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Abstract—This paper focuses on low complexity successive decoders with better performance for polar codes. In [2]
cancellation list (SCL) decoding of polar codes. In particlar, and [3], the authors proposed the successive cancellasion |
using the fact that splitting may be unnecessary when the (gc) ) decoder, which was shown to approach the performance

reliability of decoding the unfrozen bit is sufficiently high, a novel . S . . . .
splitting rule is proposed. Based on this rule, it is conjeatred of maximum-likelihood (ML) decoding in the high signal-

that, if the correct path survives at some stage, it tends to t0-noise ratio (SNR) regime, albeit at the cost of higher
survive till termination without splitting with high proba bility. — processing complexity oO(LNlogN), where L is the list

On the other hand, the ingorrect paths are more Iikgly to splt.at size. Later in [4], it was further demonstrated that polar
the following stages. Motivated by these observations, amsple  .qqag concatenated with a high rate cyclic redundancy check

counter that counts the successive number of stages without .
splitting is introduced for each decoding path to facilitate the (CRC) code outperform turbo and LDPC codes by applying an

identification of correct and incorrect path. Specifically, any adaptive SCL decoder with sufficiently large list size. Tnad
path with counter value larger than a predefined thresholdw storage complexity for computational reduction, the arghio
is deemed to be the correct path, which will survive at the [5] and [6] proposed the successive cancellation stack YSCS
decoding stage, while other paths with counter value smalie decoder, which was shown to have much lower computational

than the threshold will be pruned, thereby reducing the decding . . . .
complexity. Furthermore, it is proved that there exists a unque complexity compared with the SCL decoder, especially in

unfrozen bit ux_x,+1, after which the successive cancellation the high SNR regime, where its complexity becomes close
decoder achieves the same error performance as the maximumto that of the SC decoder. More recently, a novel successive
likelihood decoder if all the prior unfrozen bits are correctly  cancellation hybrid decoder was proposed in [7], which es-
decoded, which enables further complexity reduction. Simiation sentially combines the ideas of SCL and SCS decoders and

results demonstrate that the proposed low complexity SCL id fine bal betw th tati | lexit
decoder attains performance similar to that of the conventnal ~PrOVIOES a fine balance between the computational compiexi

SCL decoder, while achieving substantial complexity reduion. ~ and storage complexity.
As discussed above, the SCL decoder achieves superior

performance compared to the SC decoder at the price of
increased complexity, especially when the list sizés very
large, which has prohibited its widespread implementaition
] ) _ practice. As such, reducing the computational complexity o
Polar codes, first discovered by Arikan [1], are the firghe SCL decoder is of considerable importance, motivating
capacity-achieving codes for binary-input discrete memorthe current research. For the conventional SCL decoden, eac
less channels with an explicit and deterministic structime decoding path will be split into two paths when decoding
addition, it was shown that a simple successive canceflatig, \nfrozen bit and the number of “best paths” remains
(SC) decoder asymptotically achieves the capacity with loj¢ 7, until the termination of decoding, which causes an
complexity, of orderO(NlogN') where N is the block-length jncreased complexity ab(LNlogV). To reduce the decoding
[1]. Due to these extraordinary properties, polar codeshayomplexity, we argue that it is unnecessary to split all the
captur.ed the attention of both academia and industry al'k?decoding paths, supported by the key observation thatisglit
Motivated by the fact that the SC decoder tends to exhilihn pe avoided if the reliability of deciding the unfrozen bi
less promising performance with finite-length block codeg,i = 0 or u; = 1 is sufficiently high. A direct consequence
an important line of current research is to seek efficiegt gch a split-reduced approach is that many fewer paths are
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unnecessary path splitting as well as efficiently redu. SC and SCL Decoding
ing the number of surviving paths, the proposed split- pefine the logarithmic likelihood ratio (LLR) of; as
reduced SCL decoder can achieve significant reduction .
of complexity while retaining a similar error perfor- Liw) =1 W (N, 4w = 0)
mance compared with the conventional SCL decoder. (ui) = OgW(i)( N iy, — 1)’

2) Furthermore, we prove the existence of a particular N W, !
unfrozen bituy_x, 1, after which the SC decoderwhered; and y{V denote an estimate of; and the received
achieves the same error performance as the ML decogeguence from the channel, respectively. We use basga-
if all the prior unfrozen bits are correct, and show howithms throughout this paper unless otherwise specified.
to locate the particular unfrozen bit. Then, exploiting For standard SC decoding, bit-by-bit information decoding
this crucial property, an enhanced version of the splits performed. As such, ifi; is an unfrozen bitg; is set to

reduced SCL decoder is proposed. either0 or 1 according to the sign oL (u;), i.e.,
The rest of the paper is organized below. In Section I, 0, if L(u;) >0,
we provide some basic concepts and notation for polar codes i; = 1, if L) <0 (1)
and the SCL decoder. In Section Ill, we present a novel ’ ¢ '

split-reduced SCL decoder and provide an analysis of itsunlike the SC decoder which employs a hard-decision
decoding behavior. An enhanced version of the split-reduckr each bit, the SCL decoder inspects both options for the
SCL decoder is proposed in Section IV while the simulatiogstimate of any unfrozen bit; and splits each decoding path
results are provided in Section V. Finally, Section VI gies into two paths. Nevertheless, at each decoding stage, baly t
brief summary of the paper. bestL paths survive in order to reduce the complexity.

Ill. A SIMPLE SPLIFREDUCEDSCL DECODER

This section presents a simple split-reduced SCL decoder.
In this section, we provide a brief introduction to polagve start by first introducing a new splitting rule, and then
codes, the SC decoder and the SCL decoder, and explainék@mine the error performance under this rule. Based on
notation adopted in the paper. this, a novel SCL decoding algorithm is proposed. Finally,
a brief discussion of the complexity comparison between
the proposed algorithm and the conventional SCL decoding
A. Polar Codes algorithm is provided.

For a polar code with block-lengtN = 2™ and dimension

K, the generator matrix can be written &y = ByGS", A. The Splitting Rule

where Gy = { Lo , By is an N x N bit-reversal As mentioned above, the proposed split-reduced SCL de-

1 1 . A e
. : \&n i coder exploits the fact that splitting is unnecessary ifriile
permutation matrix, and:)®" denotes then-th Kronecker ability of decoding the unfrozen bit is high enough. Therefo

J @ﬁ . .
power. We uses; to represent the SEqUenGe; ai1, ..., a;), to implement such a decoder, the first step is to define the rule
and as such, any codeword of a polar code can be express]ed

as ¢V — uNGy. whereu! is the information sequenceo splitting, i.e:, how to decide whether the currgnt dengdi
conéisting o%‘N —’K frozen lbits and unfrozen bits path shall split or not, and under what conditions. In the
. . ' following, we first choose a metric to measure the decoding
Let W/ . X. — J denote a binary discrete memoryles§e|iab”ity, then define an appropriate threshold for thistric
channel with input alphabet = {0,1}, output alphabey,

to establish the rule.
and channel transition probabiliti¢®V (y|z) : x € X,y € V}.

o I~ e According to polarization, each unfrozen hif would ob-
After channel polarization, the transition probabilitytb&i-th gron G), N _i—1 it .
L serve a subchann&’ (y;", v " |u;) and can be considered
subchannel is given by

thatu; is transmitted through such a synthetic channel. Thus,

Il. PRELIMINARIES AND NOTATIONS

iabili i (9)
@, N i1 7 1 NN the reliability of decodingu; actually depends orVy’.
Wy (o1 uy us) = Z oN—1 Wi (y1' |ur'), Although for binary erasure channel (BEC), the reliabitign
uy, €XN be explicitly described byZ (W) (see [1]) and computed in
where a recursive manner, the same approach does not appear to be

applicable to other channels including binary symmetriarch

NI N nel (BSC). Therefore, we adopt tlagposteriori probability as
Wy fur’) = H Wyile:)- the metric of reliability for each subchannel, mainly inspi
by [9], where the Gaussian approximation was used to give

To implement the encoding, thE most reliable subchan- an estimate for the error probability W](Vl).

nels are selected to transmit the unfrozen bits while theHaving determined the measure of reliability, we now
remaining subchannels are used for sending the frozen lteceed to find an appropriate threshold. For subchawﬁs)l
which are set to some fixed values (see [8]). Without loss ahd any given input;;, suppose that all prior bits have been
generality, we assume that the frozen bits are zero valued.correctly decoded. Now |e®. (u;) denote the estimation error



probability ofu; averaged over all possible outp@tg’, ui '), follows Gaussian distribution witth/(2m,4m) and satisfies

ie., the symmetry condition as well.

Po(u;) = P(i; = u; © 1) Now let us take a look at_the received LLB(y;) ~
N(m,2m) wherem = %, and it is easy to show that

= > > P =2u)L(w) <0[ay " = ui ug, ),

wiltex yMey 1 - (wi;m)z Vi 1 o (*y1,*4’z:;3274m
then P.(u;) in fact describes the probability that is incor- dmm dmm )
rectly estimated in terms of the subchani&]” (v, ui™*|u,), )
given the correct prior bits.~*. Once eachP,(u;) is com- Vamrm

puted, one has obtained some ‘prior’ knowledge which ingpligyhich indicates that the density of all the received LLR
that if the correct path reaches stage(decodewu;), the messages satisfy the symmetry condition. With some simple
probability thatu; is correctly estimated should not be togigebraic manipulations, it can be shown that each IL(R;)
smaller thanl — Pe(u;). In other words,1 — P.(u;) can be can be expressed as a compound functiorf,oéind f, with
regarded as the confidence level of decoding reliabilityhef t {1,(y,), L(y,), ..., L(yn)} as the input. Since.(y;) has the
i-th subchannel. Hence, it is a natural choice for thresHald. sgme pdf\ (mn, 2m), it is easy to verify that all the intermedi-
general, analytical evaluation @%.(u;) is difficult. Neverthe- ate outcomes of1(a,b) and f5(a, b) are approximately Gaus-
less, it can be computed via Monte Carlo simulation or thgan distributed and satisfy the symmetry condition. Tfeeee
method introduced in [8]. L(u;) can be approximated by the Gaussian distribution.

For the particular case of additive white Gaussian noiseNow by expressing equations (75) and (76) in [1] in the
(AWGN) channels P, (u;) can also be evaluated by assuminggrm of expectation, we have [12]:

that the LLR follows Gaussian distribution with meanand
variances? = 2|u| [9-12]. While the Gaussian approximation E[L(u1)]

assumption is used for analytical tractability, there ame i _ 1/, _ (4 _ _
fact theoretical supports to corroborate such assumpéen, ¢ (1 (1= o(BlLD) (1 ¢(E[L(y2)])))’ (2)
elaborated in the following. E[L(uz)]

Without loss of generality, assuming an all-zero codeword — E[L(y1)] + E[L(y2)],
is transmitted over an AWGN channel with noise variange
using binary phase shift keying (BPSK), i.e., the codewdtd WhereE denotes expectation and
is mapped to signatl by z; = 1 — 2¢;, it is easy to show

o0 u—x)?
that the LLR L(y;) of each received symbaj; follows the 1-— ! / tanhge’( Tt du, x #0,
N(Z, ) distribution. () = Virla] Jooo 2
Recall that equations (75) and (76) in [1] can be rewritten 1, = 0.

from an LLR perspective as o ) ]
As the likelihood ratios (LR) are recursively calculated

LYV (g, ud?) by equations (75) and (76) in [1], the expectation of the
— 1O (N2 22 g2y g [0 (N 22 LLRs, i.e., E[L(u;)], can be calculated in a similar man-

N/Q(yl U10 uie ) N/z(yN/2+1 ) ner. Then, based on the assumption thét;) satisfies the

and Gaéu)ssian distribution, the error probability of each swimtel
; . 1 i—1 . .

Lg\?z) (N, u2iY) Z;‘N (yN,u} " u;) can be calculated by using thig-function

i N/2 i— i— i i—
= LEV)/Q(yl / ’u%,o ? @ u%,e 2) + Lgv)/Q(y]J\\;/Q-ﬁ—l’u%,e 2)7

Pe(ui) = Q(VE[L(ui)]/2), ®)

wherea B b = log letf;b. Note that we have used; instead

of the estimatei; since the real values of{' are provided whereQ(z) = \/% e =% dt. SinceE[L(u;)] depends on
when we computel (u:) and the coefficientl — 2usi-1) E[L(y,)] with L(y;) ~ N(Z. &), wheres? is the noise
in front of L%/z(yl / vui?;rz ® u%?Q) is omitted as well \grjance, it becomes clear thBt (u;) is also SNR dependent.
since all-zero codeword is transmitted. To simplify natas, |, addition, it is worth pointing out that, gives2, P, (u;) can
we denotefi(a,b) = aBb and fy(a,b) = a +b. It Was pe cajculated in an off-line manner.

demonstrated in [12] that if the symmetry condition, Which 5ying defined both the measure of reliability and the
can be expressed afz) = f(—z)e” with f(z) being the , oqhoid; the splitting rule is given as follows: If eithef
density of an LLR message, is satisfied, the probability iensy,, following two inequalities holds:

function (pdf) of the output of the check node is approxirhate

a Gaussian density which satisfies the symmetry condition as Pi(u; =0y, a1 > 1 — Po(u;), 4)
well. Therefore, if bothw andb are Gaussian random variables
that satisfy the symmetry condition, according to the resul Py(u; = 1)y, 0771 > 1 — Po(uy), (5)

of [12], fi(a,b) is approximately Gaussian distributed and
satisfies the symmetry condition. Also, df and b have the thel-th path does not split, otherwise, the¢h path splits into
same pdf, i.e.N(m,2m), it is easy to check thafs(a,b) two paths. For instance, if Eq. (4) holds, then we directly se



4; = 0 instead of splitting thé-th path. According to Bayes’
rule, a more convenient splitting rule can be found, as fedlo
1-— Pe(ui)
Li(u;) > log————=
0, Li(u;) > log P )
1-— Pe(ui)
Pe(ui)

3

(6)

U; =

1, Li(ui) < —log

split, otherwise

whereL;(u;) denotes the LLR ofi; in thel-th decoding path
and can be calculated in a recursive manner [1]. For sintyplici
we drop the subscrigtin the ensuing analysis.

B. Key Observations
We now investigate the implications of the newly define
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Fig. 1. Distribution of L(u;) under the Gaussian approximation.

d

splitting rule. As we mainly focus on AWGN channels, thesimilarly, the last interval corresponds to the event inakhi
Gaussian approximation method is adopted in the ensuing splitting is performed and.; is correctly decoded, i.e.,

analytical derivation, i.e., all the propositions in thigsection
are based on the assumption that the LIRu;) follows
Gaussian distribution. For the purpose of clear expositian

assume that an all-zero codeword is transmitted. Please not

that, according to the following proposition, using the- all

u; = 0, and the probability associated with such event can be
computed as

1-— Pe(ui)

P/(u;) = Pr(L(u;) > logm

).

zero codeword does not cause any loss of generality of tew, let;; ando be the mean and standard deviationf:;)

ensuing analysis, since the distributionofu;) is symmetric
for u; =0 andu; = 1.

Proposition 1. Under the Gaussian approximation, i.e.,
L(u;) ~ N(E[L(us)], 2|E[L(us)]|), for any codeword u{, if
= ', then we have
E[Lo(us)], ifu; =0
ELL ()] = [Lo(u:)] u L
— E[Lo(uz)], if u; =1

where E[Lo(u;)] denotes the mean of L(u;) for the all-
zero codeword transmitted over an AWGN channel with noise
variance o2.

Proof: See Appendix A. ]

We start by examining the error performance of the SCL
decoder with the newly defined splitting rule. The Gaussian

distributed L(u;) is illustrated in Fig. 1. The two verti-

cal lines correspond to two threshold valmmgl;P(jff‘)i),

cutting the entire range oL(w;) into three separate parts,

. 1—P.(u;) 1—P.(u;) 1—P.(u;)
i.e., (—oo, —log ) ), [—log G 108 ], and
(log 5= 00). The first interval denotes the event in whict

no splitting is performed and; is incorrectly decoded, i.e.,
u; = 1. The probability of such event occurring can b
computed as

— Pe (ul)

() = Pr{E(u) < —log =5 50)
— Q(E[LO(W)] +log(1 — Pe(u;)) — 10g(Pe(ui)))
E[Lo(u)]  log(1/Q(y/Elkefedly — 1)
AN Lo
log(1/P.(u;) —

1))
2071 (Pe(wi)) 7 @

when the all-zero codeword is transmitted, respectivedy, i
u=E[Lo(u;)] ando = y/2E[Lg(u;)]. Then we have

log(1 — P.(u;)) — log(Pe(u;)) —

Since the proposed splitting rule becomes activated when
the decoding reliability is high, i.eP.(u;) is small, it is of
particular interest to see the error performance in thigmeg
and we have the following important results.

Proposition 2. Under the Gaussian approximation,
i.e, L(u;) ~ N(E[L(u)],2|E[L(u;)]]), we have 1)
]impc(ui)*)()‘*’ PZ(Z:) =0, i.e, Pe’(ul) = O(Pe(ui)), and 2)
1imPe(u7;)—>0+ P; (ul =1.

Proof: See Appendix B. ]
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Fig. 2. P.(u;) (left) and P/ (u;) (right) as functions ofPe (u;).

The essential message of Proposition 2 is that if the sub-
channel is sufficiently reliable, then with high probalyilit
the correct path will not split and the unfrozen hit will
be correctly decoded. As depicted in Fig. 2 (left), when the
subchannel reliability improves, i.el.(u;) becomes smaller,
the decoding erro®/(u;) decreases rapidly, and it is much
smaller thanP, (u;). Similarly, Fig. 2 (right) shows that the



probability of correct decodind’(u;) approached quickly

Under the above rationale, we propose the following split-

when P.(u;) becomes smaller, corroborating the claims afduced SCL Algorithm:

Proposition 2.

Armed with Proposition 2, we are ready to conjecture thdlgorithm 1 : Split-Reduced SCL Decoder

behavior of the correct path in list decoding, which is irfBtep 1 The initialization is done by starting from the first bi

general hard to achieve a quantitative and explicit resuodtes

U1,

that number of error patterns increases exponentially had tStep 2 For thé-th path and unfrozen bit;, if (6) holds, then

the pruning operations involved in list decoding introdueey
complicated coupling between paths.

Conjecture 1. Suppose that the correct decoding path sur-
vives until «%~'. Under the Gaussian approximation, as P, (u;)
approaches zero, with high probability, the current path will
survive at u; without splitting and «; will be correctly decoded.
In addition, with the increasing reliability of the subsequent
subchannels corresponding to ufYH, the correct path will
survive till termination without splitting with high probability.

Some empirical evidences are provided in Appendix C.

setw; to be0 or 1 without splitting the decoding path;
otherwise, split the decoding path into two pathgi]
is updated for each path in the meantime;

Step 3 When the number of paths exceeds the specified list

size L, prune those paths whose counter is less than
the predetermined constant if no path has counter
larger thanw, then select the bedt paths according

to (9);

Step 4 Ifi < N, then increasé to i = ¢ + 1 and go to Step

2; otherwise, the candidate codeword with the smallest
distance fromyi¥ is selected as the decoding output.

Having characterized the behavior of the correct path, we
now turn to examine the behavior of the incorrect path, and
we have the following conjecture:

Conjecture 2. Under the Gaussian approximation, for any
incorrect path that survives at some unfrozen bit w;, it will split
at some stage within {i+1,i4 2, ..., N} with high probability.

Some empirical evidences are provided in Appendix D.

It was observed in [13] that by inverting the first erroneous
bit decision, the performance of the SC decoder can be
significantly improved, which implies that the decodingoerr
occurring ina:~! will elevate the estimate error of¥ due
to severe error propagation. This observation indeed gesvi
concrete support for Conjecture 2. Now, exploiting these
desirable features presented in Conjecture 1 and Conge2tur
in combination with the proposed novel splitting rule, a fow

complexity decoding procedure can be devised as detailed in2

the following subsection.

C. The Decoding Algorithm

The above arguments imply that all the decoding paths can
be classified into two different types according to theiitspb
behaviorsType a) surviving with almost no splitting, antiype

D. Complexity and Performance Analysis

In terms of complexity, the split-reduced SCL decoder
outperforms the SCL decoder in two aspects.

1) Recall that for the conventional SCL decoder, the num-

ber of decoding paths doubles after each unfrozen bit is
processed. Thus, the number of paths grows to the spec-
ified list size L afterlog, L unfrozen bits are processed.
After which, at each stageL paths will be pruned to
obtain the survivingl paths. For the split-reduced SCL
decoder, as the splitting is avoided when the reliability
of the subchannel is high enough, the speed of reaching
the specified list sizd. is relatively slower. In addition,
(1+0)L paths (0 < § < 1) are pruned on average at
each stage.

) For the conventional SCL decoder, the number of sur-

viving paths remains fixed at after the initiallog, L
unfrozen bits are processed. For the split-reduced SCL
decoder, if the counter value of some patxceeds the
predefined threshold, the number of surviving paths
can be smaller thad.. In the extreme case, only the
correct path survives while all other paths are pruned.

b) splitting frequently. Ideally, dype a) path is unique, which It is worth pointing out that, the choice of the threshold
corresponds to the correct codeword, while all other pathsaffects both the decoding complexity and the error perfor-
are supposed to belong fype b). To reduce the decodingmance. In particular, it specifies the number of stages altbw
complexity, the key thing is to reduce the number of sungvinat the decoder to identify the correct path. Due to the error
paths at each stage. We first introduce a countpi for the introduced by the underlying channel, the correct path migh
I-th path at stage (corresponding tau;), which counts the need several stages to accumulate its reliability. Durhig t
number of stages that theth path survives without splitting. period, there may exist incorrect paths which appears to be
For thel-th path, if it proceeds ta:; without splitting, then more reliable and are mistaken as the ‘correct’ path by the
wili] = wifi — 1] + 1. While if the I-th path splits into two decoder. Therefore, i is small, it is more likely that there
paths!’ and!”, thenwy [i] = wi[i] = 0. Now, utilizing the will be incorrect paths exceeding the LLR threshold and does
fact that the correct path seldom splits, while the incdrrenot split while the correct one keeps splitting, which leads
path tends to split at a certain stage, we argue thag[iff to an irreversible loss in performance if the real corredhpa
exceeds a predefined threshaldthen thei-th path is more is eliminated. Asw increases, the correct path is given more
likely to be the correct path. As such, other remaining pattimme to accumulate its reliability, hence has a higher ckanc
with corresponding counter values less thanan be pruned, to win over the incorrect paths, thereby achieving a better
thereby reducing the number of surviving paths. performance.



Regarding the complexity, note that before any path arrivBs SC decoding performance after un_r, +1

at thew threshold, all candidate paths keep splitting with & \ve now present the following important relationship be-

high probability since at most one of them is the correct ongyeen sc decoding and ML decoding after the unfrozen bit
Therefore, the decoder has to wait for at leasstages until un—x,+1, which will be used to design the enhanced split-

some path achieves the threshald Within this period, the yeqyuced decoding algorithm.

number of paths remains similar to that of SCL decoder. In ]
this regard, it is desirable to have a smallerin terms of Theorem 1. Suppose that the desired K has been found,

have been supplied correctly by a genie, then SC decoder will

IV. AN ENHANCED SPLIFREDUCED SCL DECODER achieve exactly the same performance as ML decoder.

This section presents an enhanced split-reduced SCL de- Proof: See Appendix E. ]
coder, by exploiting Conjecture 1, that the correct deogdin According to [15] and [16], the quality of a subchannel
path tends to survive till termination without splitingtef W, depends heavily on the first few least significant bits of
some unfrozen bitu; ., which suggests the key idea ofthe binary expansion of — 1. Now, recalling the process of
replacing the SCL decoder with the SC decoder after tHcating nodeB in Fig. 3, it is observed that such a node
particular unfrozen bit. Nevertheless, it is in generaltguiB always corresponds to a subchannel with Bhattacharyya
difficult to determine the exact index + w because the parameterZz = (Z(W))*> , whered is the depth of node
distribution of frozen and unfrozen bits is highly dependerB. In general,Zz should take a rather small value, since
on the underlying channel and no simple rules can be derivedi?’) < 1 and the power exponert grows exponentially,
explicitly. However, it turns out that an upper bound, dewot which implies the feasibility of using SC decoding for the
by N — K, +1, can be found for the index+w, after which, unfrozen bits aftet_ x, 11 without splitting.
splitting is completely avoided for the subsequent unfroze

bits. C. The enhanced decoding algorithm
_ _ _ Based on the above observation, the enhanced split-reduced
A. Anillustrative example to determine K SCL decoding algorithm can then be summarized as follows:

We now provide a simple polar code with block-length
N = 8 and rateR = 0.5 as an example to illustrate howAlgorithm 2 :The Enhanced Split-Reduced SCL Decoder
to find N — K7 + 1. We start by constructing a full binary Step 1 The initialization is done by starting from the firdt bi
tree with N = 8 leaf nodes (as mentioned in [14]), as shown uy;
in Fig. 3. Each leaf node corresponds to either a frozen [8tep 2 For thé-th path and unfrozen bit;, if (6) holds, then
setw; to be0 or 1 without splitting the decoding path;
[ otherwise, split the decoding path into two pathg:]
is updated for each path in the meantime;
Step 3 When the number of paths exceeds the specified list
size L, prune those paths whose counter is less than

({ \ { B the predetermined constant if no path has counter
é 6 é ‘ 6 ‘ ‘ ‘ larger thanw, then select the bedt paths according
to (9);
Fig. 3. A simple(8,4) polar code withk; = 2. Step 4 Ifi < N — Ky, then increasé toi =i+ 1 and go to
Step 2; otherwise, simplified SC decoding is applied
or an unfrozen bit with an index iq{1,2,..., N} counted instead to obtain a unique estimaétev_r, +1, ..., Un)
from left to right, and a frozen bit is denoted by a white for each surviving path, and thus the candidate code-
disk while the other leaf nodes are denoted by black ones. In word with the smallest distance frop{’ is selected
this particular examplefu,, us, us, us} are frozen bits while as the decoding output.

{u4, ug,ur,us} are unfrozen bits. Then, for a non-leaf node;

if its two descendants have the same color it will also be g 4 jjystrates the decoding procedure of the enhanced

colored the same, otherwise it is colored gray. The coloringjit requced SCL decoder. For the unfrozen bits before

process starts from the bottom leaf nodes until the root noge x.+1, the splitting rule as per (6) is used, while for the
—Ki ] ]

is reached. After that, we start from the root node and Cheﬁk\rfrozen bits(un —x, +1, ..., un ), simplified SC decoding is

its right child node until the first black disk is found. In Fi8, implemented instea(lzl.

we will find node B which hasu; andus as its child nodes, |t js easy to see that the complexity is further reduced by the
and K is equal to the number of leaf nodes that nd@@éi@as, nnanced split-reduced SCL decoder, due to the elimination
l.e., Klk: 2. Since K, always has an exponential form ofo¢ path-splitting afteruy_ , .1, nevertheless, the achievable
Iy = 2", instead of generating Fig. 3, one could also cougfyor performance is not clear. In the following, we show

the number of unfrozen bits from the last bit 0, untilthe ¢ the enhanced split-reduced SCL decoder outperforens th
first frozen bit is reached, the largest number of ConseeUt'MriginaI version in terms of error rate as well.

unfrozen bits2%1, will be the desiredk;.



Number of decodlng paths after pruning (N=256,K=128,List size=8)

Theorem 2. The decoding error performance achieved by o P O e e ek
the enhanced split-reduced SCL decoder is no worse than the =

origi nal version. [ —#— ESR-SCL-E, /N =2dB w=45
—o— ESR-SCL-E,/N =20B,&=35

Proof: See Appendix F. [ ]

—a— ESR*SCL*Eb/NO=2dB,m=30

—<&— ESR-SCL-E, /N =20B,6=25
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Fig. 4. Decoding procedure of enhanced split-reduced SCbdirg.
Fig. 6. Average number of decoding paths after pruning «dgr with
It is also of interest to consider the worst case complexify/No = 2dB.
of the proposed scheme. Since the worst case appears when
Z\r/eerze\e::ha;?ilgjé;v?gfc;h;];‘:?O;rgseesngh::ﬁhr;e;:geli 1SGR that the CRC-aided SCL decoder significantly outpedorm
’ e

original SCL decoder. However, the upper bou¥id- K + 1 SCL decoder. _

after which SC decoding can be implemented always eX|sts Definel; as the average number of decoding paths that are
Therefore, even for the worst case, the proposed algoritim SP't Whenui is processed, a”? "?f be the total number of
reduce the complexity by)(LK:logK;) compared with the independent trials; thel@ = ’# wherel ij is defined as

The average number of paths before and after prunmg are

V. SIMULATION RESULTS defined similarly.

In this section, numerical simulation results are presknte 5 Number of decoding patns after pruning (N=256 K=128 Lstsize=8)
to illustrate the performance of the proposed decoding-algo
rithms. Since the enhanced split-reduced SCL decodernesjui s
lower complexity, but achieves no worse decoding error per-
formance compared to the simple split-reduced SCL decoder,
we consider only the enhanced split-reduced SCL decoder
in simulations (we will use ESR-SCL as the shorthand for
enhanced split-reduced SCL decoder in the following figures

—*— SCL
—r— ESR—SCL—Eb/NO:SdB.L-FGD

—©— ESR-SCL-E,/N_=3dB,w=45|
—5— ESR-SCL-E,/N_=3dB,w=35|
—&— ESR-SCL-E,/N=30B,0=25

Number of Decoding Paths

N=256,K=128,List size=8
T T

Indices

Fig. 7. Average number of decoding paths after pruning «dgr with
Ey/No = 3dB.

Block error rate

—p— ESR-SCL,w=60
—©6— ESR-SCL,w=45
—~A— ESR-SCL,w=35
107k —%— ESR-SCL,w=30
—<— ESR-SCL,w=25
—%— CRC-aided-SCL|

Fig. 6 illustratesi; for SCL decoder and enhanced split-
reduced SCL decoder with different at SNR= 2dB when
N = 28 K = N/2 and list sizeL = 8, after pruning
operation. Since SCL decoder always splits decoding paths
1 15 2 - 25 3 35 for each unfrozen bit, the number of decoding paths inceease
ne to the specified list sizel. = 8 at an exponential rate,
Fig. 5. Performance comparison of SCL decoder, enhancetreglced l.e., from O to 1, 2, 4, 8, and remalns at 8 till termination.
SCL decoder and CRC-aided SCL decoder. On the other hand, for enhanced split-reduced SCL decoder,
it can be observed that the average number of paths after
Fig. 5 shows the block error rate of SCL decoder, enhancpdining operation keeps smaller tharfor most indices. As
split-reduced SCL decoder with different and CRC-aided w increases, less complexity can be saved, since the decoder
SCL decoder with generator polynomiglD) = D244 D234 has to wait for some longer stages until some path achieves
DS + D%+ D +1 [18], where N = 28, K = N/2 and list the w threshold, and during this period, the number of paths
sizeL = 8. As expected, whes increases, the performance oftill stays at a large value. Besides, recall that enhangld s
enhanced split-reduced SCL decoder improves. In additten, reduced SCL decoder degrades to SC decoding after the index




N — K; + 1. For this particular casekK; = 32, hence APPENDIX
K1 /K = 25%, which indicates that 25% of the unfrozen bits\ proof of Proposition 1

can be decoded by SC decoding rather than list decoding. We first focus on the basic decoding element defined by

It has been observed in [2] that SCL decoder with lis d der th B B his lead
size L. > 2 almost achieves the same performance. Thus, fg- and consider the casen = 1,up = 0). This leads to
= ' "E[L(y1)] = —% andE[L(y2)] = 4. Then,

achieve a better performance, the list size should be at lea o
L = 2. Fig. 7 shows the number of paths after pruning with 2 2
Ey/No = 3dB. For smallw, the average number of paths G(E[L(u1)]) =1 — (1 o d’(_g))(l o ‘b(g))
remains smaller thag, which implies that it can not retain a 9 )
(@)
some similar performance as SCL decoder. On the other hand, =1+ (1 - Mg)) (1 - ¢(U_2))
with largew = 60, the performance significantly improves and " ) "
becomes closer to that of the SCL decoder, yet with reduced =2— ¢(E[Lo(u1)]) = ¢(—E[Lo(w1)]).
complexity. _ Steps (a) and (b) come from the fact thidt:) + ¢(—z) = 2.
Fig. 8 plots the average number of decoding paths aﬁ?ﬁus,E[L(ul)] = —E[Lo(u1)] and E[L(uz)] = —(—2) +

o%
E[Lo(u2)]. For all other possible values dfi;,us),
results hold. As polar codes are recursively carcséd
Ased o2, by simple induction, the claim follows.

pruning for different SNRs withw = 45. It can be observed 2 _
that as SNR increases, the average number of decoding p%ﬁﬁar
after pruning decreases. Since the received symbols are
reliable for high SNRs, the LLR threshold (see (6)) will be
achieved with a higher probability, and once théhreshold is
achieved, the other paths will be eliminated without spligt B- Proof of Proposition 2

as analyzed by using Gaussian approximation. Besidesgas thDenotet = Q—l(Pegui)), and thus from (7) we have
average number of paths after pruning decreases for highgtu,) = Q(t + 23/2W-1) For the following derivation,

SNRs, it W|I_I lead to some performance further deviatingrro we will use @) to denote the ’Hopital’s rule. Then, we have
SCL decoding (see Fig. 5).

/
i Pe (UZ)
Number of decoding paths after pruning (N=256,K=128,List size=8, w=45) Pc (ui)~>0+ Pe (Ul)
8 T T***%*w****************%********w* 1 (I/Q(t) 1)
e |
—%— SCL = lim Q( + 2t
7 _ i =
—#— ESR-SCL-E, /N =1.5dB t— 4 oo Q (t)

—o— ESR-SCL-E_/N_=2dB
v (4 lo8(1/Q(W)=1) 1
—&— ESR-SCL-E, /N =2.5dB _ 2t

3 (L) .. € 2
—<— ESR-SCL-E,/N=3dB = lim 2
5r t— 400 e~ =

— o Hlime oo (REZ=U )2 410g(1/Q () - 1))

Soes

Number of Decoding Paths

One can also check that

2

2 . e oy lg/Q®-D @ 1 1 1 e*
) ‘ | 4 t-+oo 2 T ot 21— Q1) v2r Q)
100 ndices 150 200 250 (L) . 1 t
= A s om T
gﬁi?& Average number of decoding paths after pruningufowith different and
S.
t£+moo log(1/Q(t) — 1) = +o0.
Thuslimp,_(,,)—0+ % = 0 holds.
VI. ConcLusioN Next, recall P.(u;) = Q(\/E[Lo(u;)]/2), i.e., t =
In this paper, we have proposed low complexity splity/E[Lo(ui)]/2 = o/2. Then we have

reduced SCL decoders for polar codes. By exploiting the fact lim  P'(u)
that splitting can be avoided if the reliability of decoditiee Po(ui)—0t+ "
unfrozen bit is high enough, a new splitting rule was defined. . log(1 — Pe(u;)) — logP.(u;) — p
Under this splitting rule, it was conjectured that, if thereat = Pc(ilf)iw ( o )
path survived at some stage, it tends to survive till tertimma log(1/Q(t) — 1)
without splitting, while the incorrect path is more likely $plit =Q( tiifoot : (T —1)).
in the following stages. This critical behavior was thendise
to design a new low complexity SCL decoder. Furthermorb0te that
it was explicitly shown that there exists a particular uaén |, log(1/Q(t) = 1) @) i L1 1 2 1/t
bit un_x, 1 for any polar codes, and SC decoding can be-+ 2t2 t=400 41— Q(t) v2rr Q)
implemented instead to decode the following unfrozen bits ) .. 1 1 1

without degradation of error performance. - tilinoo 41-Q(t) 12 0



£(lo2/Q®)-1)

thus limg 4 o — 1) = —o0, and we have

limp, () o+ P (ui) = 1.

C. Empirical evidence of Conjecture 1

The first two statements are straightforward results due
Proposition 2. According to [3], the metric for each pathldou
be computed in a recursive manner according to

~7 N ~i—1 N e(liﬁl)L(ul) (9)
P(ailyy ) = P(ay |y )m-
For the correct path,
Plii 1Ny = Plai—tyY €
(u1|y1 ) (ul |y1 )eL(Ui) +1

~ P(iy yi ) (1 — Pe(ui))
~ Pay ! |yi),
which implies that the reliability of this path after choogi

with index:, and we havé&|a,, [i]] =
E[w,[2¢ + 1]]. Note thatE[a,[i]]

1 <4, < 2P, and thusE|a,, [i]]
one can check that if onl[L(y1)] (

haveE[L(u1)] =0 andE[L(uz2)] = E[L(y2)] (or E[L(uz2)] =
E7L(y1)]); while if both E[L(y1)] = 0 and E[L(ys)] = 0

hold, we haveE[L(u;)] = E[L(uz2)] = 0. Thus, the number

of LLRs whose means are zero-valued remains the same after
the calculation defined by (2).

As nodewv, would pass another two LLR vectors computed
according to (2) to its left child node and right child node
respectively, by some simple induction, we can conclude tha
there would be at least: leaf nodes that have zero-valued
means. For an unfrozen bit;, E[L(u;)] = 0 implies a sig-
nificant degradation to the original subchannel, and it isemo
difficult to achieve the thresholdslog 1;?5;‘;) (llog 1;?5;‘;)
usually stays far away from zero if; is an unfrozen bit). As
there would be at least leaf nodes having zero-valued means,

(1 - 25711 [Z])E[O‘v [22]] +
E[a,[j]] holds for any
0i
0

f Bu,li] = 1. In (2),

r E[L(y2)]) is zero, we

4; = 0 hardly degrades. Thus, as the correct path sUrViv§§s incorrect path is quite likely to split at the followirstages.
at u;_1, it would not be pruned and continue to survive at

u; with high probability. By induction ort, the correct path
would survive to the last without splitting if the following
subchannels are reliable enough.

D. Empirical evidence of Conjecture 2

E. Proof of Theorem 1
We first provide a lemma, which will be invoked in the
proof of Theorem 1.

Lemma 1. For a symmetric B-DMC with received LLRs LY,
the ML decoder will output the codeword

N
Y = argmaxZ(l —21;)L;. (10)
z{VGC i=1
Proof:
&) = argmax P(z{ y;")
w{v eC
= argmaxlogP(y)|z1V)
w{v eC
Fig. 9. Decoder for the constituent code N
g% ' = argmaxz logP(y;|z;)-
z{v eC i=1

The SC decoding process can be interpreted based on a full
binary tree with\V = 2" leaf nodes, where postorder traversahs y1' denotes the symbols received from the underlying chan-
is implemented. We use Fig. 9 to give a simple illustratiomel, Zfil logP(y;|1) is just a constant which is independent
wherewv; and v, denote the child nodes of nodewhile v, of xV. Thus,
denotes the parent node. When nades activated, it would

N N
first receive an LLR vectat, fromv,. Suppose that the length N = argmaxz logP(yi|x;) — Z logP(yi|1)
of a, is 2P. Then, nodey would compute the LLR vectat,, aNec 1 )
of length 2°~! according to SC decoding and pasges to N
node Af i = Plyilz)
v1. After nodew; produces its own codeword,, of = argmaleogi
length2P~! and passes it back to nodganother LLR vector zeC oy P(yil1)
v, of length2P~1 would be computed at nodeand sent to N
nodews. After nodev receives codeword,, , it would produce = argmaxZ(l — ;)L
its own codewords, by associatings,,, andg3,, according to o) €C =1
G2. The above description defines a recursive algorithm. The 1 1
initialization is done by assigning the LLRs received from = aY%IE?X(iz;LH- 52}(1 - 2%‘)Li)-
L1 = i=

the underlying channel to the root node, while the recursion
returns at each leaf node since leaf nodes correspond to Kigte that] SN | L, is also a constant ongg” is determined.

sequence:)¥ and hard decisions are implemented. Thus,
Suppose that: errors occur at nodey, i.e.,m bits are set to N
1in ,, (assuming the all-zero codeword transmitted). With a & = argmax P(zV|yN) = argmaXZ(l — 22;) L.

slight abuse of notation, we usg [¢] to denote the component aNec w¥ec
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B nodes at the(N — K;)-th level (just corresponds to the

Now we establish a full binary tree as illustrated in Fig. 8N — K;)-th bit, see [2]) in the list decoding framework. Ac-
for the proof. Useg(vy, vs, ..., v, ) to denote the codeword as-cording to Theorem 1, for any particular path, the converaio
sociated with a node and(L,[1], L,[2], ..., L,[m]) to denote SC decoding suffices to achieve the ML decoding performance
the related LLRs. The codewo(d\,, A, ..., Ay) of root node (note that this is not the overall ML decoding performance
A just corresponds to?¥, the last stage output of the encodessince the estimated unfrozen bits befarg_x, 1 are not
while (L a[1], La[2], ..., La[N]) represents the received LLRsguaranteed to be correct). Thus, for each particular path
from the underlying channel. Lé? andC be the left and right arriving atux_x, +1, the conventional SC decoding algorithm
child node of the root nodd, respectively. Then consideringwould select the best path among 2if* possible ones, i.e.,
the basic encoding operation with the matfi% we have the best estimatéiy_x,+1,...,4n) for each surviving path
Agi 1 = D; @ C; and Ay; = O, fori = 1,2,...,N/2. As can be obtained directly. Thus, the overall best estimate]of
uY ~1 are correctly known, the ML decoder will select thenust be involved in thesé surviving candidate codewords.
estimate(un_k,+1, ..., un) t0 maximize (see Lemma 1):  Finally, the candidate codeword that has the smallestraista

N from the received symbolgi¥ is selected as the decoding

UN_f, 41 = argmax Z(l —2A4;)Lalf] output.
uJN\I—Kl +1 i=1
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