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Abstract—This paper focuses on low complexity successive
cancellation list (SCL) decoding of polar codes. In particular,
using the fact that splitting may be unnecessary when the
reliability of decoding the unfrozen bit is sufficiently high, a novel
splitting rule is proposed. Based on this rule, it is conjectured
that, if the correct path survives at some stage, it tends to
survive till termination without splitting with high proba bility.
On the other hand, the incorrect paths are more likely to split at
the following stages. Motivated by these observations, a simple
counter that counts the successive number of stages without
splitting is introduced for each decoding path to facilitate the
identification of correct and incorrect path. Specifically, any
path with counter value larger than a predefined thresholdω

is deemed to be the correct path, which will survive at the
decoding stage, while other paths with counter value smaller
than the threshold will be pruned, thereby reducing the decoding
complexity. Furthermore, it is proved that there exists a unique
unfrozen bit uN−K1+1, after which the successive cancellation
decoder achieves the same error performance as the maximum
likelihood decoder if all the prior unfrozen bits are correctly
decoded, which enables further complexity reduction. Simulation
results demonstrate that the proposed low complexity SCL
decoder attains performance similar to that of the conventional
SCL decoder, while achieving substantial complexity reduction.

Index Terms—Polar codes, Gaussian approximation, split-
reduced successive cancellation list decoder.

I. I NTRODUCTION

Polar codes, first discovered by Arıkan [1], are the first
capacity-achieving codes for binary-input discrete memory-
less channels with an explicit and deterministic structure. In
addition, it was shown that a simple successive cancellation
(SC) decoder asymptotically achieves the capacity with low
complexity, of orderO(N logN) whereN is the block-length
[1]. Due to these extraordinary properties, polar codes have
captured the attention of both academia and industry alike.

Motivated by the fact that the SC decoder tends to exhibit
less promising performance with finite-length block codes,
an important line of current research is to seek efficient
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decoders with better performance for polar codes. In [2]
and [3], the authors proposed the successive cancellation list
(SCL) decoder, which was shown to approach the performance
of maximum-likelihood (ML) decoding in the high signal-
to-noise ratio (SNR) regime, albeit at the cost of higher
processing complexity ofO(LN logN), whereL is the list
size. Later in [4], it was further demonstrated that polar
codes concatenated with a high rate cyclic redundancy check
(CRC) code outperform turbo and LDPC codes by applying an
adaptive SCL decoder with sufficiently large list size. Trading
storage complexity for computational reduction, the authors in
[5] and [6] proposed the successive cancellation stack (SCS)
decoder, which was shown to have much lower computational
complexity compared with the SCL decoder, especially in
the high SNR regime, where its complexity becomes close
to that of the SC decoder. More recently, a novel successive
cancellation hybrid decoder was proposed in [7], which es-
sentially combines the ideas of SCL and SCS decoders and
provides a fine balance between the computational complexity
and storage complexity.

As discussed above, the SCL decoder achieves superior
performance compared to the SC decoder at the price of
increased complexity, especially when the list sizeL is very
large, which has prohibited its widespread implementationin
practice. As such, reducing the computational complexity of
the SCL decoder is of considerable importance, motivating
the current research. For the conventional SCL decoder, each
decoding path will be split into two paths when decoding
an unfrozen bit and the number of “best paths” remains
at L until the termination of decoding, which causes an
increased complexity ofO(LN logN). To reduce the decoding
complexity, we argue that it is unnecessary to split all the
decoding paths, supported by the key observation that splitting
can be avoided if the reliability of deciding the unfrozen bit
ui = 0 or ui = 1 is sufficiently high. A direct consequence
of such a split-reduced approach is that many fewer paths are
likely to survive after pruning, i.e., the number of “best paths”
is much smaller than the list size, which results in further
complexity reduction.

The main contributions of this paper are summarized as
follows:

1) Taking advantage of the fact that splitting is unnecessary
if the unfrozen bit can be decoded with high reliability,
a novel splitting rule is defined. Moreover, the behavior
of the correct and incorrect decoding paths are charac-
terized under the new splitting rule. Based on which,
a split-reduced SCL decoder is proposed. By avoiding
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unnecessary path splitting as well as efficiently reduc-
ing the number of surviving paths, the proposed split-
reduced SCL decoder can achieve significant reduction
of complexity while retaining a similar error perfor-
mance compared with the conventional SCL decoder.

2) Furthermore, we prove the existence of a particular
unfrozen bit uN−K1+1, after which the SC decoder
achieves the same error performance as the ML decoder
if all the prior unfrozen bits are correct, and show how
to locate the particular unfrozen bit. Then, exploiting
this crucial property, an enhanced version of the split-
reduced SCL decoder is proposed.

The rest of the paper is organized below. In Section II,
we provide some basic concepts and notation for polar codes
and the SCL decoder. In Section III, we present a novel
split-reduced SCL decoder and provide an analysis of its
decoding behavior. An enhanced version of the split-reduced
SCL decoder is proposed in Section IV while the simulation
results are provided in Section V. Finally, Section VI givesa
brief summary of the paper.

II. PRELIMINARIES AND NOTATIONS

In this section, we provide a brief introduction to polar
codes, the SC decoder and the SCL decoder, and explain the
notation adopted in the paper.

A. Polar Codes

For a polar code with block-lengthN = 2n and dimension
K, the generator matrix can be written asGN = BNG⊗n

2 ,

where G2 =

[

1 0
1 1

]

, BN is an N × N bit-reversal

permutation matrix, and(·)⊗n denotes then-th Kronecker
power. We useaji to represent the sequence(ai, ai+1, ..., aj),
and as such, any codeword of a polar code can be expressed
as cN1 = uN

1 GN , where uN
1 is the information sequence

consisting ofN −K frozen bits andK unfrozen bits.
Let W : X → Y denote a binary discrete memoryless

channel with input alphabetX = {0, 1}, output alphabetY,
and channel transition probabilities{W (y|x) : x ∈ X , y ∈ Y}.
After channel polarization, the transition probability ofthei-th
subchannel is given by

W
(i)
N (yN1 , ui−1

1 |ui) =
∑

uN
i+1∈XN−i

1

2N−1
WN (yN1 |uN

1 ),

where

WN (yN1 |uN
1 ) =

N
∏

i=1

W (yi|xi).

To implement the encoding, theK most reliable subchan-
nels are selected to transmit the unfrozen bits while the
remaining subchannels are used for sending the frozen bits
which are set to some fixed values (see [8]). Without loss of
generality, we assume that the frozen bits are zero valued.

B. SC and SCL Decoding

Define the logarithmic likelihood ratio (LLR) ofui as

L(ui) = log
W

(i)
N (yN1 , ûi−1

1 |ui = 0)

W
(i)
N (yN1 , ûi−1

1 |ui = 1)
,

where ûj and yN1 denote an estimate ofuj and the received
sequence from the channel, respectively. We use base-e loga-
rithms throughout this paper unless otherwise specified.

For standard SC decoding, bit-by-bit information decoding
is performed. As such, ifui is an unfrozen bit,̂ui is set to
either0 or 1 according to the sign ofL(ui), i.e.,

ûi =

{

0, if L(ui) > 0,

1, if L(ui) < 0.
(1)

Unlike the SC decoder which employs a hard-decision
for each bit, the SCL decoder inspects both options for the
estimate of any unfrozen bitui and splits each decoding path
into two paths. Nevertheless, at each decoding stage, only the
bestL paths survive in order to reduce the complexity.

III. A SIMPLE SPLIT-REDUCEDSCL DECODER

This section presents a simple split-reduced SCL decoder.
We start by first introducing a new splitting rule, and then
examine the error performance under this rule. Based on
this, a novel SCL decoding algorithm is proposed. Finally,
a brief discussion of the complexity comparison between
the proposed algorithm and the conventional SCL decoding
algorithm is provided.

A. The Splitting Rule

As mentioned above, the proposed split-reduced SCL de-
coder exploits the fact that splitting is unnecessary if thereli-
ability of decoding the unfrozen bit is high enough. Therefore,
to implement such a decoder, the first step is to define the rule
of splitting, i.e., how to decide whether the current decoding
path shall split or not, and under what conditions. In the
following, we first choose a metric to measure the decoding
reliability, then define an appropriate threshold for this metric
to establish the rule.

According to polarization, each unfrozen bitui would ob-
serve a subchannelW (i)

N (yN1 , ui−1
1 |ui) and can be considered

thatui is transmitted through such a synthetic channel. Thus,
the reliability of decodingui actually depends onW (i)

N .
Although for binary erasure channel (BEC), the reliabilitycan
be explicitly described byZ(W ) (see [1]) and computed in
a recursive manner, the same approach does not appear to be
applicable to other channels including binary symmetric chan-
nel (BSC). Therefore, we adopt thea posteriori probability as
the metric of reliability for each subchannel, mainly inspired
by [9], where the Gaussian approximation was used to give
an estimate for the error probability ofW (i)

N .
Having determined the measure of reliability, we now

proceed to find an appropriate threshold. For subchannelW
(i)
N

and any given inputui, suppose that all prior bits have been
correctly decoded. Now letPe(ui) denote the estimation error
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probability ofui averaged over all possible outputs(yN1 , ui−1
1 ),

i.e.,

Pe(ui) = P (ûi = ui ⊕ 1)

=
∑

ui−1
1 ∈X

∑

yN
1 ∈Y

P ((1− 2ui)L(ui) < 0|ûi−1
1 = ui−1

1 , ui, y
N
1 ),

thenPe(ui) in fact describes the probability thatui is incor-
rectly estimated in terms of the subchannelW

(i)
N (yN1 , ui−1

1 |ui),
given the correct prior bitsui−1

1 . Once eachPe(ui) is com-
puted, one has obtained some ‘prior’ knowledge which implies
that if the correct path reaches stagei (decodeui), the
probability thatui is correctly estimated should not be too
smaller than1 − Pe(ui). In other words,1 − Pe(ui) can be
regarded as the confidence level of decoding reliability of the
i-th subchannel. Hence, it is a natural choice for threshold.In
general, analytical evaluation ofPe(ui) is difficult. Neverthe-
less, it can be computed via Monte Carlo simulation or the
method introduced in [8].

For the particular case of additive white Gaussian noise
(AWGN) channels,Pe(ui) can also be evaluated by assuming
that the LLR follows Gaussian distribution with meanµ and
varianceσ2 = 2|µ| [9–12]. While the Gaussian approximation
assumption is used for analytical tractability, there are in
fact theoretical supports to corroborate such assumption,as
elaborated in the following.

Without loss of generality, assuming an all-zero codeword
is transmitted over an AWGN channel with noise varianceσ2

n

using binary phase shift keying (BPSK), i.e., the codewordcN1
is mapped to signalxN

1 by xi = 1 − 2ci, it is easy to show
that the LLRL(yi) of each received symbolyi follows the
N ( 2

σ2
n
, 4
σ2
n
) distribution.

Recall that equations (75) and (76) in [1] can be rewritten
from an LLR perspective as

L
(2i−1)
N (yN1 , u2i−2

1 )

= L
(i)
N/2(y

N/2
1 , u2i−2

1,o ⊕ u2i−2
1,e )⊞ L

(i)
N/2(y

N
N/2+1, u

2i−2
1,e )

and

L
(2i)
N (yN1 , u2i−1

1 )

= L
(i)
N/2(y

N/2
1 , u2i−2

1,o ⊕ u2i−2
1,e ) + L

(i)
N/2(y

N
N/2+1, u

2i−2
1,e ),

wherea⊞ b = log 1+ea+b

ea+eb
. Note that we have usedui instead

of the estimatêui since the real values ofui−1
1 are provided

when we computePe(ui) and the coefficient(1 − 2u2i−1)

in front of L
(i)
N/2(y

N/2
1 , u2i−2

1,o ⊕ u2i−2
1,e ) is omitted as well

since all-zero codeword is transmitted. To simplify notations,
we denotef1(a, b) = a ⊞ b and f2(a, b) = a + b. It was
demonstrated in [12] that if the symmetry condition, which
can be expressed asf(x) = f(−x)ex with f(x) being the
density of an LLR message, is satisfied, the probability density
function (pdf) of the output of the check node is approximately
a Gaussian density which satisfies the symmetry condition as
well. Therefore, if botha andb are Gaussian random variables
that satisfy the symmetry condition, according to the result
of [12], f1(a, b) is approximately Gaussian distributed and
satisfies the symmetry condition. Also, ifa and b have the
same pdf, i.e.,N (m, 2m), it is easy to check thatf2(a, b)

follows Gaussian distribution withN (2m, 4m) and satisfies
the symmetry condition as well.

Now let us take a look at the received LLRL(yi) ∼
N (m, 2m) wherem = 2

σ2
n

, and it is easy to show that

1√
4πm

e−
(−yi−m)2

4m eyi =
1√
4πm

e−
(−yi−m)2−4m

4m

=
1√
4πm

e−
(yi−m)2

4m ,

which indicates that the density of all the received LLR
messages satisfy the symmetry condition. With some simple
algebraic manipulations, it can be shown that each LLRL(ui)
can be expressed as a compound function off1 and f2 with
{L(y1), L(y2), ..., L(yN )} as the input. SinceL(yi) has the
same pdfN (m, 2m), it is easy to verify that all the intermedi-
ate outcomes off1(a, b) andf2(a, b) are approximately Gaus-
sian distributed and satisfy the symmetry condition. Therefore,
L(ui) can be approximated by the Gaussian distribution.

Now by expressing equations (75) and (76) in [1] in the
form of expectation, we have [12]:

E[L(u1)]

= φ−1
(

1−
(

1− φ(E[L(y1)])
)(

1− φ(E[L(y2)])
)

)

,

E[L(u2)]

= E[L(y1)] + E[L(y2)],

(2)

whereE denotes expectation and

φ(x) =











1− 1
√

4π|x|

∫ ∞

−∞
tanh

u

2
e−

(u−x)2

4|x| du, x 6= 0,

1, x = 0.

As the likelihood ratios (LR) are recursively calculated
by equations (75) and (76) in [1], the expectation of the
LLRs, i.e., E[L(ui)], can be calculated in a similar man-
ner. Then, based on the assumption thatL(ui) satisfies the
Gaussian distribution, the error probability of each subchannel
W

(i)
N (yN1 , ui−1

1 |ui) can be calculated by using theQ-function
as

Pe(ui) = Q(
√

E[L(ui)]/2), (3)

whereQ(x) = 1√
2π

∫ +∞
x

e−
t2

2 dt. SinceE[L(ui)] depends on

E[L(yi)] with L(yi) ∼ N ( 2
σ2
n
, 4
σ2
n
), whereσ2

n is the noise
variance, it becomes clear thatPe(ui) is also SNR dependent.
In addition, it is worth pointing out that, givenσ2

n, Pe(ui) can
be calculated in an off-line manner.

Having defined both the measure of reliability and the
threshold, the splitting rule is given as follows: If eitherof
the following two inequalities holds:

Pl(ui = 0|yN1 , ûi−1
1 ) > 1− Pe(ui), (4)

Pl(ui = 1|yN1 , ûi−1
1 ) > 1− Pe(ui), (5)

the l-th path does not split, otherwise, thel-th path splits into
two paths. For instance, if Eq. (4) holds, then we directly set
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ûi = 0 instead of splitting thel-th path. According to Bayes’
rule, a more convenient splitting rule can be found, as follows

ûi =



























0, Ll(ui) > log
1− Pe(ui)

Pe(ui)
,

1, Ll(ui) < −log
1− Pe(ui)

Pe(ui)
,

split, otherwise.

(6)

whereLl(ui) denotes the LLR ofui in the l-th decoding path
and can be calculated in a recursive manner [1]. For simplicity,
we drop the subscriptl in the ensuing analysis.

B. Key Observations

We now investigate the implications of the newly defined
splitting rule. As we mainly focus on AWGN channels, the
Gaussian approximation method is adopted in the ensuing
analytical derivation, i.e., all the propositions in this subsection
are based on the assumption that the LLRL(ui) follows
Gaussian distribution. For the purpose of clear exposition, we
assume that an all-zero codeword is transmitted. Please note
that, according to the following proposition, using the all-
zero codeword does not cause any loss of generality of the
ensuing analysis, since the distribution ofL(ui) is symmetric
for ui = 0 andui = 1.

Proposition 1. Under the Gaussian approximation, i.e.,
L(ui) ∼ N (E[L(ui)], 2|E[L(ui)]|), for any codeword uN

1 , if
ûi−1
1 = ui−1

1 , then we have

E[L(ui)] =

{

E[L0(ui)], if ui = 0

− E[L0(ui)], if ui = 1
,

where E[L0(ui)] denotes the mean of L(ui) for the all-
zero codeword transmitted over an AWGN channel with noise
variance σ2

n.

Proof: See Appendix A.
We start by examining the error performance of the SCL

decoder with the newly defined splitting rule. The Gaussian
distributed L(ui) is illustrated in Fig. 1. The two verti-
cal lines correspond to two threshold values±log1−Pe(ui)

Pe(ui)
,

cutting the entire range ofL(ui) into three separate parts,
i.e., (−∞,−log 1−Pe(ui)

Pe(ui)
), [−log 1−Pe(ui)

Pe(ui)
, log 1−Pe(ui)

Pe(ui)
], and

(log 1−Pe(ui)
Pe(ui)

,∞). The first interval denotes the event in which
no splitting is performed andui is incorrectly decoded, i.e.,
ûi = 1. The probability of such event occurring can be
computed as

P ′
e(ui) = Pr(L(ui) < −log

1− Pe(ui)

Pe(ui)
)

= Q
(E[L0(ui)] + log(1− Pe(ui))− log(Pe(ui))

√

2E[L0(ui)]

)

= Q
(

√

E[L0(ui)]

2
+

log(1/Q(
√

E[L0(ui)]
2 )− 1)

√

2E[L0(ui)]

)

= Q
(

Q−1(Pe(ui)) +
log(1/Pe(ui)− 1)

2Q−1(Pe(ui))

)

.

(7)
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Fig. 1. Distribution ofL(ui) under the Gaussian approximation.

Similarly, the last interval corresponds to the event in which
no splitting is performed andui is correctly decoded, i.e.,
ûi = 0, and the probability associated with such event can be
computed as

P ′
r(ui) = Pr

(

L(ui) > log
1− Pe(ui)

Pe(ui)

)

.

Now, letµ andσ be the mean and standard deviation ofL(ui)
when the all-zero codeword is transmitted, respectively, i.e.,
µ = E[L0(ui)] andσ =

√

2E[L0(ui)]. Then we have

P ′
r(ui) = Q

( log(1− Pe(ui))− log(Pe(ui))− µ

σ

)

. (8)

Since the proposed splitting rule becomes activated when
the decoding reliability is high, i.e.,Pe(ui) is small, it is of
particular interest to see the error performance in this regime,
and we have the following important results.

Proposition 2. Under the Gaussian approximation,
i.e., L(ui) ∼ N (E[L(ui)], 2|E[L(ui)]|), we have 1)
limPe(ui)→0+

P ′
e(ui)

Pe(ui)
= 0, i.e., P ′

e(ui) = o(Pe(ui)), and 2)
limPe(ui)→0+ P ′

r(ui) = 1.

Proof: See Appendix B.
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Fig. 2. P ′

e(ui) (left) andP ′

r(ui) (right) as functions ofPe(ui).

The essential message of Proposition 2 is that if the sub-
channel is sufficiently reliable, then with high probability,
the correct path will not split and the unfrozen bitui will
be correctly decoded. As depicted in Fig. 2 (left), when the
subchannel reliability improves, i.e.,Pe(ui) becomes smaller,
the decoding errorP ′

e(ui) decreases rapidly, and it is much
smaller thanPe(ui). Similarly, Fig. 2 (right) shows that the
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probability of correct decodingP ′
r(ui) approaches1 quickly

when Pe(ui) becomes smaller, corroborating the claims of
Proposition 2.

Armed with Proposition 2, we are ready to conjecture the
behavior of the correct path in list decoding, which is in
general hard to achieve a quantitative and explicit result since
that number of error patterns increases exponentially and that
the pruning operations involved in list decoding introducevery
complicated coupling between paths.

Conjecture 1. Suppose that the correct decoding path sur-
vives until ui−1

1 . Under the Gaussian approximation, as Pe(ui)
approaches zero, with high probability, the current path will
survive at ui without splitting and ui will be correctly decoded.
In addition, with the increasing reliability of the subsequent
subchannels corresponding to uN

i+1, the correct path will
survive till termination without splitting with high probability.

Some empirical evidences are provided in Appendix C.
Having characterized the behavior of the correct path, we

now turn to examine the behavior of the incorrect path, and
we have the following conjecture:

Conjecture 2. Under the Gaussian approximation, for any
incorrect path that survives at some unfrozen bit ui, it will split
at some stage within {i+1, i+2, ..., N} with high probability.

Some empirical evidences are provided in Appendix D.
It was observed in [13] that by inverting the first erroneous

bit decision, the performance of the SC decoder can be
significantly improved, which implies that the decoding error
occurring in ûi−1

1 will elevate the estimate error ofuN
i due

to severe error propagation. This observation indeed provides
concrete support for Conjecture 2. Now, exploiting these
desirable features presented in Conjecture 1 and Conjecture 2,
in combination with the proposed novel splitting rule, a low-
complexity decoding procedure can be devised as detailed in
the following subsection.

C. The Decoding Algorithm

The above arguments imply that all the decoding paths can
be classified into two different types according to their splitting
behaviors:Type a) surviving with almost no splitting, andType
b) splitting frequently. Ideally, aType a) path is unique, which
corresponds to the correct codeword, while all other paths
are supposed to belong toType b). To reduce the decoding
complexity, the key thing is to reduce the number of surviving
paths at each stage. We first introduce a counterωl[i] for the
l-th path at stagei (corresponding toui), which counts the
number of stages that thel-th path survives without splitting.
For the l-th path, if it proceeds toui without splitting, then
ωl[i] = ωl[i − 1] + 1. While if the l-th path splits into two
pathsl′ and l′′, thenωl′ [i] = ωl′′ [i] = 0. Now, utilizing the
fact that the correct path seldom splits, while the incorrect
path tends to split at a certain stage, we argue that ifωl[i]
exceeds a predefined thresholdω, then thel-th path is more
likely to be the correct path. As such, other remaining paths
with corresponding counter values less thanω can be pruned,
thereby reducing the number of surviving paths.

Under the above rationale, we propose the following split-
reduced SCL Algorithm:

Algorithm 1 : Split-Reduced SCL Decoder
Step 1 The initialization is done by starting from the first bit

u1;
Step 2 For thel-th path and unfrozen bitui, if (6) holds, then

setûi to be0 or 1 without splitting the decoding path;
otherwise, split the decoding path into two paths.ωl[i]
is updated for each path in the meantime;

Step 3 When the number of paths exceeds the specified list
sizeL, prune those paths whose counter is less than
the predetermined constantω; if no path has counter
larger thanω, then select the bestL paths according
to (9);

Step 4 If i < N , then increasei to i = i + 1 and go to Step
2; otherwise, the candidate codeword with the smallest
distance fromyN1 is selected as the decoding output.

D. Complexity and Performance Analysis

In terms of complexity, the split-reduced SCL decoder
outperforms the SCL decoder in two aspects.

1) Recall that for the conventional SCL decoder, the num-
ber of decoding paths doubles after each unfrozen bit is
processed. Thus, the number of paths grows to the spec-
ified list sizeL after log2L unfrozen bits are processed.
After which, at each stage,2L paths will be pruned to
obtain the survivingL paths. For the split-reduced SCL
decoder, as the splitting is avoided when the reliability
of the subchannel is high enough, the speed of reaching
the specified list sizeL is relatively slower. In addition,
(1 + θ)L paths (0 ≤ θ ≤ 1) are pruned on average at
each stage.

2) For the conventional SCL decoder, the number of sur-
viving paths remains fixed atL after the initial log2L
unfrozen bits are processed. For the split-reduced SCL
decoder, if the counter value of some pathl exceeds the
predefined thresholdω, the number of surviving paths
can be smaller thanL. In the extreme case, only the
correct path survives while all other paths are pruned.

It is worth pointing out that, the choice of the threshold
ω affects both the decoding complexity and the error perfor-
mance. In particular, it specifies the number of stages allowed
at the decoder to identify the correct path. Due to the error
introduced by the underlying channel, the correct path might
need several stages to accumulate its reliability. During this
period, there may exist incorrect paths which appears to be
more reliable and are mistaken as the ‘correct’ path by the
decoder. Therefore, ifω is small, it is more likely that there
will be incorrect paths exceeding the LLR threshold and does
not split while the correct one keeps splitting, which leads
to an irreversible loss in performance if the real correct path
is eliminated. Asω increases, the correct path is given more
time to accumulate its reliability, hence has a higher chance
to win over the incorrect paths, thereby achieving a better
performance.
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Regarding the complexity, note that before any path arrives
at theω threshold, all candidate paths keep splitting with a
high probability since at most one of them is the correct one.
Therefore, the decoder has to wait for at leastω stages until
some path achieves the thresholdω. Within this period, the
number of paths remains similar to that of SCL decoder. In
this regard, it is desirable to have a smallerω in terms of
complexity savings.

IV. A N ENHANCED SPLIT-REDUCEDSCL DECODER

This section presents an enhanced split-reduced SCL de-
coder, by exploiting Conjecture 1, that the correct decoding
path tends to survive till termination without splitting after
some unfrozen bitui+ω, which suggests the key idea of
replacing the SCL decoder with the SC decoder after this
particular unfrozen bit. Nevertheless, it is in general quite
difficult to determine the exact indexi + ω because the
distribution of frozen and unfrozen bits is highly dependent
on the underlying channel and no simple rules can be derived
explicitly. However, it turns out that an upper bound, denoted
by N −K1+1, can be found for the indexi+ω, after which,
splitting is completely avoided for the subsequent unfrozen
bits.

A. An illustrative example to determine K1

We now provide a simple polar code with block-length
N = 8 and rateR = 0.5 as an example to illustrate how
to find N − K1 + 1. We start by constructing a full binary
tree withN = 8 leaf nodes (as mentioned in [14]), as shown
in Fig. 3. Each leaf node corresponds to either a frozen bit

B

Fig. 3. A simple(8, 4) polar code withK1 = 2.

or an unfrozen bit with an index in{1, 2, ..., N} counted
from left to right, and a frozen bit is denoted by a white
disk while the other leaf nodes are denoted by black ones. In
this particular example,{u1, u2, u3, u5} are frozen bits while
{u4, u6, u7, u8} are unfrozen bits. Then, for a non-leaf node,
if its two descendants have the same color it will also be
colored the same, otherwise it is colored gray. The coloring
process starts from the bottom leaf nodes until the root node
is reached. After that, we start from the root node and check
its right child node until the first black disk is found. In Fig. 3,
we will find nodeB which hasu7 andu8 as its child nodes,
andK1 is equal to the number of leaf nodes that nodeB has,
i.e., K1 = 2. SinceK1 always has an exponential form of
K1 = 2k1 , instead of generating Fig. 3, one could also count
the number of unfrozen bits from the last bituN to u1 until the
first frozen bit is reached, the largest number of consecutive
unfrozen bits,2k1 , will be the desiredK1.

B. SC decoding performance after uN−K1+1

We now present the following important relationship be-
tween SC decoding and ML decoding after the unfrozen bit
uN−K1+1, which will be used to design the enhanced split-
reduced decoding algorithm.

Theorem 1. Suppose that the desired K1 has been found,
and all the unfrozen bits with indices {i : 1 ≤ i ≤ N −K1}
have been supplied correctly by a genie, then SC decoder will
achieve exactly the same performance as ML decoder.

Proof: See Appendix E.
According to [15] and [16], the quality of a subchannel

W
(j)
N depends heavily on the first few least significant bits of

the binary expansion ofj − 1. Now, recalling the process of
locating nodeB in Fig. 3, it is observed that such a node
B always corresponds to a subchannel with Bhattacharyya
parameterZB = (Z(W ))

2d , whered is the depth of node
B. In general,ZB should take a rather small value, since
Z(W ) ≤ 1 and the power exponent2d grows exponentially,
which implies the feasibility of using SC decoding for the
unfrozen bits afteruN−K1+1 without splitting.

C. The enhanced decoding algorithm

Based on the above observation, the enhanced split-reduced
SCL decoding algorithm can then be summarized as follows:

Algorithm 2 :The Enhanced Split-Reduced SCL Decoder
Step 1 The initialization is done by starting from the first bit

u1;
Step 2 For thel-th path and unfrozen bitui, if (6) holds, then

setûi to be0 or 1 without splitting the decoding path;
otherwise, split the decoding path into two paths.ωl[i]
is updated for each path in the meantime;

Step 3 When the number of paths exceeds the specified list
sizeL, prune those paths whose counter is less than
the predetermined constantω; if no path has counter
larger thanω, then select the bestL paths according
to (9);

Step 4 If i < N −K1, then increasei to i = i+1 and go to
Step 2; otherwise, simplified SC decoding is applied
instead to obtain a unique estimate(ûN−K1+1, ..., ûN )
for each surviving path, and thus the candidate code-
word with the smallest distance fromyN1 is selected
as the decoding output.

Fig. 4 illustrates the decoding procedure of the enhanced
split-reduced SCL decoder. For the unfrozen bits before
uN−K1+1, the splitting rule as per (6) is used, while for the
unfrozen bits(uN−K1+1, ..., uN), simplified SC decoding is
implemented instead.

It is easy to see that the complexity is further reduced by the
enhanced split-reduced SCL decoder, due to the elimination
of path-splitting afteruN−K1+1, nevertheless, the achievable
error performance is not clear. In the following, we show
that the enhanced split-reduced SCL decoder outperforms the
original version in terms of error rate as well.
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Theorem 2. The decoding error performance achieved by
the enhanced split-reduced SCL decoder is no worse than the
original version.

Proof: See Appendix F.
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Fig. 4. Decoding procedure of enhanced split-reduced SCL decoding.

It is also of interest to consider the worst case complexity
of the proposed scheme. Since the worst case appears when
every path splits, where the LLR threshold andω threshold
are never achieved, hence the proposed scheme reduces to the
original SCL decoder. However, the upper boundN −K1+1
after which SC decoding can be implemented always exists.
Therefore, even for the worst case, the proposed algorithm can
reduce the complexity byO(LK1logK1) compared with the
SCL decoding scheme without degrading performance.

V. SIMULATION RESULTS

In this section, numerical simulation results are presented
to illustrate the performance of the proposed decoding algo-
rithms. Since the enhanced split-reduced SCL decoder requires
lower complexity, but achieves no worse decoding error per-
formance compared to the simple split-reduced SCL decoder,
we consider only the enhanced split-reduced SCL decoder
in simulations (we will use ESR-SCL as the shorthand for
enhanced split-reduced SCL decoder in the following figures).
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Fig. 5. Performance comparison of SCL decoder, enhanced split-reduced
SCL decoder and CRC-aided SCL decoder.

Fig. 5 shows the block error rate of SCL decoder, enhanced
split-reduced SCL decoder with differentω and CRC-aided
SCL decoder with generator polynomialg(D) = D24+D23+
D6 + D5 + D + 1 [18], whereN = 28, K = N/2 and list
sizeL = 8. As expected, whenω increases, the performance of
enhanced split-reduced SCL decoder improves. In addition,we
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Fig. 6. Average number of decoding paths after pruning forui, with
Eb/N0 = 2dB.

see that the CRC-aided SCL decoder significantly outperforms
the SCL decoder.

Define li as the average number of decoding paths that are
split whenui is processed, and letT be the total number of

independent trials; thenli ,
∑T

j=1 li,j

T , whereli,j is defined as
the number of splitting paths at stagei in thej-th experiment.
The average number of paths before and after pruning are
defined similarly.
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Fig. 6 illustratesli for SCL decoder and enhanced split-
reduced SCL decoder with differentω at SNR= 2dB when
N = 28, K = N/2 and list sizeL = 8, after pruning
operation. Since SCL decoder always splits decoding paths
for each unfrozen bit, the number of decoding paths increases
to the specified list sizeL = 8 at an exponential rate,
i.e., from 0 to 1, 2, 4, 8, and remains at 8 till termination.
On the other hand, for enhanced split-reduced SCL decoder,
it can be observed that the average number of paths after
pruning operation keeps smaller than4 for most indices. As
ω increases, less complexity can be saved, since the decoder
has to wait for some longer stages until some path achieves
the ω threshold, and during this period, the number of paths
still stays at a large value. Besides, recall that enhanced split-
reduced SCL decoder degrades to SC decoding after the index
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N − K1 + 1. For this particular case,K1 = 32, hence
K1/K = 25%, which indicates that 25% of the unfrozen bits
can be decoded by SC decoding rather than list decoding.

It has been observed in [2] that SCL decoder with list
sizeL ≥ 2 almost achieves the same performance. Thus, to
achieve a better performance, the list size should be at least
L = 2. Fig. 7 shows the number of paths after pruning with
Eb/N0 = 3dB. For smallω, the average number of paths
remains smaller than2, which implies that it can not retain
some similar performance as SCL decoder. On the other hand,
with largeω = 60, the performance significantly improves and
becomes closer to that of the SCL decoder, yet with reduced
complexity.

Fig. 8 plots the average number of decoding paths after
pruning for different SNRs withω = 45. It can be observed
that as SNR increases, the average number of decoding paths
after pruning decreases. Since the received symbols are more
reliable for high SNRs, the LLR threshold (see (6)) will be
achieved with a higher probability, and once theω threshold is
achieved, the other paths will be eliminated without splitting,
as analyzed by using Gaussian approximation. Besides, as the
average number of paths after pruning decreases for higher
SNRs, it will lead to some performance further deviating from
SCL decoding (see Fig. 5).
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VI. CONCLUSION

In this paper, we have proposed low complexity split-
reduced SCL decoders for polar codes. By exploiting the fact
that splitting can be avoided if the reliability of decodingthe
unfrozen bit is high enough, a new splitting rule was defined.
Under this splitting rule, it was conjectured that, if the correct
path survived at some stage, it tends to survive till termination
without splitting, while the incorrect path is more likely to split
in the following stages. This critical behavior was then used
to design a new low complexity SCL decoder. Furthermore,
it was explicitly shown that there exists a particular unfrozen
bit uN−K1+1 for any polar codes, and SC decoding can be
implemented instead to decode the following unfrozen bits
without degradation of error performance.

APPENDIX

A. Proof of Proposition 1

We first focus on the basic decoding element defined by
G2, and consider the case(u1 = 1, u2 = 0). This leads to
E[L(y1)] = − 2

σ2
n

andE[L(y2)] = 2
σ2
n

. Then,

φ(E[L(u1)]) = 1−
(

1− φ(− 2

σ2
n

)
)(

1− φ(
2

σ2
n

)
)

(a)
= 1 +

(

1− φ(
2

σ2
n

)
)(

1− φ(
2

σ2
n

)
)

= 2− φ(E[L0(u1)])
(b)
= φ(−E[L0(u1)]).

Steps (a) and (b) come from the fact thatφ(x) + φ(−x) = 2.
Thus, E[L(u1)] = −E[L0(u1)] and E[L(u2)] = −(− 2

σ2
n
) +

2
σ2
n

= E[L0(u2)]. For all other possible values of(u1, u2),
similar results hold. As polar codes are recursively constructed
based onG2, by simple induction, the claim follows.

B. Proof of Proposition 2

Denote t = Q−1(Pe(ui)), and thus from (7) we have
P ′
e(ui) = Q(t + log(1/Q(t)−1)

2t ). For the following derivation,

we will use
(L)
= to denote the L’Hôpital’s rule. Then, we have

lim
Pe(ui)→0+

P ′
e(ui)

Pe(ui)

= lim
t→+∞

Q(t+ log(1/Q(t)−1)
2t )

Q(t)

(L)
= lim

t→+∞

e−
(t+

log(1/Q(t)−1)
2t

)2

2

e−
t2

2

= e−
1
2 limt→+∞(( log(1/Q(t)−1)

2t )2+log(1/Q(t)−1)).

One can also check that

lim
t→+∞

log(1/Q(t)− 1)

2t

(L)
= lim

t→+∞

1

2

1

1−Q(t)

1√
2π

e−
t2

2

Q(t)
(L)
= lim

t→+∞

1

2

t

1−Q(t)
= +∞,

and
lim

t→+∞
log(1/Q(t)− 1) = +∞.

Thus limPe(ui)→0+
P ′

e(ui)
Pe(ui)

= 0 holds.

Next, recall Pe(ui) = Q(
√

E[L0(ui)]/2), i.e., t =
√

E[L0(ui)]/2 = σ/2. Then we have

lim
Pe(ui)→0+

P ′
r(ui)

= lim
Pe(ui)→0+

Q
( log(1− Pe(ui))− logPe(ui)− µ

σ

)

= Q
(

lim
t→+∞

t · ( log(1/Q(t)− 1)

2t2
− 1)

)

.

Note that

lim
t→+∞

log(1/Q(t)− 1)

2t2
(L)
= lim

t→+∞

1

4

1

1−Q(t)

1√
2π

e−
t2

2
1/t

Q(t)
(L)
= lim

t→+∞

1

4

1

1−Q(t)

1

t2
= 0,
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thus limt→+∞ t( log(1/Q(t)−1)
2t2 − 1) = −∞, and we have

limPe(ui)→0+ P ′
r(ui) = 1.

C. Empirical evidence of Conjecture 1

The first two statements are straightforward results due to
Proposition 2. According to [3], the metric for each path could
be computed in a recursive manner according to

P (ûi
1|yN1 ) = P (ûi−1

1 |yN1 )
e(1−ûi)L(ui)

eL(ui) + 1
. (9)

For the correct path,

P (ûi
1|yN1 ) = P (ûi−1

1 |yN1 )
eL(ui)

eL(ui) + 1

≈ P (ûi−1
1 |yN1 )(1− Pe(ui))

≈ P (ûi−1
1 |yN1 ),

which implies that the reliability of this path after choosing
ûi = 0 hardly degrades. Thus, as the correct path survives
at ui−1, it would not be pruned and continue to survive at
ui with high probability. By induction oni, the correct path
would survive to the last without splitting if the following
subchannels are reliable enough.

D. Empirical evidence of Conjecture 2

pv

v

1v 2v

v v

1v

1v

2v

2v

Fig. 9. Decoder for the constituent code.

The SC decoding process can be interpreted based on a full
binary tree withN = 2n leaf nodes, where postorder traversal
is implemented. We use Fig. 9 to give a simple illustration,
wherev1 and v2 denote the child nodes of nodev while vp
denotes the parent node. When nodev is activated, it would
first receive an LLR vectorαv from vp. Suppose that the length
of αv is 2p. Then, nodev would compute the LLR vectorαv1

of length 2p−1 according to SC decoding and passesαv1 to
node v1. After nodev1 produces its own codewordβv1 of
length2p−1 and passes it back to nodev, another LLR vector
αv2 of length2p−1 would be computed at nodev and sent to
nodev2. After nodev receives codewordβv2 , it would produce
its own codewordβv by associatingβv1 andβv2 according to
G2. The above description defines a recursive algorithm. The
initialization is done by assigning the LLRs received from
the underlying channel to the root node, while the recursion
returns at each leaf node since leaf nodes correspond to the
sequenceuN

1 and hard decisions are implemented.
Suppose thatm errors occur at nodev1, i.e.,m bits are set to

1 in βv1 (assuming the all-zero codeword transmitted). With a
slight abuse of notation, we useαv[i] to denote the component

with indexi, and we haveE[αv2 [i]] = (1−2βv1 [i])E[αv[2i]]+
E[αv[2i + 1]]. Note thatE[αv[i]] = E[αv[j]] holds for any
1 ≤ i, j ≤ 2p, and thusE[αv2 [i]] = 0 if βv1 [i] = 1. In (2),
one can check that if onlyE[L(y1)] (or E[L(y2)]) is zero, we
haveE[L(u1)] = 0 andE[L(u2)] = E[L(y2)] (or E[L(u2)] =
E[L(y1)]); while if both E[L(y1)] = 0 and E[L(y2)] = 0
hold, we haveE[L(u1)] = E[L(u2)] = 0. Thus, the number
of LLRs whose means are zero-valued remains the same after
the calculation defined by (2).

As nodev2 would pass another two LLR vectors computed
according to (2) to its left child node and right child node
respectively, by some simple induction, we can conclude that
there would be at leastm leaf nodes that have zero-valued
means. For an unfrozen bitui, E[L(ui)] = 0 implies a sig-
nificant degradation to the original subchannel, and it is more
difficult to achieve the thresholds±log 1−Pe(ui)

Pe(ui)
(|log 1−Pe(ui)

Pe(ui)
|

usually stays far away from zero ifui is an unfrozen bit). As
there would be at leastm leaf nodes having zero-valued means,
this incorrect path is quite likely to split at the followingstages.

E. Proof of Theorem 1

We first provide a lemma, which will be invoked in the
proof of Theorem 1.

Lemma 1. For a symmetric B-DMC with received LLRs LN
1 ,

the ML decoder will output the codeword

x̂N
1 = argmax

xN
1 ∈C

N
∑

i=1

(1− 2xi)Li. (10)

Proof:

x̂N
1 = argmax

xN
1 ∈C

P (xN
1 |yN1 )

= argmax
xN
1 ∈C

logP (yN1 |xN
1 )

= argmax
xN
1 ∈C

N
∑

i=1

logP (yi|xi).

As yN1 denotes the symbols received from the underlying chan-
nel,

∑N
i=1 logP (yi|1) is just a constant which is independent

of xN
1 . Thus,

x̂N
1 = argmax

xN
1 ∈C

N
∑

i=1

logP (yi|xi)−
N
∑

i=1

logP (yi|1)

= argmax
xN
1 ∈C

N
∑

i=1

log
P (yi|xi)

P (yi|1)

= argmax
xN
1 ∈C

N
∑

i=1

(1 − xi)Li

= argmax
xN
1 ∈C

(1

2

N
∑

i=1

Li +
1

2

N
∑

i=1

(1 − 2xi)Li

)

.

Note that12
∑N

i=1 Li is also a constant onceyN1 is determined.
Thus,

x̂N
1 = argmax

xN
1 ∈C

P (xN
1 |yN1 ) = argmax

xN
1 ∈C

N
∑

i=1

(1− 2xi)Li.
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Now we establish a full binary tree as illustrated in Fig. 3
for the proof. Use(v1, v2, ..., vm) to denote the codeword as-
sociated with a nodev and(Lv[1], Lv[2], ..., Lv[m]) to denote
the related LLRs. The codeword(A1, A2, ..., AN ) of root node
A just corresponds toxN

1 , the last stage output of the encoder,
while (LA[1], LA[2], ..., LA[N ]) represents the received LLRs
from the underlying channel. LetD andC be the left and right
child node of the root nodeA, respectively. Then considering
the basic encoding operation with the matrixG2 we have
A2i−1 = Di ⊕ Ci and A2i = Ci, for i = 1, 2, ..., N/2. As
uN−K1
1 are correctly known, the ML decoder will select the

estimate(ûN−K1+1, ..., ûN) to maximize (see Lemma 1):

ûN
N−K1+1 = argmax

uN
N−K1+1

N
∑

i=1

(1− 2Ai)LA[i]

= argmax
uN
N−K1+1

(

N/2
∑

i=1

(1− 2(Di ⊕ Ci))LA[2i− 1]

+

N/2
∑

i=1

(1− 2Ci)LA[2i]
)

= argmax
uN
N−K1+1

N/2
∑

i=1

(1− 2Ci)
(

(1 − 2Di)LA[2i− 1] + LA[2i]
)

.

The SC decoder calculates the LLRs at nodeC according to
equation (76) in [1], and one can check thatLC [i] = (1 −
2Di)LA[2i− 1] + LA[2i], which is known sinceLA[i] is the
received LLR andDi only depends onuN−K1

1 . Thus we have

ûN
N−K1+1 = argmax

uN
N−K1+1

N/2
∑

i=1

(1− 2Ci)LC [i].

Then we consider the child nodes of nodeC and repeat the
above steps, until the first black nodeB is reached. Similarly,
we can have

ûN
N−K1+1 = argmax

uN
N−K1+1

K1
∑

i=1

(1− 2Bi)LB[i], (11)

whereLB[i] equals the LLR calculated by the SC decoder
according to equation (76) in [1]. Obviously, to maximize
the summation in (11), it requires that the binary codeword
of (B1, B2, ..., BK1) are decided according to the signs of
(LB[1], LB[2], ..., LB[K1]), which are just equivalent to the
one-by-one hard decisions in SC decoding, except that an
inverse encoding operation is needed to obtain the desired
ûN
N−K1+1. Therefore, SC decoder achieves exactly the same

performance as ML decoder provided the real values of
uN−K1
1 are known.

F. Proof of Theorem 2

It is obvious that beforeuN−K1+1 is processed, the en-
hanced split-reduced SCL decoder achieves exactly the same
performance as the original one. Suppose thatl paths survive
when uN−K1+1 is reached. For each surviving path, there
should be2K1 possible paths which all originate from the

nodes at the(N −K1)-th level (just corresponds to the
(N −K1)-th bit, see [2]) in the list decoding framework. Ac-
cording to Theorem 1, for any particular path, the conventional
SC decoding suffices to achieve the ML decoding performance
(note that this is not the overall ML decoding performance
since the estimated unfrozen bits beforeuN−K1+1 are not
guaranteed to be correct). Thus, for each particular path
arriving atuN−K1+1, the conventional SC decoding algorithm
would select the best path among all2K1 possible ones, i.e.,
the best estimate(ûN−K1+1, ..., ûN) for each surviving path
can be obtained directly. Thus, the overall best estimate ofuN

1

must be involved in thesel surviving candidate codewords.
Finally, the candidate codeword that has the smallest distance
from the received symbolsyN1 is selected as the decoding
output.
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