

4) The error floor region threshold improves as the decod-
ing delay d increases, but it does not improve much
further beyond a certain decoding delay (roughlyd =
2m ∼ 3m).

Similar behavior has also been observed for BMST-SPC
code ensembles, as shown in Fig. 5(b), where the thresholds
of a rateRBMST = 0.74 BMST-SPC [4, 3] code ensemble
constructed withm = 4 and L = 296 and decoded with
different decoding delaysd are depicted.

The window decoding thresholds, corresponding to a pres-
elected target BER4 of 10−5, for the (3, 6)-regular SC-LDPC
code ensemble withm = 1 and the BMST-R[2, 1] code

4We choose a BER of10−5 for comparison because it represents a target
BER commonly used in many practical applications.
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Fig. 5. Window decoding thresholds in terms ofEb/N0 (dB) with different
target BERs and different decoding delays for (a) a rateRBMST = 0.49
BMST-R [2, 1] code ensemble withm = 8 and L = 392, and (b) a rate
RBMST = 0.74 BMST-SPC[4, 3] code ensemble withm = 4 andL = 296.

ensemble withm = 8 as a function of decoding delayd is
shown in Fig. 6. We see that, similar to the SC-LDPC code
ensemble, the threshold of the BMST code ensemble improves
as the decoding delayd increases and it becomes better than
that of the SC-LDPC code ensemble beyond a certain decoding
delay (roughlyd = 10).

Example 2 (Finite-Length Performance): Consider rate
RBMST = 0.49 BMST-R [2, 1] codes withm = 8 and
L = 392. The BER performance of BMST-R codes decoded
with different decoding delaysd is shown in Fig. 7(a), where
we observe that

1) The BER performance of BMST-R codes decoded with
different delaysd matches well with the corresponding
window decoding thresholds in the high SNR region.

2) The BER performance in the waterfall region improves
as the decoding delayd increases, but it does not
improve much further beyond a certain decoding de-
lay (roughlyd = 10).

2 4 6 8 10 12 14 16
0

0.4

0.8

1.2
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Decoding delay d

E
b/
N

0
(d
B
)

 

 
(3, 6)-regular SC-LDPC code ensemble with m = 1
BMST-R [2, 1] code ensemble with m = 8

Fig. 6. Window decoding thresholds for a(3, 6)-regular SC-LDPC code
ensemble withm = 1 and a BMST-R[2, 1] code ensemble withm = 8
as a function of decoding delayd. The preselected target BER is10−5 . The
component submatrices for the SC-LDPC code ensemble areB0 = [2 1] and
B1 = [1 2].

3) The error floor improves as the decoding delayd in-
creases, and it matches well with the lower bound for
BMST-R codes withm = 8 when d increases up to a
certain point (roughlyd = 16).

These results are consistent with the asymptotic threshold
performance analysis shown in Fig. 5(a).

Similar behavior has also been observed for BMST-SPC
code ensembles, as shown in Fig. 7(b), where the simulated
decoding performance of a rateRBMST = 0.74 BMST-SPC
[4, 3] code constructed withm = 4, L = 296, andB = 1200,
and decoded with different decoding delaysd is depicted.

B. Fixed m and d, Increasing B

Example 3 (Finite-Length Performance): Consider rate
RBMST = 0.49 BMST-R [2, 1] codes withm = 8 and
L = 392. The BER performance of BMST-R codes
constructed with different Cartesian product ordersB is
shown in Fig. 8, where we observe that

1) Similar to SC-LDPC codes, where increasing the lift-
ing factor M improves waterfall region performance,
increasing the Cartesian product orderB of BMST
codes also improves waterfall region performance. As
expected, this improvement saturates for sufficiently
large B. For example, the improvement at a BER of
10−5 from B = 1000 to B = 2000, both decoded with
d = 16, is about 0.17 dB, while the improvement de-
creases to about 0.06 dB fromB = 3000 to B = 4000.

2) The BER performance of BMST-R codes matches well
with the corresponding window decoding thresholds in
the error floor region.

3) The error floors, which are solely determined by the
encoding memorym (see Section II-C), cannot be
lowered by increasingB.

Remark: We found from simulations that, in the error
floor region, the gap between finite-length performance and
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Fig. 7. Simulated decoding performance of BMST codes decoded with
different decoding delaysd. The corresponding window decoding thresholds
and the lower bound are also plotted. (a) RateRBMST = 0.49 BMST-R
[2, 1] codes with encoding memorym = 8 and coupling lengthL = 392.
The Cartesian product orders of the two BMST-R codes areB = 750 and
B = 1500, respectively. (b) A rateRBMST = 0.74 BMST-SPC[4, 3] code
with encoding memorym = 4, coupling lengthL = 296, and Cartesian
product orderB = 1200.

window decoding threshold(Eb/N0)
∗ is less than 0.02 dB.

For example, the values ofEb/N0 needed to achieve a BER
of 10−5 for a BMST-R[2, 1] code withm = 8, very extremely
large Cartesian product order (say,B = 4000), and decoding
delay d = 8 is 1.087 dB, while the calculated window
decoding threshold for a preselected target BER of10−5 of
the BMST-R [2, 1] code ensemble withm = 8 and d = 8
is (Eb/N0)

∗
= 1.069. This result again demonstrates that

the finite-length performance is consistent with the asymptotic
performance analysis.

C. Fixed B, Increasing m (and hence d)

Example 4 (Asymptotic Performance): Consider a family
of RBMST = 0.49 BMST-R [2, 1] code ensembles with differ-
ent encoding memoriesm. The calculated window decoding
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Fig. 8. Simulated decoding performance of rateRBMST = 0.49 BMST-R
[2, 1] codes with different Cartesian product ordersB. The encoding memory
m = 8 and the coupling lengthL = 392. The codes are decoded with
(a) decoding delayd = 8, and (b) d = 16. The corresponding window
decoding thresholds and the lower bound for BMST-R codes with m = 8 are
also plotted.

thresholds in terms of the SNREb/N0 versus the preselected
target BERs together with the lower bounds are shown in
Fig. 9(a), where we observe that

1) For a high target BER (roughly above10−3), the thresh-
old with a sufficiently large decoding delay degrades
slightly as the encoding memorym increases, due to
errors propagating to successive decoding windows.

2) The error floor can be lowered by increasing the encod-
ing memorym (and hence the decoding delayd).

Similar behavior has also been observed for BMST-SPC
code ensembles, as shown in Fig. 9(b), where the thresholds
of a family of rateRBMST = 0.74 BMST-SPC [4, 3] code
ensembles are depicted.

Example 5 (Finite-Length Performance): Consider rate
RBMST = 0.49 BMST-R [2, 1] codes constructed with
encoding memoriesm = 4, 6, 8, and 10, and Cartesian
product ordersB = 750 andB = 1500. The simulated BER
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Fig. 9. Window decoding thresholds in terms of(Eb/N0)
∗ (dB) with

different target BERs for two BMST code ensemble families with different
encoding memoriesm. (a) BMST-R[2, 1] code ensemble and (b) BMST-SPC
[4, 3] code ensemble.

performance with sufficiently large decoding delay is shown
in Fig. 10, where we observe that

1) The BER performance in the waterfall region degrades
slightly as the encoding memorym increases, due to
errors propagating to successive decoding windows.

2) The error floor of the BER curves is lowered by increas-
ing the encoding memorym (and hence the decoding
delayd).

These results are consistent with the asymptotic performance
analysis shown in Fig. 9(a).

VI. PERFORMANCE ANDCOMPLEXITY COMPARISON OF

SC-LDPC CODES AND BMST CODES

In addition to decoding performance, the latency introduced
by employing channel coding is a crucial factor in the design
of a practical communication system. For example, minimizing
latency is very important in applications such as personal
wireless communication and real-time audio and video. In this
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Fig. 10. Simulated decoding performance of rateRBMST = 0.49 BMST-R
[2, 1] codes constructed with different encoding memoriesm and decoded
with decoding delayd = 2m. The Cartesian product orders of the involved
BMST-R codes areB = 750 andB = 1500. The corresponding lower bound
for BMST-R codes is also plotted.

section, we first compare the performance of BMST codes and
SC-LDPC codes when the two decoding latencies are equal.
Then a computational complexity comparison is presented.

We restrict consideration to(3, 6)-regular SC-LDPC codes
with coupling widthm = 1, where two component subma-
trices B0 = [2 1] and B1 = [1 2] are used, due to their
superior thresholds and finite-length performance with window
decoding when the decoding delay is relatively small (see,
e.g., [15, 31]). For the BMST codes, we consider BMST-R
[2,1] codes with encoding memorym = 8, due to their near-
capacity performance in the waterfall region and relatively
low error floor (see Section V). In the simulations, the itera-
tive sliding window decoding algorithm for SC-LDPC codes
uses the uniform parallel (flooding) updating schedule with
a maximum iteration number of 100, while for the BMST
codes, window decoding is performed using the layer-by-layer
updating schedule with a maximum iteration number of 18.
The entropy stopping criterion [16, 35] is employed for both
window decoding algorithms with a preselected threshold of
10−6.

The decoding latency of the sliding window decoder, in
terms of bits, is given by [15]

TSC = 2M(dSC + 1) (14)

for the (3, 6)-regular SC-LDPC codes, and

TBMST = 2B(dBMST + 1) (15)

for the BMST-R [2, 1] codes, wheredSC anddBMST are the
decoding delays of the SC-LDPC codes and BMST codes,
respectively. When the parametersM , B, dSC, and dBMST

satisfyB = M(dSC + 1)/(dBMST + 1), the decoding latency
of BMST-R [2, 1] codes is the same as that of(3, 6)-regular
SC-LDPC codes. In our simulations, we consider decoding
delaydSC = 5 (i.e., window sizeW = dSC + 1 = 6), which
is a good choice for the SC-LDPC codes to achieve optimum
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SC-LDPC, M = 2500, dSC = 5
BMST-R, B = 1000, dBMST = 14
BMST-R, B = 1500, dBMST = 9

Fig. 11. Simulated decoding performance of BMST-R[2, 1] codes with
encoding memorym = 8 compared to(3, 6)-regular SC-LDPC code with
coupling widthm = 1. The values ofB anddBMST for the BMST-R codes
are chosen in such a way that the decoding latencies of all thecodes are the
same.

performance when the decoding latency is fixed [15].

A. Performance Comparison

In Fig. 11, BMST-R [2, 1] codes are compared to(3, 6)-
regular SC-LDPC codes, where the values of the Cartesian
product orderB and decoding delaydBMST for the BMST-
R codes are chosen such that the two decoding latencies
TBMST and TSC are the same. We see that the BMST-R
codes outperform the SC-LDPC code in the waterfall region
but have a higher error floor. From Fig. 11, we also see
that, in the waterfall region, the BMST-R code constructed
with a larger Cartesian product orderB and decoded with a
smaller decoding delaydBMST = 9 outperforms the BMST-
R code constructed with a smallerB and decoded with a
larger decoding delaydBMST = 14 but has a higher error
floor (both have the same decoding latency). In other words,
selecting a smallerdBMST, which is typically detrimental to
decoder performance, is compensated for by allowing a larger
B, which improves code performance. For example, at a BER
of 10−5, the BMST-R code withB = 1000 and decoded
with decoding delaydBMST = 14 gains0.05 dB compared
to the equal latency SC-LDPC code withM = 2500, while
the gain increases to0.15 dB by using the BMST-R code with
B = 1500 anddBMST = 9.

The Eb/N0 required to achieve a BER of10−5 for equal
latency (3, 6)-regular LDPC-BCs,(3, 6)-regular SC-LDPC
codes, and BMST-R[2, 1] codes as a function of decoding
latency is shown in Fig. 12, where we observe that both
the BMST-R codes and the SC-LDPC codes perform signif-
icantly better than the LDPC-BCs. Also, the performance of
the BMST-R codes (with fixed Cartesian product orderB)
improves as the decoding delaydBMST (and hence the latency)
increases, but it does not improve much further beyond a
certain decoding delay (roughlydBMST = 10). (Note again
that increasing the decoding delaydBMST improves decoder
performance and increasing the Cartesian product orderB
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Fig. 12. RequiredEb/N0 to achieve a BER of10−5 for (3, 6)-regular
LDPC-BCs,(3, 6)-regular SC-LDPC codes, and BMST-R[2, 1] codes as a
function of decoding latency.
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Fig. 13. RequiredEb/N0 to achieve a BER of10−5 for BMST-R [2, 1]
codes with different decoding delaysdBMST and decoding latencies of 19800,
23760, and 27720 bits.

improves code performance.) However, under an equal decod-
ing latency assumption, increasing the decoding delaydBMST

or the Cartesian product orderB does not always lower the
Eb/N0 required to achieve a BER of10−5. For example, when
the decoding latency is14850 bits, the performance of the
BMST-R code withB = 825 and decoded withdBMST = 8
is better than that of the BMST-R code withB = 675 and
decoded withdBMST = 10. However, if we increase the
latency to 19800 bits, the code with the Cartesian product
orderB = 825 and decoded with a largerdBMST = 11 still
outperforms the code withB = 1100 and decoded with a
smaller dBMST = 8. This raises the interesting question of
how to chooseB and dBMST in order to achieve the best
performance when the decoding latency of the sliding window
decoder for BMST-R codes is fixed.

We also see from Fig. 12 that, for a fixed decoding latency
roughly less than 15000 bits, to achieve a BER of10−5,
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dBMST = 8 is a good choice for optimum performance. This
is due to the fact that the interleavers, which break short cycles
in the normal graph of BMST codes, especially when the
interleavers of sizen = NB are generated randomly, play
a crucial role in iterative decoding [16]. That is, the larger the
Cartesian product orderB is, the better the performance of
BMST codes becomes. However, the value ofEb/N0 required
to achieve a BER of10−5 for BMST-R [2, 1] codes decoded
with a fixed decoding delaydBMST is bounded below by its
corresponding window decoding threshold (see Section V-B).

Fig. 13 shows theEb/N0 values required for BMST-R
[2,1] codes to achieve a BER of10−5 with different decoding
delaysdBMST and larger decoding latencies of 19800, 23760,
and 27720 bits. Here we see that the required values of
Eb/N0 for the BMST-R [2, 1] codes withdBMST = 8 are
the same and approach the corresponding window decoding
threshold (as remarked in Section V-B). In this case, however,
we also observe that the required values ofEb/N0 continue
to decreases until roughlydBMST = 9 ∼ 10, and then they
increase gradually as the decoding delaydBMST increases
further. This increase results from the fact that the improved
decoder performance obtained by increasingdBMST is not
compensating for the decrease in code performance as a result
of the smaller Cartesian product orderB. Thus, for larger
decoding latencies (up to 35000 bits),dBMST = 9 is a good
choice for optimum performance.

B. Complexity Comparison

As shown in [16], we can measure the computational
complexity of BMST codes by the total number of operations.
Consider a BMST-R[N, 1] code or a BMST-SPC[N,N − 1]
code with Cartesian product orderB and decoding delay
dBMST. Let Opt(A) denote the number of operations at a
generic nodeA. Each decoding layer hasNB parallel nodes
= , NB parallel nodes+ , and a node of typeG . The

computational complexity for each node= , each node+ ,

and each nodeG is O(m + 2), O(m + 1), and O(NB),
respectively. Thus, the total number of operations for each
decoding layer update is given by

NB · Opt
(

=
)
+NB ·Opt

(
+
)
+Opt

(

G
)

= NB(m+ 2) +NB(m+ 1) +NB = NB(2m+ 4).
(16)

Let IBMST denote the average number of iterations required
to decode a target layer for BMST codes. Since each iteration
requires both a forward recursion (dBMST layer-updates) and a
backward recursion (dBMST layer-updates), the total (average)
computational complexity per window is given by

O(NB(2m+ 4)× 2dBMST)IBMST

= O(NB(4m+ 8)dBMST)IBMST.
(17)

Note that the number of decoded (target) bits for the window
decoder at each time instant isNB, and thus the computational
complexity per decoded bit for a BMST code is

O(NB(4m+ 8)dBMST)IBMST/(NB)
= O ((4m+ 8)dBMSTIBMST) .

(18)

Now consider a(3, 6)-regular SC-LDPC code with lifting
factorM and decoding delaydSC (the corresponding decoding
window sizeW = dSC + 1). Let ISC denote the average
number of iterations required to decode a target layer for
SC-LDPC codes. Note that the numbers of operations at a
variable node and a check node of(3, 6)-regular SC-LDPC
codes are 3 and 6, respectively. The average computational
complexity (also measured by the total number of operations)
per window is then given by

O (3TSC + 6TSC/2) ISC = O (6TSCISC) , (19)

where TSC is the decoding latency. Note that the number
of decoded (target) bits for the window decoder at each
time instant isTSC/(dSC + 1), and thus the computational
complexity per decoded bit for a(3, 6)-regular SC-LDPC code
is

O (6TSC) ISC
TSC/(dSC + 1)

= O (6(dSC + 1)ISC) . (20)

Table II shows the average computational complexity per
decoded bit of the(3, 6)-regular SC-LDPC code and the
BMST-R [2, 1] codes used in Fig. 11 that achieve a BER of
10−5 with a decoding latency of 30000 bits. The simulation
parametersM , B, m, dBMST, dSC, IBMST and ISC are also
included. We observe that, though the average number of
iterationsIBMST for the BMST code is significantly less than
ISC for SC-LDPC code, the computational complexity per
decoded bit for the BMST codes is higher than for the SC-
LDPC code. However, the BMST codes outperform the SC-
LDPC code in the waterfall region (see Fig. 11 in Section VI-
B). This means that BMST-R[2, 1] codes, compared to(3, 6)-
regular SC-LDPC codes, obtain performance gains at a cost
of higher computational complexity.

VII. C ONCLUSIONS

In this paper, we described BMST codes using both an alge-
braic description and a graphical representation for the purpose
of showing that BMST codes can be viewed as a class of SC
codes. Then, based on a modified EXIT chart analysis and
finite-length computer simulations, we investigated the impact
of several parameters (coupling width, Cartesian product order,
and decoding delay) on the performance of BMST codes. We
then examined the relationship between the Cartesian product
order, the decoding delay, and the decoding performance of
BMST codes for fixed decoding latency in comparison to SC-
LDPC codes, and a comparison of computational complexity
was also presented. It was observed that, under the equal
decoding latency constraint, BMST codes using the repetition
[2, 1] code (BMST-R[2, 1] code) as the basic code can out-
perform(3, 6)-regular SC-LDPC codes in the waterfall region
but have a higher error floor and a larger decoding complexity.
An interesting future research topic to complement the work
reported here is to embed a partial superposition strategy into
the code design to further improve the performance of the
original BMST codes for a given decoding latency.
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